-
Notifications
You must be signed in to change notification settings - Fork 3.5k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
It's not possible to apply those transforms to your dataset: #511
Comments
I had the same issue when I run it on local. Then I fixed it by running it on Sagemaker. The differences I found:
You can check if your pytorch is using GPU:
I will suggest you try to run the lesson on cloud since the environment is set up for you. |
Thank you for your advice. I'm working on colab and the pytorch version was 1.5. I downgraded to 1.4.0 as weell as torchvision to 0.5.0. You can look your version with: I downgraded with: |
This works for me too. |
I received the error with pyTorch on my local system and solved the issue by using (float) with the train data after looking it up on StackOverFlow. Is it a requirement in the latest pyTorch version ? |
How did you solve it? I tried using float but it didnt work for me so i created this issue. |
With only torch on colab to train a model I used type conversion while passing the feature data tensor to the model. I couldn't solve the issue with fast.ai with the latest version as well. So I think this is a requirement in the latest version |
Great, thanks. I've chaged from colab to local and with 1.5.0 it only gives me a warning but it works so maybe is just colab. |
@guixermo @someshwarrc Can you give us some code? How would you modify the course notebook? |
You dont have to modify it, you just need to downgrade the pytorch and torchvision versions with the comands i wrote above. |
Well that’s not what I call a solution. Thanks for your reply. |
getting error while trying to transform the images to 224 size
`---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
/usr/local/lib/python3.6/dist-packages/fastai/data_block.py in _check_kwargs(ds, tfms, **kwargs)
593 x = ds[0]
--> 594 try: x.apply_tfms(tfms, **kwargs)
595 except Exception as e:
11 frames
/usr/local/lib/python3.6/dist-packages/fastai/vision/image.py in apply_tfms(self, tfms, do_resolve, xtra, size, resize_method, mult, padding_mode, mode, remove_out)
122 x = tfm(x, size=_get_crop_target(size,mult=mult), padding_mode=padding_mode)
--> 123 else: x = tfm(x)
124 return x.refresh()
/usr/local/lib/python3.6/dist-packages/fastai/vision/image.py in call(self, x, *args, **kwargs)
523 "Randomly execute our tfm on
x
."--> 524 return self.tfm(x, *args, **{**self.resolved, **kwargs}) if self.do_run else x
525
/usr/local/lib/python3.6/dist-packages/fastai/vision/image.py in call(self, p, is_random, use_on_y, *args, **kwargs)
469 "Calc now if
args
passed; else create a transform called probp
ifrandom
."--> 470 if args: return self.calc(*args, **kwargs)
471 else: return RandTransform(self, kwargs=kwargs, is_random=is_random, use_on_y=use_on_y, p=p)
/usr/local/lib/python3.6/dist-packages/fastai/vision/image.py in calc(self, x, *args, **kwargs)
474 "Apply to image
x
, wrapping it if necessary."--> 475 if self._wrap: return getattr(x, self._wrap)(self.func, *args, **kwargs)
476 else: return self.func(x, *args, **kwargs)
/usr/local/lib/python3.6/dist-packages/fastai/vision/image.py in affine(self, func, *args, **kwargs)
182 m = tensor(func(*args, **kwargs)).to(self.device)
--> 183 self.affine_mat = self.affine_mat @ m
184 return self
RuntimeError: Expected object of scalar type Float but got scalar type Double for argument #3 'mat2' in call to _th_addmm_out
During handling of the above exception, another exception occurred:
Exception Traceback (most recent call last)
in ()
----> 1 data = ImageDataBunch.from_name_re(path_img, fnames, pat, ds_tfms=get_transforms(), size=224, bs=bs).normalize(imagenet_stats)
2
/usr/local/lib/python3.6/dist-packages/fastai/vision/data.py in from_name_re(cls, path, fnames, pat, valid_pct, **kwargs)
156 assert res,f'Failed to find "{pat}" in "{fn}"'
157 return res.group(1)
--> 158 return cls.from_name_func(path, fnames, _get_label, valid_pct=valid_pct, **kwargs)
159
160 @staticmethod
/usr/local/lib/python3.6/dist-packages/fastai/vision/data.py in from_name_func(cls, path, fnames, label_func, valid_pct, seed, **kwargs)
145 "Create from list of
fnames
inpath
withlabel_func
."146 src = ImageList(fnames, path=path).split_by_rand_pct(valid_pct, seed)
--> 147 return cls.create_from_ll(src.label_from_func(label_func), **kwargs)
148
149 @classmethod
/usr/local/lib/python3.6/dist-packages/fastai/vision/data.py in create_from_ll(cls, lls, bs, val_bs, ds_tfms, num_workers, dl_tfms, device, test, collate_fn, size, no_check, resize_method, mult, padding_mode, mode, tfm_y)
95 "Create an
ImageDataBunch
fromLabelLists
lls
with potentialds_tfms
."96 lls = lls.transform(tfms=ds_tfms, size=size, resize_method=resize_method, mult=mult, padding_mode=padding_mode,
---> 97 mode=mode, tfm_y=tfm_y)
98 if test is not None: lls.add_test_folder(test)
99 return lls.databunch(bs=bs, val_bs=val_bs, dl_tfms=dl_tfms, num_workers=num_workers, collate_fn=collate_fn,
/usr/local/lib/python3.6/dist-packages/fastai/data_block.py in transform(self, tfms, **kwargs)
503 if not tfms: tfms=(None,None)
504 assert is_listy(tfms) and len(tfms) == 2, "Please pass a list of two lists of transforms (train and valid)."
--> 505 self.train.transform(tfms[0], **kwargs)
506 self.valid.transform(tfms[1], **kwargs)
507 if self.test: self.test.transform(tfms[1], **kwargs)
/usr/local/lib/python3.6/dist-packages/fastai/data_block.py in transform(self, tfms, tfm_y, **kwargs)
722 def transform(self, tfms:TfmList, tfm_y:bool=None, **kwargs):
723 "Set the
tfms
andtfm_y
value to be applied to the inputs and targets."--> 724 _check_kwargs(self.x, tfms, **kwargs)
725 if tfm_y is None: tfm_y = self.tfm_y
726 tfms_y = None if tfms is None else list(filter(lambda t: getattr(t, 'use_on_y', True), listify(tfms)))
/usr/local/lib/python3.6/dist-packages/fastai/data_block.py in _check_kwargs(ds, tfms, **kwargs)
594 try: x.apply_tfms(tfms, **kwargs)
595 except Exception as e:
--> 596 raise Exception(f"It's not possible to apply those transforms to your dataset:\n {e}")
597
598 class LabelList(Dataset):
Exception: It's not possible to apply those transforms to your dataset:
Expected object of scalar type Float but got scalar type Double for argument #3 'mat2' in call to _th_addmm_out`
The text was updated successfully, but these errors were encountered: