From 5d4d017829ad7c2d714b6a27be631547034d79a4 Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Thu, 4 Jul 2024 02:40:55 +0000 Subject: [PATCH] deploy: cc6d54deb7e7646422ea390517f51f3c1f780481 --- .nojekyll | 0 accel_sgd.html | 1421 ++++++++++ .../figure-html/cell-20-output-1.png | Bin 0 -> 21477 bytes .../figure-html/cell-9-output-2.png | Bin 0 -> 9465 bytes .../figure-html/fig-img-betas-output-1.png | Bin 0 -> 43302 bytes .../figure-html/fig-img-momentum-output-1.png | Bin 0 -> 13189 bytes book10.html | 759 +++++ book11.html | 799 ++++++ book12.html | 765 +++++ book15.html | 771 ++++++ book18.html | 764 +++++ book19.html | 753 +++++ book2.html | 764 +++++ book20.html | 758 +++++ book3.html | 1186 ++++++++ book5.html | 758 +++++ book6.html | 766 +++++ book7.html | 772 ++++++ book8.html | 755 +++++ book9.html | 766 +++++ convolutions.html | 1974 +++++++++++++ .../figure-html/cell-16-output-1.png | Bin 0 -> 1399 bytes .../figure-html/cell-17-output-1.png | Bin 0 -> 1293 bytes .../figure-html/cell-24-output-1.png | Bin 0 -> 1047 bytes .../figure-html/cell-39-output-1.png | Bin 0 -> 159977 bytes .../figure-html/cell-40-output-1.png | Bin 0 -> 283368 bytes .../figure-html/cell-45-output-1.png | Bin 0 -> 7767 bytes .../figure-html/cell-51-output-1.png | Bin 0 -> 22808 bytes .../figure-html/cell-52-output-1.png | Bin 0 -> 11194 bytes .../figure-html/cell-55-output-1.png | Bin 0 -> 14780 bytes .../figure-html/cell-58-output-1.png | Bin 0 -> 22603 bytes .../figure-html/cell-59-output-1.png | Bin 0 -> 22343 bytes .../figure-html/cell-60-output-1.png | Bin 0 -> 10546 bytes .../figure-html/cell-61-output-1.png | Bin 0 -> 10546 bytes .../figure-html/cell-64-output-1.png | Bin 0 -> 9916 bytes .../figure-html/cell-7-output-1.png | Bin 0 -> 1130 bytes foundations.html | 1714 ++++++++++++ images/0_jupyter.png | Bin 0 -> 110707 bytes images/att_00000.png | Bin 0 -> 110162 bytes images/att_00008.png | Bin 0 -> 1038 bytes images/att_00012.png | Bin 0 -> 701802 bytes images/att_00013.png | Bin 0 -> 379851 bytes images/att_00014.png | Bin 0 -> 838326 bytes images/att_00028.png | Bin 0 -> 108141 bytes images/att_00029.png | Bin 0 -> 165316 bytes images/att_00030.png | Bin 0 -> 127347 bytes images/att_00031.png | Bin 0 -> 198821 bytes images/att_00032.png | Bin 0 -> 7959 bytes images/att_00033.png | Bin 0 -> 4908 bytes images/att_00034.png | Bin 0 -> 4555 bytes images/att_00035.png | Bin 0 -> 85180 bytes images/att_00036.png | Bin 0 -> 56979 bytes images/att_00038.png | Bin 0 -> 181068 bytes images/att_00042.png | Bin 0 -> 173952 bytes images/att_00043.png | Bin 0 -> 22975 bytes images/att_00044.png | Bin 0 -> 1201059 bytes images/att_00045.png | Bin 0 -> 112554 bytes images/att_00046.png | Bin 0 -> 44080 bytes images/att_00048.png | Bin 0 -> 28879 bytes images/att_00049.png | Bin 0 -> 38829 bytes images/att_00050.png | Bin 0 -> 56375 bytes images/att_00053.png | Bin 0 -> 129244 bytes images/att_00055.png | Bin 0 -> 283793 bytes images/att_00056.png | Bin 0 -> 736655 bytes images/att_00057.png | Bin 0 -> 63884 bytes images/att_00058.png | Bin 0 -> 42769 bytes images/att_00059.png | Bin 0 -> 33030 bytes images/att_00064.png | Bin 0 -> 117664 bytes images/att_00065.png | Bin 0 -> 134411 bytes images/att_00066.png | Bin 0 -> 135095 bytes images/att_00067.png | Bin 0 -> 102783 bytes images/att_00068.png | Bin 0 -> 23594 bytes images/att_00069.png | Bin 0 -> 94600 bytes images/chapter2_bouncy.svg | 87 + images/chapter2_div.svg | 78 + images/chapter2_layer3.PNG | Bin 0 -> 1100793 bytes images/chapter2_layer4and5.PNG | Bin 0 -> 1706923 bytes images/chapter2_perfect.svg | 78 + images/chapter2_small.svg | 90 + images/chapter7_neuron.png | Bin 0 -> 97825 bytes images/chapter9_conv_basic.png | Bin 0 -> 77960 bytes images/chapter9_nopadconv.svg | 33 + images/chapter9_padconv.svg | 47 + images/chapter9_rgb_conv_stack.svg | 46 + images/chapter9_rgbconv.svg | 90 + images/colorful_dist.jpeg | Bin 0 -> 107620 bytes images/colorful_summ.png | Bin 0 -> 682103 bytes images/dl4c.jpg | Bin 0 -> 92731 bytes images/doc_ex.png | Bin 0 -> 16323 bytes images/driver.PNG | Bin 0 -> 1817683 bytes images/ethics/image1.png | Bin 0 -> 762932 bytes images/ethics/image10.png | Bin 0 -> 452119 bytes images/ethics/image11.png | Bin 0 -> 323754 bytes images/ethics/image12.png | Bin 0 -> 110859 bytes images/ethics/image13.png | Bin 0 -> 1038311 bytes images/ethics/image17.png | Bin 0 -> 1850250 bytes images/ethics/image18.jpeg | Bin 0 -> 63369 bytes images/ethics/image2.png | Bin 0 -> 317720 bytes images/ethics/image3.jpeg | Bin 0 -> 177211 bytes images/ethics/image4.png | Bin 0 -> 2616130 bytes images/ethics/image6.png | Bin 0 -> 125521 bytes images/ethics/image7.png | Bin 0 -> 221299 bytes images/ethics/image8.png | Bin 0 -> 1922203 bytes images/ethics/image9.jpeg | Bin 0 -> 89607 bytes images/ethics/pipeline_diagram.svg | 1 + images/grad_illustration.svg | 70 + images/layer1.png | Bin 0 -> 52254 bytes images/layer2.png | Bin 0 -> 1236035 bytes images/matmul2.svg | 174 ++ images/timeseries1.png | Bin 0 -> 27036 bytes images/timeseries2.png | Bin 0 -> 22630 bytes images/timeseries3.png | Bin 0 -> 22562 bytes index.html | 767 +++++ intro.html | 2232 +++++++++++++++ intro_files/figure-html/cell-16-output-2.png | Bin 0 -> 91977 bytes intro_files/figure-html/cell-6-output-1.png | Bin 0 -> 51057 bytes .../fig-basic-program-output-1.svg | 46 + .../fig-detailed-loop-output-1.svg | 89 + .../fig-training-loop-output-1.svg | 77 + .../figure-html/fig-using-model-output-1.svg | 46 + .../fig-weight-assignment-output-1.svg | 58 + mnist_basics.html | 2461 +++++++++++++++++ .../figure-html/cell-131-output-1.png | Bin 0 -> 9660 bytes .../figure-html/cell-135-output-1.png | Bin 0 -> 6686 bytes .../figure-html/cell-14-output-1.png | Bin 0 -> 3705 bytes .../figure-html/cell-18-output-1.png | Bin 0 -> 3946 bytes .../figure-html/cell-19-output-1.png | Bin 0 -> 3564 bytes .../figure-html/cell-20-output-1.png | Bin 0 -> 3705 bytes .../figure-html/cell-44-output-1.png | Bin 0 -> 21540 bytes .../figure-html/cell-45-output-1.png | Bin 0 -> 21683 bytes .../figure-html/cell-54-output-1.png | Bin 0 -> 13486 bytes .../figure-html/cell-61-output-1.png | Bin 0 -> 16666 bytes .../figure-html/cell-68-output-1.png | Bin 0 -> 15372 bytes .../figure-html/cell-72-output-1.png | Bin 0 -> 17641 bytes .../figure-html/cell-9-output-1.png | Bin 0 -> 301 bytes .../figure-html/cell-93-output-1.png | Bin 0 -> 9745 bytes .../fig-gradient-descent-output-1.svg | 86 + .../fig-gradient-final-output-1.svg | 86 + resnet.html | 1521 ++++++++++ resnet_files/figure-html/cell-10-output-2.png | Bin 0 -> 11808 bytes resnet_files/figure-html/cell-6-output-1.png | Bin 0 -> 156516 bytes robots.txt | 1 + search.json | 848 ++++++ site_libs/bootstrap/bootstrap-icons.css | 2078 ++++++++++++++ site_libs/bootstrap/bootstrap-icons.woff | Bin 0 -> 176200 bytes site_libs/bootstrap/bootstrap.min.css | 12 + site_libs/bootstrap/bootstrap.min.js | 7 + site_libs/clipboard/clipboard.min.js | 7 + site_libs/quarto-html/anchor.min.js | 9 + site_libs/quarto-html/popper.min.js | 6 + .../quarto-syntax-highlighting.css | 205 ++ site_libs/quarto-html/quarto.js | 908 ++++++ site_libs/quarto-html/tippy.css | 1 + site_libs/quarto-html/tippy.umd.min.js | 2 + site_libs/quarto-nav/headroom.min.js | 7 + site_libs/quarto-nav/quarto-nav.js | 325 +++ site_libs/quarto-search/autocomplete.umd.js | 3 + site_libs/quarto-search/fuse.min.js | 9 + site_libs/quarto-search/quarto-search.js | 1290 +++++++++ sitemap.xml | 87 + styles.css | 48 + 161 files changed, 30361 insertions(+) create mode 100644 .nojekyll create mode 100644 accel_sgd.html create mode 100644 accel_sgd_files/figure-html/cell-20-output-1.png create mode 100644 accel_sgd_files/figure-html/cell-9-output-2.png create mode 100644 accel_sgd_files/figure-html/fig-img-betas-output-1.png create mode 100644 accel_sgd_files/figure-html/fig-img-momentum-output-1.png create mode 100644 book10.html create mode 100644 book11.html create mode 100644 book12.html create mode 100644 book15.html create mode 100644 book18.html create mode 100644 book19.html create mode 100644 book2.html create mode 100644 book20.html create mode 100644 book3.html create mode 100644 book5.html create mode 100644 book6.html create mode 100644 book7.html create mode 100644 book8.html create mode 100644 book9.html create mode 100644 convolutions.html create mode 100644 convolutions_files/figure-html/cell-16-output-1.png create mode 100644 convolutions_files/figure-html/cell-17-output-1.png create mode 100644 convolutions_files/figure-html/cell-24-output-1.png create mode 100644 convolutions_files/figure-html/cell-39-output-1.png create mode 100644 convolutions_files/figure-html/cell-40-output-1.png create mode 100644 convolutions_files/figure-html/cell-45-output-1.png create mode 100644 convolutions_files/figure-html/cell-51-output-1.png create mode 100644 convolutions_files/figure-html/cell-52-output-1.png create mode 100644 convolutions_files/figure-html/cell-55-output-1.png create mode 100644 convolutions_files/figure-html/cell-58-output-1.png create mode 100644 convolutions_files/figure-html/cell-59-output-1.png create mode 100644 convolutions_files/figure-html/cell-60-output-1.png create mode 100644 convolutions_files/figure-html/cell-61-output-1.png create mode 100644 convolutions_files/figure-html/cell-64-output-1.png create mode 100644 convolutions_files/figure-html/cell-7-output-1.png create mode 100644 foundations.html create mode 100644 images/0_jupyter.png create mode 100644 images/att_00000.png create mode 100644 images/att_00008.png create mode 100644 images/att_00012.png create mode 100644 images/att_00013.png create mode 100644 images/att_00014.png create mode 100644 images/att_00028.png create mode 100644 images/att_00029.png create mode 100644 images/att_00030.png create mode 100644 images/att_00031.png create mode 100644 images/att_00032.png create mode 100644 images/att_00033.png create mode 100644 images/att_00034.png create mode 100644 images/att_00035.png create mode 100644 images/att_00036.png create mode 100644 images/att_00038.png create mode 100644 images/att_00042.png create mode 100644 images/att_00043.png create mode 100644 images/att_00044.png create mode 100644 images/att_00045.png create mode 100644 images/att_00046.png create mode 100644 images/att_00048.png create mode 100644 images/att_00049.png create mode 100644 images/att_00050.png create mode 100644 images/att_00053.png create mode 100644 images/att_00055.png create mode 100644 images/att_00056.png create mode 100644 images/att_00057.png create mode 100644 images/att_00058.png create mode 100644 images/att_00059.png create mode 100644 images/att_00064.png create mode 100644 images/att_00065.png create mode 100644 images/att_00066.png create mode 100644 images/att_00067.png create mode 100644 images/att_00068.png create mode 100644 images/att_00069.png create mode 100644 images/chapter2_bouncy.svg create mode 100644 images/chapter2_div.svg create mode 100644 images/chapter2_layer3.PNG create mode 100644 images/chapter2_layer4and5.PNG create mode 100644 images/chapter2_perfect.svg create mode 100644 images/chapter2_small.svg create mode 100644 images/chapter7_neuron.png create mode 100644 images/chapter9_conv_basic.png create mode 100644 images/chapter9_nopadconv.svg create mode 100644 images/chapter9_padconv.svg create mode 100644 images/chapter9_rgb_conv_stack.svg create mode 100644 images/chapter9_rgbconv.svg create mode 100644 images/colorful_dist.jpeg create mode 100644 images/colorful_summ.png create mode 100644 images/dl4c.jpg create mode 100644 images/doc_ex.png create mode 100644 images/driver.PNG create mode 100644 images/ethics/image1.png create mode 100644 images/ethics/image10.png create mode 100644 images/ethics/image11.png create mode 100644 images/ethics/image12.png create mode 100644 images/ethics/image13.png create mode 100644 images/ethics/image17.png create mode 100644 images/ethics/image18.jpeg create mode 100644 images/ethics/image2.png create mode 100644 images/ethics/image3.jpeg create mode 100644 images/ethics/image4.png create mode 100644 images/ethics/image6.png create mode 100644 images/ethics/image7.png create mode 100644 images/ethics/image8.png create mode 100644 images/ethics/image9.jpeg create mode 100644 images/ethics/pipeline_diagram.svg create mode 100644 images/grad_illustration.svg create mode 100644 images/layer1.png create mode 100644 images/layer2.png create mode 100644 images/matmul2.svg create mode 100644 images/timeseries1.png create mode 100644 images/timeseries2.png create mode 100644 images/timeseries3.png create mode 100644 index.html create mode 100644 intro.html create mode 100644 intro_files/figure-html/cell-16-output-2.png create mode 100644 intro_files/figure-html/cell-6-output-1.png create mode 100644 intro_files/figure-html/fig-basic-program-output-1.svg create mode 100644 intro_files/figure-html/fig-detailed-loop-output-1.svg create mode 100644 intro_files/figure-html/fig-training-loop-output-1.svg create mode 100644 intro_files/figure-html/fig-using-model-output-1.svg create mode 100644 intro_files/figure-html/fig-weight-assignment-output-1.svg create mode 100644 mnist_basics.html create mode 100644 mnist_basics_files/figure-html/cell-131-output-1.png create mode 100644 mnist_basics_files/figure-html/cell-135-output-1.png create mode 100644 mnist_basics_files/figure-html/cell-14-output-1.png create mode 100644 mnist_basics_files/figure-html/cell-18-output-1.png create mode 100644 mnist_basics_files/figure-html/cell-19-output-1.png create mode 100644 mnist_basics_files/figure-html/cell-20-output-1.png create mode 100644 mnist_basics_files/figure-html/cell-44-output-1.png create mode 100644 mnist_basics_files/figure-html/cell-45-output-1.png create mode 100644 mnist_basics_files/figure-html/cell-54-output-1.png create mode 100644 mnist_basics_files/figure-html/cell-61-output-1.png create mode 100644 mnist_basics_files/figure-html/cell-68-output-1.png create mode 100644 mnist_basics_files/figure-html/cell-72-output-1.png create mode 100644 mnist_basics_files/figure-html/cell-9-output-1.png create mode 100644 mnist_basics_files/figure-html/cell-93-output-1.png create mode 100644 mnist_basics_files/figure-html/fig-gradient-descent-output-1.svg create mode 100644 mnist_basics_files/figure-html/fig-gradient-final-output-1.svg create mode 100644 resnet.html create mode 100644 resnet_files/figure-html/cell-10-output-2.png create mode 100644 resnet_files/figure-html/cell-6-output-1.png create mode 100644 robots.txt create mode 100644 search.json create mode 100644 site_libs/bootstrap/bootstrap-icons.css create mode 100644 site_libs/bootstrap/bootstrap-icons.woff create mode 100644 site_libs/bootstrap/bootstrap.min.css create mode 100644 site_libs/bootstrap/bootstrap.min.js create mode 100644 site_libs/clipboard/clipboard.min.js create mode 100644 site_libs/quarto-html/anchor.min.js create mode 100644 site_libs/quarto-html/popper.min.js create mode 100644 site_libs/quarto-html/quarto-syntax-highlighting.css create mode 100644 site_libs/quarto-html/quarto.js create mode 100644 site_libs/quarto-html/tippy.css create mode 100644 site_libs/quarto-html/tippy.umd.min.js create mode 100644 site_libs/quarto-nav/headroom.min.js create mode 100644 site_libs/quarto-nav/quarto-nav.js create mode 100644 site_libs/quarto-search/autocomplete.umd.js create mode 100644 site_libs/quarto-search/fuse.min.js create mode 100644 site_libs/quarto-search/quarto-search.js create mode 100644 sitemap.xml create mode 100644 styles.css diff --git a/.nojekyll b/.nojekyll new file mode 100644 index 0000000..e69de29 diff --git a/accel_sgd.html b/accel_sgd.html new file mode 100644 index 0000000..716368d --- /dev/null +++ b/accel_sgd.html @@ -0,0 +1,1421 @@ + + + + + + + + + +16  The Training Process – Practical Deep Learning for Coders + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ +
+ +
+ + +
+ + + +
+ +
+
+

16  The Training Process

+
+ + + +
+ + + + +
+ + + +
+ + +

You now know how to create state-of-the-art architectures for computer vision, natural language processing, tabular analysis, and collaborative filtering, and you know how to train them quickly. So we’re done, right? Not quite yet. We still have to explore a little bit more the training process.

+

We explained in Chapter 4 the basis of stochastic gradient descent: pass a mini-batch to the model, compare it to our target with the loss function, then compute the gradients of this loss function with regard to each weight before updating the weights with the formula:

+
new_weight = weight - lr * weight.grad
+

We implemented this from scratch in a training loop, and also saw that PyTorch provides a simple nn.SGD class that does this calculation for each parameter for us. In this chapter we will build some faster optimizers, using a flexible foundation. But that’s not all we might want to change in the training process. For any tweak of the training loop, we will need a way to add some code to the basis of SGD. The fastai library has a system of callbacks to do this, and we will teach you all about it.

+

Let’s start with standard SGD to get a baseline, then we will introduce the most commonly used optimizers.

+
+

16.1 Establishing a Baseline

+

First, we’ll create a baseline, using plain SGD, and compare it to fastai’s default optimizer. We’ll start by grabbing Imagenette with the same get_data we used in Chapter 14:

+
+
dls = get_data(URLs.IMAGENETTE_160, 160, 128)
+
+

We’ll create a ResNet-34 without pretraining, and pass along any arguments received:

+
+
def get_learner(**kwargs):
+    return vision_learner(dls, resnet34, pretrained=False,
+                    metrics=accuracy, **kwargs).to_fp16()
+
+

Here’s the default fastai optimizer, with the usual 3e-3 learning rate:

+
+
learn = get_learner()
+learn.fit_one_cycle(3, 0.003)
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
epochtrain_lossvalid_lossaccuracytime
02.5719322.6850400.32254800:11
11.9046741.8525890.43745200:11
21.5869091.3749080.59490400:11
+
+
+

Now let’s try plain SGD. We can pass opt_func (optimization function) to vision_learner to get fastai to use any optimizer:

+
+
learn = get_learner(opt_func=SGD)
+
+

The first thing to look at is lr_find:

+
+
learn.lr_find()
+
+ +
+
+
+
+

+
+
+
+
+

It looks like we’ll need to use a higher learning rate than we normally use:

+
+
learn.fit_one_cycle(3, 0.03, moms=(0,0,0))
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
epochtrain_lossvalid_lossaccuracytime
02.9694122.2145960.24203800:09
12.4427301.8459500.36254800:09
22.1571591.7411430.40891700:09
+
+
+

Because accelerating SGD with momentum is such a good idea, fastai does this by default in fit_one_cycle, so we turn it off with moms=(0,0,0). We’ll be discussing momentum shortly.)

+

Clearly, plain SGD isn’t training as fast as we’d like. So let’s learn some tricks to get accelerated training!

+
+
+

16.2 A Generic Optimizer

+

To build up our accelerated SGD tricks, we’ll need to start with a nice flexible optimizer foundation. No library prior to fastai provided such a foundation, but during fastai’s development we realized that all the optimizer improvements we’d seen in the academic literature could be handled using optimizer callbacks. These are small pieces of code that we can compose, mix and match in an optimizer to build the optimizer step. They are called by fastai’s lightweight Optimizer class. These are the definitions in Optimizer of the two key methods that we’ve been using in this book:

+
def zero_grad(self):
+    for p,*_ in self.all_params():
+        p.grad.detach_()
+        p.grad.zero_()
+
+def step(self):
+    for p,pg,state,hyper in self.all_params():
+        for cb in self.cbs:
+            state = _update(state, cb(p, **{**state, **hyper}))
+        self.state[p] = state
+

As we saw when training an MNIST model from scratch, zero_grad just loops through the parameters of the model and sets the gradients to zero. It also calls detach_, which removes any history of gradient computation, since it won’t be needed after zero_grad.

+

The more interesting method is step, which loops through the callbacks (cbs) and calls them to update the parameters (the _update function just calls state.update if there’s anything returned by cb). As you can see, Optimizer doesn’t actually do any SGD steps itself. Let’s see how we can add SGD to Optimizer.

+

Here’s an optimizer callback that does a single SGD step, by multiplying -lr by the gradients and adding that to the parameter (when Tensor.add_ in PyTorch is passed two parameters, they are multiplied together before the addition):

+
+
def sgd_cb(p, lr, **kwargs): p.data.add_(-lr, p.grad.data)
+
+

We can pass this to Optimizer using the cbs parameter; we’ll need to use partial since Learner will call this function to create our optimizer later:

+
+
opt_func = partial(Optimizer, cbs=[sgd_cb])
+
+

Let’s see if this trains:

+
+
learn = get_learner(opt_func=opt_func)
+learn.fit(3, 0.03)
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
epochtrain_lossvalid_lossaccuracytime
02.7309182.0099710.33273900:09
12.2048931.7472020.44152900:09
21.8756211.6845150.44535000:09
+
+
+

It’s working! So that’s how we create SGD from scratch in fastai. Now let’s see what “momentum” is.

+
+
+

16.3 Momentum

+

As described in Chapter 4, SGD can be thought of as standing at the top of a mountain and working your way down by taking a step in the direction of the steepest slope at each point in time. But what if we have a ball rolling down the mountain? It won’t, at each given point, exactly follow the direction of the gradient, as it will have momentum. A ball with more momentum (for instance, a heavier ball) will skip over little bumps and holes, and be more likely to get to the bottom of a bumpy mountain. A ping pong ball, on the other hand, will get stuck in every little crevice.

+

So how can we bring this idea over to SGD? We can use a moving average, instead of only the current gradient, to make our step:

+
weight.avg = beta * weight.avg + (1-beta) * weight.grad
+new_weight = weight - lr * weight.avg
+

Here beta is some number we choose which defines how much momentum to use. If beta is 0, then the first equation becomes weight.avg = weight.grad, so we end up with plain SGD. But if it’s a number close to 1, then the main direction chosen is an average of the previous steps. (If you have done a bit of statistics, you may recognize in the first equation an exponentially weighted moving average, which is very often used to denoise data and get the underlying tendency.)

+

Note that we are writing weight.avg to highlight the fact that we need to store the moving averages for each parameter of the model (they all have their own independent moving averages).

+

Figure 16.1 shows an example of noisy data for a single parameter, with the momentum curve plotted in red, and the gradients of the parameter plotted in blue. The gradients increase, then decrease, and the momentum does a good job of following the general trend without getting too influenced by noise.

+
+
+
+
+
+Graph showing an example of momentum +
+
+Figure 16.1: An example of momentum +
+
+
+
+
+

It works particularly well if the loss function has narrow canyons we need to navigate: vanilla SGD would send us bouncing from one side to the other, while SGD with momentum will average those to roll smoothly down the side. The parameter beta determines the strength of the momentum we are using: with a small beta we stay closer to the actual gradient values, whereas with a high beta we will mostly go in the direction of the average of the gradients and it will take a while before any change in the gradients makes that trend move.

+

With a large beta, we might miss that the gradients have changed directions and roll over a small local minima. This is a desired side effect: intuitively, when we show a new input to our model, it will look like something in the training set but won’t be exactly like it. That means it will correspond to a point in the loss function that is close to the minimum we ended up with at the end of training, but not exactly at that minimum. So, we would rather end up training in a wide minimum, where nearby points have approximately the same loss (or if you prefer, a point where the loss is as flat as possible). Figure 16.2 shows how the chart in Figure 16.1 varies as we change beta.

+
+
+
+
+
+Graph showing how the beta value influences momentum +
+
+Figure 16.2: Momentum with different beta values +
+
+
+
+
+

We can see in these examples that a beta that’s too high results in the overall changes in gradient getting ignored. In SGD with momentum, a value of beta that is often used is 0.9.

+

fit_one_cycle by default starts with a beta of 0.95, gradually adjusts it to 0.85, and then gradually moves it back to 0.95 at the end of training. Let’s see how our training goes with momentum added to plain SGD.

+

In order to add momentum to our optimizer, we’ll first need to keep track of the moving average gradient, which we can do with another callback. When an optimizer callback returns a dict, it is used to update the state of the optimizer and is passed back to the optimizer on the next step. So this callback will keep track of the gradient averages in a parameter called grad_avg:

+
+
def average_grad(p, mom, grad_avg=None, **kwargs):
+    if grad_avg is None: grad_avg = torch.zeros_like(p.grad.data)
+    return {'grad_avg': grad_avg*mom + p.grad.data}
+
+

To use it, we just have to replace p.grad.data with grad_avg in our step function:

+
+
def momentum_step(p, lr, grad_avg, **kwargs): p.data.add_(-lr, grad_avg)
+
+
+
opt_func = partial(Optimizer, cbs=[average_grad,momentum_step], mom=0.9)
+
+

Learner will automatically schedule mom and lr, so fit_one_cycle will even work with our custom Optimizer:

+
+
learn = get_learner(opt_func=opt_func)
+learn.fit_one_cycle(3, 0.03)
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
epochtrain_lossvalid_lossaccuracytime
02.8560002.4934290.24611500:10
12.5042052.4638130.34828000:10
22.1873871.7556700.41885300:10
+
+
+
+
learn.recorder.plot_sched()
+
+
+
+

+
+
+
+
+

We’re still not getting great results, so let’s see what else we can do.

+
+
+

16.4 RMSProp

+

RMSProp is another variant of SGD introduced by Geoffrey Hinton in Lecture 6e of his Coursera class “Neural Networks for Machine Learning”. The main difference from SGD is that it uses an adaptive learning rate: instead of using the same learning rate for every parameter, each parameter gets its own specific learning rate controlled by a global learning rate. That way we can speed up training by giving a higher learning rate to the weights that need to change a lot while the ones that are good enough get a lower learning rate.

+

How do we decide which parameters should have a high learning rate and which should not? We can look at the gradients to get an idea. If a parameter’s gradients have been close to zero for a while, that parameter will need a higher learning rate because the loss is flat. On the other hand, if the gradients are all over the place, we should probably be careful and pick a low learning rate to avoid divergence. We can’t just average the gradients to see if they’re changing a lot, because the average of a large positive and a large negative number is close to zero. Instead, we can use the usual trick of either taking the absolute value or the squared values (and then taking the square root after the mean).

+

Once again, to determine the general tendency behind the noise, we will use a moving average—specifically the moving average of the gradients squared. Then we will update the corresponding weight by using the current gradient (for the direction) divided by the square root of this moving average (that way if it’s low, the effective learning rate will be higher, and if it’s high, the effective learning rate will be lower):

+
w.square_avg = alpha * w.square_avg + (1-alpha) * (w.grad ** 2)
+new_w = w - lr * w.grad / math.sqrt(w.square_avg + eps)
+

The eps (epsilon) is added for numerical stability (usually set at 1e-8), and the default value for alpha is usually 0.99.

+

We can add this to Optimizer by doing much the same thing we did for avg_grad, but with an extra **2:

+
+
def average_sqr_grad(p, sqr_mom, sqr_avg=None, **kwargs):
+    if sqr_avg is None: sqr_avg = torch.zeros_like(p.grad.data)
+    return {'sqr_avg': sqr_mom*sqr_avg + (1-sqr_mom)*p.grad.data**2}
+
+

And we can define our step function and optimizer as before:

+
+
def rms_prop_step(p, lr, sqr_avg, eps, grad_avg=None, **kwargs):
+    denom = sqr_avg.sqrt().add_(eps)
+    p.data.addcdiv_(-lr, p.grad, denom)
+
+opt_func = partial(Optimizer, cbs=[average_sqr_grad,rms_prop_step],
+                   sqr_mom=0.99, eps=1e-7)
+
+

Let’s try it out:

+
+
learn = get_learner(opt_func=opt_func)
+learn.fit_one_cycle(3, 0.003)
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
epochtrain_lossvalid_lossaccuracytime
02.7669121.8459000.40254800:11
12.1945861.5102690.50445900:11
21.8690991.4479390.54496800:11
+
+
+

Much better! Now we just have to bring these ideas together, and we have Adam, fastai’s default optimizer.

+
+
+

16.5 Adam

+

Adam mixes the ideas of SGD with momentum and RMSProp together: it uses the moving average of the gradients as a direction and divides by the square root of the moving average of the gradients squared to give an adaptive learning rate to each parameter.

+

There is one other difference in how Adam calculates moving averages. It takes the unbiased moving average, which is:

+
w.avg = beta * w.avg + (1-beta) * w.grad
+unbias_avg = w.avg / (1 - (beta**(i+1)))
+

if we are the i-th iteration (starting at 0 like Python does). This divisor of 1 - (beta**(i+1)) makes sure the unbiased average looks more like the gradients at the beginning (since beta < 1, the denominator is very quickly close to 1).

+

Putting everything together, our update step looks like:

+
w.avg = beta1 * w.avg + (1-beta1) * w.grad
+unbias_avg = w.avg / (1 - (beta1**(i+1)))
+w.sqr_avg = beta2 * w.sqr_avg + (1-beta2) * (w.grad ** 2)
+new_w = w - lr * unbias_avg / sqrt(w.sqr_avg + eps)
+

Like for RMSProp, eps is usually set to 1e-8, and the default for (beta1,beta2) suggested by the literature is (0.9,0.999).

+

In fastai, Adam is the default optimizer we use since it allows faster training, but we’ve found that beta2=0.99 is better suited to the type of schedule we are using. beta1 is the momentum parameter, which we specify with the argument moms in our call to fit_one_cycle. As for eps, fastai uses a default of 1e-5. eps is not just useful for numerical stability. A higher eps limits the maximum value of the adjusted learning rate. To take an extreme example, if eps is 1, then the adjusted learning will never be higher than the base learning rate.

+

Rather than show all the code for this in the book, we’ll let you look at the optimizer notebook in fastai’s GitHub repository (browse the nbs folder and search for the notebook called optimizer). You’ll see all the code we’ve shown so far, along with Adam and other optimizers, and lots of examples and tests.

+

One thing that changes when we go from SGD to Adam is the way we apply weight decay, and it can have important consequences.

+
+
+

16.6 Decoupled Weight Decay

+

Weight decay, which we discussed in Chapter 8, is equivalent to (in the case of vanilla SGD) updating the parameters with:

+
new_weight = weight - lr*weight.grad - lr*wd*weight
+

The last part of this formula explains the name of this technique: each weight is decayed by a factor lr * wd.

+

The other name of weight decay is L2 regularization, which consists in adding the sum of all squared weights to the loss (multiplied by the weight decay). As we have seen in Chapter 8, this can be directly expressed on the gradients with:

+
weight.grad += wd*weight
+

For SGD, those two formulas are equivalent. However, this equivalence only holds for standard SGD, because we have seen that with momentum, RMSProp or in Adam, the update has some additional formulas around the gradient.

+

Most libraries use the second formulation, but it was pointed out in “Decoupled Weight Decay Regularization” by Ilya Loshchilov and Frank Hutter, that the first one is the only correct approach with the Adam optimizer or momentum, which is why fastai makes it its default.

+

Now you know everything that is hidden behind the line learn.fit_one_cycle!

+

Optimizers are only one part of the training process, however when you need to change the training loop with fastai, you can’t directly change the code inside the library. Instead, we have designed a system of callbacks to let you write any tweaks you like in independent blocks that you can then mix and match.

+
+
+

16.7 Callbacks

+

Sometimes you need to change how things work a little bit. In fact, we have already seen examples of this: Mixup, fp16 training, resetting the model after each epoch for training RNNs, and so forth. How do we go about making these kinds of tweaks to the training process?

+

We’ve seen the basic training loop, which, with the help of the Optimizer class, looks like this for a single epoch:

+
for xb,yb in dl:
+    loss = loss_func(model(xb), yb)
+    loss.backward()
+    opt.step()
+    opt.zero_grad()
+

Figure 16.3 shows how to picture that.

+
+
+
+Basic training loop +
+
+Figure 16.3: Basic training loop +
+
+
+

The usual way for deep learning practitioners to customize the training loop is to make a copy of an existing training loop, and then insert the code necessary for their particular changes into it. This is how nearly all code that you find online will look. But it has some very serious problems.

+

It’s not very likely that some particular tweaked training loop is going to meet your particular needs. There are hundreds of changes that can be made to a training loop, which means there are billions and billions of possible permutations. You can’t just copy one tweak from a training loop here, another from a training loop there, and expect them all to work together. Each will be based on different assumptions about the environment that it’s working in, use different naming conventions, and expect the data to be in different formats.

+

We need a way to allow users to insert their own code at any part of the training loop, but in a consistent and well-defined way. Computer scientists have already come up with an elegant solution: the callback. A callback is a piece of code that you write, and inject into another piece of code at some predefined point. In fact, callbacks have been used with deep learning training loops for years. The problem is that in previous libraries it was only possible to inject code in a small subset of places where this may have been required, and, more importantly, callbacks were not able to do all the things they needed to do.

+

In order to be just as flexible as manually copying and pasting a training loop and directly inserting code into it, a callback must be able to read every possible piece of information available in the training loop, modify all of it as needed, and fully control when a batch, epoch, or even the whole training loop should be terminated. fastai is the first library to provide all of this functionality. It modifies the training loop so it looks like Figure 16.4.

+
+
+
+Training loop with callbacks +
+
+Figure 16.4: Training loop with callbacks +
+
+
+

The real effectiveness of this approach has been borne out over the last couple of years—it has turned out that, by using the fastai callback system, we were able to implement every single new paper we tried and fulfilled every user request for modifying the training loop. The training loop itself has not required modifications. Figure 16.5 shows just a few of the callbacks that have been added.

+
+
+
+Some fastai callbacks +
+
+Figure 16.5: Some fastai callbacks +
+
+
+

The reason that this is important is because it means that whatever idea we have in our head, we can implement it. We need never dig into the source code of PyTorch or fastai and hack together some one-off system to try out our ideas. And when we do implement our own callbacks to develop our own ideas, we know that they will work together with all of the other functionality provided by fastai–so we will get progress bars, mixed-precision training, hyperparameter annealing, and so forth.

+

Another advantage is that it makes it easy to gradually remove or add functionality and perform ablation studies. You just need to adjust the list of callbacks you pass along to your fit function.

+

As an example, here is the fastai source code that is run for each batch of the training loop:

+
try:
+    self._split(b);                                  self('before_batch')
+    self.pred = self.model(*self.xb);                self('after_pred')
+    self.loss = self.loss_func(self.pred, *self.yb); self('after_loss')
+    if not self.training: return
+    self.loss.backward();                            self('after_backward')
+    self.opt.step();                                 self('after_step')
+    self.opt.zero_grad()
+except CancelBatchException:                         self('after_cancel_batch')
+finally:                                             self('after_batch')
+

The calls of the form self('...') are where the callbacks are called. As you see, this happens after every step. The callback will receive the entire state of training, and can also modify it. For instance, the input data and target labels are in self.xb and self.yb, respectively; a callback can modify these to alter the data the training loop sees. It can also modify self.loss, or even the gradients.

+

Let’s see how this works in practice by writing a callback.

+
+

Creating a Callback

+

When you want to write your own callback, the full list of available events is:

+
    +
  • before_fit:: called before doing anything; ideal for initial setup.
  • +
  • before_epoch:: called at the beginning of each epoch; useful for any behavior you need to reset at each epoch.
  • +
  • before_train:: called at the beginning of the training part of an epoch.
  • +
  • before_batch:: called at the beginning of each batch, just after drawing said batch. It can be used to do any setup necessary for the batch (like hyperparameter scheduling) or to change the input/target before it goes into the model (for instance, apply Mixup).
  • +
  • after_pred:: called after computing the output of the model on the batch. It can be used to change that output before it’s fed to the loss function.
  • +
  • after_loss:: called after the loss has been computed, but before the backward pass. It can be used to add penalty to the loss (AR or TAR in RNN training, for instance).
  • +
  • after_backward:: called after the backward pass, but before the update of the parameters. It can be used to make changes to the gradients before said update (via gradient clipping, for instance).
  • +
  • after_step:: called after the step and before the gradients are zeroed.
  • +
  • after_batch:: called at the end of a batch, to perform any required cleanup before the next one.
  • +
  • after_train:: called at the end of the training phase of an epoch.
  • +
  • before_validate:: called at the beginning of the validation phase of an epoch; useful for any setup needed specifically for validation.
  • +
  • after_validate:: called at the end of the validation part of an epoch.
  • +
  • after_epoch:: called at the end of an epoch, for any cleanup before the next one.
  • +
  • after_fit:: called at the end of training, for final cleanup.
  • +
+

The elements of this list are available as attributes of the special variable event, so you can just type event. and hit Tab in your notebook to see a list of all the options.

+

Let’s take a look at an example. Do you recall how in Chapter 12 we needed to ensure that our special reset method was called at the start of training and validation for each epoch? We used the ModelResetter callback provided by fastai to do this for us. But how does it work? Here’s the full source code for that class:

+
+
class ModelResetter(Callback):
+    def before_train(self):    self.model.reset()
+    def before_validate(self): self.model.reset()
+
+

Yes, that’s actually it! It just does what we said in the preceding paragraph: after completing training or validation for an epoch, call a method named reset.

+

Callbacks are often “short and sweet” like this one. In fact, let’s look at one more. Here’s the fastai source for the callback that adds RNN regularization (AR and TAR):

+
+
class RNNRegularizer(Callback):
+    def __init__(self, alpha=0., beta=0.): self.alpha,self.beta = alpha,beta
+
+    def after_pred(self):
+        self.raw_out,self.out = self.pred[1],self.pred[2]
+        self.learn.pred = self.pred[0]
+
+    def after_loss(self):
+        if not self.training: return
+        if self.alpha != 0.:
+            self.learn.loss += self.alpha * self.out[-1].float().pow(2).mean()
+        if self.beta != 0.:
+            h = self.raw_out[-1]
+            if len(h)>1:
+                self.learn.loss += self.beta * (h[:,1:] - h[:,:-1]
+                                               ).float().pow(2).mean()
+
+
+

note: Code It Yourself: Go back and reread “Activation Regularization and Temporal Activation Regularization” in Chapter 12 then take another look at the code here. Make sure you understand what it’s doing, and why.

+
+

In both of these examples, notice how we can access attributes of the training loop by directly checking self.model or self.pred. That’s because a Callback will always try to get an attribute it doesn’t have inside the Learner associated with it. These are shortcuts for self.learn.model or self.learn.pred. Note that they work for reading attributes, but not for writing them, which is why when RNNRegularizer changes the loss or the predictions you see self.learn.loss = or self.learn.pred =.

+

When writing a callback, the following attributes of Learner are available:

+
    +
  • model:: The model used for training/validation.
  • +
  • data:: The underlying DataLoaders.
  • +
  • loss_func:: The loss function used.
  • +
  • opt:: The optimizer used to update the model parameters.
  • +
  • opt_func:: The function used to create the optimizer.
  • +
  • cbs:: The list containing all the Callbacks.
  • +
  • dl:: The current DataLoader used for iteration.
  • +
  • x/xb:: The last input drawn from self.dl (potentially modified by callbacks). xb is always a tuple (potentially with one element) and x is detuplified. You can only assign to xb.
  • +
  • y/yb:: The last target drawn from self.dl (potentially modified by callbacks). yb is always a tuple (potentially with one element) and y is detuplified. You can only assign to yb.
  • +
  • pred:: The last predictions from self.model (potentially modified by callbacks).
  • +
  • loss:: The last computed loss (potentially modified by callbacks).
  • +
  • n_epoch:: The number of epochs in this training.
  • +
  • n_iter:: The number of iterations in the current self.dl.
  • +
  • epoch:: The current epoch index (from 0 to n_epoch-1).
  • +
  • iter:: The current iteration index in self.dl (from 0 to n_iter-1).
  • +
+

The following attributes are added by TrainEvalCallback and should be available unless you went out of your way to remove that callback:

+
    +
  • train_iter:: The number of training iterations done since the beginning of this training
  • +
  • pct_train:: The percentage of training iterations completed (from 0. to 1.)
  • +
  • training:: A flag to indicate whether or not we’re in training mode
  • +
+

The following attribute is added by Recorder and should be available unless you went out of your way to remove that callback:

+
    +
  • smooth_loss:: An exponentially averaged version of the training loss
  • +
+

Callbacks can also interrupt any part of the training loop by using a system of exceptions.

+
+
+

Callback Ordering and Exceptions

+

Sometimes, callbacks need to be able to tell fastai to skip over a batch, or an epoch, or stop training altogether. For instance, consider TerminateOnNaNCallback. This handy callback will automatically stop training any time the loss becomes infinite or NaN (not a number). Here’s the fastai source for this callback:

+
+
class TerminateOnNaNCallback(Callback):
+    run_before=Recorder
+    def after_batch(self):
+        if torch.isinf(self.loss) or torch.isnan(self.loss):
+            raise CancelFitException
+
+

The line raise CancelFitException tells the training loop to interrupt training at this point. The training loop catches this exception and does not run any further training or validation. The callback control flow exceptions available are:

+
    +
  • CancelBatchException:: Skip the rest of this batch and go to after_batch.
  • +
  • CancelTrainException:: Skip the rest of the training part of the epoch and go to after_train.
  • +
  • CancelValidException:: Skip the rest of the validation part of the epoch and go to after_validate.
  • +
  • CancelEpochException:: Skip the rest of this epoch and go to after_epoch.
  • +
  • CancelFitException:: Interrupt training and go to after_fit.
  • +
+

You can detect if one of those exceptions has occurred and add code that executes right after with the following events:

+
    +
  • after_cancel_batch:: Reached immediately after a CancelBatchException before proceeding to after_batch
  • +
  • after_cancel_train:: Reached immediately after a CancelTrainException before proceeding to after_train
  • +
  • after_cancel_valid:: Reached immediately after a CancelValidException before proceeding to after_valid
  • +
  • after_cancel_epoch:: Reached immediately after a CancelEpochException before proceeding to after_epoch
  • +
  • after_cancel_fit:: Reached immediately after a CancelFitException before proceeding to after_fit
  • +
+

Sometimes, callbacks need to be called in a particular order. For example, in the case of TerminateOnNaNCallback, it’s important that Recorder runs its after_batch after this callback, to avoid registering an NaN loss. You can specify run_before (this callback must run before …) or run_after (this callback must run after …) in your callback to ensure the ordering that you need.

+
+
+
+

16.8 Conclusion

+

In this chapter we took a close look at the training loop, exploring different variants of SGD and why they can be more powerful. At the time of writing, developing new optimizers is a very active area of research, so by the time you read this chapter there may be an addendum on the book’s website that presents new variants. Be sure to check out how our general optimizer framework can help you implement new optimizers very quickly.

+

We also examined the powerful callback system that allows you to customize every bit of the training loop by enabling you to inspect and modify any parameter you like between each step.

+
+
+

16.9 Questionnaire

+
    +
  1. What is the equation for a step of SGD, in math or code (as you prefer)?
  2. +
  3. What do we pass to vision_learner to use a non-default optimizer?
  4. +
  5. What are optimizer callbacks?
  6. +
  7. What does zero_grad do in an optimizer?
  8. +
  9. What does step do in an optimizer? How is it implemented in the general optimizer?
  10. +
  11. Rewrite sgd_cb to use the += operator, instead of add_.
  12. +
  13. What is “momentum”? Write out the equation.
  14. +
  15. What’s a physical analogy for momentum? How does it apply in our model training settings?
  16. +
  17. What does a bigger value for momentum do to the gradients?
  18. +
  19. What are the default values of momentum for 1cycle training?
  20. +
  21. What is RMSProp? Write out the equation.
  22. +
  23. What do the squared values of the gradients indicate?
  24. +
  25. How does Adam differ from momentum and RMSProp?
  26. +
  27. Write out the equation for Adam.
  28. +
  29. Calculate the values of unbias_avg and w.avg for a few batches of dummy values.
  30. +
  31. What’s the impact of having a high eps in Adam?
  32. +
  33. Read through the optimizer notebook in fastai’s repo, and execute it.
  34. +
  35. In what situations do dynamic learning rate methods like Adam change the behavior of weight decay?
  36. +
  37. What are the four steps of a training loop?
  38. +
  39. Why is using callbacks better than writing a new training loop for each tweak you want to add?
  40. +
  41. What aspects of the design of fastai’s callback system make it as flexible as copying and pasting bits of code?
  42. +
  43. How can you get the list of events available to you when writing a callback?
  44. +
  45. Write the ModelResetter callback (without peeking).
  46. +
  47. How can you access the necessary attributes of the training loop inside a callback? When can you use or not use the shortcuts that go with them?
  48. +
  49. How can a callback influence the control flow of the training loop?
  50. +
  51. Write the TerminateOnNaN callback (without peeking, if possible).
  52. +
  53. How do you make sure your callback runs after or before another callback?
  54. +
+
+

Further Research

+
    +
  1. Look up the “Rectified Adam” paper, implement it using the general optimizer framework, and try it out. Search for other recent optimizers that work well in practice, and pick one to implement.
  2. +
  3. Look at the mixed-precision callback with the documentation. Try to understand what each event and line of code does.
  4. +
  5. Implement your own version of the learning rate finder from scratch. Compare it with fastai’s version.
  6. +
  7. Look at the source code of the callbacks that ship with fastai. See if you can find one that’s similar to what you’re looking to do, to get some inspiration.
  8. +
+
+
+
+

16.10 Foundations of Deep Learning: Wrap up

+

Congratulations, you have made it to the end of the “foundations of deep learning” section of the book! You now understand how all of fastai’s applications and most important architectures are built, and the recommended ways to train them—and you have all the information you need to build these from scratch. While you probably won’t need to create your own training loop, or batchnorm layer, for instance, knowing what is going on behind the scenes is very helpful for debugging, profiling, and deploying your solutions.

+

Since you understand the foundations of fastai’s applications now, be sure to spend some time digging through the source notebooks and running and experimenting with parts of them. This will give you a better idea of how everything in fastai is developed.

+

In the next section, we will be looking even further under the covers: we’ll explore how the actual forward and backward passes of a neural network are done, and we will see what tools are at our disposal to get better performance. We will then continue with a project that brings together all the material in the book, which we will use to build a tool for interpreting convolutional neural networks. Last but not least, we’ll finish by building fastai’s Learner class from scratch.

+ + +
+ +
+ + +
+ + + + + \ No newline at end of file diff --git a/accel_sgd_files/figure-html/cell-20-output-1.png b/accel_sgd_files/figure-html/cell-20-output-1.png new file mode 100644 index 0000000000000000000000000000000000000000..361633e52a47aef54f75ac5f1f51a8ea6003f7e4 GIT binary patch literal 21477 zcma&O1yt41yDds7APv&JK|&go6i@+aknYe;N_Uqi9nu|wfHYE@2I=l@>FzGy+Wzl7 z=e+yIc;h;Tio`G0`eM%c&1LX=1xc(YWKR$f5U`}B#FY^ckQTtlS7?vHpPW6~`rt1V zhquzIXyBJ8no$t=H@dBqmIDF;20r{Z;^>0+9rz@_qlBiTij9e*%LjX71gj5@ww5-I zmgXO6oQ>@r%x$cB*tyubSZT~09c=|UIR5+V>^AnM9JnULqzDK!2-4zjR9#c|7F;~z z&aeL-PsPb!(1*!gFnq&(Ek2*6ri6l6oIU%g>Qh>AwzesyYJSyhM&-&+0^9GO`Ed!2 z=)=m8Y0>G6=#8S&Qil#BDeiJ#y!K62sKw{W~{Od zb55*11xFz=Qx5ze>j#xv>hRAg_x}F>|H!ildzdsUJ6m2^IeLOCR(a=3u~tQHI|%{Q zDPr(P#*7TJhEvgyWh7HwOmuX2e}AQ5fU-;)C*F*)Q@~*Ee|_DGL+StOcK`h_6xxoV z-QsvXL{SuYwawvE_Y!N!x4VVn^gT_&dg7CF)LIaGH;-F@-L*IcaZVX;@X;_W+9GR(wEN@Lv*y@J@PlS-;; zisnwjFR=#tr4(s+Uu3p5Mbd>Hq`!VsSc>5{B01MZGDZ&}eEsx21d{D1@ET$pet&+E zN`Qb@i(Z3HLreQ-d?_6DQ#I+LR#j-TSB3xRP5|^^_t~&;5ypM}S5AmXDjqr>W+V?4j3vI|jSXh}BL84J_yd96v zJG<(khs#3cTkI$+I$o5hd&0dUUm+{VUl4POT{t@}38Ow4N(l|+D<~Q3(M>f}hZNsF zcUvi^y|Z_0^|>E@QVokoI1BMRTkHNS*pyWrRrJ}O+a>PTi~69X(2As5{**7>ui0g{ ze~(wXuFxS1oeMMP%%=nmzkK1ly^XG$JnA1Pve<6WJgcClM}VXIVtB_@CSSoQ?8E+n zJyFq88!`E%lKoFaQEHBN&m@kzf|2rwAgmJ!ed+eux*widpAy%w*!dbrwAiwvzba>Zdd3;iCN z0n53jPlQ)MWN?BtdPKHQsTga7* zl3DB^xFhVEWlC%XHMVBv&=t7*@#LVoJ>aqJ#1={kSz1f_iS~vu5hq8*x49)9NnLSb zYr$+{6_r)Czg?NJ_SBHp3=Y!%rVzpOtB)*gD{Z7nxF4KYb7GPA*h<&W*WDU2lwO0C zZ(D6k5-=tq2y}EP_+|Vt>=q`Jmy?s!-!E4PlZ3B2*Qso_M9ml_iLpO z5$4-rZV`QQqR$zZE}Ox0;K6XUw&OK^iKQDq8ncu!mhfYXrZBrIG{R72El&0H=Hyjw zSQy>Qkvbjj>}bgKR{WUj`cBmN%a`y4o*`M)FY+`CYYJN8$TUb1x0RP;Nh)x6`Njc-0pYWRaUg`@XO>o7g$(s1P{S% zXIT1XbdfV!kvV<*a&o-Q}_Ekeg>TlMNWcPb=lF!su#Wz89yb<6jOL2y`Mdqi<$5LT#UAM~017lO*O6Plhsn+LRw(glD_$oP1Y!dB4;% zoHggaPDH)3%Z6Ixt;_vEFZGh6JcyG{*zc=L7^8q-&{AW4eEnw0=6kQ0iIG@kc9Yqk zu37%~S6waw>XJ$_Ro^o!1M*8tmj8M+$FPj8T%Qacr!Ml%?r2iJ4YkI(xH<8>YiO)7 zk;|G;ntjGB806MW*>^a!-N(3lVY@9F|7-Pi+{7<%UHX=(6oYWtjV{V(YfrZ~1CB_tas8Ze!)tT{2Y@fX}a^0W!LXEY4$OFR7g8@u}*dYk8~ zX$Fzs%d4ZLIXE^eiW>i|$T#!smE+TkmHoK-;)twRq~v6)SJ&4>);B|B_}QPY?jpu& z&CFa1p-%j4b;9Ewr1kk$mKy<}Y)J|*Lp>yqulL#fS#5l5C?kEUzvh~x{Civ)!RZW) zKKLIyy9V(-q>4x`u^4LegZ{e5 zy^2p`Cp9T$nPCtJfdsvdxV`w=1Fyc~()!l)WLeH_9lVaQ43psbf=elQ-$ z*H$0(z0qytxbl|KJqWwcH6!)}-|?bNr|tSr*FrjhRH6kcGkp`pg*GI9i`N>3*^Y^z zSv5F`38FsVtpPb$w4i4KQhxq(kSj6=GBJ|BFDZn3D`?^2NrQ11>El<}ue{oK6%m$% z1b2gR@w^2XqS$VqYiYckxHW#199|DAJNtp}bQdwGT95qeK^OJjNl6x3_jtaZ z50A*J<98-r6=~r0xHoT<00h#cEL1Tc*?$wp)o-BE-TlQD)HNN-t`89ZJJ(G8S>tE!c0^sGDu^{lZNjd%J_nuCx!;;m;iAVF!>eT5Of)oZeLo9EE4=Fv$!abf( zdoSavC@=Vwy)A3TaVVkg0QK{DjaVnC)-?q?UU_HjDN?cMixuC$$tP_j6;mWUGbB7n zuH8+=NF*5Z43O)}GcN-c$dIGVjdf_3l=;_18_+GA8dIlovT7OUss ztMC;&m#1>6*I||{D6v_YvN0*=KBQ4pr0NYjLn)-wk|}lc2m&dKQGQ|nkg3^PS2Gk{ z(6ze%>~8&p7T)OrAU+JH9C<}d^j-5MY6TPIB<41g3an_N)p2K3xli#sZ zF1GD3r74KJo{j!?bwhWE-yE^5INr+fhu?1BC`=2D_0`8Yy5jU9)D7xQ3L69)ewsyQ z@+90h0O5#eHBVWgCb3K;73`*5P3)3dG8HYa7rx`P3o@PmAW8*lTsy#xcx#&jr1ye0 zzR^5*cvQ8nxFY(k&EEaU!>u~Zk19Pybh#T)D}1_hD(n2ZX+#U@nAgicktf$44`5Cb z$DT%#YTLqc_n%Q^=GU%QZ_gk@(T|*#*3}{<#a)lG{O(LVxot|OJNi3j)FlD-3&sd^ z%$_mPEHCcfVUnpWYV&8%SdTktjccp5{Yf-m48j~yeKWzntj;eqz_CIwWF4D$Q6pSo zIW9-Y?Yf=<+&(9@WjOtVBL>#;F5B!>@pzA!S-IV=kj1r~B>IpZSC}-jq{3!tWn()s z>ugO1d(&d-%#v5Umnb2mH6|wDy~Dp#C;dR4^o(4I%(J5gii`4r&haH1zR`3!LHC+4FPxSopMOwPOa2! z!9!pvjF@A9)pzvbN4GeWF;NC^^cO2}=h*;n7EKG<;uZ3nry4u1i<;?O zEV3^40I47F=S70MrvDd@-JhGC?`lF2dxQ&Eiw44O7}t4mb)&Tno110?_hw4aJUt`{ z60N1H>-qe!Er)GJy&d#blMkc;!uR1P~)w>v(*dAknN4 z?-obH-*~sInZ}v)|Dl9IQv64cj(oXHuK%P-v`dO-?GJhRh5E^3d*ZO~&lO9YMPkv4 za1ZY=u|qX=`8f<;!ufv9d0N#A-nk;sfp&~cFLq@v{GMN^jcWr;o~Nv;)fH}I1c&J< zd_M??wk(|J6IRNy<`%QP$jeBkpY*@%v?Pk^l2}u|wJt?ef(w2b&za0E{~nO^>QxM?J7o|BpbOP_Jp3` z23ASGGhvgP}@k(Lb_Udy~m64Y%|*8u9+Nk_>iKAmGT3TQfgw% zi1mDq>La~s1=P~mJX}1$d_T-Y;9GI2JV`tsaBiBeiA3d~=yvn}SRAohUb*EgHo)8F zG9!^X(Oek8B=SgKzqQDm86dP?%EJ=6yq~=Q?&K?QgD3-dv512S-df^sT=i%<*m^$P z{B-pe)<3*Sf5KL`Fq|t)2%?4idxoh(+;kLR=~q)u=2y4w4y!3iv1)vp@c2RRJP+@j zldUY(ajSe;FLS+m7aq1x*s&@|e8~*JCf0pT_IhCZwpTWr!U~mpfXkl=3*{LN{Vuk{ zqLH})88=_RF_j4*nss_QeX*vq21;E6f3;*Ij}RWN`=YL{&3ar5&J>5S?#r^j{1$#2 zj19XWknNRS z`A=C2gj;Bf`mG?tX&9z6bQbm7-ZbtP#m=2v-~-+4qg#ajwtD&pCw=Bfuj;QAsE+F; z4!2sAUHfJu`zGG=O09|dQCGLFI+Pt&5|6KscV6a$!nJ&HIXUtJnI+C%XVqQuSAAu` z=TS0vC3}DS{8R0D+RJvy$J`d$PxJ-XZ3Dqxg#+CGO-H%-em>1mYKSwv&XY-W|5Z1< zA9pFq2y~l^UOHKX2HP88$@5x!nX**@IkAZ$u8h4&UD94w+p#{%Sb$CRX=O&egPe5u zYBE=F!;Kibf#tL*!055aXZvJwazV}5xvJLtfLCh5>Qgs!F{k`uuzyIv$hG2C-ol0v z{=wA_=qt}-ns*Fe9G31_or$Q+;T!B9jFxvEv67dD%GIe!DVdKAGg}pb)1aHN=&O#h z1NAOD3-Ao+P|QMm9PVnD*b2ih9tW7^_k+Vh${Z{2r5_c+dC8ofjeHf+1boRFhwcODG1b@6}#i zB(bMv$JUe1)vr4^xkX$!v0N%mP4|O{?&y`6v19;ttq9Bzy&Gpp}lp#+~nR6~v_j^epYNRIfAD!n|gY>T-}I63jIQi8s?D4awPQqO#~{*G8QnWa-()B>KlpeH;6fmO&%e_{ zwtcC~#@+}}T053Xg%s?}IF)q*(3|!RWGvO4866#dYwfA-{%Umy(E_{m>Ee@uon(^i zQwO26>0yNQ`i~?!7iuT-3GhVSF{-MXos3FwKYYXx)GcU;REBDHbBzL7@cWC<%-uOX zd&dCb3zo_aG9n@-c9A>5<`opcf2|`ID{F39ZP#_Xi*R*&hIjRe8fJW^xY%+3N)$%4 zps+pv<`!Bd>3|0&EW(SOG3Aj>sMl?uF~pGaVg5EpMW2BMW#8oI_bb)=$z&cQM8L0kJ(0_NcdCyL0;;jDVfF}dr|Zq$n@ zjbN#0uUj`r`8#pm*}opng;3@FIS28zL&)f4v0~)#v?ZO`ZEc#qZz-Qo2G{3;I);O^ zgq%4kW3M#Lc85>>2e&F z-gL<*M*PUEjBi}80`k{RqD&!q&8h!6NWJ4t*~nBd@B95h!bK=AsSb~cr}GTa1aW8< zmVl5z0u4Z#8X3iKofh>=@ol>35|?a5HHFzJKAON9NS)M?q!p@vSa^Fi#_{+BfD8S< z%s|zWNyCNqzlF+)Lgj3r{VEq$kt9%}>5L)1&aS7wb=8K(FG|u; zMT2ADol@;Xu>Xk;!yEy-in5@OeCmjjaPi1Z65J4ha3{vc$D}AOr?Qdj8Peb71F<=& zzE?_dv~a$Jp1V5|l)G-W{EZ%tYHdnMpcaFAIisa3-$P4DQk*I)785QcswoK+A)Y+U zHvhmzfoGCL3ted@1?T^b$jwO4y+MI8Exccia8QUW%ih8T8p;nqUF|#1gE#nAJ&q3w z7FcJTTi}8*!4I%BT8&rx&b<5iYui0-j_N#&Yu#D5HDhu!%}s+3o=?i!Nuc8Nsqt=l z)SR8Hq74;XCe-hrL7;mT@wynEJ75zk)i>vEYpb@Lr7u&LA`wA!wB3bMj29Zq)W&`n zZbLgdhwwD_gW__}O4l6g!@kfHXKp7)F*>lrUw{RuG+~Jobl=?yve+)(iW+cYyg~JVq9?C%YkAwBb^`U<3 zh*2dNvV&lU=l6=&oRjq0xc`B63cml&L1-u0E^^<97J9jPQ~oTvX^p?+J#DRg>e*QJ z!@>E+r~8rdS^_sW7m^Lf{-!f=LgZEtTvltHnz5YCE>wHI{sgRsRz)FZ%HnrrB3BCu z5kOAG}tN##Xi^=J*SJFf}3-%0NOff`-@s$L)jU_T9WS zBcwYLfI6t;2(1bGARL(Q@GI{Vi#j%0Pb2}sa-N4T6pR|u8{cZAIX(jrBQZ=b=gJ)e z49kGZPO;qopjQi&>{7PA)x5N4aM(#HR=Pz4LGr39)p07A5#1c*+EHV7{Nm;Ne5)bL);ujJ4nS ztgTLmQZkJOTtEs?KJrV|Z@KsL*2SS2d_x8Tsa}LtcgBCz3s;$PB0d;>M5%o?5vva9 zjzn!OPECMnoJ?3Nsrirua0L{^a2oePExm`+o?;&lmukF?y!e-u<1%{YP)I1mF1D$figG z)Jk=0SpmPd6-ajzz%M8Fo`aaPS2>p-m=|^tR{HJz%6S_XM1)EvXuD?Bq>~5F$Goj^ zcv#s}0sKmdoZSC#ym1fTfGXOTT%U_tpO7V6g5G7lWwW$rc+wnI|Y!1^b>hgLuTJmJs8FOTSNX=gC@lnPKDU2bHn|O z4i#GfkBjQP8U{rR8E_y7_i5i2K+69l_$*e=OdTed^tnh5-h)dU)9Ts5YjA(Vun$h&`45^7HW)*w0= z_jmGwF$ok%|MM*c^ZpGFDpXSu@uHPGsR?ISR<&neyLueojsF?v zeQ~-hNq!z!udG1-k~tc1jwdn}AkuYp!C?Dxa0o)n{q2^6!qACg!Vhp$#KQekhg}+( zi98F=OTFO?n`)xtKeNK%5!j`~8-V12S1TrdAaYkGm{2GyZ&piCYXVcC{HZWtKxCa$ zRutc?K&gS)&7BcqK3yvdFP5w720=MM+ZKLPO<(C@D zYGBOubp3Psl_dtewm$SeMe=L}u}1-Rj?u-{{6piwkBGCr5p*~S&ug0QJ@9`CR;>j3 z?C4j}c!*R^kZQ10&cyfmH=jPD@FMSGoPB}`axGa4w=}%`I&W`cqr3tNP&S1)xExHd z6w`;ABj5rPXv+57kk$&7fIn=lji(i5Gmg9j6YN9CP`}quxu0ANz>xIGiOJ<#G;Rc1 z(TIfoI670I_3}d`FL$O6noH^!sOr6b|9_Su8Sy59C^0Zdql?h`B)aK-+g3a!F)*(t zBjd^MEpl@kbz>mhR)2K#%wIE2qnBKC9lkgLlr0PnNDd0ss}--5#G44Cur7wSYSc^h z7$HJ?k-LIh!u&ZvRRQQ36b^;%3}VaNqB=i#ziN)Gj;rAbRI~p-C{_LcfSpr_ILMb& z>u3L@;mE8A#X|}(6PRv*DeK6NbIHqxucjjExmh3c+K1w3QA!Fld$lOzxn&BgJgz>i zxGQbZxj;;gL{^-O3`cpu40}B4CmI^0Q+g7YO!E6?Vg1E!8sh|ZDDMIE&7?k%a5?-v zwkWM!T;{WM#2dto#-vk)D7(2j*T|q`zL$Q|l6ySpu450LBDN7hL0q}BBo$%tD|67| z3Lo3Z(d*g?t{^lpe+g-hPP3aXs<1K@^?kGdA=P=|i0vLO;?goZ>)e;_U?E zonGHkzhKG}_Ec361wj4UV=4gL-roLM;Evl?j6CK(X(yZM1?XBkC|zuI;at2lvf}s( zNAv$h+G-=Ya?yWg8Xrurx-BefpOjG;m%PBMl@{lgps%Q@xkAYn3Y@skaYYZ48-7E$ zGhG+(_~`1#Z#c`@qqYYDmYT@5!3FJywqUfJ7B`6`UwFowB5F)$7+`-1l2R3ld^Eqx zL#`cSJ=|pNWZ6kVb>m7GxRVUx{m+%V1x7xj+2P;ygBBByp~cT_k*gGA>Rg^{&uT9A z9DWprbBXyKUv#~+0<)g~p4?Gv#tt&`G{^cah@qn&!FvE=0`}qWuVQs@%b3yORH0>o z6@*({d=fFm>{{0Vh}e-%Qsi?Hcd1RpiH4$wD26!0V-_Fq~FM>uHy8}>=G<0N8JxH)+u+Pc2DeQMbA>)m*0P-Kw!T*mF_NoY&Y zS&C4jyvOsOR+bEGJ;hxV`Pf8+dqXM-I3LE+W%RGD^FS+dc*5Q3>2ieu?N_GRBDtl$ ztk4zDl2|($ib3@ixY!K!JC&es74bdsyyb<(CzHH+_)YeYzh@ z@?u{pLd%g_|Hb$4E<0kCvP-k2cYUaP>V{yQDuQ0ILlS0PJg|cBqbQcGmpAi&iqmJr zr?>4&{1_I|UZmD!g^>H6SI)P-nj|Dkh)Y_skE7Qsbu1)!VJGFnkaM=2^Gs;EGOra> zpzF2St~UA^YM(4)TjP}3Yb|evZ)}h`Kh0(4+g~{?1eH$@NLyAftgQEK4K8OF+^cl% zVYNw*JQMW#sTr|p1a35&cb~hgITR6xbLEYj{f|-N6rxI`z2&HqLW=wIBwhGm5s#uX5U> zcsT5ZNs^56V2avs05G!p`S$|Y#8mMQT3CvnO>ta}kXmcYXs`i~9BYaQfLki*I%jsM zSV0?jA%}FiV)u~M8mSh>;UC zle@71M<@fbJ-|`_TI#-9{gwIVn+L~Z8eqi(3C;?T0D*Se(&)+0(3PJm=Xs&1BWy2x z!OUH0>Zj-(AwoxI;!qfuTW6wPAhmj+Js)sSym&D)-Ef)MmJy5E&5^&c{dF!8@YU_? zl}I07dmU{@q3>Z0%D_D%9WuHUFp-arb+lf~+}6WZVzRMf34h@uQ@m?f5E%9K{O6i< z1bhC>RUPfwFXu2X2Zma^bX+$=zEc}iGl<^i&jvtJYTcQdRvPK0E+V3Ub5!)r5N1Cj0_)N8^z>fmt2&NfMzXT)76M-^h zqUgp3xRnzwz*RW9{NJvEUIUdx!U;Hk>|(0|<}|z;21!m?ZdV@{iq&S1e?bFYM!T?e z##r(`=7NtK8Z+>TYM)u~B7Il25(suHO3UcHScv>LP;Eek-d zkk<{tl0DU!P|;MkaC$n?^S@XHji}9oeQkBzPa^m=KoS0Ob<0`i@e|C@Qlu3l)&Tgq zGhJto-)Dk9_~3SnJKW@p1t}kCT29m*Y)I-4PX`` zGhz8m1=1}|Fb)X%f(9n*MbZ#*38Mshqai{6lTr?k@Pq4$+;PCE0mCscGbe?OxdY`qbktT zHHZB<{s6>vK$vR;8G9bXz=knz z3wKDLD-1qv0B<1!-r|?Hi-0_@SRK(q0l__R>tb$`_KH#4tSoUu;z#&HfJh0tTWTngae52}vFRDfZ-IBy=f)_eBsDJ< z8MKr4YE$hI@QJVzWf3q@0#_R&0PTV7WMJ#p*FZYqlV0b5@mc{aM>TJEiS0}M;BHrz z{OvVpknpE)R(6V_fSq5N>P+kC_hD${;;tP6z2V=FBEg&B!E;7o=~8co*9%%+-VYrz`Opzix-1uUq^+Pl*^WvS z#&|XyA133Nr{SZ;lBq?N9Kmlvck@%l^I}SBlsKN1Q9%5uSxtp69y>7EF_v*(()gB$ z=d;G)5_V^BQ1r0*vn9-Vq`I!P};EDof`&;AX>~AsBa) z&5NlpX?UsN(stCbTupycK%PuG$1)4_EJR$=wXS~VHn{T$5IlgCnPIrgy93KqABrZj z=8RvyoU5_0Ch`{1?@#5X;NbWr82#@md$yvNTl%1vq;@6U*W2$;i|gyeca>AZ<%eE2 z5CPxRG!?{R26mWs=o{`96yV9Qb3*HgG3NZ{OF&pruO) z6m1dV*(@6`zcs|=6cc|;`D-rxbrM%D4kw1|WK$!yD@hG3T;(r84f>XakKEqXSz7k@ zo_8kRq)-oYQJB4m-d%&6-3=Px?5E#=d^OH2TY;0?-#C@8Fv4R_m;{`>{pV}o;sLY&G+!{w zW%z6OvLZKUt6*d&7Ff{_(4SV`)D1Tk4}cQ^@~+=UUi$HbHTrpvI*&8+N%2Xy5~PZY2p?;xqNuK+;+E+AT& zo`0xZj8o6+28ysw4EQ%I!MDY65`P^DU}Yf6^iqBG_s*NK&%u%GjpA6u z%uoEi3WZ_<&=l>Xyy{DX8q71CJ{1PN8ou66lk_yA0Zg<^P%+fn^kOuc0w_wWJ$-?= z)THn_$N;zDdsN!|e?}rNX=KFhee3-)M7t&Esa+9k^u?d(40zgO9NEyIPNTEhk9*ku zAQY;~(5X$AWG58|V&B1yp)e}W1jt{fXy?Iq=ZxASo07x!QR{@a7x});TqaE4p3Hl? zx@#)NrBn12H24eBeT&fs^jKEbnbXZkks+s2z!GfB%JA*8&cv^siQb)wi=ByidvjD= zovdY|r97Q-FFVh;I)9Ku?R6+qjKYFnbfS<$SHie-_U3p1kJ{U8*w@tPOq&Ur$A5f@ z_KfwtyAA6S8JuWlZyDy3XXEbDvF6K5CJ!$u0{dmmx#;Pr|TV;R9u zpctgv067SL@rmpf4v8PQnrQRZOCr=iA73EW`!$n6U)6!&sY{FD3P2TIlu}X?=1`!1 z1H_w&sMr+H6_ApyjRB+Duxrq+ zB7$r>nbcVIyy1dnJO=hU7^V#J_R4G{7QuZWurT@A@=ksmh1sfEdQb;)_5- zR`cX)lw`~-j2S5&*<8{aStD_yDmy5sv9w-Qr!uu2xJ_O?ToVC*%O9BO8DQb|Dxk(M zckMp|H5hj*4^|Sp8-jVVYBTokn@d@8pi`2o%T)TzPiN#!grM%%+93xYZ!aoxByc$& zPfwcnq>U%8NdZ@p(m$LSsi8L24g9LlxQ8Rb96usKLx;~fR?tb?(WN|E?A&rjqvxvW z!0VZ$Tfncz?3&Y5Z_i3=oI}&66n_!cqh|%kCxlyU#OX0yacUMthVPAONT$VQk00u| zOvLh<(HUc`smCg~HFV^PjKcl^{YUw|dY`ODIL-6vr5&l>@a>#Q1!q_9)nm8~CQG%e z=6+Aa=-~PK5C$(#r74M+djRla2>=%rEgLeuj*Z8UiBq!KKOPtdCa|+TB;almFT&ZWg_-BOWWY;OCI0C4_%4olwyRk1 zE73w46F_T#l9Mh;>d404O3Q|daK<1a$^N>Po{Q02GqHW>2+ zn&ed!xkFLPF=YCu^By>H9)6fp!*;~s7dV6wkAZ<9+)@F2FSwA_{`|IWyv46`i+Zx= zPW~Wc?6rYG3K#+JVjbS=lneF%Z5OWn4^oo!*>qZf>*#{(L<6X*zCpEC^q>dQAyy0^ z)AhJQN&BPs$jv@JlmonM46%aAc3xRC23nHV(p3{m^NSB5g5H-0g7^?*w-3pKU|BN2 zvKYAyz5zmdsxZ(k*B<~aT|Jie|K~IN&;1^( zQ7ZlHMavWjC1mrF1?hN87RdCHB^s=8vY)tM>|xe2ghgfdT4-6Tqs5lfI}g&c}Z? zU_8uYesMDQkzhsgi!45Z(M4f)O&ZqM^}FpD`P50FkX!aGP~_JCRBj!hfM-DhgC8y; zMx}yNCoJ^kzxUj6$b{$f#}9&l+yN_QZ+_}zy)oI$x=>Ze4?4=9MXP)^#`pw#L!cZl zuNFUxERTP{+C!18CWIe=ETKgNV7(U~nCM(r%G;1xD&TljB^doU4;SMgs+5aUXPQ~C26(+keTeh+fK^%RTU7#Bjv-+02OKv)1Au+QP~LsG8CA@E$7WUr z98f%tEPNMDLf8$$fmV?iMd^ue;pRs1Me9KSi3qdiQw!rC@fj@`K1C*pB3!nT|U8JL%a5 z*ynl?O+_F+14%{B=iqr>Hn4`}Wb-G%>6b(=D>C46oIknHCQEjFN00;5 zO|cJJY(k;u*u%lID*Am`z`;qi)wgG%jDB=p4Ng1!1(rEf?Mid%U*8|Xf+EWR62rfNN8oZnig z5C;VHH8>vyC%ZW-5Txy~mx-WS00*7%INwW$F(2+8QO$wEsUM@wDeT83sR@zU3atN* z`ntWQ{YDGH0BAvb|3AiRI>?xxsh>H78!ZtV^RYX^QjiodUsT-JRD^LU2!G!m-TSyh zW+g|FRs2kbvJWVxP>?np-u3>8xWEF$FajKzS|)FsNggUb5(6It%8kIDWTg(UBU}#7 zwG=cc>!+rloI=E81Xv{Xw-r$B!?=L!+QRz?30dP%C4mvtp`<^->8XzgM&<-L79`b#u#uNj|vO9ga%bpXbq?rx4M5DM{9iV^fc>@DTp<;dtd0q6Jh z?`abZBBYlAZilCUvz?K|v^w2s6kSe4_0X>fO4Be>bX~MN1@S?%-4t@D2|08$jLV#h zi)(*io|edJR#7iIyoYX8@cj1qdM~i4COX_Rtw8E*SIJ3@4ol0yJ<|q_Y+yqyqbyA z)4Wq~#tuFv3j<0UfCR(!J-s>nCpH%UOOlR^_lx?U$lW}N&k~VyL8M-qdze_04e|zp zk3<7`({kOyfZ7yDpsuOj28cRCBN!kxR}AUmW3UoLu^PTS`pUH-E7=$rbKFxWjG)W=7S)N#sT_D4*7wOJ zRkWtMC;sYpfF1}y$AtOkJ1>$Y#^h37>fvj^Yd|N3*_3`autWm~gK~K4nG)89Z@K?3 zu=;K6ea%B>qQr$2NPs^VUCV8ojzpa#BHHzVXKPabQD9?b$$^#xvzE&HQIKBv&Q{{ut^cC z43XKni^a*=6{JTJ<1)2YO3$BaJXhC>qeN+?3PQnme)~3h>3%hA>IHq!w;1U`PyHc> zbRN^eet{(pp3N>kp5|-$NZvhB?e<*cu6yhb7mG{E^}(6Kx2C_FqU6T{xV!`D?Ulw! z3m$t_UNQ;cWUS;q2==lm6Wml;3_7?N#kibd!UlBT{K>~}7Q@dcY~#@xX+gVVVt`*~ zw?h5fIDb6xVZ&#l@YOqP>9wrbx-X_Ktan|QAb523Q2Yu8(_i(=u}^H! z!@zgeG>GAc@_OS>vola12((U_mSnoUWp&8I%#v4GSk&9$BV2g7wtURPs+-YOQ{+h2 zm0y}9B~LalkVG0&K5e%}Phi4I_qXQ8Rd%huL{Z27M6q0e!&OgCeV^TEw1}|MjG`~& zkV@)PMF9NmdQ=^!z9p#d<@5_MV2!dBNwogyWoL6cxajK^}S^-nuiZ z&)hCP^VcAg`e~o@Q_ky|xJrev%^?>YNKXC}>tM|1br!Gf%t?K;e+8C0T1f=1z4H#F z!~gZzMPcKskQlK>gog>K#}kEXN@beF87ZE*PbLB;7j4fMZA?vM`z^zhiuo!=2p4y) zO#1pQW0I^mdCu`_UJsCW*c&IPH`HAq7_a}{`gn4atC)BzB&TylyeX3LW!1Tc78a=G%TaQdI zP~?%*;VoyTIqm)BpywzSX8qy_VjJmDf@(`>TOI#45)FEr6YZ0gxGscohy84Cqjd5-mwj|2*@zac?SofN`P*WimxeOK~+YS=CUh00sc=4)&P<|yV ziTaP8T)LYJD$c!=u$Um@>8PH@aD!6O5^eA}KjA{cRx#VP<)F}@u!i#}C6mM_rFXjw zcUC*Nqse@07n|zf0By+1;+CYDU6YHbBw^Ks zgv6PrJUUh;g*cRgstzMl4#!+dVLKB69ps|lf6|{k=rgmiZ040(uOs!5=TPBH9I*0Qn}KUjCRp5wR0?&);RU;az)TAmT5 zo4lvTVjn#*E1K;Dpf}a)K8w?x_YPC<*6`j?uOn>}>gOG6T}CM`p!b9IW4=ns5QynlYL_=?E=6xN>I>je;vlqVmp*nLPNA^jFMVdT}|Hd2`MnJ)* zcwWcxR^b6Xw=t&8$!oUYH*P*Oz_c3v4KE@>KemRgzd9eH=tbu4w5#FYBof%Hfnoh^ojY4ys4N8oU+8bNa#e!klCy5`K4QSK%_8%lILrMorJ z=QwIC5T`frq_}VT9=0S z;w|yt>BO$K?7HKAD`Yc#>Qxs_NR@)bCGpvGD_hZ!aA&E_j(i`39Vlv$3GnqcYKDu| z5pwr(OH;&bpTAVHFmoos{AO+y{GNlv_EcjJejW7#7ygXGqWR;sXo^mebCJBzKG)+C zmKvS5-T$YM>x^n@%fbW%q(4A9QKUWrL5$RZD1;(KX%dPQ1%lKl2~B|n)b~`7A~hzU zQXfUoM^AtNN>3t)2neA=5NU#xQ0L;ztXZ?>$9%ueUF+Vp&s}@(Z|{B1KF0!EJb%Di zNG3hd9qTofyI1uCDlN#AMzja9johbO=i+`YTEtwyuqnk`?(vZouz9J^|&-;_p; z>|icYqqD*+4PPkC^QX!x6Ae4s_dDuB=ePmKhk8gQwiW(PRbhK~IWGsgH>%$i6K})Gl=)-e4 zJHGt=VW7sj>P9+rg+Ks1E47QvO@h` z>1)7offR$0`9sST3kNj(v|_i8J31q$_{pedncU!(U#Y#9tYH4lz!L(A^T3)$|28uK z9~syu>h4~jxe`;&Gq`EdH>_IRPf0K1dzt?esaBw6fQ1nXV%y_D?@hK(-`5;$#=yo>g(jH z0H$3cY_>pIG-lk$7{B{jv3gi+ZugLs2>-IkSlQxJfGE8C(zNAp_Y4ZYll8xb3a2r>I?0Ee=~KS+5?}`*c<|R$ISP6CN7W7VuqQl~h}^PSq{#vbr*pcp6;S zbj@|jD|e6Ic1AiWf#%)S!HhzV>CIgOOKC0HPu@^25**2qAR;C0jL$>#!y58aDQ#(yT5_FYE`KCmg@!nQ?@N3rXZaFTWAIMp{xE-hC53*s)b3@m%efS9>9~TXeT$g5SI9%hHI6nyFKKFhq(= z9|QwIvQgx+pE1(sIK^2`uuNwI?V(#IIhK!gV|TMr6&{_wPal6i2Jtdyc>jUEitw29 z6D@-_s|0MWPs6p=`q}aGnPUmBCAxTf%nQR^AkU&?o0u(+%cXT(K2(Sy3;xPaSaGM% z@_6t@{X}yGY@YP_wrSi@Ju9=z9naDU&_uLHmnXX7gk*aOKE1Qxxa*b>B%ZYfi zd%YRP7@gzpv0}dmWh`q{ay2_KMk65K`5Sn>*@9wgv1()fjD1SUyh8ynMTWHN+SRvr z-h;+QVzT&llP0C*KbZEtu@*k!BdaU&dDp#Ml-m21H4+~VSwd@GFDrzcre&nBckb~~ zT(d31{*-URSi}GRs(n~HHKN;5{QUf;C;@?-JOj8O;=7WPbLG}?Apd2RQ6qwkp-K?I zwvLirJ&m!7G}wXynV9L#rb`13V*G}R)wtBg8p*o~LGGwGU*G{+mDnhuG!ZruMYUsB zUu^zV1?i>0f2Vs*Jh9|EcX5ypFalIr2^M|VK(tX~vn zf#6xKK(`0W>1{qTvLPp_Lbr~rt*_Az+ne%XRL*2kFY4)@aNEpF9pi%^w-QCN3#vwo zCo2YsX>3c3o|@EYNHF^npLm$l5_D2|x3XeM%MD<2PX~ zyL;n;*G}R2LgWHNT~)SPkpMrK`IXp!I7?jHDY>zQmnI{>G$wyMAqb$@9uQE$dY)32 zhihXM#={0(V{|Uz46<1fskdJt+k38DnG0* z`W+>(8l~2=qOZ71YqH>f5B@W25;sEY6Q$;bb0TiPcO{~gN(sXcb3j}J5T%WgR}hNX=M|wCR5&Qe`4G4$S!;h3ea;-p_=1~Q7f2apjigTO3 z_F3~i_^7^R@Wb4j@XYiD_D{CgBPQQFeW<1XkivO+zBv z4m?$dGIkurzpwq-JVLAIod{Y9&ClXXD7#QWj4}gBjCpadqR+O8U#-;D#$Y=dqhD2^ zf(5a)E7w@=MSRzv-8Wq*wVSxixS@FNx9yrtujCpGjOz{{)UVbzPs=qZ>{!*XGVxL3fExHzy8_U)fDzQ7x4U-U-z=2L;fJXkgo3vMAN79{#FKHM zEIS~T-pz`Sal~hFW5M6GOSMR2K^PG_<8S3TlbyP!#st(pS9S)o1{dA6f?Y^{wJ30n zEgRc(>Ex;uG6pt>L_CWnvkK@i5?>YE!;0m9YC@Z18T>-0PH52(xtl zB3v!meKJ(?PIHly|0C2gc8efDQ9>&(OcWJ)H!z|OWy?ecW~CnQx9EoV>cZy;Dx3$M zzD06!Y8XiT>CX}58Nx1J8`?WU&f%HSvLk^P$IHGh?$qyJN52dZNxq2yQ&ls1*|~V4 z63+xu%2IHeOthppC{R9a-5dF?tGV<5<`huU6An7pMUuTIb7!&N-X$g9?q%(}hnt|| zvxY5{DN32#>v(&|FJV!dZ4}-t_Q1Qe{hC(S*s+6+8?U|w+K`sGej*)%!VKsKG+hH_ z18iTjmM7=xHwT6&NMuT517TGx^ym`HY0CiqZc?qXVRar;KI%Zi4c`G}#=smuPA zjZtg^zcdX#6I2t-rhY^QLWl+TU!)*}PzKTg0IgOgwf~Pd9MJJcuRI(+1ZBymC*6KP Sb_TBGWVvE;6;^KK8TSuIMZ75h literal 0 HcmV?d00001 diff --git a/accel_sgd_files/figure-html/cell-9-output-2.png b/accel_sgd_files/figure-html/cell-9-output-2.png new file mode 100644 index 0000000000000000000000000000000000000000..58a3aa0bb9031128a1e0bb90fb25f2452b947f73 GIT binary patch literal 9465 zcmZ{K1yoe+w>~L|grE}AB_TaXhm>@eNY{|kGIV|-C0#=+A|NH8)R0Ougi;R7&>cfb z*FD4cyZ5gDf353UBWvC>=RJGx_t|?td+!sYqoqtj^q2?>3yVZmMNtn63p)b%5E0%1 zRv2mYq<}wo-twvjguuTbLc3_-`&|ze6K^c6dlZ-t_HR_kC9o*wqx8~8-yQ4&vG%gZ zdTs6F;p*<=>SV*@YwzXl|KIC;?p_Z3_rX*&SXfM0s)}+3 zez`j+e?POM;NATbW7hY+E;TE`qCHk3w6qV@Z0Y1FCablLQz3h)97e(MC{sN4TYbx#)G^Xj_%_~O z#`h)0Y=7Scy;)Krkcd?Au$;QpYZ5uZxE{^?pN*=npRe5y!{}6s-`av#iji-6^gCh1 zCyZ6}&|2ycK-OVqtXo+(x8no_)^8;(Uwz0UMvz3ioRfpFD8!}4vq86cjvtza1%^XX zazYl+Q+QBSMK*onM-heZ67ResOp%#KzkA|$%>`)}z!z6k6jJ;03Qyu08}O7eXL3Aq zLOQ=Lczq7y(bBee2DH@3~#!g|^4D?DZG`jaDcpiPZFXS6LW0I| zlyrv%3kyvV7ycHpT-e(V)CpF}`@)OMy~i78Ynlad`pzBc*Ug<)6xc2;7Fe zx45|fm^yy!7p*=98%Dfb+5bVoI5IEWq`MGvIBG+A{giSY>N=5_sEpMScii|IIMshU~YO)d*$+q52f;**V$Oj+l!{;#ogF6y53|K`^Z+3MIakxa5NZ2F@-= zy^D04+u8^_q1y+g_Y9B!XICBZ(F|&dFZv3AZ#z2*K{1MDNSG0hD+8XAPWtVH;{CFY z37sZF@Ye4>eP~T=syh&@OQYAv?5wCK{hvpzSP@klN-5qhlGdLHiN2-(*QSr@TXB7k z$i66HTrY}Gw@e0*mnS`;-|oH#vp`)d_&65Y>Ik0c@tcKj6M*Xn;T9rwW07!H77DP! zp!%mxigX1peUEsu#)}W0`4^mDCHy5HoK7vb0}`)UDQ`MFQaINpF( zgJPmTb$8ZVs2zH9#eQCN|NAq7506yJ20Syg9V?h`iMLI=-zd_wV-DXY0?mNIGmmL$ zabvkzQY_w7w({`sYn*vT^5HqaE;iV-u&-jEuNjUmUwW5bMU$XK8!ui!=3W{aK2p>o zPySZ!zGJQ1P5cxOZBcO9fZa&@N7y;@l~sRqZ(R5}6ClSwhUPA0_XhQ6bcwMkaX?Q+ z>VAK?=y(^NSL6#LJB?gk|8Ro+8r>#a3P9R=0zp+&=@6#0qQoWZnr*cD&%C!?ba3*3mZ)M!&yRQk-Rl zlvJ^UUg6<_k6|5a;RGo&2N5xBEGg2jU-TYrwa2t^Dy*v0<;p#jf5{F zTE&;TnN+U%Nopq>zs3@}8rv8<%LHF%6Fo;JlohQaLa4x;wO#t5cgQsZYKX&+Et-Rv zBcRn(v|FXkR!F)VjAxIYB@H5KM4&{m*6^v+71<=m8;*67G8L3`&zsFTObNY)T(S3P zNFkJQ(S3n{@;^Tw$iwwQ<+7PmdGV&O$Z%n(D}Rvb-4=Q?9>6?FSsF%Zlf9Bs;nfzKY(K9`9ZhJ|^o}mW-pyL7>2sR$zjmZ9b4GosSrKGSqeC z1K)I@ZEk%dPo?;iK<9Pvyo?p|SHecwCQU`fgkK5SMp%>ll`1X?{ge^hkah&hwtpru z{0o+MOf=k2()ktV(8x;Tmy~a-S+2}tcHja~oyx(ncp+Dx6$=Xp1>8Q#%ge#R5zHE8 zb?|on9$Qob1J*Ha!IPTpf1;!5BCFb{-RT@1u2TM1ugfBI6`r9(l3~V87iN$fyqJD_ z78WmJi>lYG=#5>*uoK_6weA|GL_iFvv$ed3wIx)nB#`hoe;l9~R)8ob;w4$Ji;m4j zEhX~vV;S;_Y;lc}!1~Ju;j2n)u>qlR@MPy7%hNlbAl$jpDp6lvZ!G9IgmRt}%yR_>BCms$d*@g4B6M%gxBMvvN)l4x;Xxnzd&~3pHC^SI^?4qnA6uTk*dn#=1KZ!Jb zviU(W+z>U6-!UM}FD$B;#2Zl;9tU^j-(&1(0{d?D(IZ>?Q5Pv>p?I!@0*TQo(}tpN zaKC;NYBgr31s*Vup7TBFMz_&5K0Hl_g}N=v^lvedHAO3y)JFHk0~-&un4CRaR{BkE z|C0L!Nh{!%xUSwO7h&b_Z5F0G!nm2m62Pw96T*<1idr$0;4C{kU}{DJ2JPAQfUaYA z+&L|!JLJg%rEZ(x!~KQLE#h7#BjA8X$7EF$lohmQv07{vJd;FX&^PV&vy*fofsYc^;PrV{Fz2=@x}nd<+csRkeU`< zFLjKv(45Mcgs2*xy~;;v{E)o=?$p1zST$zzGkTPlSMWBWS)sKw^~L@}>gHcH6RfYt zmEGpEAI*P|_c8G=jAVp)wCpz4rRFMp{UnbO<*A`41k@m0@WYV}rQ35$|Go+&Qs0u1 zjtSv+-V?uW11|O^J@xYQKzGM?2@#kCTtqIHsR*G#Ci3wSVcn3W}k z`yw0GFZlAM1z@=cYD#hQE*)D-QV{XcMRYIr4c6t{!)0=Ez;>%{lo?bMLnJ5tna{_d z2%CAF`5sT-ChA6Z{~N9ONXpgDdKMOaom6ZEW#&`L&RehP^$#KcO4fn0eNHP7_*V<; z`xg2dRQLM*`}cD8kI11$*6pO7NgYJtP;)}z#*5<^Us~H7#+uHnJCM0`G;R5pFQ0jf zqE&PxE^LI~9K8#uX=0YECmg=RCsfzk5sI~zji@X-F2m2j$}-{8xg$)F1yD}*s4D#y zo-V3SG!!qHJx<(V7d8+}QZu5<0hFw$bHhd02*+-yMAHa41~wWXsdr4cukf16WD5V= zL2|+hvJiX}yy5EldCH1xgwKWm0;ditOl10h9K>QCqL(bE$d>M$4dZ$WFRBpWN9iVT zBO^_f6om}lM8*FL38yu5i+^Ecy7!McU1Cfk9&>Zo7bT$&&aL?~N+(&PeT!~GgQE~+BvCtBJ5(5R7cU5@zwazWAN&`Oc%R#o@#P#NYu!$;|gS_TgvB2+4w9gN$dJ^Z4hEaY7F_^i6b(RBRm>-M8J>R!dGOAZsp+W`BPY=e5(G5sQE+ml0VfnYpI>mk# zJMkPzkO-+MO4yY??SWa;x%!e@N<*F%ylhB9s*s|G+g2GqHi;`g>_9A*?#KjrZ&XmaBO!^dDpU^eq}%$yYY+8} z(v)?DGaE>K_qOw&_)a$9ezkVOU#lov%v~yf39~YKadpHjq)#%!*jJcf)Avyx%VVMJ zUL&wU=t-Yx#TV{{x7kM5i?$q}f}%5_p4a_{;y25z%ADp+{_Hmgr*7zg4;cxwfA)?Y z+1|ZTA2>V6FeL8DZhkk1`PgZx%B;~@c4s_`F?EtVrD~#p#^j^MG)$}+IED+- z(VY4z&q|`A0G7D-p*=JrT#f@hJlTHA1o&x*;KJXH#BQfu`obd7o`_l;q63!QfVP^V zM2bFY}28<%KE2plBf zRIIPS3KTHQri{|z<-5V@iMhi3-;}VJvU7gsrd)c0jM7)V`=h$eYOMupI>jW9zaI={ zo*d3Uz3@Msh=g z+N%3lL1?(WFy!d)m(%t=l?DKx4m{P%@hj<BjFR@9f+Lw85TK^5DgTg~OUD_zsz>);pj;sF;A4vu zzsOaMn0c^ZfNkVo(k?-YOlmsR-8o5tXvv@6su4otUQhc+==o|XEP%|}RcAnna{ z2)3WSzgMxvn)DNyXHF8+jy_}&SM>Jw``(sETQL2TmOuhH?NLT`o-YkvT7p}dMqj}p zcY8;k7JuYa(>G>(Cvonyf#%4+e73of=sBl;wEcP$JX;Yo$;;&sYRZ39DgEt;`0KaY zXhTExic;>+OrjAS5u>8iC3T`NfbbucAY(B%r=@<<(TIrqNWPk}>WxI|B@`I{`0|AU z{Ag7dC}iX;{`ou{0;H=_C-mn^ju+Mzq;LJnS;WP^`JRmZK`84x$X24Rz8w>fqGbKL z1l10_#ou_+aPa0T*(x(u@3=caY^fqWFle!B@IMM62Z^#sypb%@(aOZA%k zO57H}ebY^Gz^vQ)r|**c;v#R3>)IS6qV2NNQrwakyk_zxAK)3*_j^^wLg4% zX~q8$4jQz+7R0)5HiG}XR>Fd(j`>M)##}*kpROZsI7m5X% z6n$|(@yHogJ^p?Fcbf?2a15PfT&UnSJ3mYSUM>b;`MTc1*|ZtqUFys`P<55T`v_r=BshmT3v|g)=qOM~2FJ{B#fMek) zh4*RS&(|)*;rTIlq3C4!fAVbNykC->*$ozCdaZ6YyzDC$_|Rr7_@4nrY_Klh;Lou!xz#oZ1jAXmAf#^B+{7EHfB zp8nm4Yw|;}aK{$yimQt>ozLc7{%v~9a52WqQ$@HtZ3ECLr-#~nTBqmXz8C|WtCL}p z$8N!A9FGcQUIVR!|KiXKw0}*4@zzX#9QCfLcux1Dw{Tuws}K`xAbc(Tb5^|U99+Rl z=eT8mI49M^PD|;zQ=+8_$-N6u@IKvEqq*U{85cxzNetj&+0EzF=K-AXIFIQRp-DbY zTYE#nr{%FGpz1UPGeZcyFk~&Zz;&%g^s(QzcEdj*#nwZt_mhiW!8|C9`OPFR#YCtv zzRZtyu?Hv=|M<7Pu{Gy)8Zl%|8xRs`GmXDGb-Q8`!HN>X`_%?Oa}L&B2+k~*cvPUk zv_sKOqbZp#!+^5pQ>~+)YmgM0&T-dX+m=dlYvxaV160{UvTvk*B85t@z5+VPG0D4_ z`^*p&VBM8@{M~Cuq1t;k#=A+%E^d(i9?<+xK4D{kSX8>N%~EYO?iL3CB}DWxH3vWU zQt(r5@n92t4miKPYIpLXkdUtF2o}}lJQs2y)A-7_=UW7(k;o-T4apBIfjamy+HB=N zu|Q5qNNF^3KDHjZ)Dz*Uv|2h)6XB~SJfh&Y6(2|R8oSSR9tP$#Ee+H~Wmb;>p39O# zDSZ{$;#rs{O6IfI6HW>Uvs64?zp(HPaDti;Re!Hq8?JkUL{Q@l#sPb^{Mk3r)pPqS z07lFJq&C|9T=Y@Srg%dcr}FCI3)TwDSDoj@?{2)%aU`{MRe3uTLoGU}0T3*wajp9t z(&{E>f(?+QuTDzrIYtJxU<;?|sOjVGJ7=At?L+NSZ8_=Qv1cdzu8-RW7BoHp)ht(f z0j>4V+Sr9LZnRdgDSzN&NyJ=sR!wVpP3qd5(`tC;3GUYbx4Z3-RXv&SA%gZwWw6;E zcVE%{yg&WTgKurGmZgO}{!DX$+ zUh`2MPBY<{DS_l^1IMw))V=S3t1aJ{1qqo>!bz52mVE@eZ~cCfThpf--p?@Mj`YoO zDwSY}%LJXwn{yT!uiuxdynjW3&Kd)TL6f!B761;=KO|W7rzNF2A11Lk0oKP1LcsBW z-xhs-t86LR2Qc;$pjG%g!i-Pq4K`pG(vgt-0g83)R#cy{+nikBE>=#4u~%o=J+Yfl zXYip8_Tt_mz&0Q~DYR>FNsMH}#KGt=?$5gXqGUQP3*k7B@i2HSR!z%NPY^s80rMWK zp1Um#Hk*pgZZ2qF3YLgX+|Y0(X8;`%{EpP;GBH{klBg?wTAqS=OMQD@-kaC1)ou$b06f?Sp2ijNtUydBlC#SjmI+61i4%2Ja7iVjbD1VLwsr6jr3<{WyRZ0b$<$s6~&@qJc0B zeN7GYq7WuiFWz{IPH38MSGdr&CFvz}ipthT@#ob!zkmnG7y<2AZQ*AUsbq&K4R8rE zb{3jS&g?-%@6f{b(&{HkwNm`%jz*{wd|Rmy+ix6IKyTZi4&Sy1!N%Yj@rN@1+b^=S z14d5|9D&+Y4q{2bb4LV<=r8hZVtk24m*CvsBZY?lzi~^gmKvYzY z*hrw4IOu3i+Guv;lE-0s1cpTQGKB7;X##QGvevKHU$aS+C7w~I`n&zD-)GQHgM9gS zlf;yrEFrBEhq8i(kXgCV49p&rykpuVsL-^FCF#(L-YmFxQN#O_Q%C=jMaSwK=i!)I zdY7J}R$mDa!_LbGzeWPLLlc!oWp|TLjt=wvX8zet_AH5-y$70EUHY5-PW8#MLC;3& zU2zaItKExX0Wkb8Wv2lu35}JSc2_*z^W08;Sfh^+nhf%xsl!Y+Sd<6qfth7={6|cG z>)%;xE|FXcv~><%C0a*2v<>xHqltsAWFa6!+XX}0ha1Bn2GEQRSespTg!lFfFd*0g z`&u{G#rMLsG(r-9X`|@mD}|vt)R>4`@G9`NnD^~v4@4kc zTOoJgM7A&HN5Y?`R=0vG3fPlUgHTfQ^+{kUvc|No%&E85S3IfJO@w}TPFuf%HQLa- zVPgvUf=M^-vkJ5BxLYX~NCuz!eK$FaL?(OWl`6C3g&^5fnj(f{_|{r| z`t9c*igh^(=bLZkUE9xxFUwomy5@Ks=fZC6pPTf6isR9lPaAk&M=1VME9Sas z0ft4rV~qCl`d2)R9GcwSXSDZF#v)rP`plTQdJ2Y!kplB$1c+qnl zNBxDA1@U+Z*Px%!E#`0Gtxr>8S$a6UEWao9bsBDzWs;`YJ0I*cEd1(;-9PX?=v^9S zkQevT-+Pc*pCdhOZ~iOo@GCk7BY%Idi{7vXmA{jr$}|oy0AI=C5>MClN14YB17jT+ zG{{*67(d<4+y9R@6>^Ef;e_Bx=;9K}5$sa3(RycSTM0Dd1U|_zInzDn7p>#h?yXUJ zPF0;r^8+q{YPEYj$3KO#9Xkq97N7L+1;OzB22t&jo!5im1jwspgXL7HHZKme1``I+ zLUn7Y4RxtAqEG|~T+e#8o4tHI2;W`<`^xS`vsZmPZe*__J&uB+GR(Z7%g68gFY+=P zy^!kQ`U&_ddqcIFOvo&}3TjurBFbj;r3vBZ48Z%PiLd2a`A&^Q6ri%7Gyzr zU2pCg;W#9E=Gs`5!wO#5`0vRwcwUC8G2E2ii-(%voie?fD%`-A*+7@zGGblxnM7aH z{n}^`h}T*jfm2)8?q426zWuK z@BM~~(6dsD``&1adsbk6oWXF*LU&U_{L4-#}cdKHJXIvEUWDSTA=#0>B^gH7B~Pf>{QAn~M3AeNLzd3~jpJ z_LDf`wv=po4ts?#l%zYdn literal 0 HcmV?d00001 diff --git a/accel_sgd_files/figure-html/fig-img-betas-output-1.png b/accel_sgd_files/figure-html/fig-img-betas-output-1.png new file mode 100644 index 0000000000000000000000000000000000000000..7531149d17de0fcf2a789a10bf71402477e2549c GIT binary patch literal 43302 zcmZ6y1ymeOv^9!^U_k=G9fG?DCj=dWySux)1qcqoT>=^0VQ?q7J7jQo4Q{XV-FM%= z{>NG@W{R%vQ`M*HoU`|?2t|1*G!#M<7#J8d8EJ847#O%I7#P@1q_;o|%fyd#;LjTu zF&R}P;KvuqG#vPj>?p0}0t17J_3syUdd2?)>i@ zWlZjF=ImnSV9&|I&ce<_Zt3dk$j{39fBw(n;B3K)X^uw#149lYBmP;{GwXQ8!!uEh zXyD?^ik{0X8I74}iTne@7su+)>Jq-NN}nY}e@D=*lZwLj1)+*}!w%Qy=e>hXR?fPzRQ40Tz2DzK=eE7%dN@E^q>+(b+TaH6&i|=b9b+g zbpuP=Zf$(MBP}g@J*_yGuJ9q}%3p%m@{sd_lDjC@T@d#MtScB>OY8s}riWe4Z7OJC zu$dZ@l^tL_tScs3z~CO6LFxK)nnrrCJ0qBd4s1>jeu7O>7D`fvCM!FEO3*+hI%5N! z2&Hf$nNryLTx14$N&F>AEyYO>D)e(~M0Nyk+KM2t^V$P2XRyI~mntX};xFsh>2{MMb`;XB~I!0-|-nr}&)_pZJ7 z@<*_S-wCqoA|ByY1jVo;wyt25HE_Lg*IZdO65f^e0?*QeXN|zKkD!u#zB>t66dsG@oE55~BE65nynYM*hhRiZs1-dScEFo0Dh^0=z;iodhx*GSn2G1aXp z053U$*P>x;tK*F?WImYlv0c2If@-QKleqEWfetfdik`%b^HQ`V7p)5m(p+JI)vdwn*FH+rK3dT}`cQFgv@Vh7fZLgiDdtI3HELUSW(RjF zRp^X_2>45z3{F{98C(rMg^<1tiRJbCJjlzcZ;qX)FwEb#{BYDkhr3%S$CbnKS4P)@ zt!%i(nq2H;Bk%0){l$>t7a zC;u!~E^SpVZMtVK3d~TSP$F)E&4P!k)(%4JFSWhW6>KF_FY<>MtV%*r2O+=~1TNhW zRzzcYsEwVJ!G*w!?EEGBf<$ro39y_oIM5+0Mm_4A+`mVS_N6I!3_e}N&U>Ste>!LH z7i@M@&Q)rCmy09TZ)juc(F=PtcvSgP|2bE>6)P%Csy%s)Gvg*+A}2wwvQiQf`Ff3|iGba!J|JKGM9}o9T)ZMfHhW(4Lso z4zsTKGLn2%_?Z~kID`|HfGN$=;hzGPly(`fQ&e0Bs1HPGH$13Nw3uL~tIbRNV z9mk1)S>ahOYHqQx1j{0C@QwHGDDq?;q<~Ftkon)k<6UY^{`VDbM__q~c_xP!;}4vNJrY7g#XcEng>PDd8_VJF#KPOYaOgB8 z0-iT03Yfd{BUx=77~Ji@YvbkXF_*S&aXi)Gv?L_~2e}1&O(XHY)=0H=4i3r?%u|YV zW?ea4+(U(`|XvWd8s5h&JPEJo(pS7l<>;hm7D^ zEAVV5`l$w}BrZuAF-iHA4xFL2!YfS=S$kq1#5sA7pkXe_P%D`5BhAvcQUjwt+<^S5Q zo2(Nd-g>}WXNqXU<-#&2D}#d;f)qvJb&{23>*w)wXIYd2P2DTCQ>3u!d4xO9;byBa z6oip6gpp>7ux~B~LSn3PPk7=^m3iedKU-&@G^WLvHk?HW9Oh0R|i6G8#!aah}QVY#g-xfSL{*)p^n4)5kE&`RTqh56!8nlffrZAs8R2{fXoj&F}BuS zm}a>3GC*dbcJRmb7>Zu0OHrc1>fS*tKd4i{xuQREJ9sb{j@c{$ zeae;nl4S>)f|bwKoc{`z@#Oq0xOZwDUZC7Q!CUg-Nb#O2`leiB7hp2PvbpKd zz(~WAv$tz!F*0@4hCRRd$ugZI|M(e%wBZi8fmFFm>#w1>GGv*LG(@b)<>ox5!i})N zavjRpHpS(&9nc~9K7DTd?m0@2#{SCvyRGgZGcCr9-x|Mhs{eRrFj>(Q5vyp4veh5E zGoN20c1r8bW&BcHihYOfX5{lj7q0d5ob~fS?4ESq8Q#(UBC%@hAaRp5XyVQaYi&0w zSLS%n1R_#lBOX&jMMXA$PP+kIb^02noRwByt0OK%e1uvw+57c2fNZavA?qOx@gdH_ ze=BzOaTDJ2nEjJupn-MyXbL^0uy#Q*#zpA!l5!<3D?-Tmcy_SL#B05p0eWhwctISE z=+5vYgmK{PpcibUFnycKTHV=o(kKzMS1JD&Yu)H7@=U!;qT(9akZ)3pUJXRA zhO%!fOoI}5tUg^WaEzcEtzfEM2Qx26){|!^%gL?5eAC07@%z+dG@~l5_AmUfZVYE^ zCM#`@kWWNm%`5n^V@Nx3+viGbe2x;fZSjOa*pjoWm|m}yXN5ns+D{q(wcUrc-Tf6d z&;i8pIaR($cr9t?as4-P8Xxw{9sH_4bV(!~^OQ23d3s2O8qJ5LpVr*QzoyQLJmt~X z6=g`6xAoHy|A|2?>z7{q#Q?Zl!OM7dkB28O-$nC_QoE_!$r(OkfCPnnH*SeXby4i23Q#`;*+4EjSk&L*o>s8wSp$Z$jB9hD{{+AB z$z?o+PWC($yV@AR_0Y5vHsBdSuf?%M8Ha}JxVtukx!7kH$$;56aTB@!Hj33CKGDO~ zRQczhay0uvH<5s@re#lqD??z@F`5uqfhm5OX1%+oQ~cFxd;d^+@OQ1|TY6*Y#caQq zE{pA^WeK^rh+uM_D0YAx863o>H($c>sAByLLrJNh3@3{f^kG$s9-?MLa(Lk0lxW&; zJ7Q}de6`$wyS^8^wj*1f#f{a;(4F+Bo`U=Kc$#p&a%UfLhQ9sDB66*%AI(6d0b!v4 zv`o*CS#=33o=P{7NfK6D>t4o{ZYLymN>}HnoS-FOLZ`->v-vH+DgWEy^vfjfF4xJh z&Iy^t#WxL0&y7!`**2=Li}lEoao=SUMd^o*efzb{TWx^EvxG9=`1m`!X-C5Mx8GQ^ zcSR3|nXH$C`~}p{cWbR+-XRl>cwFi4^#8s^s$Ga!twm_@2rE^izu3#IkCZXJpJ-h? zHi+)PkpFoSeRBU3)O>MD+mE5B^!Z9z? zqX|KX6KUscYcSXidcLHv@ebM$BH+D-JP_O6dWPk+kJ9PkpJBymVCY|jNdHuGab@cM z7f86Azo>H%9q;kLXsc|AF%1oeF-pKSDSrxF&j6a*N%seo=j4?s>uaU7-`B z{cN+KT;b`|u(BFo6}eF0HA-q9wJN8osOOJ#^7-gd;JrrGdu&PtY$7~`YB_Tq4|@_b z_sBTbDp%6aBU`VR5>Y-8SFGdvBApvUg9!Bk^Ejh_~EuAD5&*jiq#pgVoKqCFhQr9O9k*PS}9c%;i^V;#y- zKEasBT@ics>n_HoynH1R?=@|#x)X29=eW4W^7rOiz(!?jo;b1z*B{^90-hzCI4bUb zCWwFmROEtRK$uuGzlzK+Cu7KeZPWMh>Wwx@Y`$V5jpH_w2=mflT5gP2NL5wFIF(L- z`DF0MlZwE{nF5g>fq%s@kJgy2v=72qLX;hb)Wyn^#!U93)<}mg8;-^DA1yZfEcOezK_gF%&1kJ=y5`lnHapg+UCLRnkFT0A?9ZU##@^N?Ns01caDYN8HC6r z+RHo1NN<*)iLhC(5YNxrj)$+BM6e#`p14P}Nl4~POWzl+m-Ll*FEW23+O`SGWTlu66)v(BOe z-Bx4X@;uSR6-8E+$`2C4X`pxpHO;BkMkhy8Y|F{6#U`_3O`0mq%~=CWv1UEi~yDBe{sR zIQ1^XY44fr^BRdA&hZI9AOYFqi+tN(tY{KcYFU1}L`Dv%Q&^(_aRBqRgVZ4$2%I)= z4r39SV*C`TaQ_nK1cWK8aa`uUdzifwoYj9-KKZihhH8m7t~r8Bi)PhcF8h6OGapYBbduH>3@XQg_YU4QL&_2HL2 z0jdWL=cG7vPUvPo+G0!c0j>YutV3Dz$-ew}I_Uh1%44Rk{1I=4zaNyaV9aF~KYK3- zK4t~647~DzdVy2G7xK(Ere?41S$~56I$6)S2M^+~8!}b*#PwWK%pFSs*IPI%Nlf%+Vps?u1)&-@0-J4>$F`#Sw1l9qo9Oxq`B7uV$fe`WeUnU zCvLbV`~AK1*33i<10IH;;n$5O*C9oPpMn2nCzZmVH#E!;ZI zTweDJ`2w!lY9q%NLDi}p7Q;q_1q<&H;lHmI2<_;SwXX9sg3U(y-~SuCOHy1cM{9o? z_#MdwdxY7@=S&{12TM3+`>fpwNsn{iI3;w>$58w0jX8~t1%sGcmrR~+k2Ua-sDO=1 zrFjFI56Kpen>J_lt7pnwbGD8Di?7hDTTWEg#J)V_q(Rn`mmmVy-oi_&(_#5;)<^dWPj2&c`>B7;<;sy;wZejLxZl8%?Wh};LZM*@i$s6H=dmbXcyXsyqUlbBA z;WC%CjU)#c_Oo_{5kw#5 zHeWAq7@^ULgW_)z;;Qdd@}I&hE@3`*8koEO#BcT5I~{FU4P-2cKlb)(<>*jyVae*~ zdbAPVN*Cz};vMhhUHf$!O?Qc?rAa49X{^I_-MaD_a#d4aI`<7~?5?sAsbqhn9G`#8 zs1tJ(ilTD(U`CkDFI^-hVieG9ovxo{)V|_gL$pBWw1rYbJ#2D$HKxk`8vRN8M}A=M z#tNt4L<;y#q8Y60A=w+ZxAv`Lnic*7B-QTBOgiSXNx1qlxVR_|raH8Q#7W^Z8CJ41 zGj?m<`6TF>I$(aN?#y!H zW95wEwC#NX#luvl;q7TjesCrnOwW$n+ZWWikraQ|&F06S#gCvMY~}jv@g~&mC^};r zsGw!bIiUk>S~7jI76k8`1AB(71X}&+Ws+K*gFvYh%8$!VG;8;4O5N9rOM|vHUetAd z$-}eK?))HvB@#lE0?BU934E81Tu-L2;5DMfgkiKWxEvf`&w>MAvu@6+x%vZ&?G!RxNA?sBA)y&`85ihr~4P%fj z-A({5yP^SNYxT}wT(ZaKjDV=F?UwW%@!%l~yyx`~j2gTuS#uwP|4c+5LP?#N240Uj z@7WNfC*7bXYYD-PAT)zfUB<#)IH&!pa#b4SF~l)*QmVVOFTLgz_I?-$IKhZT_Nkf4 z6<(p3J@0);pjZo4lP(hmqjuBDPI^-2cf|M9by6NBnfzx019moZD7Z|4!H65d7}6Q{ z)F&2Wl=Y4+$&|%VLwkb#&@&306vvZ3-#C=FH~%* ztqncd>>tgsIGZ+0`7>8vqO|vrZeh5un8tyy>W%txD-srEq3gt_ilpSYc(i!4axYN$ zi^vzx8AH*L14=2?Y*(hvoW>KA6LezL;>CS}VQ(zHE%s75ohD+FJzHwq+YKG8setowEgB}TZJvM9*MOsX#&?aq!i`mMJibDdK8ug5cK^dq-UC%@@)*3N~BbXH`Jipa*3 z8*qz9_1ieFUu=+NN(>w-mIEC!+$<*N4T`xh*~8YPI0ViHFQn_0hw<((_TPxZX9mFn zcscrb01DESwup6ypM*^|_*(==>4tyos*wQ6m~_*4*U1R}&8_jUUQ}=_Nld7t9kiuj zNT0QiyRduF|5j2Nbod%JO<$hD_wDEf_W1SQqbEbn{Z8{J9@B?ICsW5Xwn!?Ux(@aG zv1tQ@>pC&ld$`!G%>K=3hadlqKF8 zoLS;d!Snn~+4*C1oK`n}>4r-vAnA-Jz-;zsz%GFa#g&djbN$J^k~}BT=&J+7<_icV ziN(&gl-u`{?=$!D8pdwuof>P_`n^c!&RBA;(sd8=VHRJ)198IA=~g7))Qvt>Y^CL2 zL|p5NiZy?=Iqd-kur*v+va$eV9?_1hIEfJD9YV1-#9AK8G+K^Fs|mvX{NSaNvQlb` zknz-%@k4y?m1jC&!1)i^pPs3%NWtf>%qLwi9{@bl42y-?)-)2f>9sps;XVdBMa-{F zgrP1>&*#Ll9#6!Loo#eWL^av`W-8VmJIzl7W`o1%RI=mA{T(j~PNCJYaD%$NXeVNi zp0++{n;>CHe^f2qZcOU4mdMzNl8u+^p2M=YE8g8>FFXdmz)>h}v0L?0%FO6nI;+b9 zJ6FuP$M)Wpy_=b%hirMB z`?B`uyNI-pSazW%u=VrUCs{-Yf+djE_4Q_R_)g0TJpRWVj?Qsz{fNbM^X_1w*j>Bs zF>*S$C$=&RbVNgIXwX*&FEX={lq5c_=HIKv6w(I0vlCKE2h&#S0T1|qL$Y@~V}AAT zIAF}z?HpffIH7Ch<`}#6vi(i_mv~xd6{cB}G!2_M{RFI=yfmN9o10|X<6gDX=jKxE zc~Q@f^6(p*&GH937K1YrW4fJ=2NXcne^-AGxi{b#&ahubdc3V`l_6SX<2L@YH-UM! zr*Ltk(WF@W&Ih+5Z||hB>Dgj*!nu`yz&x)(x%4e&FuU_bV7BBe0tl9G$g<=9T^kn_7;B=6(ugyTen3?Bm zvGFnmU<(a2kFvyCSr;TpJ_;D0RP6@ge9*)0S;(Jm2wHdO78uv zh}IK`da#JCE-PvG5YrduGY}8tHuZH#PnKc5hIg7*zuTyNiL9Z<^Y!@ zAL)$);%E)m_Uhc*4$=W;gV5d+&Xo%jWZlV#d2L#Huq50F`!Ka17_tgZ@l2gmjCPyX#9U%p+4%V5naORwFUGc?J5hUm{;_b;(_AUks z`KIst9j3r)+3axSBEtcwPs$7^yUCxDv)!bedno-Zx8fK(CeoXHc%EVfy&VjY0Ym zKJ(6cN{1M^{C8rzzOmFuZ28eNJL1}B)8vBD1{@+hhg0fcH=#yOq5ZSX?PR^3 zPgtjI*remx$|01@OSaTxj;g2qTIrdiNt-nte>JF2KbDybcSruI&{SbeTA25hG3?>4 zRDVZvam;s0%vM{X`M+8KoVzT_Mb1rJ zfILM&z|gT^*U}N3qxL*{7cX@>LX>{N($I6Y6*iY`8siC*rE}}=>~l6L71}Jhl0nN~ zpFU0g{w*Bi)o$_SYpAcM+x6E3UtfZ?Q+9u}gVFD~3r_VqWRa3&J2UFHE_14aV_P4i zg(g-(PCy-4&^m9TU~B|zFJ0es1b`X~K8r~yCHH7e=5}mky$8XATPqxnVu2I7dghnf zQlcWAqj|-AJwdzyk?*B9C=4-mC*5GHYn>gN{V-%oX7JsE2%#^k_xZLrnX!3J)rcm0 z-?vMti62!@3hYU0tCmc)v7#kX*zQzPk`bYnDGa`PkuF?WC0i?11Na|yWH4w3GDKBR z%$`ZW{P3gP?U1!K#Ay{17i-jSELi2J=YgTmZ!BgcEIr+x^QyszKEsp5e01=n5Jf3( z+uA(r4QGvl$v1d8x^-M^-|4~Bd?^g}lQOm0KMk=)0j$RMi7evtHq`0aVcT4Fuulw# zz01wj9<0&$u=<~%U73TfvA$hXW@Ch&`xKwthKt`nY(}lygm}8MNTJ+1 z-?Rk&W$d*}fAYOI*?BWeCV~`(@nxf@d3E=jXrW8E?uf09MirskcMKAc%bn&BimQ() zp+?jjY4bgb%E9B=g-IO;0)aOZX|Qo3IY)LA|8}9Ub2c9cJtt?&x?`WC7+l*WO50n7KUCj zL7#rY5Ae&hwZxV4l$3_^Om_#gpFAhiWN~m1zJ&G6mMGR+wuHSw$T*G_msN{xqblI# zPxl_%CpRfu^H}4q1TESUWMwnJi-i-LyPE@nR;92j7^7z}-nQBJ_3-DvnhJqXMbj(n0=-Cr)fjfP?jYuDsEQ-bw9XsFNaf-g_1IwB;nXKulpVjDW2EVV%3Zv z)LpDp?Lu3wn|^9!7|1F&iQ0BPf)E|5&F7 zU_5Xy+zw=fL^h+rq--$Wx9$&^&^|`xWU4c#C9*MC_&j3?&$D({kD+=}ip#W6)R<{= zA|8B_B2Y5SkgdZHMhDkYb#C{ZHYfNWqwd`4<4Tj%G(9;&{R^_Ggw#&uyYhUAN2yd2 zv8En?i4u`rGYY*;PUY!Wj8(*}2@k$Ou>S5g)5Fxp6wAl6^q!Y8n)OH-+?3d7U9Dea?)xE*@|Hdld@huMH*Dw4=PQK(X9|U#$;P{*t$i2_*g9F7)Ub5&n z_!IHu3b%sfqW$m9@UM!)bm+xl^SOQRezMz{thCJXzle2>d5xR2#Qp+CWLvTvxQMl* z)MYe->v<(NFXAI`_vq8`Q~xV2F0QFI(bX;?Pn%Zg7XS|o0w@FeT`UjKmu5!1yN$=1 zdV!|C#qgbN8H`57aJbELqoytNyB)m64wCO^iRksx0~`}xF3FNiR*t*?Y_cY(Ulcoq z2rQXIxxe1i5iEo1Ro~?@qm7SuMu=SYPn&vYDzLm}0n(q|Sf5Y-ahV-A;1&)tL1J<> z%NnCSO)Kx&6e{)slg!^TTJZJ|fd=~>@%{mBgy5hRB#z%L8vgZpFDPY)?BAVNy%4{B zGdwpe)?c9;)-O*h(xJXAuKr=z@9F^4wUtSQBrR_^Q{Gqa?Ov?}ry!Xh>KGS==itB6 zDU!r=(A*F%IAW#M`v($}_zOFmiX|PpBIyvt7wHa;6EeTSbBpn|5QcsC3zJ(Nm)Q9S8=$x|HC*A>Y{gv-SWCm;wuoit)kdOi;iFZ1ASKq=G@bC6@G?b3;>7Sn=;<%bM^UBieQJ&tj22j$p530i6b zwxuxgPjz=Wl|iR=O&U&BK+gq9+Qmtw34H_kNra_IfAW+5IPZ=U;Bi3(B*gnBfno{Z z6u@$K)|C098rrJcT~J}$b#U!u)|)Ye0_Uk_n+OH2~oF->xwRh zE{*^e&Nyy#YoRYTB!Cc!S))?7f#_(AsTHH|cV9sez~lq$y4901ldk2coqiks+joJf z20SdS&_B&H`=%mSU;9;rL#j9bUTf6kJ0-a0w@Xy+HJG};?c`hn$f$nu!ROmAF@!93 zWrG16zRwUl)ZVaOM6#~kF;cs-MrR3He!^m7w^j~J8^3S!4_WgM-|u(vM6X7L)t60| z{06lF70%g93nDJ_w@SUAo=$h0s0G`Lfv}Q7N;cRu_&A?({Q0kcj7WjRI{-OLZ}Gjr zamNb~8ELaE�PD-o|qH3}5icn!I@bUu5}l^|7#N*;CF5CN{j^BOziW zZYWs**RI6v0sKNG!NBcFu-Dc45baM_D{?$Zz%CQ7n2$ECcoESHU|@D)wi}2(4ckf$ zkbvaBBa#N9;%PqL&_?S!iF4?DN-7y`pwq$UgnV0F3j>cSp zA6?KsQwFtzlMc;_lg{zAdP zSTMwz!0gEVc-`_<>R&mI;3wtWu4t6vM)<=!L-yaynVxYQGt*6)>aNgftMcexU?o6L zH|Xj}NE)l#`I~Md@YZkFHn!rtuB)p6krRVTx?P0^>)qPxdPSq**{ZI+-pgi!wyO4# znf4LC_K~*s(Z#Mwl~qM*S|@24#J(6}pAWGwf~?wHFIEA%w=@y+=6s?15m? z!;h|~Ssm*yLbr~09f&12SH8X&WSgscW$8XPc#;)D@%+{sweeW-4tze$zfS!T`Zs$t zn@i7_KQ_AL&X8;o114&6S_`>#-2E^SIt!B`OCH4~05qsNkNZ?6vW@@w)uI7{f@657YC_deWp?&! z6c9nBBL9yzgc$v7{DJ+X*=H|TvG|7*UwJOdW!cX`lhUC*zAh~Ezwffy+ zEteKxL+fASA$91N;!&DnPz(TP?*W=sF)spu8Tel%un|Co22^N-UA-8+w7Fe%6Jp5> z?m2Qu@rS(_F>)%tzIpa~mVc5g#^0VhT#$PoKPOJ62}K`YQ-%$z(r9w%m?}3IP=UG^ zYaG}7B-io-0(k4^Tj@^>ug&#w2?o8XQtd*qw5gIIvE}a9Q3M z7$Bj_dMpshx-XrGGKRY5Nt~9bqvd$^EPi_l#mmzd0^&q?8<4ofB>ZsM6@9$<#~3fS zog}sT##$^)n7veFFOiylouboj`T?v63^FnkF7HWl&4za^9=EPhmt5)CCl&SI5m47p zTYuUvxq1xrL0K~@xv}~wJz|IuX%g9`w2|WVm9f5NykXW6YjqEFI?#hJib^%oT_{o( zn1sP2*>1*cHtvEk5jB1CESMoD2E3|KMmlh{J*F8*0{5yJ!Z1lyIs~H$&2;IPTIOad z-cz2X^G+W-us;ii%w}VvufrBB)IrcI+ zKnW)}?!H%=7S~BWw1xy797eO^v`Jk#(Kk3-!W3DnM}>Rx#i_cr-A{3kf~yoqE`V=0 z4rR}v5QjC&Tms&-Rct$#r{M7)1e1RJD}}M+WNMYJE_F3ClpIHq#3B50of@ud%Th<(YsdR3}yABzPo8*$=(@XB~h$xHW&1}&>&Ev{%WjvQBf1dXfogWlU zwm^z>sKhJl#*TrwCCR!7i-MKNZ8;XGw&o;QO$j}$2RF_EfT~0er(<5tARA?m=M3$1 zyu2%^dAkda=)x<{dTvrz-1V8Uj^p#}RtgD{T`v#QM@=}*CV-8LeinI2QT90Nbnt*J z$GnfQGl#b-{kY=qiYTY>G|>c;Kf4;o1WM(oCncrTJ1-b{+#jqxpp+n+l^& z&vM#lK|A)Xx~Y!hL#@#`E*L33lc~S~P?=gvxASAY$1zE2m6Z-$suNoIO5v<0$@gTs z?JJMNIF>I-0_bE1K8@Mx7#RV|LdWAYDD(ggNZP`*Sh?sub_5&A9>c=ldO(@|S;`ti zix!Fe>U2qdDp6TNafM%(H5IAFg?E|4GW$;p#-;-9HXGRNKQJ(*GYj@xnL`ObP42t+ zUMFX2@96=`Vs((48t6m?M4|`+6J2S5gsPJMR3tq}(O&}!?uTNEwGS_7a{&6sXpVum0rZI~J==xAtRXZv zj*^W&hgaQCJ}ZE|!(m#DL&sC~I}lX7-S(FWI-aJB9ayFZooKb`cTj!dT;T~};FFZm zY~`ci#2|od8Z~H0{kG4hA~Qq8d#7G#b#Mxd!{(0n4xMYt=T`gX?Sj$o^V6>f(2#Xe zY!oDPt|9c0o&w^S;(I!Y7BlUvItCj&`Jt+ z{k%>2c-$LO*Y4Xf-Yh+B0MZaLDjZ?Ef%%#Z5^^~Q!9=wgyQa2SF<@za%=BpCccxBv zIBc{SOpqwvw=C9O!XEp;D`UQ=2+TtEgid46pB*-TLC#a4`_khyHLuWOV+UqB_ypb}}YYFYszJ@|XZ1Qf_C z)3YF-FseH~;3rOjlbc;)yz`$QTWdnaOyxDD9W$nQ4Fp_nI_;Mcvh(k)C!78j5cjNn ztgEAtO}Dd~{s^QalCh&ZxG3>_4e2DrmicJ`6b0`JlJ9<-N{+34j?vIKmwUe12g_~@ zzK^Ttt8(s>c75nfGxVr)1J4GF(mAHiZIl8+aj>eKAw=1_X#T;lg?85aEgL*J7uReV zuS;VE^C1jsWO>C>)=R*ch0hcUP-8W& zJnZ%`118dyrDtn%lzR#?X`9;q)Xfjc)Mga#w;iGXGh)}|C2>*rkbThV&z_1XEEeik zc7pqfE?k!#iv&%zrbUk+93mt`Klk2~U>^+WFygC(#Bv7+zbQu$)153799sp8`XoRK z4?{JrvxJB7z(ga1+2<&+yU>^u{sf^NYs?oYSLABbt|xcXpk2a}R#Nh4Lk^Xn=V<2o z9^!;x;$zGQN<@xQT$g-tKAJVYa1^5Xp2oEnu-s}FPWJwos2x}p4XkREC-TF*uR)pN zOgfJwL8< zy!@4^ozl3|gk1rVhXe54AfYbbifbT`)B(|t44=@8vKt1;Y5jWW!Ua-GLp01v$oOs0 z@ji)xV_pQH0FasDt@3sM^UB*gvOwNqitwLF4jpGxO1LT5)o&Dvz@-ZKY4J9>n_%+^QU%XQb8i3C{pQA4?UQv#`Laj1? z&Umdc@&UlqyYq(|rckSthEklKP>#$cTtAP>{NFKUcWr<3!?c;i$3OXv#StQmW%izL zoL?`XdlWDurB~GBp$~+8|9;4<)8N@c(A;xbc_R6hsdLmng)vm_owpGWfWD4soUMw( zE)*czLd}m&Er*wJQUJyNNeV71I#-SVS09Z=wgozH18~qnXa(Ja0V$mX8!xU(`D4+q z>dQR#0Cp>s!^DC+Yezi!1Lgyhn>Iv??@^?9*wIcH82w2Y zN^0{DRl1D z^T_djHw_Sl0(ZN`rm4k&&1F8zHB#^EZ|y!R3iL?nCkcF0lt;FE$nAgXKQ#(XW~#}^ ze0;o9yxyeGIeQ@%0BM*3H5ov>>yNnG>wVP~{8EK$BGKqm!eNCa`1i;AL4xXR4{JZ& z@MUuc`=a(~521n-mx3Q;5^vv~E6Ror68NOsHCA@UVZ6hKxm`si^GCv_5#8!PALC^+ z6tyvT#k^MCnuhp&=zsbW4NU5~h!Nn3AoY4OJ3Q}>!0QB9FA+A2UV^u_SQ+#l&> z(s>fw#V;3`lU34*$O}Dr7OHze8M{B)AcP2f%79uu7FJ3t!x^mL8u6Emq}&-+@-<)Sl|=1dUZzF zfH1dpPg*dYotwJ~iTE}!mD$DF2V&oeMf7r+bLD9l2*xc4De^crP6!}AS#z_la(y5qA0*a#RBYX#zGP};i zPK`9~GgJfiaGHFV?y>bc<-;0t3qJo9eraP2yf*o>SH_0xm0BP#Q9ECfu6MNT)L))G zmJ1PUw%LY1wavj~NuKJ;o>?)6ha;zi)Az$MAIl$%z>oAe5$9b)z2~R{W1qkR+-GTS zoY7n=RnyTVkN3$-u<1_kd`fm!iV{{25g!zpacLk`LqO#7y{tt{_DTvH zq#kguVQ)cuTH88C6y4=yGdUO!+zfA<;&q^t^WV z4kEb3XO{CS)qsNrNd^q}sU*$PlNn?9o5i*{3Cwv2G%%rh`3d(?EBB`{g|7K4T^w+B z?U4e5f>?UeMb-J{sQid;y-U5snvzeFs7G}9WknI+-Z^b(Q^NQRFKlO{bI%CAsMc_B z@m=KVK$%c*p(8Ul^#-l@<5}!HS(bCdF%{T7?SMSz<~QEWp63vX>QXzDWXz2*eSG8X z4U3y5{}jxTm_SRbjMz5v&Ec7Tb52NZmGfPiN*_pNW7x~O?Qhg`23TzSNBd}l`p1j6 zy$w%DB>d8d+8^kahHL}j&C1T#hSBa>>h%7vygH`FCEz`HR`BXMfDv4(v%)*?>zk`w z8pZf0abdA_)@UW7!)}}0gGVY{uvg!L8o<@-9Vxzzp=#I`+^g11rzO}cKK0MdW`OVM zlU5|0p*7Jg3L;I99>coLFsz-&g}BH7T|!$2JFjLZmhCc746)Pe7(ND|q-5oeE?QCE zJXkhSdb8H2OZIgDb;DivGfcRzK?{5l{gTIcUUGkbi37cq?w}u1ZS!ThcAtPcIC&(7 z3}O?zsRJi8YJo5m8{)C|>@TM>A`DP)2gYF7V#5~_XYD%GMe630tUCT?wWvpS>qmvj z7Vc%g#z#VGanc{zqi^pDy)fiIF!qKIBHT07>9J$2z*h}!}!B^L$hXx?*2So zi{%9?gVN((^B^5RA;Ry7*+dLFjCEXUo|3OVOw*Iv#$$Q~7mP<Lfme~|ei}6JP>IoE7Wcj)XP-2p7 zj(q~A*Ehh50zLjOox;q65XhThZE=_zIRuIe~t54mt$X>R4sa|RLs(9=)%iJ_6{a{Fu{ zqC%f~KEVCb>2po(fFh!eZ^9E>`{fXUFiUuJV;Dm6w#kuh!9~Epj0fLg(RXx9UZrT5 zuAc5kZQ@c2h<5=c^RC4UBS-I5Nci3qw+w)yr$lkepvkb%liy5x;*4MvSn8mwbYI(- zI#+tt(l-G8&_XTdsjKdO@Kwkm;o=}biue7UE7?*p-O?~Tg~oB8%BVS z%NF@~wLTIwbALmZHUDC8R#kBtc|e>Q^aoTz2rB8pN0m=m%&L1+os_qaT0XCBb9M2u ztG3P^_@|2oub%!aGA_&@Aau211|t+R-H2p0SiwFS-StM=-eN8Yp0|@lcM%{BdPX!S z;$N;$eCWA+@kg^!rQ*C>toTy4`bpV)N7mNoCS!`we7fB zvn?rV9cJlFtY=%#yj!UG3hQrLN~}Zvzr=0nYQF&3Dzk*qsHA!zHs>oIIrhnHwv`6| zs|CPZrKNexpz+;f^`g|f{r>=0ZTxl2z>z0SRU}FK%*%luItszfDXERevzV#<%N?N= z!lEp*hGWfrc^R2%Q{=z660XOr zyu2LgpDn&!yLFYV1sK&+=MA{gba)Iw7>OwF7H+X^3~p6nxR_WHQkJ z3~cx1G3K)*tDYxQ_P#C1k^oKl_TeMhXK2G@eMwO!jrfak`t2O85L;zUQ2KKj+@x`xng2yL+#_*0Y|qc25KVswJr+ zGEDD3qR+g5MjZ;yL%kl|LYZe9iWK!~VOLK8PRRcPX{k;obYGF3*k=glYfP3T*Yyof ztq`U{!3Ci9eFGZ;<6`%_vAhq!E*O-66<(0SON3|&COoNw3>*bL` zbH;Artoz5TjTq*lVs=Hb7lWn(<#-4Q&+wfu*AfyK<@d85*@r&hL62xgH<6fffZ&#L zyqrjhkZfk%FM5$vk ztNkp>8_c}SUje)}fXkJuV;?yNJ6+&{^WIkKG`MH|v4Z7Mu}H7yq*}$G(}Qpnt}?dC z@g&2_I5JJL1RbI7S-VRVhUmTn1ng`l*D4K61~IGkV%-+uctM%$nrAwwQpN3ixwIZ~ zm?G2LYU1SRx&)Pz7kF=qY@I?rZ1rDX1*i{tbmT-c^Xrz8+$n%FQKgFo+7AiUCtz=U zIj=vw{(tJ9AlaCl6!y02SFZf&_lEm|j(E8`lei;+eZVYg?YbUcLbuc-qko%G1BiM| z)K@EetF|K^$Y+O1&sQsoQY$i3D+)}|xh~yJD@%|pO_+7L`BkHouwym=Im%=JXrJ7= zmZvUWe~Uzz9KMYTJgIgB4jUMMOESqmzNNvrF*^^7i}VK^l_d$-k=Is{{<)ca|ITy3 z`@v&iIsd|8;o-$G5RuQCCN$s_k(2ka(Q)(Mg{qc$zWeGE_zYG)UdifC!u!MdDbJE;rbg%{{zICzY34lMYl3vzyyry-L zKF?hE4m~=<6H86mgMa|IXqVz3SGCu4^K^+Q4?t9Zw3?Q z|0zX0BK0jHIQw0MME&uIUhG`>UD0u83Xk6?6UdA){1-s8CfbZJSq8b3nD^Sk=J3{YM$tY0U+%4tU$+El4%zC)Atctn*TX_ zO65-m6|w8gHV{Qjb@P(!&CUIfceL@oKDB}>$iEfIrW1FQFJXmFzn{zuGd4*!rkS5s zQ*tzGFEg2(GAm*I`jynM>?A#Te zhwIW0u^qMjoHtvkg=Rm~-_=q(gI#gw6q~k+ZOwln>j|0hQ68u=3MOW9zfg)zqWzpF z;;(#LA-lmN5^weO!BE$w&va}HUTmhGOz8p56xVTacQB!jBEOV!wMU;V%(prSXW*y2 zpltR)dmRK~N$oSqECT*Cq?)x!ayg?y{C@4!3j6Mw$})Ty*BB|%)uGVv#{Hwr@*`fW zOV2=FvCjg|8`qvt62I||t9evn6xF1FfV8}7Y9sJtAwf4+UO$69$fCk z&#I^EjR_6L&&v1mywCe}US|D17CPUU%aS^VH>Ou|^>W|2KG2jK_v4sDl?tf5HCHUqklv$%KsNYXRGzCxV8^I8is@Gw^nwUQ&O zMzmYi*Xbxw&77}|74{m4MfBP#BV$X;$$wkrzUv-cZe~#7jxPd_5+-45NE7`OaDAmx z3n5ecBF4G$hn~fs;M1M+*i8fTV78doRXJe>fD~zG~2MG%gA-G5(B;Ym#+ZXkNj=A{HJ0;;dzy+0xz-CeDR2;_2z_ z_s~aWrhVng{QQahW3^D=llCHSi8qNB!ETYg5yER+--8hnzLz2-Ik; zM%wQ{dF3KPURF3gFdT~p=@d%=q^C<1CQjOWf~3iMHRZVyd39S48Iz^PJ36qbT?x^R zQx%~l6({JnVVV7ZeIqsYl@(7|$#Qi{0#~Zv)4A%S!{U;`x)y$vcG2XSn~jy^^k_$g6!jb@4Bc`#myxa0E8;i)%EdOr(3p< z^!~PyR&R~`hv8^5)K;wKcPIJ9*3tZ}&ZKT_c`l@TcAnh&y`-{`%w^>468YM1TArEX z%L+quc4Px=vwJv;c=v+ixekMm2bwBq$xkR`X@w(_FF!J=Hne*xf3Cay}+M$8&77_>(tps!;6c8sWq1iRV&8r ze>_M2!0vcb$tJsyIB3VI$P@D`dt(qyj-evu3PdyBm;`!ymtSB^`A45KO@*#LS79$IY{c3Fp$`-(N1M8qkQ{Mvr=F89FQ>z~ru zh2!QFZ-aB(%*E-cNl=AZ+7aV#@(sJvGZ#uOP2YHb%<%H8!f;M=PyXAdHA*CNW}ZLN zTrUW_Sp2@lw@HdnF;TVe=l*bcA$zmQPtWM{^wP{7b}-lfRV4uJ0>U1{?XU8gPZ!hX zPE`Ct8CS&>&d=6-Lf3wabxvCx&Od4p{IfXT1iq3z^O$4u_BmxsK(qFIHv=_Zx@3}i zE+octra<_(_|u~Y2GqpgjpcS`RJg3Do(1gM<#9Zse`MyBRUr<7J_91f3%T_o89`}Z z28;i^G4CD0T@Yn4X4hgr!a^1#Q$W+MaUQep1i<&68{(w7X8b#Wqir#!cD)u)V{#E_ z^(254;C9g8Ui*}I{iM{$ZN{qdJ*@>Zl$CA3_YhWs@^Bc}0S*Csom~S7qCVy=&pd?K zP;$>b!&an=Bw~}^eE%?2OQz|EnZI&mL^GM4lJ|o>mPzuHnQqVAy>`$fXM_r!$ZXYD z@T%hGIML08LF3tKWP>(hlg7-Kciw|Kl9{ZJky^HaVgWDu1)iGvN|g9_gNh?_6Gb7; zym@j1Jwj=p&J5p+)B{|Dh45swhP`B;|LKp+8=B*CL(G)9m9XFEHSX-VA(Xu)P-f~m(Y9_`GN3-kK&IvUqW71u;PtWc zFan;9d2(?t0YF!ocURXZQb^V0^1)tT&%-HX9NY}fTwXwpO?VAruteLpY5_hyLI4p}6}QJ&TarRG`=Lmo%fcHPrrY zOMr)(;(_@<6BFuQ2>J1+Ct6aJZw4PG>vPQ_XH(H>;FFG#X)!@miD-?MLc^$4UkeO>H?l z!cXRPM*0uB-{$fgFp-Wcj;rgvTI@1YuZ)*WsQIdG( zE3!kmF|b_uPnJvm*NHuQ9Tb&cs`5Zo()YaPBpTTEVVf9-Vg$tZvkQKAH13 zBOP)jH4EBvYV|O-;z^$;*WFvP{deLA`@zEfu0wQB`izlfr&hcIwv1_IUf+^kv3i>W1vU6Duxzj)w7Klohxp_!9!Ml!~tJ1fiPlurMK=@*w4U zKLzpWaOYlNrr_v+&SO*)Zd9Ag08d*e`InYG@KGT6Lr)4;)R6e1PlL|=MD&xzoJ zg())Y)81MijF$V_=Bo;B^O4Tfk}v;tz~x=YpcwfGXPr(fWm7pSHez10K~lMN^0IFa z9gLARO1UTwpyVc5dGK$JB6H)w6WgQ2WvYSY8P)=k3K=1CZk61ik?As<^oAn1hENSL zSnR2Xle#4w;$pUmA(TVP7QxAgrTcP~BIxp_X7R~`>KwhVW0P~r384HPFP&?^PBqqo zr#leV!@&ksmoJ53H1!dDU6bXQ+?XwXf#=nXztmia;?Pg3^!H?s|9w2tKaNn*zB?R7 zbivpcc`^qXay)fkil7$0XpVwq4{h@br%`UeoTw_sB_<+d$<9jP&J>C~>+}%Ad5O~? zNcotA0lM6*h2328^-?>I$EBazL<7b3+1#QK%&@WA++tj2`YyiD_QnMaEjf|IBOSk??y1>G8p$EL3_LaZ z)M8v-2A^(HToMvd*wWFH-Fy$A?=`lDXk7U zjh+kj`uOBjOaOhIyUUtXIXHBZSthh^l*sXZP) z5HAjPMmoihoSNYJ2OFWZdYLKG@9+H!1})<}qYprVkLf>FW4h2Ho?GylD*LuI?y~!| zv8`{#UCZAaiINu@>ksYI=TDQacMpStAI$BlU?t)m4i8EA&iCSblJE(W=SKDS9tE&V zRzEVc#p<(an6ox9@v<>XZi)oVx^TTXoiFtLOz>nu^XTrffbb=Yo8hKCvUCi|OoFH( z73fFiuXcNWhPdc&w(|tZrl6D0nqXL!8tEvYd1?mb%ZuiDru#i}kvABQdBNZO_s%!H z-@(GH3)! zEx`yJxL*xlHZkRO^+j>*^w14U;V$`O)KkE6#)RJxkceP~Y{pE2d*uFD-22d_$q~CQ znLo8p-d*ld$aQ=X-V|SX7hqbKbi$K760kufvpe%CF|C&1O1AT|`@+8N9c!FX_->@0 zcMoCZALDw!KHD4*Rmf;0(tH{%_4L<#FE);GqUB>dTdy|lzrBq&;0T%$MMw)D+uxF) zl8TT=F8k2j7!cn`y=a@6VzWoECc^UPUBlWip6HIG2G31}xyixvrt@BD{8|B}+%u1- z{Ej2IB_MOH!{2UbyPL}_g_TrC%Ps7E%CV@bbX zV%#+B=l0x)7;z%#CN zNx5w~R`0m4wk!hVa-HYo=B7MAqc{p7Zs=I)k7ySi;80Kl+0?z?P|n64vUsgUmDcHH zlR8CMQgYu7-gcPDAuznDHuKY`G~}5FbXwA)>BV^^k7%yxDPym`{d&dw$H9kVS5Z;t2=j00 zO&#`6YioCVZP^VmQjF$$I^7ib6_smF(qkbLgac(P!Q>=sM$-_vc1%Q=%FQniGj9#d zeM;4D?`i(iDEoRKqbw`2PLwreY**|blOVg}9<%JMapk|5{^?hkC6CfBqI2izVy)v#keZ&FM*_>vfW_81mzBBo z0Ttzm+F41T!{4MRy|Z{1WaqGOO=3;iU*`Z-N-i%C_i+i<-+1E^p)&f*4uDY+Ylh3q zBd1t`Mcnc*$PIC)BdTfgUAxNwt8Ce(duiC`2z>*QB)qbLETF#Z*g>E^_Wyt+x97(r z2`tTWQJ76b3R*qGsgPbEN$fQ$ z(O{LWw%~BLvKPsWd&5w`M1ezr1E3VDNW!{r?Sq1zAr*NnC8W*A+E*idclk%St(I>7vB_v?WRCc|MU-aF*s?tWAPFSaqRL3aWrF{W4#b6F#3;1A;s zURI4ncN0Z+1`U_KE>;#RDoSq20cXm7WsPj=vWGdWtX~v>E%xR6CTKMFvS50Wfskf^ zmDT&z?T4%je;K{CL|-W>l7tGGD3U0RdS>g{yj9F~17vIN8ybHuP zn_|IdtZ|uuIimCQYk*bO`^c|hG~{-`On=SZQ~dOwf2nT&{g|DJdcq1kR3gx9B}L$g z%hjw610I#Q+dT_Bs&Tg)33ya>fPDfy?5e-h2ceJRz~G3WCRG_Hp5?xKB3wr2W8}Xw z>kFC4Hq=cfqC>`<)#)*&E#DvN-c3LU_b1n{tAic~&St|z68N3_4Z-xbT#~e4v3?1I zBA65Kkv8bzK=OZH*ERWS)P5z6`Ooj;_;-S?-bKugzG<)Jh~F6jb}{h8vKLYF-nJ<& zH-92L;PEus-Tq{l+)b_0j>A)n|5T#o%nd$2I8Fc0`|9nr_y+~N@0AtK$C4uJa{7_~ z)i+`_-G~4Emty?3Vj2*ChlHc`C48>akWQ&^|My_m6r)haI-6X$KlA&+2(W%e1nl#y zdp3MXq~;i$bUfJ#hJA()iPi8AIT_Yl$d)ouq@gLmVr&M^ck6QE;ZfoMWgW{$k11qI zOGWpA#Y88fAGwc4SDqxKplO7CIg)oA-Y1}sXXEIb%8-jA`x> zhrP`~Ve!oep=|ECcquF=hj{MyWzGkX&3J9WG44kf9N-h~ef<4=z~J7&x%s+>EE^u( z5|{gB5;4>DX{F_VFafs;7N#>+cBE=yx7=a!}@cFj`A5Aw0P|bnQ2agh5eu(3>nc z6WP^rdYTiM$o{Y{0wDxCum6nd_j2K>A&n858`KBWn{mxbcskUsfu~3}@4OZj-cRn7 z5v-9xHSJYTMnBCU=>3)@=Tgc9hH<)yxP=Y6wRN-KXjVJpj&N^dqC2}7>o|a=$So6@ z>4s|iwsrCXlLSYD&dx*8=0C^j863bJ1Y(5s0yTXINP&G5lM;Xx`k7QG&JApLWh2YE zc;E}R`H&Zwd=RD{hJr#-&>k$;yfC%ZJcIC@;C5edCkE}JP{^c=V}OH?fRsQ+L!<;L zXGW3Da3j)X8cUDpxdh$czPwl*83^i{BXq~Xz`(x~IS{1K{{u^pnRmmO_Pv3n<3;Kc zN!BEw1?RGXF&F=iEax`?YL*=J1_Qf9pyu6~dZGlk68=1?6M5@{XA2${(X+wu>j5Mk z&Lyr5(#fgb98{}<@$59bvW~PzK!j_KFIJG-+{+5zTj0C`H4yhv@~eU~;h>wW)82wC zts`_juYk-^pdD*K0AgTJwSEI|`)91z3(e_*#Yb|5Oh9yBZ-p7VD%<~8hTZBe|M>>c zCH|L0VgJ7f!laLu;H4C!b{Bab*0EgfoIGwo7JfC(|G3a9n}%K;*{L6?FR4Pc4IqER z(OTe>TDUW%N1CD{iN+J#TDV>cS{+=^Udyv`F5h545)a7Jq6c{Q@L)tR{OCKVh!4B2 z`*T$%gpxRRozg}QIbkZgw6?Eg$^FP`iK6jtY{Az;<4)Y{e-+iApy!ZaI9f;8_a{<} zP@pDfXj@m<1Po?LLAzwF#o!`>lZTx0;AYH{H|cPHd+^}UHm)v({r_+Q%!Ie#FHKMc zyKX36H_?7H-p-=Vrp{|rQ%pLf4%HNh=NRN~BOMOewZhDkVCEk#`&fDk zJ2Ex9euk7wP4RBOGsYe44lpOL{VIsr6}7B{L&@4uv{`F_ppUiI@p!P4Zi3rNVQK?T z3z4B=j5#oQ1JpHmRk?>*#gs#F`63v?H))zHaD{mUYbe1diSTOzKk8=3685=js=F49 zjf9nB5}54tOM!iweR2V61{TTo$NkeZl>PQSsiPftnpd!XfqgNNJRM312kxhcuJ*lq z&wqx_@>1qd@**HwUr-VEkmEr%!3x1sa?>Lp@C9mk6d;G$i(MJ^oB==75DN-@4*@aj zi88~aZ~aZ*VvwwO=0Q!#O{WA0EZ-(nQw{>MlMcCDF39ss|G5-F!+kp=rVe1Hp;BHq zj{ST4kKNkgJJio~YvFJvJ8)Vk^PzO5*$l)fx+9^HAy8shYlVL~{ZiM##eBkKrU;97 zbN`wD1a9L!FA-y4&dcD=EblESmiarQP))~wZoY(tt;c2~9faq4kYeIBbYPgIo7X1e zyVZ&Cq?ZTm`*#GmJX+8a;>5C;U2{wBeU4)T%cZXt^VLY?O&G;g(-~!mQRioxId|E8 zApxco+(=?3fNuZHU2e0lEXW{O@2ts_0)$~!`3F@}JkYBG9|etM+HMbP7KgYg_}TR>oBhq}+^e4)9!3s=jVTk^_-2 zxsZJ*!`6#sGGR#Pb=6-?D*C?VT{#R20T)pYy5c6iVXrEV%8b#hXb9P3QHSADzoj`!F~y;(njQ!fgLDX#P!ws3$saUTG9rug{>Lo9b(X z9teeyZ=$|0(l)sy0VQN1lbp1+=^Ic}XOR5v8*K~>P}S2Kj=19k`yj9R&LL z_Q16)#0#FBZqUt%Gz0{DFI!_wgrjG2A-U)RgAfuf=wgFT|qX zDw-b*77Tv)Po-~?SO&}tlfLY;W^(OBhAb;9-n#n1 z#@ycALccC{=A$uO2BImC=pXb#S(TqWLN5yTzu}g=8=nB}q`#ch2ni`}yK&!O%v-iT;bj!4BBjV0+ z`SP{Zbz zjQ{xu={Zi_ZXD$5)rMW3cIL2UH$Pmlu)c8pqmW5lqQmW2C8>cGj^@R_FQImXG5~BK zDe7Y}>ce}sQ_yl3!>RN=DMm$5u0SNEl!~BxBj=<@r_x)^QR>Q1Pem8L8TD(=N z#yl-aZ(88$%b$54Q~q1L;8V|2xvm`&gQ_bc81{q|T)z~}G7GicTmk)P`~YMLr`22A3DMEq~Qq6V2>++nTq z>}vHnIbo2_x<|aj`Mp2Rn*a&`qEnmdNzeh-^Lq*XK3V*Jjq0Sq~@9hUt}d?kk&|$s9EmS&9@Y z;tgzD1Hgf;S?jrN6&-F!sMZqY8eXPry4n-0eA}$B!zzQ8 zydTeR{q4@!rQy#>yenUMmQ!pjXGO&PvHpd{A9>1`!-~oM+6IU|ymKaNqeuM?swi+< z7T0auKjdwJS;Ii?bFt1lX5)Y4Fb=xmjtyE$% z-WU=4?(KB!R^l6$)@`w}_VfHgMrT(^6Ls3dIuLWCol2za8INIbI&# zm5X5MEd;%5!_yfrqw-ceZk|AM16P8_=I~tGSrHF8Pg&!uw53kYG`RxJks|8DlbK{e zv(%b$m^6#$-~QyuH=@Tx(G}Z zE_Ke{dd_)uRU>O|zKeOt;`^NO!_Sa$YD7%(Yth($nfzZb207gYU+1KX9!AhpNZ#e^ zVBBrQPvQ?HVtIWf0q}bUw~(4T&2Teox;jl*>wMB`0kCM4Y*k)`e8{GP8%)hil^wtI zUzCz9IQv0l_0PJnFbFbyto!(65%l|In<8e7qxpNje9PDy*Y)NtRjH*@(t7V3Z&_KN z(}ip2X*2)2`;@Uy55#J86Ewlf(Q-r!VmpLy8i6jCIy`5mj@|5v?|tdKH=7smWN~v8 z@L}I9SM^=|p}4*{kDY&|SYpA%dzOu8ct6y9C;9o4lrLPPbi<}g|14dMnm+Pk&$SGj z#xiG0;hC7W%iYR3myw*%Oog_!=x1qMtlo)ed0QJvxS2S;B>Mg1@USFwF^}1c+p1O8 z$9-zgp-@u2XK`m9%-#~^=nG>&UI#K>Y$)G5J79yIeaPs@G2m}JP-Bo{X!cM&iAmTO ziTHJxZPxr6X6N&KG~i#`B9uRWuS#~$B0vC0$@v=5{13R42MAMrq$P8pBAaP!cc7SB z3*h99->WHghPNf*zjhqpWzAz>6c7%oCbhF^v824KL&7F|rr$}0To!yJSlUEGP_oFJ z%NPjyPhV4QsZn<`c*wAMI>7Ci#d28=V6J?V4XmbOq6}W=KkQiu`femV6W|*N+HH*T zEH}i>3?v_xCIV>vLAY)x3Afd7;;4ZL6|4RRWVGl`Svj7Hj0Y$6(2kt2$w5XjM8$ZO z_ijPZ7UtC%-*5nQyS&1{TU>=(llvwc1ed&Q?;c81 zWqbrjZg#M10x1b?s1{J7#!*9^*qY%~!pprqW#hi+FZIr!e0Lecjy)fh(D8JV@ekYn z`Ma*BsB|Z==D6BFHM!AMYF@3I#9@z70JvJ>1j|CKQvn zZrAz~0cXOUCrrShkifiBoDbw0;Xkrbw{*mqdT+KHTl#Fad!w3y{k_2M1n$c7-}@7~giFC8Gs%anvM2h}6YkfW@KU3OcKO1jx;8KeYeRB4iJg3_CEI4V-W38hCQM6Z%X~_q} zZP6>|W)xPh=7v}5=PWy}m!rh}!lk%X2DbB`@C+K{ZFZnOAE{j)errZXAUB!OzG z>m2W_`hb$9^?DXGofrg6v=VS4Z;CnH14uqL6A8s+r#;5<+old*V2twR<>i>o+3V_r3H6NcWpi0B&-L*TUAN5+3{q>_uJ9P7PlG~7|fYry$NB*6-`;!K$^@;~! zLM1?d*2EcE2OD2IX3GrvWHla8Q zIFg>bjB+)EfB7}9dH!(8+Sy!rbv#ik z(EK6o$sAt)uoY19viVNXwY5eQqj`#5B8wpc#{uw@ZDJsKpzjVL_B+rM3%)b<#BWJJ&k0T&tAx-HJ!1)wpksIfd zLs-r%is0fz&h5w0x-RNJ=KvqS|BP4aIZ~|z$v5@&a*KkJb837fV%}%k)GP5rU>wVd zcSR50)JlXWn$3!(VD64Orku<*F#&_E?ga^cW#Hr5R)=l&f!?{PjpG>D#?yNPUr^jI z1FOFx91S ze2D~#kGXmq1=>3@(aZEHUP^7z%H%Zi;a#-O^kRD)3$p4dp?xGADL#h`yuRLB>3wv) z=@G*m5Pig5K=YRP2j^=zg6OMcO?A9(ox^ zPhDg%tAFS)E z0c(*a@^l2)c6rHNKtwu_{j1u}?PzrW>hPvGcwN*EwoB^_RyP((LdOXPPXNxnHj>td zAGT-1GAm*Z8YzOzExixhnc&G4T~*zYt-<$pJoH;?#47XW+Y*}$NH-<#>3S`olNd34h~E!ps-P?vno zwLMrC`@rY)ge`3u1RjQ|@4{43&B~ ztA^&NZ9T!W5}@|Gz?E|DJjP9Fy?nz;JU!GruXA|6hKYOf6v>%a;W2yvG?-5j_`x#g zX>m5U1f=(aW{lHHw6GpQTB%f_am_#H>Uq;WfPmkMkz(3;w@>AaVL#uDzqZierLc(*=N3Gw*e6$g+Ju86xO5*z&Z+slxUBh5_1Pg`{G?@1Rd7x*^B(|5)}eCzr>2u>YvDiXSqt!vBkO9o2YdO4 z4B5D}prxNZm%eNaUT1gH^5FSuP^y|ghVwp197ImlW=uFphUPvmQ&&g*&=8lOE_XBj z5GQ-o@H{c2wQXJX?1Jj881HXyk_+5CW3N|BwbTKbD(T>K$2DHnjOn*Md-?~f|G zVXuojW98+sW0CbcPG@3u_XXYEXRO?YrElJMZzOj!c@j*~Q39ld+t+{^ZI^OY-A0uH zKD+NPn>M_ndfV_g@0Nqq@p$9BU+-4wzEb~5Z@P?a!yeFg3}yicpXmUcmv~&I)^>We zC&04>;Pv-0>+-JPQ8~&F09K*%(+-+(CeKbJe7{e&3vT~1g6@G+QCL`RB0BE=u_Zf5 z2FnOgUSKo0bbLn;yM}q8>9RQX+`7kk-jK#KYaqF+7Y1SZh?A9-%z@JCH_$b>uI?IW z@cOcwujS0_Zp;h3n@bCei`OJ-vm43e(i5)jLOvcrWmJ^04%OO16-9vK;9~LH6vkVs-LXWpa>v7ts3i*x%q*kKx#TnW0^G;L5j82!+9 z%U`B2FmXj}P1z#;%iw7wGa3Srw=kMwFF4ar6%UqWb<8{?X5M)D-SP|p3kb(+T%v)U zrqdNqnP7yozaAjTZdHWpY6d?Lo(N8wacQG1F1ZGS;&=dFLaYd(_G*+So zy$7rGsm$(o?>$U__o_)f7zUb`+yLj*__!Ddr~Ro?t0X}up}cPQz2p{s=UvWJm6~Gl z*u}+|0!++mvlbY)c>Omeo^%;N)B%`H;#^3XF(EbA%L?-*=TO_X-}gFV*{LMp@HpvH*ve z@i6GU8ZB@>=Ku!Y5tAU_Io6Wij9@8{0+W%Z4`L6z)s5|jHOY3b8_-~Yd+qTDua6Ob zyntvzNA;UKh!n7b@-_)G&{TT=bAS#Zjd2Qaj!Aw1)KV*1asnAre_6U0^T^p0qesj8 zBZA?q)L+KOZ*nir*7o!aJj~ zY^aoqzl^U%8Rtsr9E@wZb(00SYyo^|r7t=O*=@>Qd3uc<5PPp{XvYX3H&*JVbprWR zQ`|wIgJ(5){l6T*>eByp{sC-*eu)Nvk(xA8<%odfC@fKUqK-XKJG<#ynDk4j?JB^3 z1G~GxOq?y<^DMFJPgImKyR=TVPhIA4^8&1W&F?2=z+vQX`BLpfKN{Bw)^AWiIkRV~qARg+)8?PJ zGLJ~_P6oT^RJTL70nU2~V|U08wwSXhKgHBAK>yc{;XL8s=0Nq!m?EIC5X5(@A0>9I;!rqxR#sHg!#>!faVg= z;Y~gh9?Y2l-288h%4VIorG%P24j;aFVsbEYoMZoLM=mYai^vBpB>TlCMjA*-EBmaF zyw*12fz&>Z$M$AJe5NqhG%ri94)T_yMdu(OVKe1bOw z4@?!^)e#OwuD@T;xB`9)#+eVwDI&x-H=Z-@gQg9yQ;TK%fonaMH*;40miTkT>~#!7 zOBC^FE1tujxrVKC>0zGgI2$KbdqBHKBg6#h%5W-SWfhT?9=F6uw~IeFam^~_(Cxc` ziJYU{4WJB4<;mu$Tl(Py`3l|-^t2_%?i9B^`6q!146HC|_@}SC*1>0lN6mRw;?1M) z)LLfxhh@5&BO%G9wa#HB#<{(zqt1nlmUbiy->Ic+$x8qFBiTea3UWI)?%Pgud?i4! z=n#P@DLM(IwPqV1p`#_;qM`+_;L6&cjk_rsRTkU3Eh`cHKp1?-pD!xy4_=IDZ2{UK zG@FAzFBLsH5cgnz%OB(@Q!7&I1kVIZ_|#UEVTZ({Wb?ftOM)(w1A&AcCQcedy>qj5 zmG2YxER}VQ|5m(iaNcq)GoI`KTDa%rxryUE>m*g*O@33Q^lDP#z;FSjw~}Q%i|j0% zmWbAKW;0IdySKL2ehB$aA$8x}n}aQoIaUtfg97SVz~_X9Z+8E~1<2DYF>T;{SB%nb ztxiSj_@y5je6$}r&QZOBvizX@ic1u~RhoE+!;%FAo7F+Ht=ItFr7*lR7p zHEe0n5*?rq3yykvKN^-U=2m+ixvD2$kb9c7=$C!W3^-t0js=u{(w{MsB=t+o%}}0{ zmxTWS>gJ}@6aZ=#CZA>(J>_2mTo$^4RW-vQTp9b2Y|nYYV@xb3cS*-pUknh!YBljx zwl1d=P$K`+NW=Gz;xMUX-b0J6_Dm3cZ}c$&Q|BlylMlf}vGv8~v@JBBFHQPxuXJeX z^a}Z2`v8e@It1qqHrgR=w&6>TtA7f_qutT~F0NZAuFNn62&wg`Ujb;;I53i}UpW7y z&vpI`2kw;?@FNe>Gg=#j zL^HK~AUM6;^CuEcjiZ_g47AXJ%{g18Is1v0(n$7&1EN&i@s5e>j_V5Q1^#YRpVoux zzdV6yg81fvOw7K>%<(pm$KQ43;f5LOwdv-)hB=gH<6#&;nt49;GTsoAzr7cD>N-+V zp?NKl+y4;QVQqucIFq7vK*SJ87_mvmdsQAH3?{(Nv%b5vBzDUz_JlWOvHwUr zV_aKTuzZ16qk)@-?ekh>MpfB2SKA-fzFTx4>jYK*OI=##`%d8XOG2D=^+p!wQ!uoX zbr~yx`5m%bLYN<_iNK^kVo*#Y(Wq7D8Kq18nQD=I@Yfl0#q|Rh|EfSbmc8ep_TZ+9 zNrQ`w2M1sgA8kCZ;SdKF-#Al&#wQ?KMMF=-wLcT+;`QIjK`nJ4sTU00W6(0ttwtx& zzio)TS~96H2e{Z|dlnswTEyoE>Mz#s%Tl%V&;>kGStxUyj#@h1MNAS#z8n4zLPNSN zV2LY0`C?K+oM$^dpi>!O(Sl*PZk3ST^$~v_1Vpur{8{}ubd)Y$ayq@+2AN&S3$ zt@d5z5bpI!<@6gI&0% zqT{4d=VPgXS8T}4j(=VSn(e~V6)cQ?m3ytU-wfeq=K2HRG?C$@(?2n?7ey?P-)G+I z(1wjc@r>~T3eyi?_FjALJp2`!63O>mq~Spn>&6-u^mpvj}N|61B7N> zO~BT1J$~Pzxw+e7b>cMR$p7N_t;I^Vy_W1jdMFz*T&>~j>%}6I^z%{W05`kIXMwG) z^Pc&qOH0H3njeM?@{V_M#;*btjlv5!x10T?du5!C1k75d+2XY&M^V@6T>ox zY>2JtOYI?2{-Zo}^$UB6N2~>GW#%n>fA2UyXv!yt82Z?FM%jtzMvDeK?3(WP`!A%?e@PgAq!Ejml$RoW*ph#*nk=cS8Ock*K$|< zUi+sS)B#T@5!uI3=7HO`1E51sh}({s)9VQc0Af{^&W3tCF8RUp>?&{S=KA_+ccFHG zU8Be=I3oA93--Y9KiX^ja9n^}>#%aFwz)7DBgx`Z$lsyg$%gv(*Ujy?JhcbEj)EY}gXTgaJyra)Xu4$7_PKS;uz#>v662XMNrnT4xm%7k1;U$KNKG zfhdK*b5c_e%6WHEQ;5dj;Yp9DHSxFF&QYle2Bdw6xtzN`y?l266VYYS1JKU8t6B5e zkZNk7qC1F(R!S&KfykoEb91CKQ!>md?LUChf9b0qQril876K)Qj1B0{L46C{*(xW4Vn`{CU$d7j;!-I>kq%sF$;|2KAv zOWeFX>eTVT)ZdS(u$*cZsNI1_*bX*-N} zISC3>kOcz_!?x2#Iu({uvL@0X^?snsz98^4q_ znU>v*TycyCmrY1eg>^Pk5RMV*pvrtFF~adpTbhV3Z7pT)tYDxVedkP|P%W@&@SM~A zXq7kPcZare=E>nsGv`6F(Z117K`wTsDXIH_-s3*kfiJ1mSWfkRt~XA4(8>mD1;vF+Kv)m0v}9q)nc(VQ5ghnf3H_x* z;JG@=BR+~Rc&$cln6;oyq+_~IZ}rc+YI2|;H=zWv=L1b$idV7w^{w^z!l19y4fNN3 z#~dZr=HDGtZSFMvC|Y17Y}MlE`fd)5y`1v1Xu0y{-Bmh4ag^;TU~eUUOKem=k<6cj zh&oLtXWR~+K*ycFyy)m>>w5EG?YG8_M)Orhl~!HR-w}7lZ1VXOh3{GRth{sU<9)I$ z*}}SL?LAVNWqiN(v36tkU8w&|DDAJ!!YFEzSB#ytk07)HJqlIE<-sqF@_Zas0ts44(qa%-7GA&CP~Qy_=6i+ht6nx;y-(RyNlp6c z-*2bEdZ%BC2Wn=N*F}cW&U_p?`1p=pGRdn&XBuU@ko8<3czx*lJT|PddDDpqmIHyF zrupHevNtPm_*W^3a7aI4pwR1y5x#8Mze4kFkyq(rrBBE&5w<%1G4UfFpLu08ftprzk0l_TbypY8DEgpUPQWp zZ2)*>ODu)@!=ZzEzKpJWf)&6;RHW}Ibx*?ZKA8?XLV&3|+Idr>-xGJ3KG#mPRoMsg zztg#LlIH}%6ITL%YTZTIerx_scXa4oKgSOJy%@=Ju%EeFyTvBgow5E`s$eo2EA{u1 zhO_aTxmP76)35H>ty-!7tUcVNuDcIbD&vbgNxW*bQrSH28XUR7L(+3ic>=^|n`uY2 zPiv-TR>s|DDnragt+;Q1=@Jm*FBuDypWbVFS+-?kN(%-Bu-dcvj(2VdsSZom!aDte zxoWMs!L#y_nIQxd`kpmgGc4s!N%;=^4Ttn@X7Tn4mz}t#Y*F=U^5xy*WMx;jWpCWz z*c(0t#)nTX|L)XFW?em82nC_;ZiDB~Hn;i#w?EjRcYARi=iGdSufj<$Bm%9+p|~ue zxch+Nhun3g{*{|WhQ6s_mWa(psel8z9kB?Ov4k43id~E@8#VlOd}mzvi&f3D6!D<| zMlm|p4QwVKA#zMa zmCr9p`F%+;Q!3b5o*A_c`jP#_fvTLftKyqd!HNG5oEZjc+sO|fC+AvSGEf7aKhlSZ z6F{CVxAQ2)NxT0y;V@n;Nt!mumA zKN07D?G=zd{O@>Y%h`2lJ88S?J|Ezu%8^~R1tTtv_dO`=jU8mke^+aNNKp2x@i)!!wy;ony5lzW*6Z2piRv2&e`W9P zA4)_8ASw+x44iLN>h*(`mL6t=5)fM{5JS}wqfQ|8f4cqsDq2X=8I@f$NYeNtF*%vV z%tOT?`g+f)tn%6w!@cMsDyR1#J|9p!REE?~Y4}3xupXjB8{?7Omq@NF#sBCqsb8og z&~eyMwH*2V4W3-KOLj`ePWzqH-|d-Uf~^jb-sM0cgy0vT(#y?Zp)($?xlaFWH}*n&N&D*{wqXb z3`MCj@SYEk+Nf^bdAoMZfOm(nD<6RopJBZQ6~y(lnTgiLV)BJ~{inQ75*rEwDr>F& z#LqKP?F6Lzsar2^m-TgTE^(_hk=E%tF$_G(!&_g>>Qbkh$QeuYCUXeh4Ot5CTG2x< zazl1aWttD!*`@GLD7)6j&4)(;#}u$oDRk*0+}WjqDMrw+I95|4V_1R?l#910bXR*)W#yp`LEX|at?m?9eNcEb`R2b@vLBC zup{2HBzxhYe-$wA&c6>J?+!74s1FJlM`d3n2KLSg>)9=ugk(bKkJgUuc0HhNayHAO z%^knhD0{_0*C3*nsc3AU>8uU1)$c;brN2q z7asbb?(Tu$trAysYtbyg1GR*xza#_V)kf#h2jo!F2HsEwtsVDl!kav$;67g$PnsAT z6Pxr@INlP;6gvKNR!1CtMTs6jH8_3)Bn$_6gfQQ`wUwH$v?`}AoS)Z*%&H^EmkJ1J zTdIYr^)(Zz zJEx29_h5}L-qLJJ?fyIL^3`Vxt>mMP30h}Z-xdnKJ4p1gG zv{iaO#@0rK~A1kq!q+FP|m58ex3Xh zBH}A5h~NkO(kchdbp69&)Adql#N*bgx@xsWA;sAXE}jf&sguYlpHiQ1*2bu&00j?1 zBiUs$lEL0&YP<$4kYWF669|;gmSuza$O}!1qt*)6eavTfuTk&+WgzdAY<< z9QgpE5{7O15G;3Yj3X>L3^A=cJw*sI=#WpN%Et$3$=!0wz~nl@I%$wB9YYMKQ)#q0 zGTsc1k1u(8da{jVpW{)8gt9nxwhb0?(@PFc$a_BPN}h=po!(ytxp*Z_?K?GXn{2@qt#CaD0e_)b zZnjAK3!L|UlW%Fbi9lf%fkMjM;z+To@G7&xa#C{#cAmzQ)XZ6bx?VLS^aDx;o#}!J zIFoFt9IChE8i~|YR-TT5UYI$|7bp&6FOIzRye&dh?bv^B$)a7Og2(GU#h<>ocU3K@ z?OyyqK3Q#dGGInEaE|Rq14RE@&q2MXwc>63B!9e{_XK+e$%N_BYD98{3eFGOgZPpVnbCTZtgrd>yDy*Nv;HwGDH&N$y6 zHDnZpA(e~|B6Ss6Y~7=KJjg!b4f&31oqhdeob%eiV&6nCrC5yJ^`5yZi)0g)ucBF5 z?mHTGQvZmc-LsB9VD1b=%hZlGWDEnCL$)S(o~ZFk87a9|iYI20)> zpi0bVmKjTd+A@)syC|A&Z+~oNy?ti0r+q)y{G*Ge$}CaR@k<#!m%2As%>9oi6a(6z zaaZ$lU5&fn$GKBK1?=ML#S^)&UIW?&S-JbHs&;?Z$F6`WXrmCT8iIt?K;H@_r!c68 zk=JGF!*d*2bprCbWh;CAycNSoolX5*{?S9#!|kfRs^RiH2+(%ialA2bF;Xwf*Mt*! zFrR6T`+6Ykj&K zVI*RcrA%uTkS=i6Rm(Q;Gc>7!B(SOV<=E~vYjPV9UCDjSQmH`$9a-A(&;Bc8-6z^!50QlVX% zvA<(KUyv9;YVqqN+*JMfL~Dh=QddGyv)ga{aOtc2OYR}7T~|tsbfkD?IFEOD?m>aV zkr>PKyRz1-OqzE&tYKq1v-03QU=9|W3|2YV>vRf=w(%x8N_+eqcg=Tk^=b=EofoOd zmUrui8YE0&vS^|HiS%ku@k~pIqEBLOr77x2IL6oiU>c`7D zQ7Xq2}%S_+u^^1y;a@a0)uiqSk+RswcBmI@dLM)?&MzFe9&^ZVJ#W&E= zRm`!({L`R$SIQ?tMQSyQW&P1p0Co6z-ssgZ5s~;*7=1-oom(WytlAloVy>L!$X+!} zNT5sAB4Z{P527#v=d;e??O?rJ{r$e=>jR!n5j(HFKtOM-g>m__A&O>I)u`WGHr^}2 zZ@KMJ2lU`srV*;|xxi5!f2Po!w0L4chH|a&vMbp;Wd289Fgv`dxgb9pPHY2a5xLpo zxB6B7#r{;ZTlZ06${ zOb9Xq6{-0%ma(_48WnVEf$0F+(LR=rt9uduqMp)s&iz_{b!S_7U0VaO%|IbS@45C} ze(kXVYLG0}awrMrx)fIfKA)c1x)N`9E!5IsO!Y6_WRhO0q#{y(CnOc*5bZmu^Py;V zk|&g2tL!SJ^{uAh1XE&!(WM1;K$nw16XoPzQcyDkBI7sGx8%^1)aspyb>mnUu5Z&RA(5*S?X1t~+ZP4`yn(IoxU+D> zw^HX?Y;K)|J9>B!|3$#rAoguu8_?(?z2hDq-{@a0fg#ulA;xz&gA)s?Ukk>)pOnQ6 z&hW;BEw+AIn5DHuObXNs>}irO$)hhDzv7W$dths?n!=;1%xf7u%fKl^m5~85H28y^ z#1+&g8CO^J1DfJoD{CH4&$oO|Yd%$!MI)NSnc>1*%vGLoFLl3X)l2T+wh(Gb5-skT zN2DgF<04w!TX9sd(Q{ZIvNSD`N`Rgb2=p~7DYxbFDU1-FQ=C;S>Bjb|P5CuM0p46? zcC{T8ryFx(R=28W?&@Ga!?4|mvllXdhC{H+)Ei|x;1gdzyg&Trg^;OI(dw+)hyd9q zUJ)P|PAy5JdB`881e2c5m0iwQTY?J;nyBui;^KmE-psm9CPouu6X`cWQblnQ_CBj^ zWI=o{AX=1EAE1OXWvzvplCp5zea3k)YZNG29hE%>bs3Z{MwMR~5bnM~Cwdkf&?pcG zDIsPt84KU?*jB+G7R!w0e{}H4NvX3(*xw`mh0YZ*5g@u3G?C=)yVW1@Nkue=O4U$c z;hztJf*a!Ue-63jb*XO%S$`Mt10`IP&|1cKfu>zENwU15T!h=;CUY@IVU~H4uc=qe zaFiUewnHO7T2yf7b`RA<~8qqSI#G?pUb4dwr9m&GtZE!=|bzCbno6~vqF zh_Qv$$~H>&JqZj)sWLYmc|n$;x~g+`H*Zf0n%v~eme2>x4&9`Ae8slTwuBv+OlFXX zBRQkn37r~sU0ewvOb;$L9T`lwom&>OA{Qo79VxmCp6}zMZM7ghL?Me+n00d|m6a`5 zlG4Ody77IxIr@APZJ-b48pnUxmsB|!?VFk`1pTCY8$3x5k79a9X;|?=&ruB2shEI- zkQ$UHoXq4KfDJWhwI@y5!vtt65M2FJA!@PV9U>ikOnh3`wlrN|FhSCL5+-*N1h`YQ6=j#Ad#9aiM9;s_9EM_$LkH#eGf{WY_WN^cZ*uzF zZyvL_Q+sPgOR>bBP&<;OE4Y&n$Jwvx^>alNr)BP?O5K(dq8(aY#V^7ft@C*B)BBcFpf~PF`i1w}6H)H+j(@RTLC3jf zLk3@UoN!kIVcoztX^NM5(Uw7GvVjEjy4-q6aLhCda;IX;;Qg<=N`guJz))Nus(d{u zB3gV>L{5m@3*aX?U{BI1H^6JTd(UMc1X%X*Zm?R=B_;~`N$pQHz+8!W$D!P=%!%Q} z2$;gbm)jucj}5)h0*v%KH4tlqk1uo*$y4IDsi@BA=xW?D`>0j@0=%v&=#dkkldd}; zC>3b`*NOjq@J97Lje;}TkWa`@Eir1am4AvfOX1*>CX%xMUXq&N{ABH)DY)Dn25^H9 z!`IN_Za|cMY1(UAXS%XgiF5?3^Higj`1WMsPOCqu`5V@Y){v%Ft3T*7!Q#G2@(Z29 z#!B(V!>0Hw$fu!E4e>h7g2^u_xRm(loYNA1K#JHsrV3O%jDcvHPlL?h>DXilf&8QZ>cLOB<}2brT&D%nF|TOHvw+Q-omtwF)wDOA>Wrg)85%kyQDi z!dy)KBC$0Tj_FIAybRaTG1#(R?6|z=xLJ1v`TIzRM!_o^?Q0pC`vZgcaB9h30~-}j zGlzsok;`=fSJ1aW_xJlN3U@jRUjN@8;zi`t#fa68o6sfR>0sm(&Mfu_81=R=zdMT09`F2eWSx*hriJ54aVL7s7r!__n}J1l zT}E|3P*SHYj-^#z4X zF_g%n$2-C}Xez0lY11vmW!ecXyaaU?MczHzy0IyH*mEk{`!tYiWulcfA>{?WHu*2i zx`3U&Gc1QJ0tlx@77G{{4=@z<&}8(@NxDGL9YVwSkCl@szhA$d?9OYzV)@1^nYQZgn!T_N%ce0`5>YIB&qt1DCuxF{tN=qvNcH3^V)vWUaE~))PTU5BI326uAXZiQpbl_?7B|!XEhF;pH3&u$ z!zZk!#kW}Y#E2k`oBn|knF!waLmLq``9F8S$@T76 zfg+#gq2z{B6qUEx+bk2|LPi}!$&&n{g5f;nrzIa#ui%63d9x+cb+0^3er=UxLN8Rr zJ~Cix;#O=0EBX*E6@{v42q<0pAud+)K0YVOBxY$rOt)qjT@aX?d~$MX!7z1Kv8Lbl z>(^E#mQj)5YX#eD9nb-QO(&YWIQk(ck~;B!oo1$Oq+3#$BRogRdaZm(sYd93>SR)* z%nj53Q`FnF;6I5fO?j6yT_BVUR0F^_4jr|)!%6{96Q$|_yW?2m*oPDxr zwpkAjR@;F^WLow*Z)M<$VYQ>!hw^C4n#m9?zPb#Y7Q~v*g29+CDih}j+YQ`qw&6GB zqo8oPy(_5q@oQgULtBe}Rq#G+T{Lj>mAutnq7%K ze;u6SRJt0PhW}sKrUt%kSO|IqR{PSY zL^ie1C6p(OHdH&WF!MU8Qw5l8$i$=$8ySRb~l zH~rYI096h_pPzmIeBI)J7#2Nn9G5Zx-L8>8^+aOd(mzS2*|4Waw_I2lefcuLO)$R3 zsmhtbmS0Ak0MrD92NVAQkXVZUkkG^ufhBQ5MEZa17&xY7X;obzn=@okflXJ_P^03u H-LwAyr->bq literal 0 HcmV?d00001 diff --git a/accel_sgd_files/figure-html/fig-img-momentum-output-1.png b/accel_sgd_files/figure-html/fig-img-momentum-output-1.png new file mode 100644 index 0000000000000000000000000000000000000000..f1ae338af01b0c6646a4f1b41176bcd48ddf6353 GIT binary patch literal 13189 zcmZvDby!qy)a`(x1JaG;0D^RPI)a3R4BZXV-7PH=(kUU0Lw9#cC^2-52uOp}(D(TJ z?(^I~zRUA)hM6;GpMBo*p8c-9)*||yiX0Bsb1V=DgrguY0|SB3{DHqw;3vTLsK&4w zczNswRnPzfKmK5gDBwM&v%Ibw2=t8b-!IzKO5iQ(mAjXzt0l<6)ZN+M z$=%+@jLy^2)y>Aqk&lyylZTz|y}P@!C>PiN+t2CbYR!djMMePv(Sa0XUTJt|AFOzJ zYs@0Lk!wtk<)y*$%Ai+jk8OVHaDO1i;G};-g5kGau0w#M-Qp=*(}YLT{-L0o1RMO4 z>~SGOkBr*mGOYY?!jF%^Blq|7e5Sk^q{Z1RdjT|G5;BrR*h0RESRXaaY3bR8;X`G* z6t$kxh2hilGa{csWIiQ?afRXYKnXkXq5WV56ckLrz^YFjEatI?m>tg)s1wD8ghjn% z)2>{GH&kx#wp1&lfR7o(#FlosfhYwpi|*Yov$1!;|NmJ3`y^4-@IEs7=a!qld0Y{C zjU>d0*~#5MzHp4lE7yp!6EFZr5YX$2_+V$%e(WtU1O3Iqq7bws31$o+AmlA%kcs+~ z-O$LtutY*i!UqJ1p(m_)17r`Wh38d6fBsz+w{Ix;8SXU%V5Usas<56nW;wP*3OrN#iMQ!zG$!Mtg=rlE7Q;4 zs}{804Xf)`cw3kqju_t2ilBEr98O;{$a&zDTG2;=8D zvW~9br@UA0?6bR?%-|h?vG{T5yoFyIj6nP6&cmAB!Vc_@5|d%E=q`=~_x|t%7piM{ zTAs_o2vLKaw~sc`?lw=(mvOGd12#q2C-w)63AC$)>nMSVP^55|{59zGEE~_J)kzFA zdLbIOuYGI1>16eLtVt)sUvScsHcTsp+;!mVzWAob>g4lRi-@&m3w7N02cGYTr>m3P zSBN{ov*dwT)dR>=c;nFMJH?f+$)j3|mfPFgkuUiP>^rrF9~V5HT4~|;R*LEzdo+)8 zu#gxrgm*e=Y3y<{>V!I!3bk=J5fU<*nV~W^z}9c~|U${7ALGI{Ei^7wF^ ze6VKp1hlUz9DY+dT6l;I@E5qpl+5MNZYu72GrKWl5JT{o`_(Yp_1sR2r&i&u`?Fb+ zd#$|azU|l$2Z(4>bvl=267v$<>eWQIVeL^ZBuh6}5`5H!XV})eR~33%Ln+v;ER-P> z=79SkK^sU8gPC-L$c1ndlaS$LCOzoC@E(-U7uM7|?#rCdUb^ptUq|*v()N0-^<)Yt z>DR{XMJm&kxUj(z37dBcii^Am6);b3XWFT!^}LWPXCc^!H^K)^RpwLka;7Vy@lr#h z14CtAfBNOi+m2RFtTzuv4FzqY9rIgzbDv;qDJpj>Ar9yCobZ0Ogb(=d5bk_83}#y$ zW!Z>{@wV@=#=dsJy3x=|Et69Jke1etafNV78y3xIjpf*j z2P1rmxrx*hTWHi%ef;Pq*ytmhI6uGkYh+JK=x#DP`9i3sr-0TsB=z>@U~hi@fmDT7 z42zJ^5Jcg^QYz&TM#lLpg>PNZa_Th z5U&ckdE~-LkfYM5-ERJ&T+=(@Zq_y!Rv#xdsGTc?5sty_!&_n;a30MC8^vzR4(e3+ zoo0l^@J4zM!5o(%MJtKwZfCi@6XJK!J6wK6edPEPJ(WGAGXNPunWsYi2Ql96*{67x zd523$$%Uu-2)ap7-T}x!UQ`h|@`_Dd$i3v-2PWi^M#s5t=+7w^LD0 zl-TOQG&K}P=zjyJm^@lp^6&Ji^Z8~d<~BA!)<@|ioh4Xpmv&X>wjJGdv^emMW65NW z)0T>@@bN(6^de7(p%w-O0reO4T0}K1Slc3hcb{OF;RB8|PO| zj)Y9)2pN3^;` zwI*hm5z|;EQowF~j88e>cBag#VEUQyV7UbK#!>NalFFzWJfyIC`94V(8G|*v=-3;R zjk3w=-3Fq5q2|laq};DRLqq@6niAs~BRjVfqU-@gAbpi3qq>+WP&`^}qt54OSoCpD zxFa_A#`Tlb#)_6^zwp|t+r?^(j1HRh>8dY951&-YJSkV;eC`X;4)diRtl z&)1{w%_|w4mR>Tnjqkr`s)qL0oCrM|Y*$sA{aebuK5XD6oke1wh-euPPQI?$odNED z^(cekiY}=A#~ml$^+m6_3DN^{}V^h4Uhma0WdW_|PvSyn$Ue z2_adKwz$1*i(u=V1VCd zn7y&ZdO!YgPHO9Y4_c~cYwa11>2c{*`&04banV+x5x$|pfsEP8@vNlTYU;j=#)4y| zrIaf5StVJ&B^1ome70QOspAOQpY@^3{EoA0h(%qAHvj5Wd1QNkp}5glhF<~2!})_K z)QIReo>amKYQy3d_4UesIK=|3ulO5%fGQd&>mzHM(#$H8|J{Pji{<7l9gpPfWc>Cg zj%8)VvS(u%KdN#SuHCler{bM?3yJ#Bjp%pASG=+Yjh7lTqUT9D)+^hFgKk+4@9xzr zA2x$PRON~5uEV`ch0grvu3lesJUDq9@Io;H`Vv<=AZ*XHsst5+s!HG$vdu|hw0+Qq zHZ?63njGV7oUd|xC5B|h%9+;J0;cjcx+4L?| zDYNBEqAjL{`ysa9<`ipV@B7Nk6ig0imV{)RooW!Qbo{0sx$5r;5Ymdx*JXBs-N)MP^NH`5-HVgZf~B zs8~6)!45gf_UPf7{?BhLsfh4jALj#`5;VN=gYRZl&{W3A<|pAi8#B+7N>`L=fa{5C zFgm;!baop$un3H&v7#IvQ<|@N^jr|T+Y17fB@D!Vrd8`~LF-!T(a(7M;c?ROMzU*5 zbt!$DEGEMbCs!l3AkNNts%Ff3qT>Ip|l|~C1eb-l4 zSFXAvVPizfkpmO(l_jmVQ-s3r+2;tag`ojX7@KWD^xVkpbAdcfwgl=O`Zz{^0(StQ ziu*enzWaFer8Du<4Ds8W8Stck=Gf8v&u^UpSC(}L1yNw2T{8GDkuC>ymCgHH=uS5-e&6DwZ?+(EQ-j=} z6;g=UapVLU4tM8TyYwK8)t(z2_&?+0q8;{ExFE=fdU;V${AgfX_M*k6b!^S*ysc%t z<9>l@oV?*U#R+r|X9R8%OdnLFEKa7pj%pgT0<3ZtKF^7+L5<+orLPaOf}@XJVB_<) zvmYiULo)@CDcWPj{7#)a0y|Ib1zI{dYlbO}I@S4e0qrMB4 zA%Nq2^C&y&fx` z42Y~;^_UL0PZGF|u)QqQ`$@3qWIVLFm-^Ffh4)S14Q`jf`<~q=C24^z?CsAu6;Qn| zwn>_I8jbbj6w{8c@xGc~@$=bS9=5$JgN>cnMKgU-vYTK~gxMnz+)mg3Q_@32h ziO{9KIwH%M5ozxln;ZFI?5xlm51Y_7Gn}j(Y8SX-4w#jww|+Yqa4aAZm@(vpGqJvu zy3;PWXUMA+fEO=?%kW0t@(uBEy(E1=zd^j1v&d9>Ojy2zervnkyfORvsVj_v@y0;;mUcxdJBpBx`}g_P%~TqFOqzNF4y+l$IA?t83@_E$NCMWuxT zes+v%+waiYk3Z=8GmJ>?3QT6JInoSe0gY>=2v^bAV-D%NP(Rd3sQz22uC61ZvG=nI zncEn_C8GW|aQtusO+8_^wz}E;*T;jD#DXHRZn=J+-XhpH?u(M-Q8ys2bMpSCwTE6+ z)vk$eR6GdpyrQv*2{FoivP+i0s<*I0O~502bj;pxoUD7E3a=&GrW)c~?g!SL-bd~m!}&dtnwuG;mp(|NTz zPPWW?7V27-m+V+0lFjtD7KO#{#CTRW-9{8JB?S!Yyi}DHqnNwiI4H6XeAcdzeC;Qt zbVI#IUT5X{&WsGGX)k}56BX4>EqcSpaox6# z;2=2jb0+j~TEhFgsrkhk=bym{w5DmZ+o9uep`Lp|v($g%qMbtOSm7?{6w%>_Ox0J4 zccb*$^qKv|R&(Th<=G5VA*1x)aoyc}{>gQ-O>WxMfpgiD^7j@riK*vS%Pdi2r@wV1 z3Ft0NuUwngKk%xy?0TSQyE7|8+Vz@nCnV;uc_z})#xr%P)%r1go0N()xYix$aLM5f zG|01Chi-Yg$%`L;dV4=Zgqws#E-V83>J_ldHKH?KluXU-kgGl`wRiysf8?7CvzcDs ztw8oZQ@+`ZqlU+^+M;rfQ(!LLH{F}vS|;Hz+f0OS!*o7T10wWJBKJ7gJSQ-VdQaEO zR{cwQObGKv_bNT z5~vcZd+#G13w(Mm)6LV-M6-_+X2Sp-4D9)jb&@F=`k3p2l-&gj)nHPoM=}@}{wj1mR>))| zkxq_m1xT(5Jx+T+HiXyipaJ1mkC1c74aCkS3qHldt9AVgFf?gf8GOJ?)7Zh^X$PVf zKCdTuoEg$J<^8+Y<3-jTU_bK_r?H8FW)9u?d!k+9=KV_Sw8E;9tGZf3V6w6q< zK_;0SXo_WTaC0v(0`aiQ>Zb9JPs@6D#xDiZK^ za{gfb`Uc1QApmtClyp0waMGqIXBS|=B0!!V&hq_M#_lc)wktxXZzqA{{f=dpOc-|` z!}0X8y;nlpyf7NWPk6g0GEW7^&CY*-gkNHhJp!%o8>V{yOJh=}7Wd5*tMOsC$yX2e z#bN3iQS9v>p%V`FDV(PJg(WQ}drlhqE$E94b?kzW+ggV#U4k#EPXLIg??_fC;rhvi z=2?f+PS8%fNMzGBZmINiw{P4KZ|S)q7dc1x7S>~ z+uNmeG7!d`vCzslup!B?u{;R5#tj1}CKCRc!9-Ms1I^b}@k^331QvaDw%0e-#txS4 zt9ifG`{mLq?c)g{h7mCV3IW?>Mn8g!<#Q)iq16XuWI`s^>xlGPWh4=B*4LGS*j~R+ z1)VPj-=A*1O5+T9_AZLfxk13%{{;rt$B(MN%ciUXi~~Si9gn4MK{;aj1g<)XJh$Kt zhk=SoHnS#20otX;b3S^=he=HjUA1V=r2QUK&BG+s%*sqWanMkFB=1br3rs0&AN`Zv z9iJf#ZDS=PC70RqcO@!$uZii`S*I4w^IFdbzr~OVwU|V)vB?Qv2fh?QgyG zfKSgX%az!CrgynLFDE@zR?jb)W~qwSAW#IG7Prk4gQfNl1c<+Id8br!R}xn@`@Dql zg|`90p8wnBKkJTvRm#{5xn*UXJ@Sc+6$ogx8xfsjvhlFv2{GqC_~PdprO;R%SP@Y% z>!O<^8*|mNj8k7|o9=31ta}eJLC*@7fp&b#)r#esWR+X~G(`r9ZvOew7S zNLMONR+i$P{0{pnUDZ~Tk5R}&=+NGP>YFG2w>4$+I}3dBKV>B;rlQd+%PAA_eiIqP z#tsXwr!drIx+)DJke>Zew&lbyS_}i6g)^fz^5B>U5osXKpR@$fN?YIAPAy;R)5POP z!|Hg~CawY&(??A{w~K`&64%9%j87o!b0v5HXR*iuPGdwqjZ(dFe-iEH(YMeh_>(n= zZ$N07{LJkcfuQfDAZ>|ilVBV-6Q-23|7r;znCiPQiSu-XY_dkB(hcPD@!c{sES5<* zFTf9V6lAG0gi|(!nSgaLP4T#B7Dq0wd&etF5o3W&r$6)NNN9;pB^~tWsUEfRJb>jv zWyg{^J%3MzssqHtuiw9)WDAp}+MW>I6#BZp-^lG=s{851XhIk*9dmaB7{CcfH)&!Ig4`j`EF9wek$2a?H90N2~^L$#t$`8anx%Q`c6JY(ZNeLPE< zsEpIlWC+*$LU-X>x&N`YoAq1D?184Tw7$KnKH4B1VqI@wYJ$q&i#^UA%eIl^)J0D- zw7Rbp_@;-Ut9yJtmyl&g(~o~b4t z_pN-9*fLimU^lWS^w%P_pEs%eCFU9SnPGhDFDb{jSj{N>nxjvfm82z#8y4hJtI4*j z0Yd&L$V@506nWq0eQ!%1ZT;4imbZWA2~s)4PJH~^b=BspXwMFw;ZR0MzK5{?wzX!L zD-ts+D(-&9m5vx`uRIpk@lE&rBU~O;F(ZZEri6-zX3P7!)MV-L%;U?oEd)P9 zpFzz`xuxk0ROkCNX&y@@XJ#s=!0R020LzHiHy7cNG`z2K)r99>=u<`Hf6Eq+P`X|? zHG?Z>Db>wrCs!pf8Zs2uo(W57t)){WoKm2AnIdrLQ`AWf!AoyL#AdD z;giW9Ql|bIzvY|}so$;1lJOOgQPlk&`iZRC)c}#F$Y1yLSIw*f6n)vJq|7l(XcGHW z=?hijJe)~Wl=OJU5dx8n%a@qoO~LT-seVtO0e{~6Ck*U#=sD<0)#N2KXuRd6%2MZ9 zq{}zoCKN>wiKl=fl~+-8zM|z-Vc|1vyQOp+IN7bR(6kvFCU9HPJ^>Si8o+&OwA)+W zUaVUQm#XBXE1-A_&C$G?3agCgzI_dQY@3`pq{y|c(3{b*jG6pA41#NN^Ax1@{^I|^&CGrh1c zHD3Fh`W-5RWgN&1TlT1IVD^W9t>s+%Y=Df6;pz-ll?-9d25Rrm?E=Rv z4&6OW&4OMoXV9LzSpX~o(5R#v!SinFP7YS7=rekfM{-l6hNkMkKpIO}zr8SUko z@wod>B~jPXv5lYd5$+%Qw=w5Nk|3P8l`Tw<)i5FZ`y2NdjbX;$Q;)y;#3>O5CZNQT zqLv?b7PXrk!3BiS`Gui7RRbjLr)v>j1=Oow(_wq%n$=b~1_2&XUx}debA1}hj{S%I zddnxLN=7>?^yQK79wh>ptRop_mjc^Mfn{)hsVYy-eD4?70xQ?0o1mO%KXhsH6*${5 z_e6e1QbE{1f6nav!0h+V>+fT|{dt+Shjv>J`B$5lg>V=vt~YHn)jZa>cZ$l>dR3mn z`zj{6h*kjTfsV19JG!=Uy&Rc8lXCKBacjV_q;Bcjv@lH@j5az;JoBakO77;(``ktwSCY7mbWTPk$baa6N&VMK6$6E4K*2d5PqgmEF%k5knz&-DMM8g~_dQEGh8h z(TT}PJn8oc*VVB6xqYsd_2{755)VI}TA9QSeA7Jlkl*Tc!_5}lavK%UhkLaaBCUVG zZi{F_`>>NL6miV}_sB$u!i_q7(ZJ(+7kd6hZ^`fPhOl$RGBd0V#~QSytgpSm5cW-f zwbTkbZWL{N`iGB^G_|7b!OvuR*Rc3qQ0+X`<10LhWuwv@bh}H_4s0)fM=U#K2v~7@ zS*cnoEov_3ejeHClJGhwf`&y@U?kRM74uepmqww?fm&EF{DA=Pl z3oG#;hqHQyOEKiq;P0o8>Vnro6!iAil3|l9Mc0eCl#jB@llAb#v69(VK8ZSY4CFlo z^v*P{?0B8pDM^&D(Tz`rfte3EJD<;#p&19-Ty!0*(c;qLx>)oOB#8RM&z0ckx_Wzj z^$4y-nwutsZ|1>~Ts`8h0l`s^Ae(3NEr>R^9@DN2B&PA{pP7rNcGa5 zGNxH!s7y?`rgBw|LXyd)W5w5#7{*(W^Zus{9d}~enFL!ZNWlo-WOq;KF=|6g?iZN? z3M~k`3~8q+}G!K6mCAG*tNQsB})z@CLi?RAgNX5=s*Pp=Qi&a zsq1Kr4eN3)vH)<=?$z%^LRy66M9@PTjD*gi1z#T9L})aH6I_K+m>Z z&GZMn4X!;W5=xH&qMaVf$owKCAevS7 z-eBw<)bI*?4P_aW68Av8s1EA>YbeJN^$x72M&q~BtX_n5_NQm@R5Zy$g)DAxV7kym zZf6?Veh+Z%|5_&lBMj*ULj%H(aiHT(CqF2D3VyF~+>2Qf2WMe`Lnzmbwzh*mDZ-Rm zo?9DEh$Fkmr!r=w;lq5WGXE>dDpPno|Muyno7Y9vf_$yU0HU+OEA+Zxoq{UZmU#~ zXduVdcI6)%gwV&is+L(LxwtnMuU@^1`dT5ZfHG>%3RVCt4S@V_Irvbye8vz-S^VSc zWq3Xg3`{^Qnc^VW)F8c9&+?eyN{+CTY}M-IfP+L(!k>nEu8Q#_PCq~KRwq2_$ss3d zRGbr2$`>Ub^RSur4u&qYVxf=?jq2X>^^{1SHpk*iHC|Lio=uMvQT7FGYbl^4tBnV` zd;*?=Xfo3EJDmo%bNhU@GvGhM@Cmp8b!mj{)OqzW;@-!GEnGP$tMK9OG9S05ml1h0 zY@Sp!TY)UeUEj)r-Ui%2iC0E|0b_`-JI@Wmb#dW#&XfI# z2|*v9BgI_8!U8x7KsW2WVj5QacS-TfcN^Oz#I?Ig3g5)x9J)TTkT^v!0efeoJb+As zPbVXpluiErrjy&G1#))1j5mh=0mD5V%oIXXP1l}lf{|j{B)$`hY!}JAeWG<%Jt2=E zAFF@;%X394Fe`_$^xNBEWy$XWv#eh6ENfUPxl@4WC;&xO#Bc^@0F=&~ zNQ-oyP=QdI&3%Wxc^$C~z=2?)dd^7KuKyJa@}U&=qWN6Q``%~1cHq-aBn8D(85o|g zFVy^3F;heIjnx{&AaL%1r($zJ8rAfM1p0Wvq3PA;=#MJe{S`Y8{!RJb5_C!eS}9yW zqB&?%57-dp^xYzOjwn+@N-jd9Ue30QC}p5mXl2Co-TGHBurh2#y0PI#odX=n=8{P5_jA`IY-2;$=dbZI@aYqqDQWKKE}j?HEZ*NS?Nk{% zsf8sTvo+e?#c)A8e7Q}ehc}3!VM6hJecL%tfj-(40%#(3h%jMMhOG+s?x9)tg@t0( z!S7tJ&CK4T6G3G@0lpt%;#8+R9Z~V+&JLEn!_^goorg1`!m!3suC1!$fQ#$BcNL_| zUb(ZM!H`}hKphF96*D?KK`EB+A0LZscQ3bCd0YSaf&b>ceDCEzPiR7l<+b_DHyaOr zXcYH9bJfR>-_soCO0`;U|Ge5m0Oi_Be+J_jlsF%$-K(uQtEM=vr3kMJ_;#?>Y*wUE zd7z4FOmt&rdlp9(Lg`p7N(hlj9~m8Cm>fq1^q30ySy)&>r;CrfA6a1pMFBE$E~bA~ zgCr4Z^`eC>TyGDzQ7Yh0-1<)}E#7!$hNCwWY--Lm;6CKw<7HMr!F0b#MlQfA|1)LV zskaM@-0tQ^hpumO?ioey&G!DXP3jvws+Z@N&?sK<1HZk7j9&tC>6pvNzWh8od4kkU zr(UPLhE-gXn?IG(9hopzeU=6#mdy+0S1ca!2hIDpbb{1>n;|WA5BFprV~~TCp``Kn z^t?Wc550DLvPDX>#;?$nvdP2#jGkr!$kHtt*42t~)5MsV*09TYvJ7f3N*3*#eFYe5 z>Jc`2d-cBOyPE5pY{k$!w@ws5>hRU=LBYuGl>}u)*axRrlIf{2#=~Y8w74;WDokU$ zfQ)}`EGhMn9DuI^HO99sw+{*~4aIi*(+QZY^(ef&to$ZG(KWuIv)Wi2@3ahln>K0z z$L}q|g3ox#veem(Ccc2^hU^_BO#FwFoG^+-Y4eiH;mPH;H-3h6)H(;-K6k%vE3@yn zC))+?JRDc+3-?2an9}2GYqh{gXt>sHo7+Y#(@Eqy>)KjMBSWx)VwqS-SMWVZv5bE` zS8uN^SgSiyv5atxatsV_D8dYSKbdOjyS~=8-vu&Qt-p>AtrwgXNi#6JC?ke~$!=H4 z7+zp-wqZ-&U<1|=`xJ7PIv7H@zs{Ut4RX3&*d?*XBCq8D?`b7eqcPHeZ=D?z_9pO2rIs99d2ztlMvq!zeq+?)HmuhcZ>p|Ulj~hhLcNhl^6-@oNnDIb)4~E)!df8*_XQPQ7A?kH4sBEjY!PxA zy|ZuFoGg{qz#32@L1>(^82j&bH! zt)uZ7tkgrao=eol3O`lPC+JjIJ~nL0Z?b}Z=fL7gV)fhBnx(-Il@BE`!^wq@0mtS@ z5qz(=ZhY)Z(<^*FZB(4pzMvSw%|O%4<8F)CP8sS?CHG6Y_o3Ls8o)G{9ZNa*P*k@% z+a{nW@dBkQQ%WN8?3MZO?hl5SJpD?&Ubm)AOEq6SJhEK*J8f;e+C~MGHtLJWF1~p; zi9y1Sdkxt(E3M~F170&p4Jh?;-I>}cXXWha&Q{CXtnC5{tE2w`kM}OiV5dhKqaQ@3 zyTz_Z+)26fh?4h;#cJ^QK*4{%KYT`_J(pu#Kcyp4>cRh14h;FwugSIvSS4D;1Gv#|TMgbT&^*!0`Hx;8|_-tVN57BZvWNK`HA!e|d7yjFr3A=K5e4c;nvK!opfc19e`#}pQU>b((4jxl8 zOJ8gqZPeLtO$FZ2YGm?b`d&5)i$cPxRe(dQm4oXm?HXS$pT#VU9`9Dbao+-sBS{J- zEqoji{%}M4iGra`8x!(aO*jItJB}J4*tqSc#ZD4YX8u3#|HoV$HKCvn7?-2K$tg)>Ghajj|1Um0wztDAIq0WYp?VANOsS~{ zBT#*bRAXr$z1SrT1Xe=bwJI~Ol;?$Ayj(ADpjZ%@ycWA#^5LAS0#@XbQ#9)lS6-f8 zY@Xv2_AvaA-;R+L(ue*enwV>WZDqS?s}wpWEoMI@f}h7owtGq*Z!3gp zlFbJY8k5;0pOb|-*%N9Hgxmew=Gfbp*ueK%e0!_HXycM$3wnF}6&uc^l`gMPgG?@( z2F?F%xy@qA5m-Pr%Srzk+v%SZ-OFh`U4PR&h=HWc>eqBZKL58xi{}7lZ#X`*nKV`# zaJ@qe{>KPUUry8s+vO=r)>52p5G4f_&73Nh87IS96w4kK5NtXsECMi=hC$M$ImI%@ z3iDcZ#dB@NyW(V4HAP(`$&%#VqGY{_WWB27(RxuDF~Di9SY`+WfX5AdhLuOdY`?&E zy_UK*UTY0K2A1dIeOq$`j*u}7_WLtCt+*?ZzcHB3% z@Fg3#7-%{qNS``k+&(WB(Mo;%lzZ%#Hhal>h6ttUfS%dW@jq$f(AzngU8FX zOj31UrG?-getD06yk+tDJisI33r0!&;CkMGN$XAIO(hh&_${wNa{buGqnA+-e*RF8 zxG-ExGrgt`$AF(7>FqUW4VkJh?&{kGU{^O?H)bPz(W>Wmg|ltoO?L30+PgbCrfA*H z*PjJ(7bIhw?l5E4Tj9MyM}Yts6_n z|9E5JZO0662qg4|u?S$3V~bPcx-7)`5V}2+lqBZSWNhR{x>Y!-rNYXea8r2C@2Jf2 z>g}23g*r^^+7)R~0;t7}PO(g~n-hMnSfr6A-4)o+l>&1J+3KEb%xQl9NQ$M1 z^M~G1H7h4sC&&uFAnb^PvuFk`O`F$-d-CfOsD2%n#O6GJFd24|ZXso4Co!<=4GhS$ zWY{T>8=aP_Z^@$o2OQ=KG=UUYt{vP7t3O6=B_R&sn}TTVM6?1pk76tBZ229dpHni- zTGW4$OvhZ4JXzIsHgLyH}VTj<>gO#wGDvV{PcWht;OlZfoz0vQ}{JYkG<2Q~_7OAl#J#j-%f zGPtyyNd(L`RkLQEsS#kqxRc_O>JeSKB=HPIGilwhyds!w1#DLZn9~YR9iOx=+&gV9 zRvN((;B@O7LxT{CKD_ss7Q%`D9xeg~z_ + + + + + + + + +10  NLP Deep Dive: RNNs – Practical Deep Learning for Coders + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ +
+ +
+ + +
+ + + +
+ +
+
+

10  NLP Deep Dive: RNNs

+
+ + + +
+ + + + +
+ + + +
+ + +

In Chapter 1 we saw that deep learning can be used to get great results with natural language datasets. Our example relied on using a pretrained language model and fine-tuning it to classify reviews. That example highlighted a difference between transfer learning in NLP and computer vision: in general in NLP the pretrained model is trained on a different task.

+

What we call a language model is a model that has been trained to guess what the next word in a text is (having read the ones before). This kind of task is called self-supervised learning: we do not need to give labels to our model, just feed it lots and lots of texts. It has a process to automatically get labels from the data, and this task isn’t trivial: to properly guess the next word in a sentence, the model will have to develop an understanding of the English (or other) language. Self-supervised learning can also be used in other domains; for instance, see “Self-Supervised Learning and Computer Vision” for an introduction to vision applications. Self-supervised learning is not usually used for the model that is trained directly, but instead is used for pretraining a model used for transfer learning.

+
+

jargon: Self-supervised learning: Training a model using labels that are embedded in the independent variable, rather than requiring external labels. For instance, training a model to predict the next word in a text.

+
+

The language model we used in Chapter 1 to classify IMDb reviews was pretrained on Wikipedia. We got great results by directly fine-tuning this language model to a movie review classifier, but with one extra step, we can do even better. The Wikipedia English is slightly different from the IMDb English, so instead of jumping directly to the classifier, we could fine-tune our pretrained language model to the IMDb corpus and then use that as the base for our classifier.

+

Even if our language model knows the basics of the language we are using in the task (e.g., our pretrained model is in English), it helps to get used to the style of the corpus we are targeting. It may be more informal language, or more technical, with new words to learn or different ways of composing sentences. In the case of the IMDb dataset, there will be lots of names of movie directors and actors, and often a less formal style of language than that seen in Wikipedia.

+

We already saw that with fastai, we can download a pretrained English language model and use it to get state-of-the-art results for NLP classification. (We expect pretrained models in many more languages to be available soon—they might well be available by the time you are reading this book, in fact.) So, why are we learning how to train a language model in detail?

+

One reason, of course, is that it is helpful to understand the foundations of the models that you are using. But there is another very practical reason, which is that you get even better results if you fine-tune the (sequence-based) language model prior to fine-tuning the classification model. For instance, for the IMDb sentiment analysis task, the dataset includes 50,000 additional movie reviews that do not have any positive or negative labels attached. Since there are 25,000 labeled reviews in the training set and 25,000 in the validation set, that makes 100,000 movie reviews altogether. We can use all of these reviews to fine-tune the pretrained language model, which was trained only on Wikipedia articles; this will result in a language model that is particularly good at predicting the next word of a movie review.

+
+

This is just a preview of this chapter. The rest of this chapter is not available here, but you read the source notebook which has the same content (but with less nice formatting).

+ + + +
+ + +
+ + + + + \ No newline at end of file diff --git a/book11.html b/book11.html new file mode 100644 index 0000000..0a9cce0 --- /dev/null +++ b/book11.html @@ -0,0 +1,799 @@ + + + + + + + + + +11  Data Munging with fastai’s Mid-Level API – Practical Deep Learning for Coders + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ +
+ +
+ + +
+ + + +
+ +
+
+

11  Data Munging with fastai’s Mid-Level API

+
+ + + +
+ + + + +
+ + + +
+ + +

We have seen what Tokenizer and Numericalize do to a collection of texts, and how they’re used inside the data block API, which handles those transforms for us directly using the TextBlock. But what if we want to only apply one of those transforms, either to see intermediate results or because we have already tokenized texts? More generally, what can we do when the data block API is not flexible enough to accommodate our particular use case? For this, we need to use fastai’s mid-level API for processing data. The data block API is built on top of that layer, so it will allow you to do everything the data block API does, and much much more.

+
+

11.1 Going Deeper into fastai’s Layered API

+

The fastai library is built on a layered API. In the very top layer there are applications that allow us to train a model in five lines of codes, as we saw in Chapter 1. In the case of creating DataLoaders for a text classifier, for instance, we used the line:

+
from fastai.text.all import *
+
+dls = TextDataLoaders.from_folder(untar_data(URLs.IMDB), valid='test')
+

The factory method TextDataLoaders.from_folder is very convenient when your data is arranged the exact same way as the IMDb dataset, but in practice, that often won’t be the case. The data block API offers more flexibility.

+
+

This is just a preview of this chapter. The rest of this chapter is not available here, but you read the source notebook which has the same content (but with less nice formatting).

+ + +
+ +
+ + +
+ + + + + \ No newline at end of file diff --git a/book12.html b/book12.html new file mode 100644 index 0000000..919f757 --- /dev/null +++ b/book12.html @@ -0,0 +1,765 @@ + + + + + + + + + +12  A Language Model from Scratch – Practical Deep Learning for Coders + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ +
+ +
+ + +
+ + + +
+ +
+
+

12  A Language Model from Scratch

+
+ + + +
+ + + + +
+ + + +
+ + +

We’re now ready to go deep… deep into deep learning! You already learned how to train a basic neural network, but how do you go from there to creating state-of-the-art models? In this part of the book we’re going to uncover all of the mysteries, starting with language models.

+

You saw in Chapter 10 how to fine-tune a pretrained language model to build a text classifier. In this chapter, we will explain to you what exactly is inside that model, and what an RNN is. First, let’s gather some data that will allow us to quickly prototype our various models.

+
+

12.1 The Data

+

Whenever we start working on a new problem, we always first try to think of the simplest dataset we can that will allow us to try out methods quickly and easily, and interpret the results. When we started working on language modeling a few years ago we didn’t find any datasets that would allow for quick prototyping, so we made one. We call it Human Numbers, and it simply contains the first 10,000 numbers written out in English.

+
+

j: One of the most common practical mistakes I see even amongst highly experienced practitioners is failing to use appropriate datasets at appropriate times during the analysis process. In particular, most people tend to start with datasets that are too big and too complicated.

+
+
+

This is just a preview of this chapter. The rest of this chapter is not available here, but you read the source notebook which has the same content (but with less nice formatting).

+ + +
+ +
+ + +
+ + + + + \ No newline at end of file diff --git a/book15.html b/book15.html new file mode 100644 index 0000000..edb5055 --- /dev/null +++ b/book15.html @@ -0,0 +1,771 @@ + + + + + + + + + +15  Application Architectures Deep Dive – Practical Deep Learning for Coders + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ +
+ +
+ + +
+ + + +
+ +
+
+

15  Application Architectures Deep Dive

+
+ + + +
+ + + + +
+ + + +
+ + +

We are now in the exciting position that we can fully understand the architectures that we have been using for our state-of-the-art models for computer vision, natural language processing, and tabular analysis. In this chapter, we’re going to fill in all the missing details on how fastai’s application models work and show you how to build the models they use.

+

We will also go back to the custom data preprocessing pipeline we saw in Chapter 11 for Siamese networks and show you how you can use the components in the fastai library to build custom pretrained models for new tasks.

+

We’ll start with computer vision.

+
+

15.1 Computer Vision

+

For computer vision application we use the functions vision_learner and unet_learner to build our models, depending on the task. In this section we’ll explore how to build the Learner objects we used in Parts 1 and 2 of this book.

+
+

vision_learner

+

Let’s take a look at what happens when we use the vision_learner function. We begin by passing this function an architecture to use for the body of the network. Most of the time we use a ResNet, which you already know how to create, so we don’t need to delve into that any further. Pretrained weights are downloaded as required and loaded into the ResNet.

+

Then, for transfer learning, the network needs to be cut. This refers to slicing off the final layer, which is only responsible for ImageNet-specific categorization. In fact, we do not slice off only this layer, but everything from the adaptive average pooling layer onwards. The reason for this will become clear in just a moment. Since different architectures might use different types of pooling layers, or even completely different kinds of heads, we don’t just search for the adaptive pooling layer to decide where to cut the pretrained model. Instead, we have a dictionary of information that is used for each model to determine where its body ends, and its head starts.

+
+

This is just a preview of this chapter. The rest of this chapter is not available here, but you read the source notebook which has the same content (but with less nice formatting).

+ + +
+
+ +
+ + +
+ + + + + \ No newline at end of file diff --git a/book18.html b/book18.html new file mode 100644 index 0000000..ef3bfc0 --- /dev/null +++ b/book18.html @@ -0,0 +1,764 @@ + + + + + + + + + +18  CNN Interpretation with CAM – Practical Deep Learning for Coders + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ +
+ +
+ + +
+ + + +
+ +
+
+

18  CNN Interpretation with CAM

+
+ + + +
+ + + + +
+ + + +
+ + +

Now that we know how to build up pretty much anything from scratch, let’s use that knowledge to create entirely new (and very useful!) functionality: the class activation map. It gives us some insight into why a CNN made the predictions it did.

+

In the process, we’ll learn about one handy feature of PyTorch we haven’t seen before, the hook, and we’ll apply many of the concepts introduced in the rest of the book. If you want to really test out your understanding of the material in this book, after you’ve finished this chapter, try putting it aside and recreating the ideas here yourself from scratch (no peeking!).

+
+

18.1 CAM and Hooks

+

The class activation map (CAM) was introduced by Bolei Zhou et al. in “Learning Deep Features for Discriminative Localization”. It uses the output of the last convolutional layer (just before the average pooling layer) together with the predictions to give us a heatmap visualization of why the model made its decision. This is a useful tool for interpretation.

+

More precisely, at each position of our final convolutional layer, we have as many filters as in the last linear layer. We can therefore compute the dot product of those activations with the final weights to get, for each location on our feature map, the score of the feature that was used to make a decision.

+

We’re going to need a way to get access to the activations inside the model while it’s training. In PyTorch this can be done with a hook. Hooks are PyTorch’s equivalent of fastai’s callbacks. However, rather than allowing you to inject code into the training loop like a fastai Learner callback, hooks allow you to inject code into the forward and backward calculations themselves. We can attach a hook to any layer of the model, and it will be executed when we compute the outputs (forward hook) or during backpropagation (backward hook). A forward hook is a function that takes three things—a module, its input, and its output—and it can perform any behavior you want. (fastai also provides a handy HookCallback that we won’t cover here, but take a look at the fastai docs; it makes working with hooks a little easier.)

+
+

This is just a preview of this chapter. The rest of this chapter is not available here, but you read the source notebook which has the same content (but with less nice formatting).

+ + +
+ +
+ + +
+ + + + + \ No newline at end of file diff --git a/book19.html b/book19.html new file mode 100644 index 0000000..90bb863 --- /dev/null +++ b/book19.html @@ -0,0 +1,753 @@ + + + + + + + + + +19  A fastai Learner from Scratch – Practical Deep Learning for Coders + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ +
+ +
+ + +
+ + + +
+ +
+
+

19  A fastai Learner from Scratch

+
+ + + +
+ + + + +
+ + + +
+ + +

This final chapter (other than the conclusion and the online chapters) is going to look a bit different. It contains far more code and far less prose than the previous chapters. We will introduce new Python keywords and libraries without discussing them. This chapter is meant to be the start of a significant research project for you. You see, we are going to implement many of the key pieces of the fastai and PyTorch APIs from scratch, building on nothing other than the components that we developed in Chapter 17! The key goal here is to end up with your own Learner class, and some callbacks—enough to be able to train a model on Imagenette, including examples of each of the key techniques we’ve studied. On the way to building Learner, we will create our own version of Module, Parameter, and parallel DataLoader so you have a very good idea of what those PyTorch classes do.

+

The end-of-chapter questionnaire is particularly important for this chapter. This is where we will be pointing you in the many interesting directions that you could take, using this chapter as your starting point. We suggest that you follow along with this chapter on your computer, and do lots of experiments, web searches, and whatever else you need to understand what’s going on. You’ve built up the skills and expertise to do this in the rest of this book, so we think you are going to do great!

+

Let’s begin by gathering (manually) some data.

+
+

This is just a preview of this chapter. The rest of this chapter is not available here, but you read the source notebook which has the same content (but with less nice formatting).

+ + + +
+ + +
+ + + + + \ No newline at end of file diff --git a/book2.html b/book2.html new file mode 100644 index 0000000..161cccb --- /dev/null +++ b/book2.html @@ -0,0 +1,764 @@ + + + + + + + + + +2  From Model to Production – Practical Deep Learning for Coders + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ +
+ +
+ + +
+ + + +
+ +
+
+

2  From Model to Production

+
+ + + +
+ + + + +
+ + + +
+ + +

The six lines of code we saw in Chapter 1 are just one small part of the process of using deep learning in practice. In this chapter, we’re going to use a computer vision example to look at the end-to-end process of creating a deep learning application. More specifically, we’re going to build a bear classifier! In the process, we’ll discuss the capabilities and constraints of deep learning, explore how to create datasets, look at possible gotchas when using deep learning in practice, and more. Many of the key points will apply equally well to other deep learning problems, such as those in Chapter 1. If you work through a problem similar in key respects to our example problems, we expect you to get excellent results with little code, quickly.

+

Let’s start with how you should frame your problem.

+
+

2.1 The Practice of Deep Learning

+

We’ve seen that deep learning can solve a lot of challenging problems quickly and with little code. As a beginner, there’s a sweet spot of problems that are similar enough to our example problems that you can very quickly get extremely useful results. However, deep learning isn’t magic! The same 6 lines of code won’t work for every problem anyone can think of today. Underestimating the constraints and overestimating the capabilities of deep learning may lead to frustratingly poor results, at least until you gain some experience and can solve the problems that arise. Conversely, overestimating the constraints and underestimating the capabilities of deep learning may mean you do not attempt a solvable problem because you talk yourself out of it.

+

We often talk to people who underestimate both the constraints and the capabilities of deep learning. Both of these can be problems: underestimating the capabilities means that you might not even try things that could be very beneficial, and underestimating the constraints might mean that you fail to consider and react to important issues.

+

The best thing to do is to keep an open mind. If you remain open to the possibility that deep learning might solve part of your problem with less data or complexity than you expect, then it is possible to design a process where you can find the specific capabilities and constraints related to your particular problem as you work through the process. This doesn’t mean making any risky bets — we will show you how you can gradually roll out models so that they don’t create significant risks, and can even backtest them prior to putting them in production.

+
+

This is just a preview of this chapter. The rest of this chapter is not available here, but you read the source notebook which has the same content (but with less nice formatting).

+ + +
+ +
+ + +
+ + + + + \ No newline at end of file diff --git a/book20.html b/book20.html new file mode 100644 index 0000000..4d3f1be --- /dev/null +++ b/book20.html @@ -0,0 +1,758 @@ + + + + + + + + + +20  Concluding Thoughts – Practical Deep Learning for Coders + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ +
+ +
+ + +
+ + + +
+ +
+
+

20  Concluding Thoughts

+
+ + + +
+ + + + +
+ + + +
+ + +

Congratulations! You’ve made it! If you have worked through all of the notebooks to this point, then you have joined the small, but growing group of people that are able to harness the power of deep learning to solve real problems. You may not feel that way yet—in fact you probably don’t. We have seen again and again that students that complete the fast.ai courses dramatically underestimate how effective they are as deep learning practitioners. We’ve also seen that these people are often underestimated by others with a classic academic background. So if you are to rise above your own expectations and the expectations of others, what you do next, after closing this book, is even more important than what you’ve done to get to this point.

+

The most important thing is to keep the momentum going. In fact, as you know from your study of optimizers, momentum is something that can build upon itself! So think about what you can do now to maintain and accelerate your deep learning journey. Figure 20.1 can give you a few ideas.

+
+
+
+What to do next +
+
+Figure 20.1: What to do next +
+
+
+
+

This is just a preview of this chapter. The rest of this chapter is not available here, but you read the source notebook which has the same content (but with less nice formatting).

+ + + +
+ + +
+ + + + + \ No newline at end of file diff --git a/book3.html b/book3.html new file mode 100644 index 0000000..40f53ed --- /dev/null +++ b/book3.html @@ -0,0 +1,1186 @@ + + + + + + + + + +3  AI and Data Ethics – Practical Deep Learning for Coders + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ +
+ +
+ + +
+ + + +
+ +
+
+

3  AI and Data Ethics

+
+ + + +
+ + + + +
+ + + +
+ + + +
+

End sidebar

+

As we discussed in Chapters 1 and 2, sometimes machine learning models can go wrong. They can have bugs. They can be presented with data that they haven’t seen before, and behave in ways we don’t expect. Or they could work exactly as designed, but be used for something that we would much prefer they were never, ever used for.

+

Because deep learning is such a powerful tool and can be used for so many things, it becomes particularly important that we consider the consequences of our choices. The philosophical study of ethics is the study of right and wrong, including how we can define those terms, recognize right and wrong actions, and understand the connection between actions and consequences. The field of data ethics has been around for a long time, and there are many academics focused on this field. It is being used to help define policy in many jurisdictions; it is being used in companies big and small to consider how best to ensure good societal outcomes from product development; and it is being used by researchers who want to make sure that the work they are doing is used for good, and not for bad.

+

As a deep learning practitioner, therefore, it is likely that at some point you are going to be put in a situation where you need to consider data ethics. So what is data ethics? It’s a subfield of ethics, so let’s start there.

+
+

J: At university, philosophy of ethics was my main thing (it would have been the topic of my thesis, if I’d finished it, instead of dropping out to join the real world). Based on the years I spent studying ethics, I can tell you this: no one really agrees on what right and wrong are, whether they exist, how to spot them, which people are good, and which bad, or pretty much anything else. So don’t expect too much from the theory! We’re going to focus on examples and thought starters here, not theory.

+
+

In answering the question “What Is Ethics”, The Markkula Center for Applied Ethics says that the term refers to:

+
    +
  • Well-founded standards of right and wrong that prescribe what humans ought to do
  • +
  • The study and development of one’s ethical standards.
  • +
+

There is no list of right answers. There is no list of do and don’t. Ethics is complicated, and context-dependent. It involves the perspectives of many stakeholders. Ethics is a muscle that you have to develop and practice. In this chapter, our goal is to provide some signposts to help you on that journey.

+

Spotting ethical issues is best to do as part of a collaborative team. This is the only way you can really incorporate different perspectives. Different people’s backgrounds will help them to see things which may not be obvious to you. Working with a team is helpful for many “muscle-building” activities, including this one.

+

This chapter is certainly not the only part of the book where we talk about data ethics, but it’s good to have a place where we focus on it for a while. To get oriented, it’s perhaps easiest to look at a few examples. So, we picked out three that we think illustrate effectively some of the key topics.

+
+
+

3.1 Key Examples for Data Ethics

+

We are going to start with three specific examples that illustrate three common ethical issues in tech:

+
    +
  1. Recourse processes—Arkansas’s buggy healthcare algorithms left patients stranded.
  2. +
  3. Feedback loops—YouTube’s recommendation system helped unleash a conspiracy theory boom.
  4. +
  5. Bias—When a traditionally African-American name is searched for on Google, it displays ads for criminal background checks.
  6. +
+

In fact, for every concept that we introduce in this chapter, we are going to provide at least one specific example. For each one, think about what you could have done in this situation, and what kinds of obstructions there might have been to you getting that done. How would you deal with them? What would you look out for?

+
+

Bugs and Recourse: Buggy Algorithm Used for Healthcare Benefits

+

The Verge investigated software used in over half of the US states to determine how much healthcare people receive, and documented their findings in the article “What Happens When an Algorithm Cuts Your Healthcare”. After implementation of the algorithm in Arkansas, hundreds of people (many with severe disabilities) had their healthcare drastically cut. For instance, Tammy Dobbs, a woman with cerebral palsy who needs an aid to help her to get out of bed, to go to the bathroom, to get food, and more, had her hours of help suddenly reduced by 20 hours a week. She couldn’t get any explanation for why her healthcare was cut. Eventually, a court case revealed that there were mistakes in the software implementation of the algorithm, negatively impacting people with diabetes or cerebral palsy. However, Dobbs and many other people reliant on these healthcare benefits live in fear that their benefits could again be cut suddenly and inexplicably.

+
+
+

Feedback Loops: YouTube’s Recommendation System

+

Feedback loops can occur when your model is controlling the next round of data you get. The data that is returned quickly becomes flawed by the software itself.

+

For instance, YouTube has 1.9 billion users, who watch over 1 billion hours of YouTube videos a day. Its recommendation algorithm (built by Google), which was designed to optimize watch time, is responsible for around 70% of the content that is watched. But there was a problem: it led to out-of-control feedback loops, leading the New York Times to run the headline “YouTube Unleashed a Conspiracy Theory Boom. Can It Be Contained?”. Ostensibly recommendation systems are predicting what content people will like, but they also have a lot of power in determining what content people even see.

+
+
+

Bias: Professor Latanya Sweeney “Arrested”

+

Dr. Latanya Sweeney is a professor at Harvard and director of the university’s data privacy lab. In the paper “Discrimination in Online Ad Delivery” (see <>) she describes her discovery that Googling her name resulted in advertisements saying “Latanya Sweeney, arrested?” even though she is the only known Latanya Sweeney and has never been arrested. However when she Googled other names, such as “Kirsten Lindquist,” she got more neutral ads, even though Kirsten Lindquist has been arrested three times.

+

Screenshot of google search showing ads about Professor Latanya Sweeney's arrest record

+

Being a computer scientist, she studied this systematically, and looked at over 2000 names. She found a clear pattern where historically Black names received advertisements suggesting that the person had a criminal record, whereas, white names had more neutral advertisements.

+

This is an example of bias. It can make a big difference to people’s lives—for instance, if a job applicant is Googled it may appear that they have a criminal record when they do not.

+
+
+

Why Does This Matter?

+

One very natural reaction to considering these issues is: “So what? What’s that got to do with me? I’m a data scientist, not a politician. I’m not one of the senior executives at my company who make the decisions about what we do. I’m just trying to build the most predictive model I can.”

+

These are very reasonable questions. But we’re going to try to convince you that the answer is that everybody who is training models absolutely needs to consider how their models will be used, and consider how to best ensure that they are used as positively as possible. There are things you can do. And if you don’t do them, then things can go pretty badly.

+

One particularly hideous example of what happens when technologists focus on technology at all costs is the story of IBM and Nazi Germany. In 2001, a Swiss judge ruled that it was not unreasonable “to deduce that IBM’s technical assistance facilitated the tasks of the Nazis in the commission of their crimes against humanity, acts also involving accountancy and classification by IBM machines and utilized in the concentration camps themselves.”

+

IBM, you see, supplied the Nazis with data tabulation products necessary to track the extermination of Jews and other groups on a massive scale. This was driven from the top of the company, with marketing to Hitler and his leadership team. Company President Thomas Watson personally approved the 1939 release of special IBM alphabetizing machines to help organize the deportation of Polish Jews. Pictured in <> is Adolf Hitler (far left) meeting with IBM CEO Tom Watson Sr. (second from left), shortly before Hitler awarded Watson a special “Service to the Reich” medal in 1937.

+

A picture of IBM CEO Tom Watson Sr. meeting with Adolf Hitler

+

But this was not an isolated incident—the organization’s involvement was extensive. IBM and its subsidiaries provided regular training and maintenance onsite at the concentration camps: printing off cards, configuring machines, and repairing them as they broke frequently. IBM set up categorizations on its punch card system for the way that each person was killed, which group they were assigned to, and the logistical information necessary to track them through the vast Holocaust system. IBM’s code for Jews in the concentration camps was 8: some 6,000,000 were killed. Its code for Romanis was 12 (they were labeled by the Nazis as “asocials,” with over 300,000 killed in the Zigeunerlager, or “Gypsy camp”). General executions were coded as 4, death in the gas chambers as 6.

+

Picture of a punch card used by IBM in concentration camps

+

Of course, the project managers and engineers and technicians involved were just living their ordinary lives. Caring for their families, going to the church on Sunday, doing their jobs the best they could. Following orders. The marketers were just doing what they could to meet their business development goals. As Edwin Black, author of IBM and the Holocaust (Dialog Press) observed: “To the blind technocrat, the means were more important than the ends. The destruction of the Jewish people became even less important because the invigorating nature of IBM’s technical achievement was only heightened by the fantastical profits to be made at a time when bread lines stretched across the world.”

+

Step back for a moment and consider: How would you feel if you discovered that you had been part of a system that ended up hurting society? Would you be open to finding out? How can you help make sure this doesn’t happen? We have described the most extreme situation here, but there are many negative societal consequences linked to AI and machine learning being observed today, some of which we’ll describe in this chapter.

+

It’s not just a moral burden, either. Sometimes technologists pay very directly for their actions. For instance, the first person who was jailed as a result of the Volkswagen scandal, where the car company was revealed to have cheated on its diesel emissions tests, was not the manager that oversaw the project, or an executive at the helm of the company. It was one of the engineers, James Liang, who just did what he was told.

+

Of course, it’s not all bad—if a project you are involved in turns out to make a huge positive impact on even one person, this is going to make you feel pretty great!

+

Okay, so hopefully we have convinced you that you ought to care. But what should you do? As data scientists, we’re naturally inclined to focus on making our models better by optimizing some metric or other. But optimizing that metric may not actually lead to better outcomes. And even if it does help create better outcomes, it almost certainly won’t be the only thing that matters. Consider the pipeline of steps that occurs between the development of a model or an algorithm by a researcher or practitioner, and the point at which this work is actually used to make some decision. This entire pipeline needs to be considered as a whole if we’re to have a hope of getting the kinds of outcomes we want.

+

Normally there is a very long chain from one end to the other. This is especially true if you are a researcher, where you might not even know if your research will ever get used for anything, or if you’re involved in data collection, which is even earlier in the pipeline. But no one is better placed to inform everyone involved in this chain about the capabilities, constraints, and details of your work than you are. Although there’s no “silver bullet” that can ensure your work is used the right way, by getting involved in the process, and asking the right questions, you can at the very least ensure that the right issues are being considered.

+

Sometimes, the right response to being asked to do a piece of work is to just say “no.” Often, however, the response we hear is, “If I don’t do it, someone else will.” But consider this: if you’ve been picked for the job, you’re the best person they’ve found to do it—so if you don’t do it, the best person isn’t working on that project. If the first five people they ask all say no too, even better!

+
+
+
+

3.2 Integrating Machine Learning with Product Design

+

Presumably the reason you’re doing this work is because you hope it will be used for something. Otherwise, you’re just wasting your time. So, let’s start with the assumption that your work will end up somewhere. Now, as you are collecting your data and developing your model, you are making lots of decisions. What level of aggregation will you store your data at? What loss function should you use? What validation and training sets should you use? Should you focus on simplicity of implementation, speed of inference, or accuracy of the model? How will your model handle out-of-domain data items? Can it be fine-tuned, or must it be retrained from scratch over time?

+

These are not just algorithm questions. They are data product design questions. But the product managers, executives, judges, journalists, doctors… whoever ends up developing and using the system of which your model is a part will not be well-placed to understand the decisions that you made, let alone change them.

+

For instance, two studies found that Amazon’s facial recognition software produced inaccurate and racially biased results. Amazon claimed that the researchers should have changed the default parameters, without explaining how this would have changed the biased results. Furthermore, it turned out that Amazon was not instructing police departments that used its software to do this either. There was, presumably, a big distance between the researchers that developed these algorithms and the Amazon documentation staff that wrote the guidelines provided to the police. A lack of tight integration led to serious problems for society at large, the police, and Amazon themselves. It turned out that their system erroneously matched 28 members of congress to criminal mugshots! (And the Congresspeople wrongly matched to criminal mugshots were disproportionately people of color, as seen in <>.)

+

Picture of the congresspeople matched to criminal mugshots by Amazon software, they are disproportionately people of color

+

Data scientists need to be part of a cross-disciplinary team. And researchers need to work closely with the kinds of people who will end up using their research. Better still is if the domain experts themselves have learned enough to be able to train and debug some models themselves—hopefully there are a few of you reading this book right now!

+

The modern workplace is a very specialized place. Everybody tends to have well-defined jobs to perform. Especially in large companies, it can be hard to know what all the pieces of the puzzle are. Sometimes companies even intentionally obscure the overall project goals that are being worked on, if they know that their employees are not going to like the answers. This is sometimes done by compartmentalising pieces as much as possible.

+

In other words, we’re not saying that any of this is easy. It’s hard. It’s really hard. We all have to do our best. And we have often seen that the people who do get involved in the higher-level context of these projects, and attempt to develop cross-disciplinary capabilities and teams, become some of the most important and well rewarded members of their organizations. It’s the kind of work that tends to be highly appreciated by senior executives, even if it is sometimes considered rather uncomfortable by middle management.

+
+
+

3.3 Topics in Data Ethics

+

Data ethics is a big field, and we can’t cover everything. Instead, we’re going to pick a few topics that we think are particularly relevant:

+
    +
  • The need for recourse and accountability
  • +
  • Feedback loops
  • +
  • Bias
  • +
  • Disinformation
  • +
+

Let’s look at each in turn.

+
+

Recourse and Accountability

+

In a complex system, it is easy for no one person to feel responsible for outcomes. While this is understandable, it does not lead to good results. In the earlier example of the Arkansas healthcare system in which a bug led to people with cerebral palsy losing access to needed care, the creator of the algorithm blamed government officials, and government officials blamed those who implemented the software. NYU professor Danah Boyd described this phenomenon: “Bureaucracy has often been used to shift or evade responsibility… Today’s algorithmic systems are extending bureaucracy.”

+

An additional reason why recourse is so necessary is because data often contains errors. Mechanisms for audits and error correction are crucial. A database of suspected gang members maintained by California law enforcement officials was found to be full of errors, including 42 babies who had been added to the database when they were less than 1 year old (28 of whom were marked as “admitting to being gang members”). In this case, there was no process in place for correcting mistakes or removing people once they’d been added. Another example is the US credit report system: in a large-scale study of credit reports by the Federal Trade Commission (FTC) in 2012, it was found that 26% of consumers had at least one mistake in their files, and 5% had errors that could be devastating. Yet, the process of getting such errors corrected is incredibly slow and opaque. When public radio reporter Bobby Allyn discovered that he was erroneously listed as having a firearms conviction, it took him “more than a dozen phone calls, the handiwork of a county court clerk and six weeks to solve the problem. And that was only after I contacted the company’s communications department as a journalist.”

+

As machine learning practitioners, we do not always think of it as our responsibility to understand how our algorithms end up being implemented in practice. But we need to.

+
+
+

Feedback Loops

+

We explained in <> how an algorithm can interact with its environment to create a feedback loop, making predictions that reinforce actions taken in the real world, which lead to predictions even more pronounced in the same direction. As an example, let’s again consider YouTube’s recommendation system. A couple of years ago the Google team talked about how they had introduced reinforcement learning (closely related to deep learning, but where your loss function represents a result potentially a long time after an action occurs) to improve YouTube’s recommendation system. They described how they used an algorithm that made recommendations such that watch time would be optimized.

+

However, human beings tend to be drawn to controversial content. This meant that videos about things like conspiracy theories started to get recommended more and more by the recommendation system. Furthermore, it turns out that the kinds of people that are interested in conspiracy theories are also people that watch a lot of online videos! So, they started to get drawn more and more toward YouTube. The increasing number of conspiracy theorists watching videos on YouTube resulted in the algorithm recommending more and more conspiracy theory and other extremist content, which resulted in more extremists watching videos on YouTube, and more people watching YouTube developing extremist views, which led to the algorithm recommending more extremist content… The system was spiraling out of control.

+

And this phenomenon was not contained to this particular type of content. In June 2019 the New York Times published an article on YouTube’s recommendation system, titled “On YouTube’s Digital Playground, an Open Gate for Pedophiles”. The article started with this chilling story:

+
+

: Christiane C. didn’t think anything of it when her 10-year-old daughter and a friend uploaded a video of themselves playing in a backyard pool… A few days later… the video had thousands of views. Before long, it had ticked up to 400,000… “I saw the video again and I got scared by the number of views,” Christiane said. She had reason to be. YouTube’s automated recommendation system… had begun showing the video to users who watched other videos of prepubescent, partially clothed children, a team of researchers has found.

+
+
+

: On its own, each video might be perfectly innocent, a home movie, say, made by a child. Any revealing frames are fleeting and appear accidental. But, grouped together, their shared features become unmistakable.

+
+

YouTube’s recommendation algorithm had begun curating playlists for pedophiles, picking out innocent home videos that happened to contain prepubescent, partially clothed children.

+

No one at Google planned to create a system that turned family videos into porn for pedophiles. So what happened?

+

Part of the problem here is the centrality of metrics in driving a financially important system. When an algorithm has a metric to optimize, as you have seen, it will do everything it can to optimize that number. This tends to lead to all kinds of edge cases, and humans interacting with a system will search for, find, and exploit these edge cases and feedback loops for their advantage.

+

There are signs that this is exactly what has happened with YouTube’s recommendation system. The Guardian ran an article called “How an ex-YouTube Insider Investigated its Secret Algorithm” about Guillaume Chaslot, an ex-YouTube engineer who created AlgoTransparency, which tracks these issues. Chaslot published the chart in <>, following the release of Robert Mueller’s “Report on the Investigation Into Russian Interference in the 2016 Presidential Election.”

+

Coverage of the Mueller report

+

Russia Today’s coverage of the Mueller report was an extreme outlier in terms of how many channels were recommending it. This suggests the possibility that Russia Today, a state-owned Russia media outlet, has been successful in gaming YouTube’s recommendation algorithm. Unfortunately, the lack of transparency of systems like this makes it hard to uncover the kinds of problems that we’re discussing.

+

One of our reviewers for this book, Aurélien Géron, led YouTube’s video classification team from 2013 to 2016 (well before the events discussed here). He pointed out that it’s not just feedback loops involving humans that are a problem. There can also be feedback loops without humans! He told us about an example from YouTube:

+
+

: One important signal to classify the main topic of a video is the channel it comes from. For example, a video uploaded to a cooking channel is very likely to be a cooking video. But how do we know what topic a channel is about? Well… in part by looking at the topics of the videos it contains! Do you see the loop? For example, many videos have a description which indicates what camera was used to shoot the video. As a result, some of these videos might get classified as videos about “photography.” If a channel has such a misclassified video, it might be classified as a “photography” channel, making it even more likely for future videos on this channel to be wrongly classified as “photography.” This could even lead to runaway virus-like classifications! One way to break this feedback loop is to classify videos with and without the channel signal. Then when classifying the channels, you can only use the classes obtained without the channel signal. This way, the feedback loop is broken.

+
+

There are positive examples of people and organizations attempting to combat these problems. Evan Estola, lead machine learning engineer at Meetup, discussed the example of men expressing more interest than women in tech meetups. taking gender into account could therefore cause Meetup’s algorithm to recommend fewer tech meetups to women, and as a result, fewer women would find out about and attend tech meetups, which could cause the algorithm to suggest even fewer tech meetups to women, and so on in a self-reinforcing feedback loop. So, Evan and his team made the ethical decision for their recommendation algorithm to not create such a feedback loop, by explicitly not using gender for that part of their model. It is encouraging to see a company not just unthinkingly optimize a metric, but consider its impact. According to Evan, “You need to decide which feature not to use in your algorithm… the most optimal algorithm is perhaps not the best one to launch into production.”

+

While Meetup chose to avoid such an outcome, Facebook provides an example of allowing a runaway feedback loop to run wild. Like YouTube, it tends to radicalize users interested in one conspiracy theory by introducing them to more. As Renee DiResta, a researcher on proliferation of disinformation, writes:

+
+

: Once people join a single conspiracy-minded [Facebook] group, they are algorithmically routed to a plethora of others. Join an anti-vaccine group, and your suggestions will include anti-GMO, chemtrail watch, flat Earther (yes, really), and “curing cancer naturally groups. Rather than pulling a user out of the rabbit hole, the recommendation engine pushes them further in.”

+
+

It is extremely important to keep in mind that this kind of behavior can happen, and to either anticipate a feedback loop or take positive action to break it when you see the first signs of it in your own projects. Another thing to keep in mind is bias, which, as we discussed briefly in the previous chapter, can interact with feedback loops in very troublesome ways.

+
+
+

Bias

+

Discussions of bias online tend to get pretty confusing pretty fast. The word “bias” means so many different things. Statisticians often think when data ethicists are talking about bias that they’re talking about the statistical definition of the term bias. But they’re not. And they’re certainly not talking about the biases that appear in the weights and biases which are the parameters of your model!

+

What they’re talking about is the social science concept of bias. In “A Framework for Understanding Unintended Consequences of Machine Learning” MIT’s Harini Suresh and John Guttag describe six types of bias in machine learning, summarized in <> from their paper.

+

A diagram showing all sources where bias can appear in machine learning

+

We’ll discuss four of these types of bias, those that we’ve found most helpful in our own work (see the paper for details on the others).

+
+

Historical bias

+

Historical bias comes from the fact that people are biased, processes are biased, and society is biased. Suresh and Guttag say: “Historical bias is a fundamental, structural issue with the first step of the data generation process and can exist even given perfect sampling and feature selection.”

+

For instance, here are a few examples of historical race bias in the US, from the New York Times article “Racial Bias, Even When We Have Good Intentions” by the University of Chicago’s Sendhil Mullainathan:

+
    +
  • When doctors were shown identical files, they were much less likely to recommend cardiac catheterization (a helpful procedure) to Black patients.
  • +
  • When bargaining for a used car, Black people were offered initial prices $700 higher and received far smaller concessions.
  • +
  • Responding to apartment rental ads on Craigslist with a Black name elicited fewer responses than with a white name.
  • +
  • An all-white jury was 16 percentage points more likely to convict a Black defendant than a white one, but when a jury had one Black member it convicted both at the same rate.
  • +
+

The COMPAS algorithm, widely used for sentencing and bail decisions in the US, is an example of an important algorithm that, when tested by ProPublica, showed clear racial bias in practice (<>).

+

Table showing the COMPAS algorithm is more likely to give bail to white people, even if they re-offend more

+

Any dataset involving humans can have this kind of bias: medical data, sales data, housing data, political data, and so on. Because underlying bias is so pervasive, bias in datasets is very pervasive. Racial bias even turns up in computer vision, as shown in the example of autocategorized photos shared on Twitter by a Google Photos user shown in <>.

+

Screenshot of the use of Google photos labeling a black user and her friend as gorillas

+

Yes, that is showing what you think it is: Google Photos classified a Black user’s photo with their friend as “gorillas”! This algorithmic misstep got a lot of attention in the media. “We’re appalled and genuinely sorry that this happened,” a company spokeswoman said. “There is still clearly a lot of work to do with automatic image labeling, and we’re looking at how we can prevent these types of mistakes from happening in the future.”

+

Unfortunately, fixing problems in machine learning systems when the input data has problems is hard. Google’s first attempt didn’t inspire confidence, as coverage by The Guardian suggested (<>).

+

Pictures of a headlines from the Guardian, showing Google removed gorillas and other moneys from the possible labels of its algorithm

+

These kinds of problems are certainly not limited to just Google. MIT researchers studied the most popular online computer vision APIs to see how accurate they were. But they didn’t just calculate a single accuracy number—instead, they looked at the accuracy across four different groups, as illustrated in <>.

+

Table showing how various facial recognition systems perform way worse on darker shades of skin and females

+

IBM’s system, for instance, had a 34.7% error rate for darker females, versus 0.3% for lighter males—over 100 times more errors! Some people incorrectly reacted to these experiments by claiming that the difference was simply because darker skin is harder for computers to recognize. However, what actually happened was that, after the negative publicity that this result created, all of the companies in question dramatically improved their models for darker skin, such that one year later they were nearly as good as for lighter skin. So what this actually showed is that the developers failed to utilize datasets containing enough darker faces, or test their product with darker faces.

+

One of the MIT researchers, Joy Buolamwini, warned: “We have entered the age of automation overconfident yet underprepared. If we fail to make ethical and inclusive artificial intelligence, we risk losing gains made in civil rights and gender equity under the guise of machine neutrality.”

+

Part of the issue appears to be a systematic imbalance in the makeup of popular datasets used for training models. The abstract to the paper “No Classification Without Representation: Assessing Geodiversity Issues in Open Data Sets for the Developing World” by Shreya Shankar et al. states, “We analyze two large, publicly available image data sets to assess geo-diversity and find that these data sets appear to exhibit an observable amerocentric and eurocentric representation bias. Further, we analyze classifiers trained on these data sets to assess the impact of these training distributions and find strong differences in the relative performance on images from different locales.” <> shows one of the charts from the paper, showing the geographic makeup of what was, at the time (and still are, as this book is being written) the two most important image datasets for training models.

+

Graphs showing how the vast majority of images in popular training datasets come from the US or Western Europe

+

The vast majority of the images are from the United States and other Western countries, leading to models trained on ImageNet performing worse on scenes from other countries and cultures. For instance, research found that such models are worse at identifying household items (such as soap, spices, sofas, or beds) from lower-income countries. <> shows an image from the paper, “Does Object Recognition Work for Everyone?” by Terrance DeVries et al. of Facebook AI Research that illustrates this point.

+

Figure showing an object detection algorithm performing better on western products

+

In this example, we can see that the lower-income soap example is a very long way away from being accurate, with every commercial image recognition service predicting “food” as the most likely answer!

+

As we will discuss shortly, in addition, the vast majority of AI researchers and developers are young white men. Most projects that we have seen do most user testing using friends and families of the immediate product development group. Given this, the kinds of problems we just discussed should not be surprising.

+

Similar historical bias is found in the texts used as data for natural language processing models. This crops up in downstream machine learning tasks in many ways. For instance, it was widely reported that until last year Google Translate showed systematic bias in how it translated the Turkish gender-neutral pronoun “o” into English: when applied to jobs which are often associated with males it used “he,” and when applied to jobs which are often associated with females it used “she” (<>).

+

Figure showing gender bias in data sets used to train language models showing up in translations

+

We also see this kind of bias in online advertisements. For instance, a study in 2019 by Muhammad Ali et al. found that even when the person placing the ad does not intentionally discriminate, Facebook will show ads to very different audiences based on race and gender. Housing ads with the same text, but picture either a white or a Black family, were shown to racially different audiences.

+
+
+

Measurement bias

+

In the paper “Does Machine Learning Automate Moral Hazard and Error” in American Economic Review, Sendhil Mullainathan and Ziad Obermeyer look at a model that tries to answer the question: using historical electronic health record (EHR) data, what factors are most predictive of stroke? These are the top predictors from the model:

+
    +
  • Prior stroke
  • +
  • Cardiovascular disease
  • +
  • Accidental injury
  • +
  • Benign breast lump
  • +
  • Colonoscopy
  • +
  • Sinusitis
  • +
+

However, only the top two have anything to do with a stroke! Based on what we’ve studied so far, you can probably guess why. We haven’t really measured stroke, which occurs when a region of the brain is denied oxygen due to an interruption in the blood supply. What we’ve measured is who had symptoms, went to a doctor, got the appropriate tests, and received a diagnosis of stroke. Actually having a stroke is not the only thing correlated with this complete list—it’s also correlated with being the kind of person who actually goes to the doctor (which is influenced by who has access to healthcare, can afford their co-pay, doesn’t experience racial or gender-based medical discrimination, and more)! If you are likely to go to the doctor for an accidental injury, then you are likely to also go the doctor when you are having a stroke.

+

This is an example of measurement bias. It occurs when our models make mistakes because we are measuring the wrong thing, or measuring it in the wrong way, or incorporating that measurement into the model inappropriately.

+
+
+

Aggregation bias

+

Aggregation bias occurs when models do not aggregate data in a way that incorporates all of the appropriate factors, or when a model does not include the necessary interaction terms, nonlinearities, or so forth. This can particularly occur in medical settings. For instance, the way diabetes is treated is often based on simple univariate statistics and studies involving small groups of heterogeneous people. Analysis of results is often done in a way that does not take account of different ethnicities or genders. However, it turns out that diabetes patients have different complications across ethnicities, and HbA1c levels (widely used to diagnose and monitor diabetes) differ in complex ways across ethnicities and genders. This can result in people being misdiagnosed or incorrectly treated because medical decisions are based on a model that does not include these important variables and interactions.

+
+
+

Representation bias

+

The abstract of the paper “Bias in Bios: A Case Study of Semantic Representation Bias in a High-Stakes Setting” by Maria De-Arteaga et al. notes that there is gender imbalance in occupations (e.g., females are more likely to be nurses, and males are more likely to be pastors), and says that: “differences in true positive rates between genders are correlated with existing gender imbalances in occupations, which may compound these imbalances.”

+

In other words, the researchers noticed that models predicting occupation did not only reflect the actual gender imbalance in the underlying population, but actually amplified it! This type of representation bias is quite common, particularly for simple models. When there is some clear, easy-to-see underlying relationship, a simple model will often simply assume that this relationship holds all the time. As <> from the paper shows, for occupations that had a higher percentage of females, the model tended to overestimate the prevalence of that occupation.

+

Graph showing how model predictions overamplify existing bias

+

For example, in the training dataset 14.6% of surgeons were women, yet in the model predictions only 11.6% of the true positives were women. The model is thus amplifying the bias existing in the training set.

+

Now that we’ve seen that those biases exist, what can we do to mitigate them?

+
+
+
+

Addressing different types of bias

+

Different types of bias require different approaches for mitigation. While gathering a more diverse dataset can address representation bias, this would not help with historical bias or measurement bias. All datasets contain bias. There is no such thing as a completely debiased dataset. Many researchers in the field have been converging on a set of proposals to enable better documentation of the decisions, context, and specifics about how and why a particular dataset was created, what scenarios it is appropriate to use in, and what the limitations are. This way, those using a particular dataset will not be caught off guard by its biases and limitations.

+

We often hear the question—“Humans are biased, so does algorithmic bias even matter?” This comes up so often, there must be some reasoning that makes sense to the people that ask it, but it doesn’t seem very logically sound to us! Independently of whether this is logically sound, it’s important to realize that algorithms (particularly machine learning algorithms!) and people are different. Consider these points about machine learning algorithms:

+
    +
  • Machine learning can create feedback loops:: Small amounts of bias can rapidly increase exponentially due to feedback loops.
  • +
  • Machine learning can amplify bias:: Human bias can lead to larger amounts of machine learning bias.
  • +
  • Algorithms & humans are used differently:: Human decision makers and algorithmic decision makers are not used in a plug-and-play interchangeable way in practice.
  • +
  • Technology is power:: And with that comes responsibility.
  • +
+

As the Arkansas healthcare example showed, machine learning is often implemented in practice not because it leads to better outcomes, but because it is cheaper and more efficient. Cathy O’Neill, in her book Weapons of Math Destruction (Crown), described the pattern of how the privileged are processed by people, whereas the poor are processed by algorithms. This is just one of a number of ways that algorithms are used differently than human decision makers. Others include:

+
    +
  • People are more likely to assume algorithms are objective or error-free (even if they’re given the option of a human override).
  • +
  • Algorithms are more likely to be implemented with no appeals process in place.
  • +
  • Algorithms are often used at scale.
  • +
  • Algorithmic systems are cheap.
  • +
+

Even in the absence of bias, algorithms (and deep learning especially, since it is such an effective and scalable algorithm) can lead to negative societal problems, such as when used for disinformation.

+
+
+

Disinformation

+

Disinformation has a history stretching back hundreds or even thousands of years. It is not necessarily about getting someone to believe something false, but rather often used to sow disharmony and uncertainty, and to get people to give up on seeking the truth. Receiving conflicting accounts can lead people to assume that they can never know whom or what to trust.

+

Some people think disinformation is primarily about false information or fake news, but in reality, disinformation can often contain seeds of truth, or half-truths taken out of context. Ladislav Bittman was an intelligence officer in the USSR who later defected to the US and wrote some books in the 1970s and 1980s on the role of disinformation in Soviet propaganda operations. In The KGB and Soviet Disinformation (Pergamon) he wrote, “Most campaigns are a carefully designed mixture of facts, half-truths, exaggerations, and deliberate lies.”

+

In the US this has hit close to home in recent years, with the FBI detailing a massive disinformation campaign linked to Russia in the 2016 election. Understanding the disinformation that was used in this campaign is very educational. For instance, the FBI found that the Russian disinformation campaign often organized two separate fake “grass roots” protests, one for each side of an issue, and got them to protest at the same time! The Houston Chronicle reported on one of these odd events (<>).

+
+

: A group that called itself the “Heart of Texas” had organized it on social media—a protest, they said, against the “Islamization” of Texas. On one side of Travis Street, I found about 10 protesters. On the other side, I found around 50 counterprotesters. But I couldn’t find the rally organizers. No “Heart of Texas.” I thought that was odd, and mentioned it in the article: What kind of group is a no-show at its own event? Now I know why. Apparently, the rally’s organizers were in Saint Petersburg, Russia, at the time. “Heart of Texas” is one of the internet troll groups cited in Special Prosecutor Robert Mueller’s recent indictment of Russians attempting to tamper with the U.S. presidential election.

+
+

Screenshot of an event organized by the group Heart of Texas

+

Disinformation often involves coordinated campaigns of inauthentic behavior. For instance, fraudulent accounts may try to make it seem like many people hold a particular viewpoint. While most of us like to think of ourselves as independent-minded, in reality we evolved to be influenced by others in our in-group, and in opposition to those in our out-group. Online discussions can influence our viewpoints, or alter the range of what we consider acceptable viewpoints. Humans are social animals, and as social animals we are extremely influenced by the people around us. Increasingly, radicalization occurs in online environments; influence is coming from people in the virtual space of online forums and social networks.

+

Disinformation through autogenerated text is a particularly significant issue, due to the greatly increased capability provided by deep learning. We discuss this issue in depth when we delve into creating language models, in <>.

+

One proposed approach is to develop some form of digital signature, to implement it in a seamless way, and to create norms that we should only trust content that has been verified. The head of the Allen Institute on AI, Oren Etzioni, wrote such a proposal in an article titled “How Will We Prevent AI-Based Forgery?”: “AI is poised to make high-fidelity forgery inexpensive and automated, leading to potentially disastrous consequences for democracy, security, and society. The specter of AI forgery means that we need to act to make digital signatures de rigueur as a means of authentication of digital content.”

+

Whilst we can’t hope to discuss all the ethical issues that deep learning, and algorithms more generally, brings up, hopefully this brief introduction has been a useful starting point you can build on. We’ll now move on to the questions of how to identify ethical issues, and what to do about them.

+
+
+
+

3.4 Identifying and Addressing Ethical Issues

+

Mistakes happen. Finding out about them, and dealing with them, needs to be part of the design of any system that includes machine learning (and many other systems too). The issues raised within data ethics are often complex and interdisciplinary, but it is crucial that we work to address them.

+

So what can we do? This is a big topic, but a few steps towards addressing ethical issues are:

+
    +
  • Analyze a project you are working on.
  • +
  • Implement processes at your company to find and address ethical risks.
  • +
  • Support good policy.
  • +
  • Increase diversity.
  • +
+

Let’s walk through each of these steps, starting with analyzing a project you are working on.

+
+

Analyze a Project You Are Working On

+

It’s easy to miss important issues when considering ethical implications of your work. One thing that helps enormously is simply asking the right questions. Rachel Thomas recommends considering the following questions throughout the development of a data project:

+
    +
  • Should we even be doing this?
  • +
  • What bias is in the data?
  • +
  • Can the code and data be audited?
  • +
  • What are the error rates for different sub-groups?
  • +
  • What is the accuracy of a simple rule-based alternative?
  • +
  • What processes are in place to handle appeals or mistakes?
  • +
  • How diverse is the team that built it?
  • +
+

These questions may be able to help you identify outstanding issues, and possible alternatives that are easier to understand and control. In addition to asking the right questions, it’s also important to consider practices and processes to implement.

+

One thing to consider at this stage is what data you are collecting and storing. Data often ends up being used for different purposes than what it was originally collected for. For instance, IBM began selling to Nazi Germany well before the Holocaust, including helping with Germany’s 1933 census conducted by Adolf Hitler, which was effective at identifying far more Jewish people than had previously been recognized in Germany. Similarly, US census data was used to round up Japanese-Americans (who were US citizens) for internment during World War II. It is important to recognize how data and images collected can be weaponized later. Columbia professor Tim Wu wrote that “You must assume that any personal data that Facebook or Android keeps are data that governments around the world will try to get or that thieves will try to steal.”

+
+
+

Processes to Implement

+

The Markkula Center has released An Ethical Toolkit for Engineering/Design Practice that includes some concrete practices to implement at your company, including regularly scheduled sweeps to proactively search for ethical risks (in a manner similar to cybersecurity penetration testing), expanding the ethical circle to include the perspectives of a variety of stakeholders, and considering the terrible people (how could bad actors abuse, steal, misinterpret, hack, destroy, or weaponize what you are building?).

+

Even if you don’t have a diverse team, you can still try to pro-actively include the perspectives of a wider group, considering questions such as these (provided by the Markkula Center):

+
    +
  • Whose interests, desires, skills, experiences, and values have we simply assumed, rather than actually consulted?
  • +
  • Who are all the stakeholders who will be directly affected by our product? How have their interests been protected? How do we know what their interests really are—have we asked?
  • +
  • Who/which groups and individuals will be indirectly affected in significant ways?
  • +
  • Who might use this product that we didn’t expect to use it, or for purposes we didn’t initially intend?
  • +
+
+

Ethical lenses

+

Another useful resource from the Markkula Center is its Conceptual Frameworks in Technology and Engineering Practice. This considers how different foundational ethical lenses can help identify concrete issues, and lays out the following approaches and key questions:

+
    +
  • The rights approach:: Which option best respects the rights of all who have a stake?
  • +
  • The justice approach:: Which option treats people equally or proportionately?
  • +
  • The utilitarian approach:: Which option will produce the most good and do the least harm?
  • +
  • The common good approach:: Which option best serves the community as a whole, not just some members?
  • +
  • The virtue approach:: Which option leads me to act as the sort of person I want to be?
  • +
+

Markkula’s recommendations include a deeper dive into each of these perspectives, including looking at a project through the lenses of its consequences:

+
    +
  • Who will be directly affected by this project? Who will be indirectly affected?
  • +
  • Will the effects in aggregate likely create more good than harm, and what types of good and harm?
  • +
  • Are we thinking about all relevant types of harm/benefit (psychological, political, environmental, moral, cognitive, emotional, institutional, cultural)?
  • +
  • How might future generations be affected by this project?
  • +
  • Do the risks of harm from this project fall disproportionately on the least powerful in society? Will the benefits go disproportionately to the well-off?
  • +
  • Have we adequately considered “dual-use”?
  • +
+

The alternative lens to this is the deontological perspective, which focuses on basic concepts of right and wrong:

+
    +
  • What rights of others and duties to others must we respect?
  • +
  • How might the dignity and autonomy of each stakeholder be impacted by this project?
  • +
  • What considerations of trust and of justice are relevant to this design/project?
  • +
  • Does this project involve any conflicting moral duties to others, or conflicting stakeholder rights? How can we prioritize these?
  • +
+

One of the best ways to help come up with complete and thoughtful answers to questions like these is to ensure that the people asking the questions are diverse.

+
+
+
+

The Power of Diversity

+

Currently, less than 12% of AI researchers are women, according to a study from Element AI. The statistics are similarly dire when it comes to race and age. When everybody on a team has similar backgrounds, they are likely to have similar blindspots around ethical risks. The Harvard Business Review (HBR) has published a number of studies showing many benefits of diverse teams, including:

+ +

Diversity can lead to problems being identified earlier, and a wider range of solutions being considered. For instance, Tracy Chou was an early engineer at Quora. She wrote of her experiences, describing how she advocated internally for adding a feature that would allow trolls and other bad actors to be blocked. Chou recounts, “I was eager to work on the feature because I personally felt antagonized and abused on the site (gender isn’t an unlikely reason as to why)… But if I hadn’t had that personal perspective, it’s possible that the Quora team wouldn’t have prioritized building a block button so early in its existence.” Harassment often drives people from marginalized groups off online platforms, so this functionality has been important for maintaining the health of Quora’s community.

+

A crucial aspect to understand is that women leave the tech industry at over twice the rate that men do, according to the Harvard Business Review (41% of women working in tech leave, compared to 17% of men). An analysis of over 200 books, white papers, and articles found that the reason they leave is that “they’re treated unfairly; underpaid, less likely to be fast-tracked than their male colleagues, and unable to advance.”

+

Studies have confirmed a number of the factors that make it harder for women to advance in the workplace. Women receive more vague feedback and personality criticism in performance evaluations, whereas men receive actionable advice tied to business outcomes (which is more useful). Women frequently experience being excluded from more creative and innovative roles, and not receiving high-visibility “stretch” assignments that are helpful in getting promoted. One study found that men’s voices are perceived as more persuasive, fact-based, and logical than women’s voices, even when reading identical scripts.

+

Receiving mentorship has been statistically shown to help men advance, but not women. The reason behind this is that when women receive mentorship, it’s advice on how they should change and gain more self-knowledge. When men receive mentorship, it’s public endorsement of their authority. Guess which is more useful in getting promoted?

+

As long as qualified women keep dropping out of tech, teaching more girls to code will not solve the diversity issues plaguing the field. Diversity initiatives often end up focusing primarily on white women, even though women of color face many additional barriers. In interviews with 60 women of color who work in STEM research, 100% had experienced discrimination.

+

The hiring process is particularly broken in tech. One study indicative of the dysfunction comes from Triplebyte, a company that helps place software engineers in companies, conducting a standardized technical interview as part of this process. They have a fascinating dataset: the results of how over 300 engineers did on their exam, coupled with the results of how those engineers did during the interview process for a variety of companies. The number one finding from Triplebyte’s research is that “the types of programmers that each company looks for often have little to do with what the company needs or does. Rather, they reflect company culture and the backgrounds of the founders.”

+

This is a challenge for those trying to break into the world of deep learning, since most companies’ deep learning groups today were founded by academics. These groups tend to look for people “like them”—that is, people that can solve complex math problems and understand dense jargon. They don’t always know how to spot people who are actually good at solving real problems using deep learning.

+

This leaves a big opportunity for companies that are ready to look beyond status and pedigree, and focus on results!

+
+
+

Fairness, Accountability, and Transparency

+

The professional society for computer scientists, the ACM, runs a data ethics conference called the Conference on Fairness, Accountability, and Transparency. “Fairness, Accountability, and Transparency” which used to go under the acronym FAT but now uses to the less objectionable FAccT. Microsoft has a group focused on “Fairness, Accountability, Transparency, and Ethics” (FATE). In this section, we’ll use “FAccT” to refer to the concepts of Fairness, Accountability, and Transparency.

+

FAccT is another lens that you may find useful in considering ethical issues. One useful resource for this is the free online book Fairness and Machine Learning: Limitations and Opportunities by Solon Barocas, Moritz Hardt, and Arvind Narayanan, which “gives a perspective on machine learning that treats fairness as a central concern rather than an afterthought.” It also warns, however, that it “is intentionally narrow in scope… A narrow framing of machine learning ethics might be tempting to technologists and businesses as a way to focus on technical interventions while sidestepping deeper questions about power and accountability. We caution against this temptation.” Rather than provide an overview of the FAccT approach to ethics (which is better done in books such as that one), our focus here will be on the limitations of this kind of narrow framing.

+

One great way to consider whether an ethical lens is complete is to try to come up with an example where the lens and our own ethical intuitions give diverging results. Os Keyes, Jevan Hutson, and Meredith Durbin explored this in a graphic way in their paper “A Mulching Proposal: Analysing and Improving an Algorithmic System for Turning the Elderly into High-Nutrient Slurry”. The paper’s abstract says:

+
+

: The ethical implications of algorithmic systems have been much discussed in both HCI and the broader community of those interested in technology design, development and policy. In this paper, we explore the application of one prominent ethical framework - Fairness, Accountability, and Transparency - to a proposed algorithm that resolves various societal issues around food security and population aging. Using various standardised forms of algorithmic audit and evaluation, we drastically increase the algorithm’s adherence to the FAT framework, resulting in a more ethical and beneficent system. We discuss how this might serve as a guide to other researchers or practitioners looking to ensure better ethical outcomes from algorithmic systems in their line of work.

+
+

In this paper, the rather controversial proposal (“Turning the Elderly into High-Nutrient Slurry”) and the results (“drastically increase the algorithm’s adherence to the FAT framework, resulting in a more ethical and beneficent system”) are at odds… to say the least!

+

In philosophy, and especially philosophy of ethics, this is one of the most effective tools: first, come up with a process, definition, set of questions, etc., which is designed to resolve some problem. Then try to come up with an example where that apparent solution results in a proposal that no one would consider acceptable. This can then lead to a further refinement of the solution.

+

So far, we’ve focused on things that you and your organization can do. But sometimes individual or organizational action is not enough. Sometimes, governments also need to consider policy implications.

+
+
+
+

3.5 Role of Policy

+

We often talk to people who are eager for technical or design fixes to be a full solution to the kinds of problems that we’ve been discussing; for instance, a technical approach to debias data, or design guidelines for making technology less addictive. While such measures can be useful, they will not be sufficient to address the underlying problems that have led to our current state. For example, as long as it is incredibly profitable to create addictive technology, companies will continue to do so, regardless of whether this has the side effect of promoting conspiracy theories and polluting our information ecosystem. While individual designers may try to tweak product designs, we will not see substantial changes until the underlying profit incentives change.

+
+

The Effectiveness of Regulation

+

To look at what can cause companies to take concrete action, consider the following two examples of how Facebook has behaved. In 2018, a UN investigation found that Facebook had played a “determining role” in the ongoing genocide of the Rohingya, an ethnic minority in Mynamar described by UN Secretary-General Antonio Guterres as “one of, if not the, most discriminated people in the world.” Local activists had been warning Facebook executives that their platform was being used to spread hate speech and incite violence since as early as 2013. In 2015, they were warned that Facebook could play the same role in Myanmar that the radio broadcasts played during the Rwandan genocide (where a million people were killed). Yet, by the end of 2015, Facebook only employed four contractors that spoke Burmese. As one person close to the matter said, “That’s not 20/20 hindsight. The scale of this problem was significant and it was already apparent.” Zuckerberg promised during the congressional hearings to hire “dozens” to address the genocide in Myanmar (in 2018, years after the genocide had begun, including the destruction by fire of at least 288 villages in northern Rakhine state after August 2017).

+

This stands in stark contrast to Facebook quickly hiring 1,200 people in Germany to try to avoid expensive penalties (of up to 50 million euros) under a new German law against hate speech. Clearly, in this case, Facebook was more reactive to the threat of a financial penalty than to the systematic destruction of an ethnic minority.

+

In an article on privacy issues, Maciej Ceglowski draws parallels with the environmental movement:

+
+

: This regulatory project has been so successful in the First World that we risk forgetting what life was like before it. Choking smog of the kind that today kills thousands in Jakarta and Delhi was https://en.wikipedia.org/wiki/Pea_soup_fog[once emblematic of London]. The Cuyahoga River in Ohio used to http://www.ohiohistorycentral.org/w/Cuyahoga_River_Fire[reliably catch fire]. In a particularly horrific example of unforeseen consequences, tetraethyl lead added to gasoline https://en.wikipedia.org/wiki/Lead%E2%80%93crime_hypothesis[raised violent crime rates] worldwide for fifty years. None of these harms could have been fixed by telling people to vote with their wallet, or carefully review the environmental policies of every company they gave their business to, or to stop using the technologies in question. It took coordinated, and sometimes highly technical, regulation across jurisdictional boundaries to fix them. In some cases, like the https://en.wikipedia.org/wiki/Montreal_Protocol[ban on commercial refrigerants] that depleted the ozone layer, that regulation required a worldwide consensus. We’re at the point where we need a similar shift in perspective in our privacy law.

+
+
+
+

Rights and Policy

+

Clean air and clean drinking water are public goods which are nearly impossible to protect through individual market decisions, but rather require coordinated regulatory action. Similarly, many of the harms resulting from unintended consequences of misuses of technology involve public goods, such as a polluted information environment or deteriorated ambient privacy. Too often privacy is framed as an individual right, yet there are societal impacts to widespread surveillance (which would still be the case even if it was possible for a few individuals to opt out).

+

Many of the issues we are seeing in tech are actually human rights issues, such as when a biased algorithm recommends that Black defendants have longer prison sentences, when particular job ads are only shown to young people, or when police use facial recognition to identify protesters. The appropriate venue to address human rights issues is typically through the law.

+

We need both regulatory and legal changes, and the ethical behavior of individuals. Individual behavior change can’t address misaligned profit incentives, externalities (where corporations reap large profits while offloading their costs and harms to the broader society), or systemic failures. However, the law will never cover all edge cases, and it is important that individual software developers and data scientists are equipped to make ethical decisions in practice.

+
+
+

Cars: A Historical Precedent

+

The problems we are facing are complex, and there are no simple solutions. This can be discouraging, but we find hope in considering other large challenges that people have tackled throughout history. One example is the movement to increase car safety, covered as a case study in “Datasheets for Datasets” by Timnit Gebru et al. and in the design podcast 99% Invisible. Early cars had no seatbelts, metal knobs on the dashboard that could lodge in people’s skulls during a crash, regular plate glass windows that shattered in dangerous ways, and non-collapsible steering columns that impaled drivers. However, car companies were incredibly resistant to even discussing the idea of safety as something they could help address, and the widespread belief was that cars are just the way they are, and that it was the people using them who caused problems.

+

It took consumer safety activists and advocates decades of work to even change the national conversation to consider that perhaps car companies had some responsibility which should be addressed through regulation. When the collapsible steering column was invented, it was not implemented for several years as there was no financial incentive to do so. Major car company General Motors hired private detectives to try to dig up dirt on consumer safety advocate Ralph Nader. The requirement of seatbelts, crash test dummies, and collapsible steering columns were major victories. It was only in 2011 that car companies were required to start using crash test dummies that would represent the average woman, and not just average men’s bodies; prior to this, women were 40% more likely to be injured in a car crash of the same impact compared to a man. This is a vivid example of the ways that bias, policy, and technology have important consequences.

+
+
+
+

3.6 Conclusion

+

Coming from a background of working with binary logic, the lack of clear answers in ethics can be frustrating at first. Yet, the implications of how our work impacts the world, including unintended consequences and the work becoming weaponized by bad actors, are some of the most important questions we can (and should!) consider. Even though there aren’t any easy answers, there are definite pitfalls to avoid and practices to follow to move toward more ethical behavior.

+

Many people (including us!) are looking for more satisfying, solid answers about how to address harmful impacts of technology. However, given the complex, far-reaching, and interdisciplinary nature of the problems we are facing, there are no simple solutions. Julia Angwin, former senior reporter at ProPublica who focuses on issues of algorithmic bias and surveillance (and one of the 2016 investigators of the COMPAS recidivism algorithm that helped spark the field of FAccT) said in a 2019 interview:

+
+

: I strongly believe that in order to solve a problem, you have to diagnose it, and that we’re still in the diagnosis phase of this. If you think about the turn of the century and industrialization, we had, I don’t know, 30 years of child labor, unlimited work hours, terrible working conditions, and it took a lot of journalist muckraking and advocacy to diagnose the problem and have some understanding of what it was, and then the activism to get laws changed. I feel like we’re in a second industrialization of data information… I see my role as trying to make as clear as possible what the downsides are, and diagnosing them really accurately so that they can be solvable. That’s hard work, and lots more people need to be doing it.

+
+

It’s reassuring that Angwin thinks we are largely still in the diagnosis phase: if your understanding of these problems feels incomplete, that is normal and natural. Nobody has a “cure” yet, although it is vital that we continue working to better understand and address the problems we are facing.

+

One of our reviewers for this book, Fred Monroe, used to work in hedge fund trading. He told us, after reading this chapter, that many of the issues discussed here (distribution of data being dramatically different than what a model was trained on, the impact feedback loops on a model once deployed and at scale, and so forth) were also key issues for building profitable trading models. The kinds of things you need to do to consider societal consequences are going to have a lot of overlap with things you need to do to consider organizational, market, and customer consequences—so thinking carefully about ethics can also help you think carefully about how to make your data product successful more generally!

+
+
+

3.7 Questionnaire

+
    +
  1. Does ethics provide a list of “right answers”?
  2. +
  3. How can working with people of different backgrounds help when considering ethical questions?
  4. +
  5. What was the role of IBM in Nazi Germany? Why did the company participate as it did? Why did the workers participate?
  6. +
  7. What was the role of the first person jailed in the Volkswagen diesel scandal?
  8. +
  9. What was the problem with a database of suspected gang members maintained by California law enforcement officials?
  10. +
  11. Why did YouTube’s recommendation algorithm recommend videos of partially clothed children to pedophiles, even though no employee at Google had programmed this feature?
  12. +
  13. What are the problems with the centrality of metrics?
  14. +
  15. Why did Meetup.com not include gender in its recommendation system for tech meetups?
  16. +
  17. What are the six types of bias in machine learning, according to Suresh and Guttag?
  18. +
  19. Give two examples of historical race bias in the US.
  20. +
  21. Where are most images in ImageNet from?
  22. +
  23. In the paper “Does Machine Learning Automate Moral Hazard and Error” why is sinusitis found to be predictive of a stroke?
  24. +
  25. What is representation bias?
  26. +
  27. How are machines and people different, in terms of their use for making decisions?
  28. +
  29. Is disinformation the same as “fake news”?
  30. +
  31. Why is disinformation through auto-generated text a particularly significant issue?
  32. +
  33. What are the five ethical lenses described by the Markkula Center?
  34. +
  35. Where is policy an appropriate tool for addressing data ethics issues?
  36. +
+
+

Further Research:

+
    +
  1. Read the article “What Happens When an Algorithm Cuts Your Healthcare”. How could problems like this be avoided in the future?
  2. +
  3. Research to find out more about YouTube’s recommendation system and its societal impacts. Do you think recommendation systems must always have feedback loops with negative results? What approaches could Google take to avoid them? What about the government?
  4. +
  5. Read the paper “Discrimination in Online Ad Delivery”. Do you think Google should be considered responsible for what happened to Dr. Sweeney? What would be an appropriate response?
  6. +
  7. How can a cross-disciplinary team help avoid negative consequences?
  8. +
  9. Read the paper “Does Machine Learning Automate Moral Hazard and Error”. What actions do you think should be taken to deal with the issues identified in this paper?
  10. +
  11. Read the article “How Will We Prevent AI-Based Forgery?” Do you think Etzioni’s proposed approach could work? Why?
  12. +
  13. Complete the section “Analyze a Project You Are Working On” in this chapter.
  14. +
  15. Consider whether your team could be more diverse. If so, what approaches might help?
  16. +
+
+
+
+

3.8 Deep Learning in Practice: That’s a Wrap!

+

Congratulations! You’ve made it to the end of the first section of the book. In this section we’ve tried to show you what deep learning can do, and how you can use it to create real applications and products. At this point, you will get a lot more out of the book if you spend some time trying out what you’ve learned. Perhaps you have already been doing this as you go along—in which case, great! If not, that’s no problem either… Now is a great time to start experimenting yourself.

+

If you haven’t been to the book’s website yet, head over there now. It’s really important that you get yourself set up to run the notebooks. Becoming an effective deep learning practitioner is all about practice, so you need to be training models. So, please go get the notebooks running now if you haven’t already! And also have a look on the website for any important updates or notices; deep learning changes fast, and we can’t change the words that are printed in this book, so the website is where you need to look to ensure you have the most up-to-date information.

+

Make sure that you have completed the following steps:

+
    +
  • Connect to one of the GPU Jupyter servers recommended on the book’s website.
  • +
  • Run the first notebook yourself.
  • +
  • Upload an image that you find in the first notebook; then try a few different images of different kinds to see what happens.
  • +
  • Run the second notebook, collecting your own dataset based on image search queries that you come up with.
  • +
  • Think about how you can use deep learning to help you with your own projects, including what kinds of data you could use, what kinds of problems may come up, and how you might be able to mitigate these issues in practice.
  • +
+

In the next section of the book you will learn about how and why deep learning works, instead of just seeing how you can use it in practice. Understanding the how and why is important for both practitioners and researchers, because in this fairly new field nearly every project requires some level of customization and debugging. The better you understand the foundations of deep learning, the better your models will be. These foundations are less important for executives, product managers, and so forth (although still useful, so feel free to keep reading!), but they are critical for anybody who is actually training and deploying models themselves.

+ + +
+ +
+ + +
+ + + + + \ No newline at end of file diff --git a/book5.html b/book5.html new file mode 100644 index 0000000..3cfa6bf --- /dev/null +++ b/book5.html @@ -0,0 +1,758 @@ + + + + + + + + + +5  Image Classification – Practical Deep Learning for Coders + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ +
+ +
+ + +
+ + + +
+ +
+
+

5  Image Classification

+
+ + + +
+ + + + +
+ + + +
+ + +

Now that you understand what deep learning is, what it’s for, and how to create and deploy a model, it’s time for us to go deeper! In an ideal world deep learning practitioners wouldn’t have to know every detail of how things work under the hood… But as yet, we don’t live in an ideal world. The truth is, to make your model really work, and work reliably, there are a lot of details you have to get right, and a lot of details that you have to check. This process requires being able to look inside your neural network as it trains, and as it makes predictions, find possible problems, and know how to fix them.

+

So, from here on in the book we are going to do a deep dive into the mechanics of deep learning. What is the architecture of a computer vision model, an NLP model, a tabular model, and so on? How do you create an architecture that matches the needs of your particular domain? How do you get the best possible results from the training process? How do you make things faster? What do you have to change as your datasets change?

+

We will start by repeating the same basic applications that we looked at in the first chapter, but we are going to do two things:

+
    +
  • Make them better.
  • +
  • Apply them to a wider variety of types of data.
  • +
+

In order to do these two things, we will have to learn all of the pieces of the deep learning puzzle. This includes different types of layers, regularization methods, optimizers, how to put layers together into architectures, labeling techniques, and much more. We are not just going to dump all of these things on you, though; we will introduce them progressively as needed, to solve actual problems related to the projects we are working on.

+
+

This is just a preview of this chapter. The rest of this chapter is not available here, but you read the source notebook which has the same content (but with less nice formatting).

+ + + +
+ + +
+ + + + + \ No newline at end of file diff --git a/book6.html b/book6.html new file mode 100644 index 0000000..4421808 --- /dev/null +++ b/book6.html @@ -0,0 +1,766 @@ + + + + + + + + + +6  Other Computer Vision Problems – Practical Deep Learning for Coders + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ +
+ +
+ + +
+ + + +
+ +
+
+

6  Other Computer Vision Problems

+
+ + + +
+ + + + +
+ + + +
+ + +

In the previous chapter you learned some important practical techniques for training models in practice. Considerations like selecting learning rates and the number of epochs are very important to getting good results.

+

In this chapter we are going to look at two other types of computer vision problems: multi-label classification and regression. The first one is when you want to predict more than one label per image (or sometimes none at all), and the second is when your labels are one or several numbers—a quantity instead of a category.

+

In the process will study more deeply the output activations, targets, and loss functions in deep learning models.

+
+

6.1 Multi-Label Classification

+

Multi-label classification refers to the problem of identifying the categories of objects in images that may not contain exactly one type of object. There may be more than one kind of object, or there may be no objects at all in the classes that you are looking for.

+

For instance, this would have been a great approach for our bear classifier. One problem with the bear classifier that we rolled out in Chapter 2 was that if a user uploaded something that wasn’t any kind of bear, the model would still say it was either a grizzly, black, or teddy bear—it had no ability to predict “not a bear at all.” In fact, after we have completed this chapter, it would be a great exercise for you to go back to your image classifier application, and try to retrain it using the multi-label technique, then test it by passing in an image that is not of any of your recognized classes.

+

In practice, we have not seen many examples of people training multi-label classifiers for this purpose—but we very often see both users and developers complaining about this problem. It appears that this simple solution is not at all widely understood or appreciated! Because in practice it is probably more common to have some images with zero matches or more than one match, we should probably expect in practice that multi-label classifiers are more widely applicable than single-label classifiers.

+

First, let’s see what a multi-label dataset looks like, then we’ll explain how to get it ready for our model. You’ll see that the architecture of the model does not change from the last chapter; only the loss function does. Let’s start with the data.

+
+

This is just a preview of this chapter. The rest of this chapter is not available here, but you read the source notebook which has the same content (but with less nice formatting).

+ + +
+ +
+ + +
+ + + + + \ No newline at end of file diff --git a/book7.html b/book7.html new file mode 100644 index 0000000..d20ac3c --- /dev/null +++ b/book7.html @@ -0,0 +1,772 @@ + + + + + + + + + +7  Training a State-of-the-Art Model – Practical Deep Learning for Coders + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ +
+ +
+ + +
+ + + +
+ +
+
+

7  Training a State-of-the-Art Model

+
+ + + +
+ + + + +
+ + + +
+ + +

This chapter introduces more advanced techniques for training an image classification model and getting state-of-the-art results. You can skip it if you want to learn more about other applications of deep learning and come back to it later—knowledge of this material will not be assumed in later chapters.

+

We will look at what normalization is, a powerful data augmentation technique called mixup, the progressive resizing approach and test time augmentation. To show all of this, we are going to train a model from scratch (not using transfer learning) using a subset of ImageNet called Imagenette. It contains a subset of 10 very different categories from the original ImageNet dataset, making for quicker training when we want to experiment.

+

This is going to be much harder to do well than with our previous datasets because we’re using full-size, full-color images, which are photos of objects of different sizes, in different orientations, in different lighting, and so forth. So, in this chapter we’re going to introduce some important techniques for getting the most out of your dataset, especially when you’re training from scratch, or using transfer learning to train a model on a very different kind of dataset than the pretrained model used.

+
+

7.1 Imagenette

+

When fast.ai first started there were three main datasets that people used for building and testing computer vision models:

+
    +
  • ImageNet:: 1.3 million images of various sizes around 500 pixels across, in 1,000 categories, which took a few days to train
  • +
  • MNIST:: 50,000 28×28-pixel grayscale handwritten digits
  • +
  • CIFAR10:: 60,000 32×32-pixel color images in 10 classes
  • +
+

The problem was that the smaller datasets didn’t actually generalize effectively to the large ImageNet dataset. The approaches that worked well on ImageNet generally had to be developed and trained on ImageNet. This led to many people believing that only researchers with access to giant computing resources could effectively contribute to developing image classification algorithms.

+

We thought that seemed very unlikely to be true. We had never actually seen a study that showed that ImageNet happen to be exactly the right size, and that other datasets could not be developed which would provide useful insights. So we thought we would try to create a new dataset that researchers could test their algorithms on quickly and cheaply, but which would also provide insights likely to work on the full ImageNet dataset.

+

About three hours later we had created Imagenette. We selected 10 classes from the full ImageNet that looked very different from one another. As we had hoped, we were able to quickly and cheaply create a classifier capable of recognizing these classes. We then tried out a few algorithmic tweaks to see how they impacted Imagenette. We found some that worked pretty well, and tested them on ImageNet as well—and we were very pleased to find that our tweaks worked well on ImageNet too!

+

There is an important message here: the dataset you get given is not necessarily the dataset you want. It’s particularly unlikely to be the dataset that you want to do your development and prototyping in. You should aim to have an iteration speed of no more than a couple of minutes—that is, when you come up with a new idea you want to try out, you should be able to train a model and see how it goes within a couple of minutes. If it’s taking longer to do an experiment, think about how you could cut down your dataset, or simplify your model, to improve your experimentation speed. The more experiments you can do, the better!

+
+

This is just a preview of this chapter. The rest of this chapter is not available here, but you read the source notebook which has the same content (but with less nice formatting).

+ + +
+ +
+ + +
+ + + + + \ No newline at end of file diff --git a/book8.html b/book8.html new file mode 100644 index 0000000..6615d4a --- /dev/null +++ b/book8.html @@ -0,0 +1,755 @@ + + + + + + + + + +8  Collaborative Filtering Deep Dive – Practical Deep Learning for Coders + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ +
+ +
+ + +
+ + + +
+ +
+
+

8  Collaborative Filtering Deep Dive

+
+ + + +
+ + + + +
+ + + +
+ + +

One very common problem to solve is when you have a number of users and a number of products, and you want to recommend which products are most likely to be useful for which users. There are many variations of this: for example, recommending movies (such as on Netflix), figuring out what to highlight for a user on a home page, deciding what stories to show in a social media feed, and so forth. There is a general solution to this problem, called collaborative filtering, which works like this: look at what products the current user has used or liked, find other users that have used or liked similar products, and then recommend other products that those users have used or liked.

+

For example, on Netflix you may have watched lots of movies that are science fiction, full of action, and were made in the 1970s. Netflix may not know these particular properties of the films you have watched, but it will be able to see that other people that have watched the same movies that you watched also tended to watch other movies that are science fiction, full of action, and were made in the 1970s. In other words, to use this approach we don’t necessarily need to know anything about the movies, except who like to watch them.

+

There is actually a more general class of problems that this approach can solve, not necessarily involving users and products. Indeed, for collaborative filtering we more commonly refer to items, rather than products. Items could be links that people click on, diagnoses that are selected for patients, and so forth.

+

The key foundational idea is that of latent factors. In the Netflix example, we started with the assumption that you like old, action-packed sci-fi movies. But you never actually told Netflix that you like these kinds of movies. And Netflix never actually needed to add columns to its movies table saying which movies are of these types. Still, there must be some underlying concept of sci-fi, action, and movie age, and these concepts must be relevant for at least some people’s movie watching decisions.

+

For this chapter we are going to work on this movie recommendation problem. We’ll start by getting some data suitable for a collaborative filtering model.

+
+

This is just a preview of this chapter. The rest of this chapter is not available here, but you read the source notebook which has the same content (but with less nice formatting).

+ + + +
+ + +
+ + + + + \ No newline at end of file diff --git a/book9.html b/book9.html new file mode 100644 index 0000000..ef69850 --- /dev/null +++ b/book9.html @@ -0,0 +1,766 @@ + + + + + + + + + +9  Tabular Modeling Deep Dive – Practical Deep Learning for Coders + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ +
+ +
+ + +
+ + + +
+ +
+
+

9  Tabular Modeling Deep Dive

+
+ + + +
+ + + + +
+ + + +
+ + +

Tabular modeling takes data in the form of a table (like a spreadsheet or CSV). The objective is to predict the value in one column based on the values in the other columns. In this chapter we will not only look at deep learning but also more general machine learning techniques like random forests, as they can give better results depending on your problem.

+

We will look at how we should preprocess and clean the data as well as how to interpret the result of our models after training, but first, we will see how we can feed columns that contain categories into a model that expects numbers by using embeddings.

+
+

9.1 Categorical Embeddings

+

In tabular data some columns may contain numerical data, like “age,” while others contain string values, like “sex.” The numerical data can be directly fed to the model (with some optional preprocessing), but the other columns need to be converted to numbers. Since the values in those correspond to different categories, we often call this type of variables categorical variables. The first type are called continuous variables.

+
+

jargon: Continuous and Categorical Variables: Continuous variables are numerical data, such as “age,” that can be directly fed to the model, since you can add and multiply them directly. Categorical variables contain a number of discrete levels, such as “movie ID,” for which addition and multiplication don’t have meaning (even if they’re stored as numbers).

+
+

At the end of 2015, the Rossmann sales competition ran on Kaggle. Competitors were given a wide range of information about various stores in Germany, and were tasked with trying to predict sales on a number of days. The goal was to help the company to manage stock properly and be able to satisfy demand without holding unnecessary inventory. The official training set provided a lot of information about the stores. It was also permitted for competitors to use additional data, as long as that data was made public and available to all participants.

+
+

This is just a preview of this chapter. The rest of this chapter is not available here, but you read the source notebook which has the same content (but with less nice formatting).

+ + +
+ +
+ + +
+ + + + + \ No newline at end of file diff --git a/convolutions.html b/convolutions.html new file mode 100644 index 0000000..c3b6c24 --- /dev/null +++ b/convolutions.html @@ -0,0 +1,1974 @@ + + + + + + + + + +13  Convolutional Neural Networks – Practical Deep Learning for Coders + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ +
+ +
+ + +
+ + + +
+ +
+
+

13  Convolutional Neural Networks

+
+ + + +
+ + + + +
+ + + +
+ + +

In Chapter 4 we learned how to create a neural network recognizing images. We were able to achieve a bit over 98% accuracy at distinguishing 3s from 7s—but we also saw that fastai’s built-in classes were able to get close to 100%. Let’s start trying to close the gap.

+

In this chapter, we will begin by digging into what convolutions are and building a CNN from scratch. We will then study a range of techniques to improve training stability and learn all the tweaks the library usually applies for us to get great results.

+
+

13.1 The Magic of Convolutions

+

One of the most powerful tools that machine learning practitioners have at their disposal is feature engineering. A feature is a transformation of the data which is designed to make it easier to model. For instance, the add_datepart function that we used for our tabular dataset preprocessing in Chapter 9 added date features to the Bulldozers dataset. What kinds of features might we be able to create from images?

+
+

jargon: Feature engineering: Creating new transformations of the input data in order to make it easier to model.

+
+

In the context of an image, a feature is a visually distinctive attribute. For example, the number 7 is characterized by a horizontal edge near the top of the digit, and a top-right to bottom-left diagonal edge underneath that. On the other hand, the number 3 is characterized by a diagonal edge in one direction at the top left and bottom right of the digit, the opposite diagonal at the bottom left and top right, horizontal edges at the middle, top, and bottom, and so forth. So what if we could extract information about where the edges occur in each image, and then use that information as our features, instead of raw pixels?

+

It turns out that finding the edges in an image is a very common task in computer vision, and is surprisingly straightforward. To do it, we use something called a convolution. A convolution requires nothing more than multiplication, and addition—two operations that are responsible for the vast majority of work that we will see in every single deep learning model in this book!

+

A convolution applies a kernel across an image. A kernel is a little matrix, such as the 3×3 matrix in the top right of Figure 13.1.

+
+
+
+Applying a kernel to one location +
+
+Figure 13.1: Applying a kernel to one location +
+
+
+

The 7×7 grid to the left is the image we’re going to apply the kernel to. The convolution operation multiplies each element of the kernel by each element of a 3×3 block of the image. The results of these multiplications are then added together. The diagram in Figure 13.1 shows an example of applying a kernel to a single location in the image, the 3×3 block around cell 18.

+

Let’s do this with code. First, we create a little 3×3 matrix like so:

+
+
top_edge = tensor([[-1,-1,-1],
+                   [ 0, 0, 0],
+                   [ 1, 1, 1]]).float()
+
+

We’re going to call this our kernel (because that’s what fancy computer vision researchers call these). And we’ll need an image, of course:

+
+
path = untar_data(URLs.MNIST_SAMPLE)
+
+
+
im3 = Image.open(path/'train'/'3'/'12.png')
+show_image(im3);
+
+
+
+

+
+
+
+
+

Now we’re going to take the top 3×3-pixel square of our image, and multiply each of those values by each item in our kernel. Then we’ll add them up, like so:

+
+
im3_t = tensor(im3)
+im3_t[0:3,0:3] * top_edge
+
+
tensor([[-0., -0., -0.],
+        [0., 0., 0.],
+        [0., 0., 0.]])
+
+
+
+
(im3_t[0:3,0:3] * top_edge).sum()
+
+
tensor(0.)
+
+
+

Not very interesting so far—all the pixels in the top-left corner are white. But let’s pick a couple of more interesting spots:

+
+
df = pd.DataFrame(im3_t[:10,:20])
+df.style.set_properties(**{'font-size':'6pt'}).background_gradient('Greys')
+
+

Top section of a digit

+

There’s a top edge at cell 5,8. Let’s repeat our calculation there:

+
+
(im3_t[4:7,6:9] * top_edge).sum()
+
+
tensor(762.)
+
+
+

There’s a right edge at cell 8,18. What does that give us?:

+
+
(im3_t[7:10,17:20] * top_edge).sum()
+
+
tensor(-29.)
+
+
+

As you can see, this little calculation is returning a high number where the 3×3-pixel square represents a top edge (i.e., where there are low values at the top of the square, and high values immediately underneath). That’s because the -1 values in our kernel have little impact in that case, but the 1 values have a lot.

+

Let’s look a tiny bit at the math. The filter will take any window of size 3×3 in our images, and if we name the pixel values like this:

+

\[\begin{matrix} a1 & a2 & a3 \\ a4 & a5 & a6 \\ a7 & a8 & a9 \end{matrix}\]

+

it will return \(-a1-a2-a3+a7+a8+a9\). If we are in a part of the image where \(a1\), \(a2\), and \(a3\) add up to the same as \(a7\), \(a8\), and \(a9\), then the terms will cancel each other out and we will get 0. However, if \(a7\) is greater than \(a1\), \(a8\) is greater than \(a2\), and \(a9\) is greater than \(a3\), we will get a bigger number as a result. So this filter detects horizontal edges—more precisely, edges where we go from bright parts of the image at the top to darker parts at the bottom.

+

Changing our filter to have the row of 1s at the top and the -1s at the bottom would detect horizontal edges that go from dark to light. Putting the 1s and -1s in columns versus rows would give us filters that detect vertical edges. Each set of weights will produce a different kind of outcome.

+

Let’s create a function to do this for one location, and check it matches our result from before:

+
+
def apply_kernel(row, col, kernel):
+    return (im3_t[row-1:row+2,col-1:col+2] * kernel).sum()
+
+
+
apply_kernel(5,7,top_edge)
+
+
tensor(762.)
+
+
+

But note that we can’t apply it to the corner (e.g., location 0,0), since there isn’t a complete 3×3 square there.

+
+

Mapping a Convolution Kernel

+

We can map apply_kernel() across the coordinate grid. That is, we’ll be taking our 3×3 kernel, and applying it to each 3×3 section of our image. For instance, Figure 13.2 shows the positions a 3×3 kernel can be applied to in the first row of a 5×5 image.

+
+
+
+Applying a kernel across a grid +
+
+Figure 13.2: Applying a kernel across a grid +
+
+
+

To get a grid of coordinates we can use a nested list comprehension, like so:

+
+
[[(i,j) for j in range(1,5)] for i in range(1,5)]
+
+
[[(1, 1), (1, 2), (1, 3), (1, 4)],
+ [(2, 1), (2, 2), (2, 3), (2, 4)],
+ [(3, 1), (3, 2), (3, 3), (3, 4)],
+ [(4, 1), (4, 2), (4, 3), (4, 4)]]
+
+
+
+

note: Nested List Comprehensions: Nested list comprehensions are used a lot in Python, so if you haven’t seen them before, take a few minutes to make sure you understand what’s happening here, and experiment with writing your own nested list comprehensions.

+
+

Here’s the result of applying our kernel over a coordinate grid:

+
+
rng = range(1,27)
+top_edge3 = tensor([[apply_kernel(i,j,top_edge) for j in rng] for i in rng])
+
+show_image(top_edge3);
+
+
+
+

+
+
+
+
+

Looking good! Our top edges are black, and bottom edges are white (since they are the opposite of top edges). Now that our image contains negative numbers too, matplotlib has automatically changed our colors so that white is the smallest number in the image, black the highest, and zeros appear as gray.

+

We can try the same thing for left edges:

+
+
left_edge = tensor([[-1,1,0],
+                    [-1,1,0],
+                    [-1,1,0]]).float()
+
+left_edge3 = tensor([[apply_kernel(i,j,left_edge) for j in rng] for i in rng])
+
+show_image(left_edge3);
+
+
+
+

+
+
+
+
+

As we mentioned before, a convolution is the operation of applying such a kernel over a grid in this way. In the paper “A Guide to Convolution Arithmetic for Deep Learning” there are many great diagrams showing how image kernels can be applied. Here’s an example from the paper showing (at the bottom) a light blue 4×4 image, with a dark blue 3×3 kernel being applied, creating a 2×2 green output activation map at the top.

+
+
+
+Result of applying a 3×3 kernel to a 4×4 image +
+
+Figure 13.3: Result of applying a 3×3 kernel to a 4×4 image (courtesy of Vincent Dumoulin and Francesco Visin) +
+
+
+

Look at the shape of the result. If the original image has a height of h and a width of w, how many 3×3 windows can we find? As you can see from the example, there are h-2 by w-2 windows, so the image we get has a result as a height of h-2 and a width of w-2.

+

We won’t implement this convolution function from scratch, but use PyTorch’s implementation instead (it is way faster than anything we could do in Python).

+
+
+

Convolutions in PyTorch

+

Convolution is such an important and widely used operation that PyTorch has it built in. It’s called F.conv2d (recall that F is a fastai import from torch.nn.functional, as recommended by PyTorch). The PyTorch docs tell us that it includes these parameters:

+
    +
  • input:: input tensor of shape (minibatch, in_channels, iH, iW)
  • +
  • weight:: filters of shape (out_channels, in_channels, kH, kW)
  • +
+

Here iH,iW is the height and width of the image (i.e., 28,28), and kH,kW is the height and width of our kernel (3,3). But apparently PyTorch is expecting rank-4 tensors for both these arguments, whereas currently we only have rank-2 tensors (i.e., matrices, or arrays with two axes).

+

The reason for these extra axes is that PyTorch has a few tricks up its sleeve. The first trick is that PyTorch can apply a convolution to multiple images at the same time. That means we can call it on every item in a batch at once!

+

The second trick is that PyTorch can apply multiple kernels at the same time. So let’s create the diagonal-edge kernels too, and then stack all four of our edge kernels into a single tensor:

+
+
diag1_edge = tensor([[ 0,-1, 1],
+                     [-1, 1, 0],
+                     [ 1, 0, 0]]).float()
+diag2_edge = tensor([[ 1,-1, 0],
+                     [ 0, 1,-1],
+                     [ 0, 0, 1]]).float()
+
+edge_kernels = torch.stack([left_edge, top_edge, diag1_edge, diag2_edge])
+edge_kernels.shape
+
+
torch.Size([4, 3, 3])
+
+
+

To test this, we’ll need a DataLoader and a sample mini-batch. Let’s use the data block API:

+
+
mnist = DataBlock((ImageBlock(cls=PILImageBW), CategoryBlock), 
+                  get_items=get_image_files, 
+                  splitter=GrandparentSplitter(),
+                  get_y=parent_label)
+
+dls = mnist.dataloaders(path)
+xb,yb = first(dls.valid)
+xb.shape
+
+
torch.Size([64, 1, 28, 28])
+
+
+

By default, fastai puts data on the GPU when using data blocks. Let’s move it to the CPU for our examples:

+
+
xb,yb = to_cpu(xb),to_cpu(yb)
+
+

One batch contains 64 images, each of 1 channel, with 28×28 pixels. F.conv2d can handle multichannel (i.e., color) images too. A channel is a single basic color in an image—for regular full-color images there are three channels, red, green, and blue. PyTorch represents an image as a rank-3 tensor, with dimensions [channels, rows, columns].

+

We’ll see how to handle more than one channel later in this chapter. Kernels passed to F.conv2d need to be rank-4 tensors: [channels_in, features_out, rows, columns]. edge_kernels is currently missing one of these. We need to tell PyTorch that the number of input channels in the kernel is one, which we can do by inserting an axis of size one (this is known as a unit axis) in the first location, where the PyTorch docs show in_channels is expected. To insert a unit axis into a tensor, we use the unsqueeze method:

+
+
edge_kernels.shape,edge_kernels.unsqueeze(1).shape
+
+
(torch.Size([4, 3, 3]), torch.Size([4, 1, 3, 3]))
+
+
+

This is now the correct shape for edge_kernels. Let’s pass this all to conv2d:

+
+
edge_kernels = edge_kernels.unsqueeze(1)
+
+
+
batch_features = F.conv2d(xb, edge_kernels)
+batch_features.shape
+
+
torch.Size([64, 4, 26, 26])
+
+
+

The output shape shows we gave 64 images in the mini-batch, 4 kernels, and 26×26 edge maps (we started with 28×28 images, but lost one pixel from each side as discussed earlier). We can see we get the same results as when we did this manually:

+
+
show_image(batch_features[0,0]);
+
+
+
+

+
+
+
+
+

The most important trick that PyTorch has up its sleeve is that it can use the GPU to do all this work in parallel—that is, applying multiple kernels, to multiple images, across multiple channels. Doing lots of work in parallel is critical to getting GPUs to work efficiently; if we did each of these operations one at a time, we’d often run hundreds of times slower (and if we used our manual convolution loop from the previous section, we’d be millions of times slower!). Therefore, to become a strong deep learning practitioner, one skill to practice is giving your GPU plenty of work to do at a time.

+

It would be nice to not lose those two pixels on each axis. The way we do that is to add padding, which is simply additional pixels added around the outside of our image. Most commonly, pixels of zeros are added.

+
+
+

Strides and Padding

+

With appropriate padding, we can ensure that the output activation map is the same size as the original image, which can make things a lot simpler when we construct our architectures. Figure 13.4 shows how adding padding allows us to apply the kernels in the image corners.

+
+
+
+A convolution with padding +
+
+Figure 13.4: A convolution with padding +
+
+
+

With a 5×5 input, 4×4 kernel, and 2 pixels of padding, we end up with a 6×6 activation map, as we can see in Figure 13.5.

+
+
+
+A 4×4 kernel with 5×5 input and 2 pixels of padding +
+
+Figure 13.5: A 4×4 kernel with 5×5 input and 2 pixels of padding (courtesy of Vincent Dumoulin and Francesco Visin) +
+
+
+

If we add a kernel of size ks by ks (with ks an odd number), the necessary padding on each side to keep the same shape is ks//2. An even number for ks would require a different amount of padding on the top/bottom and left/right, but in practice we almost never use an even filter size.

+

So far, when we have applied the kernel to the grid, we have moved it one pixel over at a time. But we can jump further; for instance, we could move over two pixels after each kernel application, as in Figure 13.6. This is known as a stride-2 convolution. The most common kernel size in practice is 3×3, and the most common padding is 1. As you’ll see, stride-2 convolutions are useful for decreasing the size of our outputs, and stride-1 convolutions are useful for adding layers without changing the output size.

+
+
+
+A 3×3 kernel with 5×5 input, stride-2 convolution, and 1 pixel of padding +
+
+Figure 13.6: A 3×3 kernel with 5×5 input, stride-2 convolution, and 1 pixel of padding (courtesy of Vincent Dumoulin and Francesco Visin) +
+
+
+

In an image of size h by w, using a padding of 1 and a stride of 2 will give us a result of size (h+1)//2 by (w+1)//2. The general formula for each dimension is (n + 2*pad - ks)//stride + 1, where pad is the padding, ks, the size of our kernel, and stride is the stride.

+

Let’s now take a look at how the pixel values of the result of our convolutions are computed.

+
+
+

Understanding the Convolution Equations

+

To explain the math behind convolutions, fast.ai student Matt Kleinsmith came up with the very clever idea of showing CNNs from different viewpoints. In fact, it’s so clever, and so helpful, we’re going to show it here too!

+

Here’s our 3×3 pixel image, with each pixel labeled with a letter:

+

The image

+

And here’s our kernel, with each weight labeled with a Greek letter:

+

The kernel

+

Since the filter fits in the image four times, we have four results:

+

The activations

+

Figure 13.7 shows how we applied the kernel to each section of the image to yield each result.

+
+
+
+Applying the kernel +
+
+Figure 13.7: Applying the kernel +
+
+
+

The equation view is in Figure 13.8.

+
+
+
+The equation +
+
+Figure 13.8: The equation +
+
+
+

Notice that the bias term, b, is the same for each section of the image. You can consider the bias as part of the filter, just like the weights (α, β, γ, δ) are part of the filter.

+

Here’s an interesting insight—a convolution can be represented as a special kind of matrix multiplication, as illustrated in Figure 13.9. The weight matrix is just like the ones from traditional neural networks. However, this weight matrix has two special properties:

+
    +
  1. The zeros shown in gray are untrainable. This means that they’ll stay zero throughout the optimization process.
  2. +
  3. Some of the weights are equal, and while they are trainable (i.e., changeable), they must remain equal. These are called shared weights.
  4. +
+

The zeros correspond to the pixels that the filter can’t touch. Each row of the weight matrix corresponds to one application of the filter.

+
+
+
+Convolution as matrix multiplication +
+
+Figure 13.9: Convolution as matrix multiplication +
+
+
+

Now that we understand what a convolution is, let’s use them to build a neural net.

+
+
+
+

13.2 Our First Convolutional Neural Network

+

There is no reason to believe that some particular edge filters are the most useful kernels for image recognition. Furthermore, we’ve seen that in later layers convolutional kernels become complex transformations of features from lower levels, but we don’t have a good idea of how to manually construct these.

+

Instead, it would be best to learn the values of the kernels. We already know how to do this—SGD! In effect, the model will learn the features that are useful for classification.

+

When we use convolutions instead of (or in addition to) regular linear layers we create a convolutional neural network (CNN).

+
+

Creating the CNN

+

Let’s go back to the basic neural network we had in Chapter 4. It was defined like this:

+
+
simple_net = nn.Sequential(
+    nn.Linear(28*28,30),
+    nn.ReLU(),
+    nn.Linear(30,1)
+)
+
+

We can view a model’s definition:

+
+
simple_net
+
+
Sequential(
+  (0): Linear(in_features=784, out_features=30, bias=True)
+  (1): ReLU()
+  (2): Linear(in_features=30, out_features=1, bias=True)
+)
+
+
+

We now want to create a similar architecture to this linear model, but using convolutional layers instead of linear. nn.Conv2d is the module equivalent of F.conv2d. It’s more convenient than F.conv2d when creating an architecture, because it creates the weight matrix for us automatically when we instantiate it.

+

Here’s a possible architecture:

+
+
broken_cnn = sequential(
+    nn.Conv2d(1,30, kernel_size=3, padding=1),
+    nn.ReLU(),
+    nn.Conv2d(30,1, kernel_size=3, padding=1)
+)
+
+

One thing to note here is that we didn’t need to specify 28×28 as the input size. That’s because a linear layer needs a weight in the weight matrix for every pixel, so it needs to know how many pixels there are, but a convolution is applied over each pixel automatically. The weights only depend on the number of input and output channels and the kernel size, as we saw in the previous section.

+

Think about what the output shape is going to be, then let’s try it and see:

+
+
broken_cnn(xb).shape
+
+
torch.Size([64, 1, 28, 28])
+
+
+

This is not something we can use to do classification, since we need a single output activation per image, not a 28×28 map of activations. One way to deal with this is to use enough stride-2 convolutions such that the final layer is size 1. That is, after one stride-2 convolution the size will be 14×14, after two it will be 7×7, then 4×4, 2×2, and finally size 1.

+

Let’s try that now. First, we’ll define a function with the basic parameters we’ll use in each convolution:

+
+
def conv(ni, nf, ks=3, act=True):
+    res = nn.Conv2d(ni, nf, stride=2, kernel_size=ks, padding=ks//2)
+    if act: res = nn.Sequential(res, nn.ReLU())
+    return res
+
+
+

important: Refactoring: Refactoring parts of your neural networks like this makes it much less likely you’ll get errors due to inconsistencies in your architectures, and makes it more obvious to the reader which parts of your layers are actually changing.

+
+

When we use a stride-2 convolution, we often increase the number of features at the same time. This is because we’re decreasing the number of activations in the activation map by a factor of 4; we don’t want to decrease the capacity of a layer by too much at a time.

+
+

jargon: channels and features: These two terms are largely used interchangeably, and refer to the size of the second axis of a weight matrix, which is, the number of activations per grid cell after a convolution. Features is never used to refer to the input data, but channels can refer to either the input data (generally channels are colors) or activations inside the network.

+
+

Here is how we can build a simple CNN:

+
+
simple_cnn = sequential(
+    conv(1 ,4),            #14x14
+    conv(4 ,8),            #7x7
+    conv(8 ,16),           #4x4
+    conv(16,32),           #2x2
+    conv(32,2, act=False), #1x1
+    Flatten(),
+)
+
+
+

j: I like to add comments like the ones here after each convolution to show how large the activation map will be after each layer. These comments assume that the input size is 28*28

+
+

Now the network outputs two activations, which map to the two possible levels in our labels:

+
+
simple_cnn(xb).shape
+
+
torch.Size([64, 2])
+
+
+

We can now create our Learner:

+
+
learn = Learner(dls, simple_cnn, loss_func=F.cross_entropy, metrics=accuracy)
+
+

To see exactly what’s going on in the model, we can use summary:

+
+
learn.summary()
+
+
Sequential (Input shape: ['64 x 1 x 28 x 28'])
+================================================================
+Layer (type)         Output Shape         Param #    Trainable 
+================================================================
+Conv2d               64 x 4 x 14 x 14     40         True      
+________________________________________________________________
+ReLU                 64 x 4 x 14 x 14     0          False     
+________________________________________________________________
+Conv2d               64 x 8 x 7 x 7       296        True      
+________________________________________________________________
+ReLU                 64 x 8 x 7 x 7       0          False     
+________________________________________________________________
+Conv2d               64 x 16 x 4 x 4      1,168      True      
+________________________________________________________________
+ReLU                 64 x 16 x 4 x 4      0          False     
+________________________________________________________________
+Conv2d               64 x 32 x 2 x 2      4,640      True      
+________________________________________________________________
+ReLU                 64 x 32 x 2 x 2      0          False     
+________________________________________________________________
+Conv2d               64 x 2 x 1 x 1       578        True      
+________________________________________________________________
+Flatten              64 x 2               0          False     
+________________________________________________________________
+
+Total params: 6,722
+Total trainable params: 6,722
+Total non-trainable params: 0
+
+Optimizer used: <function Adam>
+Loss function: <function cross_entropy>
+
+Callbacks:
+  - TrainEvalCallback
+  - Recorder
+  - ProgressCallback
+
+
+

Note that the output of the final Conv2d layer is 64x2x1x1. We need to remove those extra 1x1 axes; that’s what Flatten does. It’s basically the same as PyTorch’s squeeze method, but as a module.

+

Let’s see if this trains! Since this is a deeper network than we’ve built from scratch before, we’ll use a lower learning rate and more epochs:

+
+
learn.fit_one_cycle(2, 0.01)
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + +
epochtrain_lossvalid_lossaccuracytime
00.0726840.0451100.99018600:05
10.0225800.0307750.99018600:05
+
+
+

Success! It’s getting closer to the resnet18 result we had, although it’s not quite there yet, and it’s taking more epochs, and we’re needing to use a lower learning rate. We still have a few more tricks to learn, but we’re getting closer and closer to being able to create a modern CNN from scratch.

+
+
+

Understanding Convolution Arithmetic

+

We can see from the summary that we have an input of size 64x1x28x28. The axes are batch,channel,height,width. This is often represented as NCHW (where N refers to batch size). Tensorflow, on the other hand, uses NHWC axis order. The first layer is:

+
+
m = learn.model[0]
+m
+
+
Sequential(
+  (0): Conv2d(1, 4, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
+  (1): ReLU()
+)
+
+
+

So we have 1 input channel, 4 output channels, and a 3×3 kernel. Let’s check the weights of the first convolution:

+
+
m[0].weight.shape
+
+
torch.Size([4, 1, 3, 3])
+
+
+

The summary shows we have 40 parameters, and 4*1*3*3 is 36. What are the other four parameters? Let’s see what the bias contains:

+
+
m[0].bias.shape
+
+
torch.Size([4])
+
+
+

We can now use this information to clarify our statement in the previous section: “When we use a stride-2 convolution, we often increase the number of features because we’re decreasing the number of activations in the activation map by a factor of 4; we don’t want to decrease the capacity of a layer by too much at a time.”

+

There is one bias for each channel. (Sometimes channels are called features or filters when they are not input channels.) The output shape is 64x4x14x14, and this will therefore become the input shape to the next layer. The next layer, according to summary, has 296 parameters. Let’s ignore the batch axis to keep things simple. So for each of 14*14=196 locations we are multiplying 296-8=288 weights (ignoring the bias for simplicity), so that’s 196*288=56_448 multiplications at this layer. The next layer will have 7*7*(1168-16)=56_448 multiplications.

+

What happened here is that our stride-2 convolution halved the grid size from 14x14 to 7x7, and we doubled the number of filters from 8 to 16, resulting in no overall change in the amount of computation. If we left the number of channels the same in each stride-2 layer, the amount of computation being done in the net would get less and less as it gets deeper. But we know that the deeper layers have to compute semantically rich features (such as eyes or fur), so we wouldn’t expect that doing less computation would make sense.

+

Another way to think of this is based on receptive fields.

+
+
+

Receptive Fields

+

The receptive field is the area of an image that is involved in the calculation of a layer. On the book’s website, you’ll find an Excel spreadsheet called conv-example.xlsx that shows the calculation of two stride-2 convolutional layers using an MNIST digit. Each layer has a single kernel. Figure 13.10 shows what we see if we click on one of the cells in the conv2 section, which shows the output of the second convolutional layer, and click trace precedents.

+
+
+
+Immediate precedents of conv2 layer +
+
+Figure 13.10: Immediate precedents of Conv2 layer +
+
+
+

Here, the cell with the green border is the cell we clicked on, and the blue highlighted cells are its precedents—that is, the cells used to calculate its value. These cells are the corresponding 3×3 area of cells from the input layer (on the left), and the cells from the filter (on the right). Let’s now click trace precedents again, to see what cells are used to calculate these inputs. Figure 13.11 shows what happens.

+
+
+
+Secondary precedents of conv2 layer +
+
+Figure 13.11: Secondary precedents of Conv2 layer +
+
+
+

In this example, we have just two convolutional layers, each of stride 2, so this is now tracing right back to the input image. We can see that a 7×7 area of cells in the input layer is used to calculate the single green cell in the Conv2 layer. This 7×7 area is the receptive field in the input of the green activation in Conv2. We can also see that a second filter kernel is needed now, since we have two layers.

+

As you see from this example, the deeper we are in the network (specifically, the more stride-2 convs we have before a layer), the larger the receptive field for an activation in that layer. A large receptive field means that a large amount of the input image is used to calculate each activation in that layer is. We now know that in the deeper layers of the network we have semantically rich features, corresponding to larger receptive fields. Therefore, we’d expect that we’d need more weights for each of our features to handle this increasing complexity. This is another way of saying the same thing we mentioned in the previous section: when we introduce a stride-2 conv in our network, we should also increase the number of channels.

+

When writing this particular chapter, we had a lot of questions we needed answers for, to be able to explain CNNs to you as best we could. Believe it or not, we found most of the answers on Twitter. We’re going to take a quick break to talk to you about that now, before we move on to color images.

+
+
+

A Note About Twitter

+

We are not, to say the least, big users of social networks in general. But our goal in writing this book is to help you become the best deep learning practitioner you can, and we would be remiss not to mention how important Twitter has been in our own deep learning journeys.

+

You see, there’s another part of Twitter, far away from Donald Trump and the Kardashians, which is the part of Twitter where deep learning researchers and practitioners talk shop every day. As we were writing this section, Jeremy wanted to double-check that what we were saying about stride-2 convolutions was accurate, so he asked on Twitter:

+

twitter 1

+

A few minutes later, this answer popped up:

+

twitter 2

+

Christian Szegedy is the first author of Inception, the 2014 ImageNet winner and source of many key insights used in modern neural networks. Two hours later, this appeared:

+

twitter 3

+

Do you recognize that name? You saw it in Chapter 2, when we were talking about the Turing Award winners who established the foundations of deep learning today!

+

Jeremy also asked on Twitter for help checking our description of label smoothing in Chapter 7 was accurate, and got a response again from directly from Christian Szegedy (label smoothing was originally introduced in the Inception paper):

+

twitter 4

+

Many of the top people in deep learning today are Twitter regulars, and are very open about interacting with the wider community. One good way to get started is to look at a list of Jeremy’s recent Twitter likes, or Sylvain’s. That way, you can see a list of Twitter users that we think have interesting and useful things to say.

+

Twitter is the main way we both stay up to date with interesting papers, software releases, and other deep learning news. For making connections with the deep learning community, we recommend getting involved both in the fast.ai forums and on Twitter.

+

That said, let’s get back to the meat of this chapter. Up until now, we have only shown you examples of pictures in black and white, with one value per pixel. In practice, most colored images have three values per pixel to define their color. We’ll look at working with color images next.

+
+
+
+

13.3 Color Images

+

A colour picture is a rank-3 tensor:

+
+
im = image2tensor(Image.open(image_bear()))
+im.shape
+
+
torch.Size([3, 1000, 846])
+
+
+
+
show_image(im);
+
+
+
+

+
+
+
+
+

The first axis contains the channels, red, green, and blue:

+
+
_,axs = subplots(1,3)
+for bear,ax,color in zip(im,axs,('Reds','Greens','Blues')):
+    show_image(255-bear, ax=ax, cmap=color)
+
+
+
+

+
+
+
+
+

We saw what the convolution operation was for one filter on one channel of the image (our examples were done on a square). A convolutional layer will take an image with a certain number of channels (three for the first layer for regular RGB color images) and output an image with a different number of channels. Like our hidden size that represented the numbers of neurons in a linear layer, we can decide to have as many filters as we want, and each of them will be able to specialize, some to detect horizontal edges, others to detect vertical edges and so forth, to give something like we studied in Chapter 2.

+

In one sliding window, we have a certain number of channels and we need as many filters (we don’t use the same kernel for all the channels). So our kernel doesn’t have a size of 3 by 3, but ch_in (for channels in) is 3 by 3. On each channel, we multiply the elements of our window by the elements of the coresponding filter, then sum the results (as we saw before) and sum over all the filters. In the example given in Figure 13.12, the result of our conv layer on that window is red + green + blue.

+
+
+
+Convolution over an RGB image +
+
+Figure 13.12: Convolution over an RGB image +
+
+
+

So, in order to apply a convolution to a color picture we require a kernel tensor with a size that matches the first axis. At each location, the corresponding parts of the kernel and the image patch are multiplied together.

+

These are then all added together, to produce a single number, for each grid location, for each output feature, as shown in Figure 13.13.

+
+
+
+Adding the RGB filters +
+
+Figure 13.13: Adding the RGB filters +
+
+
+

Then we have ch_out filters like this, so in the end, the result of our convolutional layer will be a batch of images with ch_out channels and a height and width given by the formula outlined earlier. This give us ch_out tensors of size ch_in x ks x ks that we represent in one big tensor of four dimensions. In PyTorch, the order of the dimensions for those weights is ch_out x ch_in x ks x ks.

+

Additionally, we may want to have a bias for each filter. In the preceding example, the final result for our convolutional layer would be \(y_{R} + y_{G} + y_{B} + b\) in that case. Like in a linear layer, there are as many bias as we have kernels, so the biases is a vector of size ch_out.

+

There are no special mechanisms required when setting up a CNN for training with color images. Just make sure your first layer has three inputs.

+

There are lots of ways of processing color images. For instance, you can change them to black and white, change from RGB to HSV (hue, saturation, and value) color space, and so forth. In general, it turns out experimentally that changing the encoding of colors won’t make any difference to your model results, as long as you don’t lose information in the transformation. So, transforming to black and white is a bad idea, since it removes the color information entirely (and this can be critical; for instance, a pet breed may have a distinctive color); but converting to HSV generally won’t make any difference.

+

Now you know what those pictures in Chapter 1 of “what a neural net learns” from the Zeiler and Fergus paper mean! This is their picture of some of the layer 1 weights which we showed:

+

Layer 1 kernels found by Zeiler and Fergus

+

This is taking the three slices of the convolutional kernel, for each output feature, and displaying them as images. We can see that even though the creators of the neural net never explicitly created kernels to find edges, for instance, the neural net automatically discovered these features using SGD.

+

Now let’s see how we can train these CNNs, and show you all the techniques fastai uses under the hood for efficient training.

+
+
+

13.4 Improving Training Stability

+

Since we are so good at recognizing 3s from 7s, let’s move on to something harder—recognizing all 10 digits. That means we’ll need to use MNIST instead of MNIST_SAMPLE:

+
+
path = untar_data(URLs.MNIST)
+
+
+
path.ls()
+
+
(#2) [Path('testing'),Path('training')]
+
+
+

The data is in two folders named training and testing, so we have to tell GrandparentSplitter about that (it defaults to train and valid). We did do that in the get_dls function, which we create to make it easy to change our batch size later:

+
+
def get_dls(bs=64):
+    return DataBlock(
+        blocks=(ImageBlock(cls=PILImageBW), CategoryBlock), 
+        get_items=get_image_files, 
+        splitter=GrandparentSplitter('training','testing'),
+        get_y=parent_label,
+        batch_tfms=Normalize()
+    ).dataloaders(path, bs=bs)
+
+dls = get_dls()
+
+

Remember, it’s always a good idea to look at your data before you use it:

+
+
dls.show_batch(max_n=9, figsize=(4,4))
+
+
+
+

+
+
+
+
+

Now that we have our data ready, we can train a simple model on it.

+
+

A Simple Baseline

+

Earlier in this chapter, we built a model based on a conv function like this:

+
+
def conv(ni, nf, ks=3, act=True):
+    res = nn.Conv2d(ni, nf, stride=2, kernel_size=ks, padding=ks//2)
+    if act: res = nn.Sequential(res, nn.ReLU())
+    return res
+
+

Let’s start with a basic CNN as a baseline. We’ll use the same one as earlier, but with one tweak: we’ll use more activations. Since we have more numbers to differentiate, it’s likely we will need to learn more filters.

+

As we discussed, we generally want to double the number of filters each time we have a stride-2 layer. One way to increase the number of filters throughout our network is to double the number of activations in the first layer–then every layer after that will end up twice as big as in the previous version as well.

+

But there is a subtle problem with this. Consider the kernel that is being applied to each pixel. By default, we use a 3×3-pixel kernel. That means that there are a total of 3×3 = 9 pixels that the kernel is being applied to at each location. Previously, our first layer had four output filters. That meant that there were four values being computed from nine pixels at each location. Think about what happens if we double this output to eight filters. Then when we apply our kernel we will be using nine pixels to calculate eight numbers. That means it isn’t really learning much at all: the output size is almost the same as the input size. Neural networks will only create useful features if they’re forced to do so—that is, if the number of outputs from an operation is significantly smaller than the number of inputs.

+

To fix this, we can use a larger kernel in the first layer. If we use a kernel of 5×5 pixels then there are 25 pixels being used at each kernel application. Creating eight filters from this will mean the neural net will have to find some useful features:

+
+
def simple_cnn():
+    return sequential(
+        conv(1 ,8, ks=5),        #14x14
+        conv(8 ,16),             #7x7
+        conv(16,32),             #4x4
+        conv(32,64),             #2x2
+        conv(64,10, act=False),  #1x1
+        Flatten(),
+    )
+
+

As you’ll see in a moment, we can look inside our models while they’re training in order to try to find ways to make them train better. To do this we use the ActivationStats callback, which records the mean, standard deviation, and histogram of activations of every trainable layer (as we’ve seen, callbacks are used to add behavior to the training loop; we’ll explore how they work in Chapter 16):

+
+
from fastai.callback.hook import *
+
+

We want to train quickly, so that means training at a high learning rate. Let’s see how we go at 0.06:

+
+
def fit(epochs=1):
+    learn = Learner(dls, simple_cnn(), loss_func=F.cross_entropy,
+                    metrics=accuracy, cbs=ActivationStats(with_hist=True))
+    learn.fit(epochs, 0.06)
+    return learn
+
+
+
learn = fit()
+
+ + + + + + + + + + + + + + + + + + + +
epochtrain_lossvalid_lossaccuracytime
02.3070712.3058650.11350000:16
+
+
+

This didn’t train at all well! Let’s find out why.

+

One handy feature of the callbacks passed to Learner is that they are made available automatically, with the same name as the callback class, except in snake_case. So, our ActivationStats callback can be accessed through activation_stats. I’m sure you remember learn.recorder… can you guess how that is implemented? That’s right, it’s a callback called Recorder!

+

ActivationStats includes some handy utilities for plotting the activations during training. plot_layer_stats(idx) plots the mean and standard deviation of the activations of layer number idx, along with the percentage of activations near zero. Here’s the first layer’s plot:

+
+
learn.activation_stats.plot_layer_stats(0)
+
+
+
+

+
+
+
+
+

Generally our model should have a consistent, or at least smooth, mean and standard deviation of layer activations during training. Activations near zero are particularly problematic, because it means we have computation in the model that’s doing nothing at all (since multiplying by zero gives zero). When you have some zeros in one layer, they will therefore generally carry over to the next layer… which will then create more zeros. Here’s the penultimate layer of our network:

+
+
learn.activation_stats.plot_layer_stats(-2)
+
+
+
+

+
+
+
+
+

As expected, the problems get worse towards the end of the network, as the instability and zero activations compound over layers. Let’s look at what we can do to make training more stable.

+
+
+

Increase Batch Size

+

One way to make training more stable is to increase the batch size. Larger batches have gradients that are more accurate, since they’re calculated from more data. On the downside, though, a larger batch size means fewer batches per epoch, which means less opportunities for your model to update weights. Let’s see if a batch size of 512 helps:

+
+
dls = get_dls(512)
+
+
+
learn = fit()
+
+ + + + + + + + + + + + + + + + + + + +
epochtrain_lossvalid_lossaccuracytime
02.3093852.3027440.11350000:08
+
+
+

Let’s see what the penultimate layer looks like:

+
+
learn.activation_stats.plot_layer_stats(-2)
+
+
+
+

+
+
+
+
+

Again, we’ve got most of our activations near zero. Let’s see what else we can do to improve training stability.

+
+
+

1cycle Training

+

Our initial weights are not well suited to the task we’re trying to solve. Therefore, it is dangerous to begin training with a high learning rate: we may very well make the training diverge instantly, as we’ve seen. We probably don’t want to end training with a high learning rate either, so that we don’t skip over a minimum. But we want to train at a high learning rate for the rest of the training period, because we’ll be able to train more quickly that way. Therefore, we should change the learning rate during training, from low, to high, and then back to low again.

+

Leslie Smith (yes, the same guy that invented the learning rate finder!) developed this idea in his article “Super-Convergence: Very Fast Training of Neural Networks Using Large Learning Rates”. He designed a schedule for learning rate separated into two phases: one where the learning rate grows from the minimum value to the maximum value (warmup), and one where it decreases back to the minimum value (annealing). Smith called this combination of approaches 1cycle training.

+

1cycle training allows us to use a much higher maximum learning rate than other types of training, which gives two benefits:

+
    +
  • By training with higher learning rates, we train faster—a phenomenon Smith named super-convergence.
  • +
  • By training with higher learning rates, we overfit less because we skip over the sharp local minima to end up in a smoother (and therefore more generalizable) part of the loss.
  • +
+

The second point is an interesting and subtle one; it is based on the observation that a model that generalizes well is one whose loss would not change very much if you changed the input by a small amount. If a model trains at a large learning rate for quite a while, and can find a good loss when doing so, it must have found an area that also generalizes well, because it is jumping around a lot from batch to batch (that is basically the definition of a high learning rate). The problem is that, as we have discussed, just jumping to a high learning rate is more likely to result in diverging losses, rather than seeing your losses improve. So we don’t jump straight to a high learning rate. Instead, we start at a low learning rate, where our losses do not diverge, and we allow the optimizer to gradually find smoother and smoother areas of our parameters by gradually going to higher and higher learning rates.

+

Then, once we have found a nice smooth area for our parameters, we want to find the very best part of that area, which means we have to bring our learning rates down again. This is why 1cycle training has a gradual learning rate warmup, and a gradual learning rate cooldown. Many researchers have found that in practice this approach leads to more accurate models and trains more quickly. That is why it is the approach that is used by default for fine_tune in fastai.

+

In Chapter 16 we’ll learn all about momentum in SGD. Briefly, momentum is a technique where the optimizer takes a step not only in the direction of the gradients, but also that continues in the direction of previous steps. Leslie Smith introduced the idea of cyclical momentums in “A Disciplined Approach to Neural Network Hyper-Parameters: Part 1”. It suggests that the momentum varies in the opposite direction of the learning rate: when we are at high learning rates, we use less momentum, and we use more again in the annealing phase.

+

We can use 1cycle training in fastai by calling fit_one_cycle:

+
+
def fit(epochs=1, lr=0.06):
+    learn = Learner(dls, simple_cnn(), loss_func=F.cross_entropy,
+                    metrics=accuracy, cbs=ActivationStats(with_hist=True))
+    learn.fit_one_cycle(epochs, lr)
+    return learn
+
+
+
learn = fit()
+
+ + + + + + + + + + + + + + + + + + + +
epochtrain_lossvalid_lossaccuracytime
00.2108380.0848270.97430000:08
+
+
+

We’re finally making some progress! It’s giving us a reasonable accuracy now.

+

We can view the learning rate and momentum throughout training by calling plot_sched on learn.recorder. learn.recorder (as the name suggests) records everything that happens during training, including losses, metrics, and hyperparameters such as learning rate and momentum:

+
+
learn.recorder.plot_sched()
+
+
+
+

+
+
+
+
+

Smith’s original 1cycle paper used a linear warmup and linear annealing. As you can see, we adapted the approach in fastai by combining it with another popular approach: cosine annealing. fit_one_cycle provides the following parameters you can adjust:

+
    +
  • lr_max:: The highest learning rate that will be used (this can also be a list of learning rates for each layer group, or a Python slice object containing the first and last layer group learning rates)
  • +
  • div:: How much to divide lr_max by to get the starting learning rate
  • +
  • div_final:: How much to divide lr_max by to get the ending learning rate
  • +
  • pct_start:: What percentage of the batches to use for the warmup
  • +
  • moms:: A tuple (mom1,mom2,mom3) where mom1 is the initial momentum, mom2 is the minimum momentum, and mom3 is the final momentum
  • +
+

Let’s take a look at our layer stats again:

+
+
learn.activation_stats.plot_layer_stats(-2)
+
+
+
+

+
+
+
+
+

The percentage of near-zero weights is getting much better, although it’s still quite high.

+

We can see even more about what’s going on in our training using color_dim, passing it a layer index:

+
+
learn.activation_stats.color_dim(-2)
+
+
+
+

+
+
+
+
+

color_dim was developed by fast.ai in conjunction with a student, Stefano Giomo. Stefano, who refers to the idea as the colorful dimension, provides an in-depth explanation of the history and details behind the method. The basic idea is to create a histogram of the activations of a layer, which we would hope would follow a smooth pattern such as the normal distribution (colorful_dist).

+
+
+
+Histogram in 'colorful dimension' +
+
+Figure 13.14: Histogram in ‘colorful dimension’ +
+
+
+

To create color_dim, we take the histogram shown on the left here, and convert it into just the colored representation shown at the bottom. Then we flip it on its side, as shown on the right. We found that the distribution is clearer if we take the log of the histogram values. Then, Stefano describes:

+
+

The final plot for each layer is made by stacking the histogram of the activations from each batch along the horizontal axis. So each vertical slice in the visualisation represents the histogram of activations for a single batch. The color intensity corresponds to the height of the histogram, in other words the number of activations in each histogram bin.

+
+

Figure 13.15 shows how this all fits together.

+
+
+
+Summary of the colorful dimension +
+
+Figure 13.15: Summary of the colorful dimension (courtesy of Stefano Giomo) +
+
+
+

This illustrates why log(f) is more colorful than f when f follows a normal distribution because taking a log changes the Gaussian in a quadratic, which isn’t as narrow.

+

So with that in mind, let’s take another look at the result for the penultimate layer:

+
+
learn.activation_stats.color_dim(-2)
+
+
+
+

+
+
+
+
+

This shows a classic picture of “bad training.” We start with nearly all activations at zero—that’s what we see at the far left, with all the dark blue. The bright yellow at the bottom represents the near-zero activations. Then, over the first few batches we see the number of nonzero activations exponentially increasing. But it goes too far, and collapses! We see the dark blue return, and the bottom becomes bright yellow again. It almost looks like training restarts from scratch. Then we see the activations increase again, and collapse again. After repeating this a few times, eventually we see a spread of activations throughout the range.

+

It’s much better if training can be smooth from the start. The cycles of exponential increase and then collapse tend to result in a lot of near-zero activations, resulting in slow training and poor final results. One way to solve this problem is to use batch normalization.

+
+
+

Batch Normalization

+

To fix the slow training and poor final results we ended up with in the previous section, we need to fix the initial large percentage of near-zero activations, and then try to maintain a good distribution of activations throughout training.

+

Sergey Ioffe and Christian Szegedy presented a solution to this problem in the 2015 paper “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”. In the abstract, they describe just the problem that we’ve seen:

+
+

Training Deep Neural Networks is complicated by the fact that the distribution of each layer’s inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful parameter initialization… We refer to this phenomenon as internal covariate shift, and address the problem by normalizing layer inputs.

+
+

Their solution, they say is:

+
+

Making normalization a part of the model architecture and performing the normalization for each training mini-batch. Batch Normalization allows us to use much higher learning rates and be less careful about initialization.

+
+

The paper caused great excitement as soon as it was released, because it included the chart in Figure 13.16, which clearly demonstrated that batch normalization could train a model that was even more accurate than the current state of the art (the Inception architecture) and around 5x faster.

+
+
+
+Impact of batch normalization +
+
+Figure 13.16: Impact of batch normalization (courtesy of Sergey Ioffe and Christian Szegedy) +
+
+
+

Batch normalization (often just called batchnorm) works by taking an average of the mean and standard deviations of the activations of a layer and using those to normalize the activations. However, this can cause problems because the network might want some activations to be really high in order to make accurate predictions. So they also added two learnable parameters (meaning they will be updated in the SGD step), usually called gamma and beta. After normalizing the activations to get some new activation vector y, a batchnorm layer returns gamma*y + beta.

+

That’s why our activations can have any mean or variance, independent from the mean and standard deviation of the results of the previous layer. Those statistics are learned separately, making training easier on our model. The behavior is different during training and validation: during training, we use the mean and standard deviation of the batch to normalize the data, while during validation we instead use a running mean of the statistics calculated during training.

+

Let’s add a batchnorm layer to conv:

+
+
def conv(ni, nf, ks=3, act=True):
+    layers = [nn.Conv2d(ni, nf, stride=2, kernel_size=ks, padding=ks//2)]
+    if act: layers.append(nn.ReLU())
+    layers.append(nn.BatchNorm2d(nf))
+    return nn.Sequential(*layers)
+
+

and fit our model:

+
+
learn = fit()
+
+ + + + + + + + + + + + + + + + + + + +
epochtrain_lossvalid_lossaccuracytime
00.1300360.0550210.98640000:10
+
+
+

That’s a great result! Let’s take a look at color_dim:

+
+
learn.activation_stats.color_dim(-4)
+
+
+
+

+
+
+
+
+

This is just what we hope to see: a smooth development of activations, with no “crashes.” Batchnorm has really delivered on its promise here! In fact, batchnorm has been so successful that we see it (or something very similar) in nearly all modern neural networks.

+

An interesting observation about models containing batch normalization layers is that they tend to generalize better than models that don’t contain them. Although we haven’t as yet seen a rigorous analysis of what’s going on here, most researchers believe that the reason for this is that batch normalization adds some extra randomness to the training process. Each mini-batch will have a somewhat different mean and standard deviation than other mini-batches. Therefore, the activations will be normalized by different values each time. In order for the model to make accurate predictions, it will have to learn to become robust to these variations. In general, adding additional randomization to the training process often helps.

+

Since things are going so well, let’s train for a few more epochs and see how it goes. In fact, let’s increase the learning rate, since the abstract of the batchnorm paper claimed we should be able to “train at much higher learning rates”:

+
+
learn = fit(5, lr=0.1)
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
epochtrain_lossvalid_lossaccuracytime
00.1917310.1217380.96090000:11
10.0837390.0558080.98180000:10
20.0531610.0444850.98710000:10
30.0344330.0302330.99020000:10
40.0176460.0254070.99120000:10
+
+
+

At this point, I think it’s fair to say we know how to recognize digits! It’s time to move on to something harder…

+
+
+
+

13.5 Conclusions

+

We’ve seen that convolutions are just a type of matrix multiplication, with two constraints on the weight matrix: some elements are always zero, and some elements are tied (forced to always have the same value). In Chapter 1 we saw the eight requirements from the 1986 book Parallel Distributed Processing; one of them was “A pattern of connectivity among units.” That’s exactly what these constraints do: they enforce a certain pattern of connectivity.

+

These constraints allow us to use far fewer parameters in our model, without sacrificing the ability to represent complex visual features. That means we can train deeper models faster, with less overfitting. Although the universal approximation theorem shows that it should be possible to represent anything in a fully connected network in one hidden layer, we’ve seen now that in practice we can train much better models by being thoughtful about network architecture.

+

Convolutions are by far the most common pattern of connectivity we see in neural nets (along with regular linear layers, which we refer to as fully connected), but it’s likely that many more will be discovered.

+

We’ve also seen how to interpret the activations of layers in the network to see whether training is going well or not, and how batchnorm helps regularize the training and makes it smoother. In the next chapter, we will use both of those layers to build the most popular architecture in computer vision: a residual network.

+
+
+

13.6 Questionnaire

+
    +
  1. What is a “feature”?
  2. +
  3. Write out the convolutional kernel matrix for a top edge detector.
  4. +
  5. Write out the mathematical operation applied by a 3×3 kernel to a single pixel in an image.
  6. +
  7. What is the value of a convolutional kernel apply to a 3×3 matrix of zeros?
  8. +
  9. What is “padding”?
  10. +
  11. What is “stride”?
  12. +
  13. Create a nested list comprehension to complete any task that you choose.
  14. +
  15. What are the shapes of the input and weight parameters to PyTorch’s 2D convolution?
  16. +
  17. What is a “channel”?
  18. +
  19. What is the relationship between a convolution and a matrix multiplication?
  20. +
  21. What is a “convolutional neural network”?
  22. +
  23. What is the benefit of refactoring parts of your neural network definition?
  24. +
  25. What is Flatten? Where does it need to be included in the MNIST CNN? Why?
  26. +
  27. What does “NCHW” mean?
  28. +
  29. Why does the third layer of the MNIST CNN have 7*7*(1168-16) multiplications?
  30. +
  31. What is a “receptive field”?
  32. +
  33. What is the size of the receptive field of an activation after two stride 2 convolutions? Why?
  34. +
  35. Run conv-example.xlsx yourself and experiment with trace precedents.
  36. +
  37. Have a look at Jeremy or Sylvain’s list of recent Twitter “like”s, and see if you find any interesting resources or ideas there.
  38. +
  39. How is a color image represented as a tensor?
  40. +
  41. How does a convolution work with a color input?
  42. +
  43. What method can we use to see that data in DataLoaders?
  44. +
  45. Why do we double the number of filters after each stride-2 conv?
  46. +
  47. Why do we use a larger kernel in the first conv with MNIST (with simple_cnn)?
  48. +
  49. What information does ActivationStats save for each layer?
  50. +
  51. How can we access a learner’s callback after training?
  52. +
  53. What are the three statistics plotted by plot_layer_stats? What does the x-axis represent?
  54. +
  55. Why are activations near zero problematic?
  56. +
  57. What are the upsides and downsides of training with a larger batch size?
  58. +
  59. Why should we avoid using a high learning rate at the start of training?
  60. +
  61. What is 1cycle training?
  62. +
  63. What are the benefits of training with a high learning rate?
  64. +
  65. Why do we want to use a low learning rate at the end of training?
  66. +
  67. What is “cyclical momentum”?
  68. +
  69. What callback tracks hyperparameter values during training (along with other information)?
  70. +
  71. What does one column of pixels in the color_dim plot represent?
  72. +
  73. What does “bad training” look like in color_dim? Why?
  74. +
  75. What trainable parameters does a batch normalization layer contain?
  76. +
  77. What statistics are used to normalize in batch normalization during training? How about during validation?
  78. +
  79. Why do models with batch normalization layers generalize better?
  80. +
+
+

Further Research

+
    +
  1. What features other than edge detectors have been used in computer vision (especially before deep learning became popular)?
  2. +
  3. There are other normalization layers available in PyTorch. Try them out and see what works best. Learn about why other normalization layers have been developed, and how they differ from batch normalization.
  4. +
  5. Try moving the activation function after the batch normalization layer in conv. Does it make a difference? See what you can find out about what order is recommended, and why.
  6. +
+ + +
+
+ +
+ + +
+ + + + + \ No newline at end of file diff --git a/convolutions_files/figure-html/cell-16-output-1.png b/convolutions_files/figure-html/cell-16-output-1.png new file mode 100644 index 0000000000000000000000000000000000000000..6ef18391abe0f57d5a734d2a773c6f0e4991938f GIT binary patch literal 1399 zcmY*Z2~ZMf6#mf=1T69>u~^Sd%vKZ6YE1)5%_2p-Zxhorbp*rQyfV=ekJ9mIb4~Ne zEL~X-@(NSSywfo9f<)S}G;6h1*V4tB*=GOw-h1=r|K@*h-tk{?AloP))DQpw1v^_3 zMQTZ#0+*9&3#A;6)NG*>?5J?*xd;zTllt7+Ow^dXG{U4@VEyDC!Lj4aMxPN?4Oy4_(=6^dDL`rt&*GJ2xgYgM)){ zk_NGlrkwCQSi(&F%-o!OVor_{7#th~0--RgXi5BJ8*p)P0o=AWg?dK{MTVEUOFcLs*Oup$fJ7nzfk8p62Lrb65k{9OX}S9k9YXR10#yKm!AcT>@kxOsa+{m!1<`+jY8bv5Y=?!#ta+k^xw(9qBTsIIQE*+oSQ zYOx#DRm{a{Xrs&a9qt7-Ha2yqkw_$9v)SPHmKG$}?-x2<)|yNv7fhUj*P@BIl-#^L z83%WFd9IHAUXb59B^1g=GMO-5XD9L2PjQCI#2J;+A!lc2@SM+w)?B+A=IJO>34oWQ zGeBx;Dk!V0d}v`)wKi021*t?YAT6hgim<%y^p&MDc1K4CuU#Mz06#k2xPL+SvTK@V zE@8P|oc@61XrN6yK_<(MhlPh{7FB;fR!3ZA1*GTRK(!K3CCY#4dinaw?l(7w@w&Q5 zq8MLab%4cU>q5)&+S)96-B^{hW;0Aoit6>6?4>0-PoiyVYMN-A^yckbi0c|)XJ*QT zo2-6X*d^*+XR%nkcDw*5?UjzV=3Ta@rza$Ts-o=k4c%rg7hJlKh94G-PlNXOFKQO9 zg&g+n!9g;w%3z(T*sb4{%}BX}&m)wn7WPq+e>=>51|&n$<|@&o}f11;xcMpPF4Qt*z|1yx96K!l)v?n1<40*QP0fY4(t>4nJ za0`JjOUGNFZU42`Hs^);R&b{WiYsyHxztF? z9}gEi*y??;RYOZ_#e){+bD!6w7yhtb{iz~qweIgYy`Qsxf&HQ8iL!Kl!`slyr*v5?;|L1Z@$;$TDl-$=ma!3+^l+vbbtgNhLeDLLqNJCdw zSH|t1KP?#|BO@8+%$dV*;nF3h18?8zGW7TN%YU0YZJOBMIrHc9ANc#%mLWVm+_CMa z?i?o_Ce4)OWM%{7XQ3W5T$J_)x7@iCb6|zv_oZ%{8a_bzIgUC^x-(a<)MU7I>(;+t zK3-m23^#AyH2i()%o&ykKYmCwEKxBwpFVv$gNUf;&wp-wRkgLU4R7DR)$jki+M+dr zCFsQA!^{b3_O`aRx28>>&OYPA%A27-{`TzNz5B)UlP5hH+}zw4G<0>peqFg~d9Vi) z$C3%>&iOH9Wo0?ZpLqB%@yq8oZ*&-#nVA`6WMvsAOrFeq;OJ4;7x(qSj$g8VJ-uuJ%_C>kd&rh8?mBGZ!jA_EeiHrxneA%*o{rm$!rHNdDFCAXT|5jXiAlmDKS^S$fZy3~! z^|ZB_d-#9rEMh$fQS)xW>OW1gI}bdu3~Ccuz@f%^_3BkdH%(wTT(q0Q&w3QB>SA6+ zL4kmQ@rqxa=D$NlB<1DVeOxB3%8_5Z&)dsu(f72pv`13QgF9M{J6sP<>p8Ug();xb za{s@6t(`EfZ5`L)*4EYr&le0*Qc?^z?%d%q@mns?-JtvuxyFKRYnnU@#Cg? zKx5>CJJLeg1ATpc8#G1aWn^k@wRd|PW0+9_qw6(Pxe@~hf;uRvNw8ScwQA}K%xnFjU(?5lhRvmqP<_-Jz^Gmc|xps{y&3pYH z=YNjj?~Tu&Kff=1YI;a`IP-)#b9iR#Ir4j-$DZSJ{1n9&YP)RKjyJTi;hAys+U~Sl z-%k6lko9r&2y_lyvV1wa!R;DX>7RVH<}>c7Xh4+jbJ*wXJ}syxoOAxfS+lq#<_E^d z^Uv6>So%cszF>aJ$44Td>?ZhY(nV_(uBl#k)z#D(GIDcSeKsw9)b~9n{Ax+;(~7S> zGRwH!SFc{Z@ArLBY?ic!goZLMTk-hrq~@C?nPshq41NTE=${ZA8x{5Gt0Wu5>U4Fj zhqYgIk3?up$k-x?)_CTHI d6j0E91{b6CYhU}Uv4nJ za0`Jj80%`;^03=RAi2O2uopug~E=q$LHh= zR!7?(kH5H9JG_ajNmwwjaH7jmMs*qS{@YXct>-m-Sz<5uea$Sd(&c+fYioBdC^L3RWDJaO5D^n-Wkq8? z@xA-lsVi*y^yv(H_U~uDaQ{BPgR?U;gR-(RgN(d9^M^lwVm_76R_waLTUlMr{NUNM zW7*Y}m5dKQe->_VQ7Vu>_Ta&S_jkIxyC)q_Zqslwe)8@eU%~$OuU@@6Q1|@#bA~Tp zzA&6)+PFyI$*tJfSOybQQ&Gc531|YO){>jsbL6+kAENQ9X6-8 zm-m3AQt`117X%*g?A^bg|MhtTXA@P)NxT1@KX;BPATl!Y%GQ*73^#7yX8yBU;=qj? z5)7uMrVMlD%@g|?`xET8OLy+Pk?rsAXZ~j`+j55gmnqN51jcLEuQSe=IrHP!i921^ z6&4f(oZ0X>2^cWZsa3%6yS;w>dTuNGsa}=GXZo-;JbjwVU}bI1n30*um{43ST%a92 zV}>Fy9+kc^UA%l*n8DiGI_~zBDVr%Ny^DPOj^gT-0$^;O3i?V)0&G40rF|-M4MkD*MAWR#u8E-``W~ua2-QgIP%3g( zxj#Ya!lg?>46?Gaaq>5xdEdWt$zi9Vv&cm0NoUg-zjrl1k;=`@jg!~(S-*CztBsZM z6MZFf7db7@#;78`N*l&JcA007Tb+P9#DF&0OICV2toqV)#dqNcs~k&UcutfqDl20< z@aNB-^?NsNyl6eGH(q9jV%G`YiQk>$;^P@ttX<2xV9}ww(vfA4fkEJscjC?+nFm5f zigW#{kMDfH#;sR!k;e^t=MTVSh?Ey}6uR>FhY22&F7#Oq%)|_yu6{1-oD!MBYb&7k=E#JHGUcC3Bc7)Tm2&dCzN(d4mrG$`ZAa^Lf0X@C|Jz7Zg z04ZtEOlTk>fl@Nyl(8LhlrQ|MTbJjaYFDe6)u6F%Mvn+7jD!@rqq`e>@3rQCj`1&s z5)t0jyLwl@8>RpM{sHgmUA?RS@9G_(-_^VN9jbSLepm16cc|V0`dz)N-=TU3=y&z5 zeuwHEpx@QI`W-6!>puK1|HuDaA_JvB<15;F!9p!K-=9&Lik^=7e967)W5&4VES|C1 zt;sq`|f+3NiNhYKB!U&Kp+t0H@$;+>i^1$#`XOuA;FGS!YTq zhzOw{h$S-Q9*L3J{E&IIz-ooaK$gr!wvuN-)l%1X3y}rFegJgJpF<$wHSB&o(a+5kv$f zg-SQm|8^iESYC;}(e0 zBqF*v3K`H;RH%|MR*_X;W{(jCk%5p4k}{iqjn|t0;y?Va)o%r8=Nzg)@dC~2IrkUYQjn$TJ&yzN3m!@XQ*h%szVF(IkHfJK8AeXob}cS}8OJNlJOO+2m{HZU%s{EhZVZanE*0^g~2+ zK#Rpy28=~(jTMJdnpRt!u?%D3<<&WT7||%!-8ESfxdaTE$~M%x!emRyBV*~%Xl(Il z6pd{-A6`>ZA(oNKE|3h`C~8-uwZ(gn$(ERV3I*-KWCJ2(U%1+w;mr)w){r%$%9J7D zRfW=uQb0tZ3ltRH*indNm5`DVnJ%fyIlQXy&J$h0=ZsO7A#c%GD(f&tVYS1EWe7c_ zo>3P{&N$mpDN8B=g~8hzP;|l2mw|=1B;8_Ff&h{gwpet8jx9s!Fhx`QmP{m;k)!&U zrK@?he@dS^f(QmftsKX*Q|4|(NLTFgoSA89X{cs1PTN~3J!5&J=DoV*q}E_+?#vIV z>zbMkcDckz;@R2A$2ad&SwWGxS>0lYJ1#fpkSzPKLnUa`3~N1o*fW+95h01k=tN~J zQlC*up_JgXLzK|i7A=}GCX5!wkmy~<)wm{8p^Cx)#yL_7jA4&+6`4ZiEQ&A|4SgBW#lAgMFoY4U%{2bxh%=s;_9&Im z%9CQDZKh71lMr&i5GRm1kK}^Znvh0}s*nsx6b=odC`BlypwJXafI;QVsLJ##^^$p2 z5pqJbLK%hkjw}HsiJT*-X+*7bO*WaOI{?|SjXR8SSb7%r05XV57;8x>kxPYBnwSNp z6k0S{XQCvEXi8}*B|ynoZHdy5%RpA1ne~Jypa+V|IOV9_jG`hTgB1m~LNq80+8R_5 zavVu!WGsf11tAbgC?!M*w9KaGln0b3k_a02+XFhth*cV=D_UKlbU-B2j~lYB$s(wj zAUU?I$ypGUXmyKKo|Frr47hrRQXZugeb}-YF4?6mk~CQ*wAR$RL8GSI&?tsDP}znq zUJ+u%_|?R@azv?#Cl!-HgOKpnBVw3WHMMRiIdPRP5L0MbU`owUI)>O$^wb5iB*qj; zWu%WCwQZ)!L<{q3&LBNQH{!93aRPJJ39zIRG4#x)S#u$CwJP^k`e5tViR>63MDi zRTa)w9QgxYY`-EEi?wi6&2SiMHDjbF^pTlcakBh?+58AEk;D0%VYns^Yjo^Up(kB! zFhL+^uAe=p#DrT^)UM`aF(bYBoU^Cr-2d7q=sN-1thn1oaC7GBTWBl9oCqPXJUV2v z-*Nx`x2P(|R}Vj>s6(Hv8YBus*yC*l3Q8$>>v6h5At;lGsRx;;j--LY0&8nj zNf;thrZ(B=1FWhjT2q^bK3K3LzIco=C{>^cT06+oGdIcr3elQGz$lBtP;^Jm1+5e) zaN3bn#+gZ1vEEY45@XD74`{6|su=pX;jTZ$+a=CwhA=SKHKi2#oXLdghx_Rumr^F7 ziA-Hp7-J@mltEV$|GQb=W^31+9KFX;_>dRppOWJUW~A%a%ozB+XgQcSrS17oU4dAF~osrBHC&iKgUKljZ;dq4QtffIJ<};<(|e& z57~-CnUU?#k#dKz4W?KGFuFo1*vB=fhStv^3Dz5wXd2a$^avDo-Hy7h$$7--ij)H) zidnrN=ZrB9t)~~2%SfeXEbAk@uBmKI7(2#v#eUeMwIw-E(VA@3+wXH&3|3nXszWLt zxwuT!zGXQ(q^4zv1EXxAXy(lkAK(8rw-+~QtfF9%aD|I&gn{nK1L{RXfBu3jg{%tk ze4y{v43Dok{?5mk;&|}m2l$Y9-F?oY?5S1tEQ3EX+zsIkTsQVIq)k)EB0eTX*-FeCR0+u+Zt;u zD6l32i6jPP9Hca9kU3y&O(+?!6$(&BGfF^-qScO&3JOC~2`ONVhT;fWk#iXTqDCu===3X*rt%f4 zOrxODmQeyaD>UGfXSuq~z14^8x|ckD8Btp3;)rvOq7tGFT5Bq5QV}SctYs3QRH8DL zSQ14tw)Rw}rUZy8l1Nm#CaH+hV3lT79T7w3+MLskJFIo&oDdN*fkrvBas(9_Q%@!X zP*nJpdRlZsCqrXrD5coPE4%?Kj;5LuazAlz1x{*W+)}iVOQHZqIV#gkH@Hz)WwF-K z>KVJVe)~O+M$f>2NMXnwyAS|9fj=8CLZu8LJBHk$oMCBZ%$?=c<}n(>tX^_d-Ne}i zdH=;sqE)~{$R4$a9Cc33PUOB9(8KonV$Ou+jlu9(V!DxmOoLZxR^5(yGe2KvyWib5ewG}cg5 zL}x{puG!l?_ZQ!0VOoCq>TjlzBdn)UQ@M$EhJey`0uq5J0m%b}3avF11359|jzyl4 z!w6OwOUJxfVv9#?A*6v>y~K%UC>zLvGZhxgmB}qciPUM*0r z!rnIATAgs9J$VkhhH=ljyQH=i!#3iToi5n74Qg(dq&!lx!c`Sk zRcOE&P0E2GZ9y6YK^d@EJQ}S%ZPntmpE_~LSXE(YCe0l?ikL=(f)Nf*gr2<-UV|7g9giT-2v#AqD_C$%8nrZx%k**JDH}Q#C zJ9|4W^cbh`&Z7nc*|Q#du!V)0Q@G%I7|1b@#ei;UHAqgN1gky9ddj{>6i6vxGZa60 zl@w-nPKpEBDss&DrlzWi=P_n9Zpwv@$f4!-^mm@QjU-16kBo^f}8JzVno)djn49Y@I53f>U67q6b}Nijq?ozvU(jlYQ<{)_oUYMY zqm98@&k#B!gVUaYJ(WrfF|yB^T04@8fPfY%YP_m2+Du|@9LbU)7buCUYEWfrCMgB_ zF<^`$h(^c4_|`3eKqjG!BkPPS4h*DHP+CBQR06IP#8kLaBMNfXIHxGlV^x`^%XCeW zg13&=R`j7mQbv4DmV!mIYFCsbBn+8fzwZ2N0lg1%K~QBAQZI|)@vPcKB2!kHGho&>2dV0498h!nhbsAzEBk#a`} ziAbPQEucwiWJpt|EF$=#k+&iWw$Oz=wKBBTAvQ;foD)(Ym4elp3da=&l%X;;Mro9{ zG-l3NdV=n$N`qGw*=713vJ}P?sm(N=J8ekWFvy6aCyoQz8m!Ss(Zr%KQuE&Jk2#nx zXxs_y%<;|YkhW1cu4&tfya|NMOKu$=kWGt;f&Jxko`3m}o2w%>>mBLg6U0{xT~Bj* zi}S}XIQhMnvL3nK^vn;AvA$t;qhTKeFK68U_KLclF<;)|?C)M9=7Ixfc=5#xw!4w_ z)tWT)oZh&>dekg#8_u7LMQ@CBO++!Frrb~fEKj&7z~mVB}3F1tw*95j3@#fN?9ZovP4SO zD5VKSk#a<-9`cGx)f5vL(w-PSI={6$ji>S&l)>8k+XK3&h|@Jk^@>H^(#12RRA>>p zp~tnBnQhpQTlTVNH9KbEm%Qwsu<#2^Hq6`tXBsNivapJIwd8U<Wo{amTBZdl-TSDH^haT@e zhxHA{)H9zQGiz@{+|vzjxZdx`u^?J-&f=9J>p~a@5Jk?3LY{0iJ%wt>Gem?TWt`g) zbB$IFB9WLA&Q(+5NL!k!p|vw47h+5#Nz@IbzEH{~gR0o|Jt2*hJgJ+Mj1b6KGsJ-* zcBGO~qR}`+5-DU(-n-2`caK{KchUQv!_@({DwE(6w&d*@!}glc^$eR0cC)5lwTN|W z9zTR)`1H|Zy6ZjZfXUB}VxnTZ&WVq;= z)f@aaV&#b0k!N#u$tJ8x%JcZ~3sf<9?|JfO&urFky?Ke=)+~=tP}?=Tt2O)WM5~VP z-K0KRvzVWd+8*l)qiy)^$A63y#jEWZ-8Qi9*5sVI9xpH!gu<8yl$u6Ss~yf6bT-5? zvQKM96`6;YVhmz5RnZhv$T^ZFVzpYIY-1>(9^V6>xQBYRxentPT9Qq9PbVLyd&m_Md8#8`_`k@c1|oAV+@s=q3Q}R z4aQnRjtqH2W9QUw!%M$4pmP~HJ-EY-#SOlA@_+JRH*)*nJv=)?9`NOWvF}-rSJaD! z+MbYe2PLDWqjH8wWRM+3S2WceZz^&Z@ltcKeaZDO5>!DO1$hDqX+T$waU9sj9Ycz5 zyS+oHDO^!C6^)&7FgrwL7^G*EE!NEu-4Ju+^7=7j5ul(d%i+mK9M9k9q&ea2`cr=V z_z@`uP$LZWfpW3>krk<_6~g#;nzOs{uXr^v-}J$6J2Mp;7K<4wbX zKVXwKD5WTN0%K!m^m$7H*8Q3&nk<$glTs@r`p{D(p>dPg=4Wq}cugfO?R-W%Tab5( z?|%FC!~quzr1T7%msC|nyne;?iS=3Jj$Ve5w1Uw%oB0}>1U z#TC&Av7B>pIZ|EpH0~!ndGHm@&D-4l_Mg&SY)Rn~B^?)MnOSRi^YBMBH*Zi?icf#> z8hh&$IXr|Ra(1z1HfxyA4|sDGSS;s+>n(k(I5?c4+c}G)8LH8|d2&thS5#w#a&S^v zbe-vXMM)X5W7!^Z-Vap1A%p>6)i8n*Og3=nVDqu@UnQq*2u)K#d8j4V1G2*CXMq?ba+VQ4;&5#maPZl9X6SL-Uc8t>o zWaQ-d23P0T6z!;MOKs+Sc>f0&$!IBr-JWJ96h>rNQ#M;hd(QCsitgeS=dahCKYYyM zVSly(1M?dTu$HQ-Ia!|K+aI$wJ2tR~$wPF$Ba!M6D2IAuB{OF-L0a(AG_X zCT%fP?wk$OtmslNxH50|IhUcSe${uJY9xIEBH!WT#F8&uKk!!?Bn zr7)CBa^6Gf3EF_bOld-&Kr)M*z!hpgBhz!f+mL{}ZOfv{TzkiL7_p|p8HZ7dN>z*{ zphQ!cVuH1+Idq4#cF7R0*yrbH8jk84_^M$T&gsH6k~O+*`R1KJ;hTrwVCcW(mrs7d z{X74N+pBxL?7m=oy(Y_uGZnRQjAfi`FmZ&kr<5tztCXTqEm|yz%qRo3swc4~jU+X_ z=$UEhiZF8v7WRaBj1-@NVe;(L8CT_7by?1HDCe!-n@+~(QC4aaFK33qPYaGsZHYQH0Rbje*|OENO5}^Vsh%yETVq&Kq?_mVog! zMqoc)67s;xA7b-lONBHtqHs!48P6{5sY}f$nVZ>CRH2rZeSFF`u5suob2~gF701FX zY3muHpeqAozoQESm94Nitg z;#O5?WAGSqO6aIKvA39cO-_#(k}#s_hw!T)gkTw!1*Q!$Q#5n8q%||LOSH``;;`eB z`#-?D8Q15JStz*G+~DMRL5Vv&1Cn=0afHn)UO#xktZjMqXZ4V)a$S)A0Izp2ow zpsnJ~*_!4^GqZ_@Klze_kH5o@|M$P-^!SLo|KtPyr+m>Fjfc!%WDQC%FYnP~}SM4N(6hP?_5vBxPe_7HD=Eo6T~>}2Ta`!@t- zsr>=-c7ZegZJ1sYwMM^9>|`Z`p@$U7G7KqTJ^%n907*naRHDmdrdPTql5nkO*322h z9*yDA>t}c~Ls^XsTe`3V6jfDC3lgbN(m+Bek|-je6?NUR&@03whP=nQ<=b>xn0(@4 zU`#z#<#_+-o7}EyUZ4LtpTBs-NQ*LxF7}M6hbT0vrm;0eI|kykzNi~&yTsXwECtB) zG0?{?p-e#$<19_xQfZGa7F{eRdr+A!zUIm0BVG-AIxMjWy3quQ6!P1=_ayFNz@iAT zqo@F7JgcW6!usN_zF_UY&VxY{o)lE%hx`tx%d0u<>p6sX@`z~`=9+|R;RbQ z+*(H9&AubMmJv&z94}sNdH(bn*JtOvdGL3<4s)(9VYys!Js8&Ifac(cJExJK|M_3= z;PVGu?s~ra!yj^X9cb@W3^GhB7dpc^i`j#uYrbg9sdLcM6Ps-s&! zXFNa0S*U%YQgE=m&0=wrgT)Qz)iKu8%$fy<^(|cG$uUhLqMEk2bPi}TP8+Nktn!Ry zWIt>f;y{*!l8n}KL_AhothSShl$c0qQnf{<%t0hE_e&1v_xaIh zf6gXtDJ5Z5L@UqX{Fu1E;=zkwOkKYiobgy|@l$bZFHwuU1sm45tlCbwFLuxg1|j0S*~S zam}b&825~EV6j+nfAtZ!o#k&I{Y$R)TUvKa;|7!xLhM+Vb8?AfQD|*2q7kj8O_yx3 z7^F;`E2}^*nqer6y62!hX6_bL$}rOv2y}T*Od}WR3Tqt6Oq)7N2OQIuj&qK_-y@PS zrNVfq>y}~YP)0Gv!bcx}o7c}@@a+%2$zs05>>5>UEaJtV{`VB)vXiEvarAIIe&geb9Bhri>EXVpc{N%}s@BO2H z$m75IKlsUCKO^K!v2*^tKl@|6z2x8jPyQ)i{_WqgTF&WtgIk=iU2oZ`z!wjnVgu~Q zfyLnse((3c$#&PVSk1Y9cFBAhNj+4@H)*Ph({@gC_xBkyygqxxIXa$~Vt z|4I$k$}yxsWeXt;Bv**}ZT3D6#MDtrBowI43ekoj3114CfU1O4BBC{&B-Y!<)OJOb zX&+$9R%eFYfYz3!5spu0{Ot7xv_=_^Qw|kJzIFHC$f@WfTTTxB&>BfW2aDtQKVr{ zZ5j|qDuPjwMzt)f0~)VsM#rc|v~`q{2xTCsEn}Huji&LAJSIAcpbcKNXkBpD(b_ph z753dVDZNIdL8!YIZxJ?EZfx-CXqy+I>t2OOU-uJqAVCy zF{>&T_K>sfD?|$=1WF2s7RU~?qn#~T>594ptn4Y;vrUd{JNnq;RYlt@ST-wMF|5Pp zZ9v8&dP)Qpra%iNvM@FGPd`Sx6~k~z>*v@`IJo%%`>QLOalq6EnAVbGf|6LDT_C07 z^7%Q3r>A`J*FR@<==tUU{jccIRCUkw*$zWyH=J|+`W(?cv3`%|4_+`k{ebJMH+=e+ zf5X?`H|V-$dvV3?V!^s5|Je`0RiyqtU;gwFq2KeJAKvG^mFL0FKBdGBFTdRK(bw-%I!$wP ziR%oTSC429Pnazaai!zK4{mez`B&Vyv*gv2k>+s4ZrpLQGQ{g=xN5QT(TXmNhRZ`sZ79D4XtVs1Cli-vlU}j>{4RE-$N8rlDQ6Bk|esc!R9HG zD-@I%D&^4H5_7;5jd2Bq;H1U?W9q5hw1(Kan%37CJL78oc;b#)O}jF3KrseqGExQx zQFN&=lWCFRvR`w$xIteQ`jQYkpql5?Pxgi?lHcC3eP8jDpzOT*kO7|Mn>>5@iyytFL*3Xy=d zc1o;`BZt|uD?4nCB&G2bQrwfWV6`Kej7f$N5?(SN-TE4v-EB~r-0f(cP`5YeuhwkN zzG8Xv4ms=@cN?rI#?1y5d!B!J#>INa^UK0|T+!&BO&s~~AO8Sf9r4+x54m~!TYUbn z{(?XJ!&4sISaRp?f=9pX*hIrW|8M^{{`8N&!NJiDE}w0==QKB}9Y6fO=THBwKjUBg z5C1dga*dxY$TqOQGMwCbk4LZ0iEGVraml~@Uq9tP`cMBEFMjz8^kRnHze3aD+L{|= z)|Y#J{G$i-U57CZUp{!s!O@nZ{SCazeEQXzkN)7hIGwq5dYAK8XY}hpvnVt+(7$?# ztLEgr=BPiX#4}c>H<*7|q4bQ?g9EwO0!?*5 z8Uv%#*tkbDWRL=72XsB0!-ar%S8Dug|Br_UiG!e!I1(Jm-RF{=)WJE^i z{dK?HX?Lf=3Dt}k6vl3De%;*HUVE?g|KHyeWr~t|AUfbNCMO6-N6#R18GhVqyTArZ z3<88gsvNB~LK-%0H@q>GMhHV|Ta*MD6i!*XegiV2j~Y);coGz1LI^dDy=2)g&?0+lzw1#tAvYr+B}$K#Jx%OLk{L1? zlO`p--{6B~tV;H?J$kp|eEXcMc7>M)lMRPn55HYGBq1d*tjOBxn&@shoaOB1DU(r3 zp(V6Sf`ZZXfQZB71-_HK`ugkPkUPC%aed9s(H>D~lH(~21yv7ecgFh7r@a5(h`oKq z$A9)Gy!vLrqg~1II4Ad!5CvxEkn1{S(^y0*c=gpA7B8-t=Oebyf6DiN^!uDVxC1<0p4{_ebxudU?j<58mbHfAbAreg2wy*>H7HvAp%{PYaNO?WU(I$86n% zwUun^z5Iw22L|0Mn&(H;&o!)S>XgGayOSSC~c|z+I!Au|>(bsE4 zXh@`GqB4$l9->uAZbrDEhM`!5U`m@aW@C<~cZs&)qQ0h& z4UMlL3@S<$2Ak&4Km}SGQk|oW#)&vcMuVmI7J`G&{q7yQ>$lvr9le*dt|Ai*0tYGZ zK9G_UbRgF$2_;JOthK~jNyH%~Bq}EgH++xKL^^J^=V+B9l)|VTvUE;k7gX&UArlIb z;v96L#)^p1Ip|2+Hdx$&!Q-Bi3Tg+2T1N zS>gIqmR(1l?z}Z_2&}b~xh9VVE;@X)OjU|X#>k+^(;ceS4Mh}a3#C-J-eY1$-`%iw z8^ldVnmYQfLIlOdo0sI{39mnWNtUkIUY#=`NXW zD|UCrSbM{(ufO5`Cm++?zT&_6pZ-Vwmp}iK@n%8Q1e^@~=IJX|rx%@Jl&$YclL;dB z=%{cEC?yvLA9k)Yv{Kxz&WR3EtxzgO#+FI8ixFxVp17WMdqa{8C;P~Z$+7|w6ev$B z3rbTEn;WhqthyDoC<)OpN-}JOuCJM8b6j+c)C3^}QCRNIk2sv|(>cqioRK6MwyBBT zhO|i0QPI>Zy303=@1Ah8SW+(qtE&a0!!b9{9oa#o6Pjn=EYT4t_DRzYcU^Jsg9DQC zeJ;O#$%|K({kx8|ELmNxkUphrx6I6zfACNLh`7GwJO9-?yn1z?U;c}~q)Y?(of+lm zKC*hr{X2&UUUK)(e#F1~*Z-E=S1V?Fnui~LkDq_~8PlC9pa1KB&dJ?9&R%V3)|Mb7 zPNdwZk{|!&GoqYxxx7FN&-r;kW(h(jeEi)zTz-4T$?=HSpD)M`4!QUE5FI^o{Vkid z=E1x7NE3Md^(jUL_KxSYw;j{HI|x}rQj_l=FwXap2ls|uuu$A=&q-xLCzkZSXX`7h z54aeKB0+W))_M{%r%-zsnIcU?TQ?9Tqr706PLSTPvR9-e6r}v#f) zy!SW{zyIAo=BF=y%%w=F@K4RHbM7t!)o)@cAQj=qpB-aHZT7qBGs}aP25DF0> zNhF=y#k=E99Y>07<^MMe% zfeWS!#9OyYaD&&_=!~&ZxNgg4dqb4N{#8m%z;k1-v3)&s@#v^SLmRqb<>h+-Htm`i z1qzJ|f!+-+8;hePk%mB|a~qtO2o$XkC?y!_l9`zd zY8>ZS+a(rSP!8{FnKvhzH7G$qEAIv?XXU~~Bzn`c~K-SF3c z^(D)TD@>`FA0MDiPCg#dY-$=Ik-Ed_l>MU}sx(Cv8CAdK+0(Dtdw9gUk1Q)imMH4F zM)*Ke2j2UGcWBxbPe1>L&bHthu3wyyh>p$8InCD7Y#dUhXdGplaxlBYZ1f1DQ)~=` zFc4QJOwBbfKfS4Oucq+nU~XG_Iv{9X5sm zygeVl3;u@(3f=ysRRrPLzbse5af&wWC9z+myp#=%4 z9(a66Pm&~5Zu`4;=!ir${4BsDDc{39-e-6&Oq3JLaQ~>z7yTOvZflz3;QBBdgnM zj`kC_YtKi2{3HJ2|M+LT|NaT44=9;&JhSM@5x@S)H#~lC%=qMl&gUE)XukQ?DMybE zIPEo;-!AbtmXF>aQ(Zpi`eKW1a?YN<=J3H0uRi~hqvJU*FRsWY9@mcuvE$pVrHcj^ z0(0Nd_bW1CxN#bh6`Wr-^xpBw_wV5^Z#XzU!l|5hKbp~9T%(<5n-s`#O114-JblW; zNB2=WV{`pWlossm&$xcGz|RVFYkBeO=bU`>3CS!aAMb(-2;GxmI2esE$wRvS1|v_o zxQPhSAds~FEu};#Og3k1GBQ&@Z1EOCGsuohQ({a?)3pPo#5$Z6e029CHtPzl3_|7T z09iWWlRJONUw!s3u(l^lGQRid2W+~IOlrEm=T*JN3yFw|BF#W3)_zTEx6IAaTc%!3 zh=Nj&Fy<}O%npW=7#($YPMO>phIPMdL2s3ykQzm#z@UUg%VYou=tw6GLiRXmaJHpP z6*>%^#gJixAs3o?en6gPeB0G*yFf2GwAM%zCK|TwX0TWaN$V_$%7)RtbC}GqQ%n&; zk%){gHu&f$ijrx%N8%jM7F)K#p|l}QN=D^AGd*Foz2ItnjxGoL=cqiv$dtNYG0S&{ z-%Dvax1?-Xsj0`GG&}3qfv+1<08y!(Xu&DUJcJkOtAP|gafe#_~q;l*W-+Fo;XcgFtx0wGGi{rZ-@!;FJj zOEx}Yv*~$q?~tGV@>33ukFZsTC?=dPZ#lXD4!dbd-qp;;6JCGyYmOeCkhBSthwtEm zWj7aGzB=d5<9l2!1M`D|>#J{B$2s}*0k57dDMlNnhr84p!Lq(#elTHu6EJba?%a^1 zf<$?=>WQHxv<~3~qA(QN@czBu<8t$m*?ht4*FT}_H)Kgc-By?kymySvWFX@R0U^BQ zbqmJDF1gBaq8}J{Auv@V4yJp2d;KkmN(e4x6E@t4U{vN0yY7$(X8N|JIkE>J%FrR^83tO<1Bx z$qe*v0NrI;5o1rO4OQ#ugJ7m7gFxdg6RQmgNI{P$ia`fmm|_r<1V?m&L=5x>8NvIG z5PQb?4*Ko1T%xeT<9tO{<|+L z>p0LurASdmGav6Wl5@_ko-xi0tzFW)4a?SJ(sH1e(1X{AL{h|Z@LNmp)?r15mzEeM z)=7+n1eoS?a!S%PrO5Uf>zpDQv>5{+LV_^^WhF@m$)^wkd_7Pq+BJQ@pjs@*=X1t~ z`>f6{L21rUm-JRrZw2pu@?C!NSO0W)KPyU#%e)Ba?-g}45s>aC3)mfmJFG)ua*t;{qiyf-woG(6qK^EuO*BeYy zpiZoH~bg>?SIefiyLlUyy5Tv(|^jz-aeZy^6B6F zH98sb!$15X)n?7!!6Ek_KIZ@Zzy5dL`N4ZkXC=pvAMmSx^%or8`w=Ji3r=4y(CHB( zZn(YeP)Uj;#oCnJM-M5Df$j>|S?c92kfKtsL6S~Wbo6K(2cv??Xv*a(rCuGe+(?>G zlj{uYED}kU8my1VC~;wU9?tS3M#-2&7Q_&+G>9m9c<`9*@|HJOuRuo-0*&O({4T%v z=4SwmlMzq$Kj6ALB|1-4RlK}@MLr%;$P$kwbOGxt5?L@B&6ub;BmtuisNCkQ@81su zQYpYm0tq7Y_+cXbyBD<4DOTnPRe^`z)ff%d_8=$hCKCi;q#z-sC6XwO_X=+y)hU@7 zF)nuT7*shyYK4pu6%E^N!=_m?EB7hQgl%0Rq`|vxpg9mJRDqEO-+6>kY`Ya%mJz#_ zWxV8SyP!~!lpGxuBV90(iktNXjUSlHMOrYQ?NP{tX=3Qjl4Z5vyx!2ooGhJEs9|-G zrYTr~vXVlN$%=dc*F}x@e%Ps}Q%bE7zGEj%csSc*VnzgKaKbUoc91?|yNGv@;a8eKy@!_fs%$0 z9Z!Dneg692{v{H)|M(s5e^m4Cn@isR_7W8Q-~ZeHN>WKCdpS=&{(CH+eZkJrhq%0> zvpt*6@ctkF8UN+`AMg+U@gJdd!gk#-ofm{4+1s1(r~l+fY_~0Gt_SCmgtRPp=etk1 zdUekIcTNyl!MnfrpE4R3Jpb}*%)x?_C+~23dPb5fq)3?Ujd9yG-S#CqIFjsLR8}BF zB+3GW!U<1;Mc4+dBqFqov?7l7xOe;!js17D+nyvhsL)cV8Hvi#%Au8D={tmiOejL% zQOBM{XBadSQ}Dt4`?RYKn`TSn8oJOkQZtB}n|4W_W_-B!U3SwsUoF1o&Ul}T)eS3G zv+qVEX-Y*$<<@8n^JLCA+Zq11rK62CLP=Z*Ln9O!Wu|FEjSChR28!t4iTY{1!}}Vk zCEA#QsNp+QglRHGn-SJqHvI}M6{RldEI98l3RIBfDko71A_hzxRAfzTab3sF`idwZ zmHWtOktl=<2&s`?(uRiMZt1&7FEXT1ZxbUDmUctcUgC*3xuy3hGnJC-j8*f7H;Yr8 zgmF3MXnMrS_ztV}C1=Z5Tvs(`O^b^eLI#YtbhaVYC21@XDw51Jvt*Y%8k`fiAGk3Pb66-de9-2)!~@Xt7S_yqg@C(I5; z17vVChW-Yv8)VlaZeLN=HR+@z$qt9jfz~Kv5i&z4$q)bV4*ya7l;-*r9V?>m z(c@ig>uGCGl51S;k$!^<7M+Yp#)@f@bASIXb^kqf*H_g28i_{=j|dGH^$pT!thFFD zS{W+4p{+NRW=xhy5|LmxlEtQ@Om~PvqC>?8$B+2(;x~hDT11{4z00;=;T^QyhRfy* zp(4F=v}S0Er5+77TLm^W*w7-S#4`+^C)o&r{B5jJh>_qsgct^9lD|Vi4=}o(Eaq<^ z;Sm#3lqv{9V!frd6}@u^6G);5UC?$L8fQ_)kR%C`NL}5sY;T5wbQ1fPzAzi@BcrBq z9v>p;9FL{*HC}XVdJAOa>6F&hSl11=h1d;Kbl*_NoarP(#KCKORxRiWq+|r;8Kr|m z>2h^N=N*=u6o=8nv@taWNs+T7=R`bJw^a?`1B6Wf!&52?}mKt;+F-Z#1W7`V)78M-z^@8zENz@6g-{GhK;^#OK**`hN zH-{YDgX!Kesj;-Ho}>E{Hn+!&c8)0KQ?fiqQ<0d6kQH6Erm1g863y8c&+*L)jc5Mw z4l17`(+NIC%H16T3DfCxKo$y*9Oc|OKBO2arsKP$|HD6_>Uzp7C)1us-`Qb0o*;|? z*OR0QSIz)XvP4Hqh=JfDIuU4w95SgqIERoD5e6Ho;VspLFaQU53+Kyt3!rbwl>t3W zd}XQ-Dzbm?9{uhCi_@3n<%IEkhHE=?uE2V<5p|4;0+$5aLj_A@Eo7Ec{ zf5X}BORm;mpt2)!l~TDC(_%uROWIJ=hrpg05q#iy|1mMyqnJ&2_v8a^m**^20GU8$ zzc1M-_W5P^IZ{gQ?>wMyZg_F^l7rD*ZtDv=@7SH})7BlE?G|Cc`-s&J<1>UFuFrkn zQ~L(*Jt3A@IRFZ6u!Pv6l)`{qruP5qt$4L9<^Tk;D;; z`V6f~wtg^AOwu`x-=K0cP+9UZlir~%ER&2fftjvJv|%g?yhu^woVazEjUz91ks_sA zUDMoLA&lYm^Ed47lz34x!ZJIW4#^dvCfY5wa|GMc+*~6>i;aO7U!HRK@DbHI(i?#) zj#z9ec0$IRXRq0Nc+B~W3$k*;>8phA{G&f4$#U`{L-?L(gYm82D z&XHyYrND@{`gVqpHpHOG$61ISO5{lE3Ca>&4-taz(Rws=aH9|sg6$AdqH;m-5`6pH zF66rolt;ZKYZ4?fKv^cFSwT7b0AmzFCxZ{R9I&+>kL!CR z8ZRT!M!}j!o@y-d^WP%!xsH(`0+M(+z((#z8 zF^qhKx9|tMU0~Y|-&?x+mip#~<<%wokLH-t^3L~;Sl*6_K@g`O(cWCJJztWnZWtfj zLz|LEAAUknPEn$wUoU7^3xe(W>aRbg+um^b^h=UluN3UD6AUoS-q~9zxV>L zcj(*5x4-x~%j*Rn{ONzj?A{alUQmomn$=*pEYoZ#TII=;lHfa(kAz@}sKIM295FUX zsRkgw_bBOx(1idoIGi8$`cn1iWQZ;D-F5&+2t#OlT))CMYfLgB=nU&xypKpHkut~m z7M&Pk$S_Gpz#+Xxh)4(^v?5ImL_wM;V)R58seK?sK_WDnhMmcjo_BaBD7Mvt#pnep z4!4H=?1Trq?*mgleDn^fNr6bSbC=t4{FTa?!*4;{^*6f}wqLFYPllZeQ6i9R9Z zqu;%twbXb$h#nGA5S^v%?66)5j{VsV!CCs&4(K0|;&CXGVZ;yzn`FZuBua%O;$lC< z+@vYWC_1-c(=|wAK)#*vg@87Of)ocNN|Q@XA~TlV_U&hbpd1kC?T}7c+YOU^N)|QF z-Oz@Fu`1}|cJOhx6^To*^#&Cj4>E&uHQI-PMJQ-}OAI}sYVe5$6No`_ zdr{L?YwC?>_x?jfSu)*E;9wu4OV+Cjr31pXI3%%as8?I++Xae=nV&^&6y*kdAQG z4cp5XU?a1;Q><-JN)zf0Rs>`U0!O!ALpepp0fJ~uIrs;H!z4LT4(>dn8zB7{vZBDp z_*TvdsfZj*Ciw0M=6jr7P06&P4O@^Y_YNL1%ID0A0*xnxNM586J0vZ^2b}9r$rMGw zUZyGL6VgOstz{An?Rd)h^*N?mVEhd}bR^o43JpYj@YvWALy8v;?>%@&?J828QYIO# zt%n0iS?1+2g%$*IqBJ;ZfA@lxQZg=g*vWRet(SNqY5WEsd$M%OI8Ly}vRto-DqtD7 z*ijFfXe~4&J?C=uf;=s0+~8L>($L$MRd+*7=7_YU?;4PT=54@Qp%XgqhSUm~F)?$T zb6D4+WWvadSoW4a^dv<-Kn-%r?jD9l&4#YlXb?dphc*BEtGVZzaDKqD)T7kM5yOfp2U2 z^#YycFdzOu`rwJ3B^hvB$XFw^!ZsB;pAEqX!6Gn(UJwQJ^%iB_kVN4Oi?6T9=VOZF z7ViR9M4Iax@=1m;3G{2)#hQFP#o1fx#Wm&L3Bd`Jk=U+B8A0E!2j`qF(TOI?fRX~} z!AZ0b=tN-lc8GXRriZNS)sW7Trh_NJXr!(2wm}$8q9nGdsISg2;|a~>6|<9LWH|>f z$ndz;lHgi|G|WrG=s0IQ{bSzTuBg^$RCY;U->|8#X?;Z?B10tA|9>QtK?^~qHDxlv z29I?WiBgQrJ|adU4i~!L(oKJ-f)+|}Cpjj%en^BAIZfCiqb4^A)@^C*z(c}99U6>E zzz4kONt2w^q&$1`2Cb4Ie9LH*lJr&}lpJDjT)@gmYbz8AEft8A5Qfa?gYu9?cZ=({ zbZ&)|6IxLX;5V&EWXebtSlhF33z~j~RGNuagMnQ-7B|=IB{@k1ZMS40$Em<(-BP9{ zo$bhX3bxChLbT-Bn6|kkn~X^J_qcj}N)f@YD%!pyD@!KFcgeDh5EVjcIt%G&N-|0j zp+lLTYO$ocx};s7v3`BQ_|6VTkEe+AhQvcu8bZ!&Ub1`iF~lCBJ(wp2PdHs%5)MxwK1If!d^D%_fz8 z5EoNSA_w=H5OiyY(1LpV1|^{DI%dZmedXv?BpHqAqQc}ECQIp79X?)@%*TYuA^H9> zF$@3-Wg}V%e7hwnO0J*1VKkDsZbf^$Mh39e8G3X`*I8m*l9AE1fh0+WjBVc{qZrW8 zwj0t&TtwOw9eRYyK?}%|Aqy)sDA&`q4y_ZatMfr&CKNF^Vl5z6tT!I_{56w%5$hmH zbGp`H>zZt*;QH%l2v>9T?uYE0?6WyM;>Fb^+xC|3@@H%}Yx=&&7(-Z1Y)Tt8 z#264F#d=TZ8z!SUiAuO>mMC3dk_4dw8^1+LNoPBp^5jWD(^Mz{QfG)D&`}MYJZ@<0 z^>DQh4WKbHrwfiU%c*QXXl_G8PoSg2qy-AaekN%AAe$VSio@KH289(G2?*B{qrq)E zW+z8DnR0Mv47VpY4n=19CO}k`le@g@&Tn(1m~H~$2iwgZEu;3cgQ9=*+^jP zHNq{a7FXc6_~wdNUp%8*cf5G^jC_)D{Ny33*ujp*s92M!8trP<*ITYnFWEUcqKQ3O zsCfMDebQ0EcDtoMyW-i;{)XT+>$b)I)lYf+@qO+-Ip*S~M$I4a?bn~Ncf3pEH|!pc z@HS^#Mbdf3)$)d?pZ|(tcEF~~Xg8LF`;x1h3jh2i#eUDu@eUV@Yfe7grPou0lPs?n zsB*&XqT%jQf_NM0t0IGINh*{OL>pOLJY_Q5r(50PR7rh##Y_e2#xqq12qZC2@WJA? zE6hkz>?nk-sg?`U=`lfRZeBj+WIQIH9k4umikxm)T-{QRCYazbML?^__G*DFX9$zw ze2+0X0!!Cy5lZ20KzomG9n!S8dW)V+(Xl{Bi(4(xM$-96@Cu(5xIWTcy+Hlfdns*J}_iS$~CObXVdWrOo`r?`wKmX~FoSB!TN0CXf$HTn?R^5!=S=QY(*7^Yg z;=#EAd*y6RRCBV@&$jm`0$PQ419H|`k4+T0 z3>YQxPSMBVI#8IB7(GQY#;6*vBVDK{`kehDp>u*Z3c9YrCJtM-c(UOg-x9p0Hj&_3lE%_3 zdnVHzo;5O-@nUeKmGz0dbH@V zu3^2Z&{@u8cgoIgN|r{59U+Uv@toVs727aI6*)io>kDXp!=n%1=eC%#|M(yB>Z@<~ z{8yiH=hz_Hiv5#A$};ET2A;lJbFytnb`R0{h&N}a6yuU0EpD+U+WQ3Caq;EXJpS-q z&YynGcv2AUH9L>*VA~3n2x3)Hw-xzphuBtB%>_xh%hj7(tksyV=gzzD(N-mHc|%g} z(O0)v8%fKOYT1yel5uH>wxzqegl0=`GD7q$UZ1i1_(Ph|knA1cd&^{ZN|uh;oV_5Q z7gVcAyR6BIok58gEPb`aqiJqW$)+<%M)a*927zC#FarAPOI()F)Enx>nk1E^g&-zJ zBqpP>4Q*wqR~7leh@<;cZm+IbHyzV7AWcL@#l>f@5V~fw*z${i^)p80jQReQzFDD{ zDMkwpieqNw7#AN?cc-j*Nn0%trXalKnU%UENhgFTu%V|g1u;bWzNL>X+AE4|M5g}s z4z2$D&;R^C`o*7o@fUxdClg?}x>oHiz3b6ZB9tVNEixwfAQ3uXeMc(B1FA?z?#v%C zHi1_+XGo!#mUC{JipF;Ip~VAvkrO)0x>*xdf{zX-9KtiC2I8r0N0}B(%zVgKb`E4< zl#c0Qg^!WM3{10erkQC)o@;h=!5*5thrO(zRAZ!0h^vlN4bsic`3*v6^Z`tn)3=tc zsz{QEuoXc#%JB|nGGVkcAu)>8#fEWN;`$CrPd*uA5)IMPtyaYT8gCa=XEkwq%f;yx zH&>TT@6Iv1BR=_u|A3h9al6>^=>3P}yL;UE_(Rs#u=D5%y)3vmyQQ}gsSI9d5~DCC zVR?E<*9S(&GkV(&QNA=RuC{#r>2v1u8A&dwHXFuw?&6DGzJ9*o;;Lq(HLowP+1bC( zuRnc8zr5u5!45&C_^tx&`S9IGI6O_OS=}y}%@vzX2Qt!cR*c6v?Q)HbEj|iv&MwhO z2N>3`uON+Foo~7S$#+;heNH(M*nZ2^^K0^vz&3%l?WmWxjOGbZIGjyb-<)%Kdc)14 zA~AvxC0)}p-XF8NzGi)ShL4t1O4e0_h#-~3`IgD<9wd?2)!e*(Nj93&bTy*u5n>2z zmx(6gX*QOwt%fzHR=oP^1$tyyp5NfsH{{b1-dWb?S9D%5zV{9$l`IxZbc{qPSv>uU zCtYeXDA6B0({ zlr$-Du19ErCZ}pwL;_l;#rfO3%nCX%RNrR=is>obMQY+MEP1-cW z&?_pMZACiXr}L0aN0g%p+6eH0)uQF;m#3V*TH;A*R>S*V8qH`nqVXLLMUYdZEC@hw zE!FZ{Ei_vSq((5^yUW!Ji|!({w@mYj$M5bCyN=MW7-f#{{NOJ0 z{gj9A?eXOIzRL%H^pCJ&I-rx4qN-|w4rDtCiFxiMc zNQ%jn&CLd#rMRY}TCYix$q<;BYZhl`wA&RbiS*5qrdpFt66(6cWK-6aW3pconhio) zZr)sC>vOiRzu?zD`vv*#jJyO}SB$4~Hp>lJ3D#?bl-yh{8Q;6h^V3@{ueZGW!2_h) za&>k?)i>PUT+-JK2#b^wlO{vDBod;c4;3zWoFDx4!8wE;tecXz@w5b@6eu;Y#p|&7 z-8=M;KmX@{j*?W(hR%1m=mCY%nuF0XAqKk6)6tR2g4TB^qcFm-H#_9P>E1VFR80lk=4v`Qe4-cPkq#p6|_UA17H91>zXJ9qJ2MYp=8+T4=l zInG*c7fbFweiuiim}Ve55|bd2^i7XRhr=YzC5ndT>Lu&*7rgrQmx!|D;?)`1Y{ZK< z7d-jSV%nH>__i2&F)3fhjYpuBWalT-9)U_LNatP%j$#n>S3x23%mdUZad*TlXYNu(gh^ zGmK26S)U?h$<3<6*$TfsV{_~2`vxg{y1FJ1AE=;L%aEES7aQemPc%}fyB8)O@+b3LR1nmG_ zW`tEtm{$0{rdo`cT!z%Z{A>=jqPreo2LV_%wU8{*j9GX|n2wQ#MA!mTXdGG5YOa&! zDbf&x`JA#S(P)}>fFTVERgh#$-nsqT|K1(?YZvrSzWl52=T(X@B}G+WTNXmE96p_( zgKxVORYj?D9LFOqBOJ>mt5UjtkIm*bC=iZEUgk`fm((bh>4LIKQCcFT#Kc6SK|{-K z5*I7IiD6h6w!wzELEEc1oL`Vu5uWAYNMrT5A{3+Lj5WVQ-|f+H*YFGnU)2<4fl&zZ zWk{73#LI*rXi^$2vLpc%Ubjmg#?)m+QRIv+XGp6_C2g96Eu`PT?KE&qm%322`detr z!0!w|YHU$*@$fSq{mpxvKX}4;T#{&?-3KxgNHW z(%Eb=AJ18iVobZH*2GZ_A5L-GYxwOBv#Stk zHR*IW@w#0E0@E}o3yoH*zPvZ+Fg{=62QKkwL_B;-UV|S5gtL(CTX!fDFm%b_<`&Yj zFszFCcuuhx;|3mi6cPDh~@YniSjzKL7s-(oU z4UjFua83~^o;^Lo=`?6JZ6;S!CYKZZrbkg~IvX1po<}qu;s*{_MmCC2gu%wOBno8xX z36qrMRYtBWzH{eyezhZaq0-gxn{q`Rtm_qI-Y_u@hf1wH$5KnOB1P+!HPSE)y1_P5 z)M#PSZ*0+TudfigMM7DwoXHM0hG8NtiD@|K8v6b&rd)}=(lVo}3+CAgPbbf)#VU1# zUbS#6>0o^o9O(E1HhoD`k7?={<~b}9>b#)NYnJm6zu9FpS>iVgf^HM96;MP|iZsG+ zb(xh8GT1=`4z6D@*l6K<2F-@XvT9u0U^*TlObaO#rYuO7msmD5Hn*snYmDX@i#Wj> zH2LPQzl6?1+D$=cZynqBkZXNTE+T3nNRph{@i~F5@Lh{KFM0OhGyH}_BPeKZ`0U)j zL0W`34GU=sT+d`}|2BiYZL+dvcs}FvpM61iQIH?I-OvZDd}WHIKDts8MP`_oHrxI?`}ggz->BsQgV56!ZOK-$X~h@ibmTzi;ai|OT@^_?wd%MzpElIAtT`E&)zkOpO$Qe`D&o}sIVJX;c#3k)Gv z!bfxEzOHIPQ50WcvR6PtTUZ#@O#4=3kdUbE8l%i?a zC{>c@Iie-Ox@k7$^iuoc&+fBL+muElykede^9RA_~MK)$M zp3!PHsq>iW=>?YQ^6^KH5!BSW!l;&f_QRi0q%O_&Ca0f1Wx6<~mM(dGiE><~!rr@`8t7MG_d zglWdkog2(YGcL}im_`Sw6~d6TH?JW*he}G~TocDJmX-)1kP>G3ggDO-8qz$ZELS}S zghCi#BJqs?B_OMFl=?>q-z%*!lth{AJYSUnRF`-g=byBch zwyy7E>xz7MP9BX(W($;X@VgFCIKs5n@R|W`cR-S4G3^<4BWqxL~W}vA)yc!7oBOo@AQ(*xeQne)a|5eDfZq39)MM{O6zY+Bj1aa!M0&0Yl7}Ax@{B7aLHvxS;Z_aGjb>7;NA^J&z|!1vvVAC0PO~s zvxNOEhfja_3Ge*=?~o=1DJH$$ZPLm`7a7t@IDPz>dYN!`_=Mrb3oI?LdbhdzYv1MR z(+jFH!Bz0fpMJshciv`reun3)@#@|#(lvSf;V;;_^BTR4Evj4*E-z^BY!FSCIF^l2 zDMA!%zkK_@UONB)AOJ~3K~xW9!0^itpuS?bsJMOqB`(GV%W=Z??G~1q(%$To%p2gE#{M>0RC9TJilJS+wRK##haqd6<{IHNrdm`qTR!<>j7md>PoJ?E&Y927iJ}n0 zF>qYL+4-E^mc`RY$GA>|*3K5WVW3SIpO0y^e1f)5UM`W8m}QCW_VBs}s#MG`h7{3~ z`D96zO!Xz#$oq zxN-XiRqc=$Iey@=zGLBdYs}7%vAizv=_PJ|jdYpORiMKemfNP;?Gnag`r97QzkEh> z>m?l5$M5bCGz6o|G5u@Xj7AGOtqq<$cu0}kT)VT!{Axj!D{c%loy`W%zj(p&Y(kkP z-1{eg$Z}dUKb_Hg>o%j)L)=Em`u0uoD5KoWu{#d4OHHfqVpt{dvO=cd`8N1D!Mck| zZ*%m;FInH}5o~x=$((WiRCPfv8rxPOGS~g}H+N z)de*bs!~)Ur{T7#(vYp@E=e786<$*49M@=2q4A_klxp%o(eYX=qXoX_vtbs9;Tg&E z3%Y%O6&*As!C(!uxlXI!!D&~tTiq3`-0*4dZ;@psI2M*=5nhaFw>62& zdq^eFQnI$+L7E1lTCzNP!QyJnaz14-ykt6EV)`!6ADpsr?G~E{P5hmk^vfQ=5cE4Jos;JY0tee^ zljT#qz{2x9W?4;^rBp&;2^Y&zEar;&WJ1Go@Li2oPzVF+Rm;b11x%JEbr|9Kn$mDl zslu~DdUy7aVw2|P0nxO^wJny(lyDYu`*p?9!x6{FBW~T6?B8lJn=3Z1-Q(lG_!%#M z>pEY4_?TCJ?H)h>`9ofLyTr6DP%#faza%O(rzaC?A!q~vb#Z}zZJYC_PubevXK`^! ze|?k7^FuC%3z|WL`66X=Z=JLqU1#jH&smux)>=QJ7 zW}-puti%Z-T#}qTLvG(8==V8)F=B9S3$NQETTG~zD-w<+YV0)9tW=^J+}9MaS>cv0ZxRf`dkzj&h+81a^b)e96g^ zb1ttIw1Pg}oh{skN2k|-Izj6S+X9{EEJvr5i#b+VVc0fyYm4<8`#7BjowY3-2OQtT zk{NY0B)&K#J-=jhbxD@REHBQ`R)Ex*73!`39GE65xGul6l!+wY_t9HHZ~@`H4E(o^twJ*7Zc78pJCZ99nYmS z4DP)0CQqLqbN|&FJpcR|?SmbLhnL*@_FI&?B#J_I4{lN8;YirOy-QV>9DaF(Qi{!6 z_o$VHz{K)Abd}Lr?_qg1TA75?jAn0(x+s`WE_rdZptF91`S~%k`JBPced0{Ayf~+~ zx6N=gWpWW=_B({7qN+2d^N@DCi{m>qJxRCI#BX=0%?hvE!Sp=hbj;=S8Cg+bSr&Pn zQ0elkP0PTld@Q-r&L(AwVMtsNkm`t{&Q}6O1HSw6@BMpUxxXF~C=8@wqjioj4Lqm8 zJf2bOil~U_+dk4*;dZk+LQ1h3H7S#MHm1{PV+xa^Dv(m3>y>lJkQQlOVw!@iOz66s z*uI07ilkCRYDuMPR9WFRJeqER&`>3F>N+P*7C5aAmIA*7uXaIbk}9D+=pg(yUb{(I z8@NG$?F+K`>R48k63g$9my+wRyv6uxNLkjz%LTo?l6Wzt(d*!tIaL~?bxF1i$%aFs zdBWM@1+!>QHxSIHGbYP(ma{9Ipvz$I2F0LDvWPjKELpSmNeY)J1zk2q$V)*EBU*k<+j&;=PCxi1NnG*WfBDCZj-S)<1KK?()?57aA>0WJ z2J2g3!up+SoIm`GO|L}kUA3mpP*jzsN1v{_4%JtV@$3$Rx zF4ESkg|b{y#woT=Nt2p5^H{&Jfizqu=LLq}=f>-63|}0v_l>t0KYoaBCWP6N&A}#i zAUXT&gsq#`QAJLp;Sr7v27`4>OW`ymjxcGgw@?&xHm~FN*2uBAn1?L$6^J3%DaBV% z2UA*zuSAArr7^7vL5;2jl_)W!q$)MSsR;BxBKrCM7k~AAU1yj=qcL$!n<8DJk+_CU zg<_seQMv}9k#ssp5a)BW zAuucp1gtkVX_`$c6wC0Eq{s=JfWBF>=6N`=B)S^odM>)Gux$%N)HwFaZIq=sQWX?& z&gF{`(~?-Wq`TE2TQ2Zg4XQGy)9sUIIYFGTJLdCJE6E>{naxw$Q=brZ`AaD0#M z-afTzaC5$2IX`~-*+IdFfi;DbX_??@2g4NPbq&97EM?IOa)Ar~cDmk0q4HlAe@S1G2nP-cxVG_uSo(ixe8wa(5el%D0BUOmAw z8#MeDnHDsH7EW!_7ABp#1$9X}Pf_I+ezS)%1BSC1tx{k%9Lz=^v+d)oS+oueglUk4 zIW;E3(VQ|F((G+ADPjBObu7=ub|jPwswAUImV}cTNfa@k&ndGMOV?1;=;@Tr%|56( zzTYG=R~h7Rl<~%QZj)vf&GkLpAYgiQh)!lClR0aHgd!Va_zgxcE>K0r)r&D+XMoBI zmXjA8A5ICH7N#ljf(GY@SIj3N-k^<(NtrFl7A5gwPF-6_!^JWbNmZbQL#Z+Z8iAr^ zw^(c0jMI=bmt55qy3Fb2m)yC&#o$_x7oUDkuh*e(_2{=7Y`%Jv)Vhf-60Yqf6jhVX z_ByjkMp{Xt(Ni{^d%XSjOE_dadvrySfT$dnUwlcc-61-E%)vKbp)MzE-F}5uyUijp zIR5OE_O4H^K-UE-JtLeOL>EU4L&a;~c@^98`1?P3kEahG(A&Sx#n~k{?{*n~`IOws z*=_I8l!E8S8BMRr*6rK;)&KaXy!Idc3toKrh}(B=63r7-osj1_w#+$yc1$S(ZoYMc zy2!EJ8p8wA4@kxn?Djf?wJu4N;CdbMT(WoH!SZT?)+354C)1MA*#&mPVfJ9cbh0F9 zbcq%TGPdxfMXe1Q{SJ<2BW#HG1EXzV@3ju^xh|r*wK#Gc7>_*Q`JnRu?pz**yD z`TQ%+SosyUcg2P(>jF#2)m>Ju2Ir}Yu!Kcb=VVp1vh$@ei*&(sFnGScZdR zxCFAqscpzt^w36cjoEO{)#x0jv!pv%$94mxWntMaXcJv7as1Azr|e|Jam@N|2ix64 znI@PP{XrLiJX%mKL+T<#B@3ic6D}eykB3Cjl0vTx3}I4ndj6cj!GQVX2+MZa-QQz> zca4wUKjhut{ime!Da}TOV+oWnm}do*c2GFjrb#$nU|Xx1q~+VVYwOV1;6``K#l;!P zJZBQm>9uX7nXV$PWrTJtHuu(<%#Ki6pwZ0YYQ_CB1X*Drgd#6tzFe}_>|kSK+9sZr zbLaJ&Xwx)*3f&4Y>E(8hK*z>?a?vchAAnIk#^O$fpqx z{^oPSTT@d7w>;g_oZDdcfkF3@A0Gm z<1cyR+dDMeCd+xmvk!m9cmDAA`1s$RvcA)%T4sFk-k)>t+rLkuZQAQC9=`txMGDIT zP9L9R-tV)vvB!M!GcHa%mUYU`n{SdXQf?jGge2nXd)PuaS5Z8asBp0PMS zr@g+3*DI*<3@I&YN06pDovmH6B&5IIB4{`)E*|1|Hjdd~G>q{47Dp$KIeH$mduxZv z4S4C*cX{~nM>LuZluRgfj@KNZOc;ezmRZCiim7#lt5yV;vZzofEW<(xMWt$rxKh|6kCg#t=T1bbj>(Ep!Pw0@GW;?(&kVTs@`7Dk83y6jjEGENZTJ)727H#rV!9 zl`2-hm{Le3aqR%mM72hml4ZJJyg1{f-Z$_~pRfp7#!C!gl9VB}0LSpqWsSB=`u+ya zs@;w>1WJ3PaYm!pL^=)Dy%yu~gu%frEVr@xAPJ2iBRsE&latk*zNpX&a$S)xQv7Cs z@Evs7!uEXZw$Cgck#`u{xdEgJ?G@bIcv8(bQ&{y`Xw*D(dG2KMV?l8{SFU4zvPq8$J{qv%CdteHUHs% z{zu3>B2CX|ul1SF?lC&NqI+YPlgB3{{F2#)&GCmnq`!58>F5l-cApPE_>lkjzxY>t z@!@CG+90v~II`y+cx_wB`|yKKX*Ew%Nbi!z>H# zytIqi7;$jDO%l#Av_Lx={FJ4-B8n20c|ocQl45}>GCa`%38D~SNVLw7rjKuS$;tv- zI4cL7^wBzA-La*!3Y~n-&)43e-}~%Oz8}|POu7g|P*afPF}@RE*$!zDW0)3Azm07< zES6)+a?UbOkd}ke6}IJ&X36RcR9B=`iY31i-W3^%O4)2(BhZT3a!4s1)&^V5;t^%B z64ePz8bOP$<>S{G`>hsT-JpsiOl5-Ez_2Z>hRI#X#P&G-MB6UGDo)XT- z%*G4iG{@_7X>af0v;u6mgEj=FtVrh*=4X#N{_HtfrkTx`L`lVXJSI*(JkO)q8(@>u zZTAsXO|RRdnvAeyMKqfu<$~dpF9hu9Q)F3zQWxJAqaf3#hl49q7htY^7t_-Pf3b`-12$#Kll!xfB2Bsf9pGhu_QWv zK)dDecYpE&j4YwdW2EacIUSPOO*-rAOrwYg?>}LE_ZpYSPucy(P3kBmtYa`X5oXN% zD&^$pIqSEtarEe%cznS>y!SqD|Ms^yzcTsu@Bee8Tk+&)zu=`iuhDKb`04vk`PT2g z&E)tod76{g6}_F6re<|+>$EKR9Y&022*L)g@1jZ_AK z--KGTh!>=F!CL<&wqv8TLMuU;r<5p!64Z5xYk8D)%`BQ>nI^vH(=c4l=a;0iU^}>m zC2Yov5qVu=mi@RPqBRuH}I*73XMaYR+I=F zVSrHhj%K6R#E=z2+DJpPxznZLHyCW}GGE4Y)_2+1*ks*vaT^AMy?qulf$iE{U6ss^ zu9%*TI6aAw2zs0A{QaN(Ez#(d)1xZ}JL{BrhAB>Y<9C0P-u89QzC7gHzj2>(IwI(G zx%l{RdF7pZut#!Y!roV^4aGvIC$$7 z_U>-*!T7%5vC(*U18fk!mv;(Md=Dl7_{s@ zwq=7Mu}z1v%29?w0A-b8*fzP!`R>dA{8xJvGo=AVj?oZUhK*7RLzvjYAukIgl1f+P zx+IF0E7FKi?6z-Wdy>zNeugeqWJ7I%Wx7Qxy* z73E4~Co9@+8{aUowLub9)P_Ng&FFHqpV1m6M7py!C;+aHpePT0^3CzF{ZskG6^|-GGloD zDZP#lq9&=Yxcl~9j*dePf3&1rOt?%R;WY=`f9Ecy>q9!l^a3U?E*Z`XO0j}8Vt}Cp zr2t)Pa&54PHG%2S9ay+-2WbmLZQ{3V`s=s2aea^Ny>;5ANq@VKHd+{tpx1)_4V$w3 z7RO&6VTWTv;h{#*zWpYrM~|qMF*`SI6D_ZJ@#!JY^+!ari2eN@Uw-faPo$Xb23J>* zUR_XT8h?MEPyhB4Ui*#TAd830T1{GmZQg(HJ$~(b`<$H5n9V|@RGgoV=?>k#XTJdIJJz_3=0FiDLm zElO!)))qAeLQBw^mfONGERL(kD|n_bSc!0Ll>T}@^w-xXKl`iiFUu=zt4HAWnMPND zrq%2+o)0mkq*jWiw_=Y;VPY8uH#YC!D2t=fA*C)U>WaV(5CY;PLdew!Mavq;bm<0d zT%y%0Y?UK0kdBRAn+V%r*WaKg1=m|0TG~fensBxt4I{MYVfq2f;T35TVOA;GdA&}IyL7rq3+T!yMevVa+u~b5Hvqczc_Flfl&h5Jh$HNO6 zs7x`ME*Zr+X;u>{NUIf$-4rGWa2<_J$;&r;_}a%YEj%Nm>$-S$gZ7}$_Sz=vfkDtV z2*)W0FYmIozfLk+KoQYt81#D?{f#cJ6SM!)F8yAgt=$7|yzw$crI2omSaf;s|Nekz zq3P}(Fpn~((+VYhY|rGuFP>6`5xq^H!JYe@zc|4UIux@@I-C2%X+{u8Zol#xKmXuk zq}%57c+UPoo3rCFhN&2a4g;&kZzzUCpY48w=hIWJp5{oIG8~_A@6CJsPyg-z$s6B& z2fyj?;BS6R%j@v)(Npfee1nIdJfPicpelpCYYqPXFMh;)s`0u9tlz$dZ3%=>Wb-*H zj%jVSa6AVm@DWnux@~eLNTL~1ORl}NjgpdBRX76^r)6LTl11&ZELS^it#T@zkmUuA z(LhL(Bul^$nD$CN3kDl*n?lvh(lNFnC^eu2wsfh8`0m}`|J8QrQdS6DlmcDnn8GC0 zId#2a16z(wRL0oK!mORI0_Zuja0n@sWxmpNQc`QRA{H7F*Y}vm6MVbHX0VB4y3Erl z%OoeMGlG^vXCcFANYih#*)Z5O`k1qvtVl?vAyHJJoB@qSm&GJy=lUzCDnXkj@npo} z*_2vov=bl6l!c5Bbsm^_SedyU))44NSG9ScHs~gK@{E({&I= zL8UDw6_i>M4m0e*7U+UZ32wjh4a&TtSYC4Uofy#vJT)*x&Ea z?FpLQfW>f(gW}26bFn)1NtLwA0Y;>VGe00Xv&09RVx?p;B#QH`H%7PM2Y5QEi zv&)_T`j5%8ggQ^@c5JkSm*2X}Pk-OJ27>%ZsLOF8NMlFq%`fN^^F6%Im-R>wNT=e@Rh>M7aFBAN_>i`rdEz<;Q3I z<{$kUKX~|*fBoP5msIr&{-1yIm;BoAew%dhfF@FH{?|XF)89t-dtC1Z z5C4JvJ9|9)#UYzJn^@bsEY4<_wn?c~Jx=jKsmp`ps~&}UQ$#!(iF@lmtq{{M@2DH(nvG2t#A7|ux zge5KfR)_AohcsKH#Twd>93M_73xgYXZ&I5zowXg3FvjmF#*Ysf9$n#jHm2p%Y4?$!1^2$aP3vHXGMaOF_9c1HAx%oKY^KYKcpBr& zgm%LrtxI%fA<5}9OiW|NEVpe7VOc!*bOt}WU~{{}?N{%ySZHJk4aem8^M`Ej4+xV6 zM$n?Mvxgfrc=)qV3G-_ou@aMeo?mcEl&uH}qJo@-^+M7ERDy6-7o%Yd? zaQcE`e$K|;7CYBBcrduez~s=r4YZ?QHYP zum4ki`hy>`cF^MIKlupHY0&O8(cuZPa9B=iY)7-R)#U2gB`>{smyiDXJvRD1{^9ux z`n_$^aEUX&MEVxXi-Pu`O}>bzQQUs{20^Py8V(s>p3~^BQ8CA|!C5zmYlkR~Sf&#K z*9RoJ^j5UfI!D(lJB?vT3}c0@M!FaR(mGygjHN;eg=5-iSyTOE>XS*Ck(VW=PH+kr zEj6xkFtvr0U&+WU6HAzE^)@-3zo613my0opPH30`SyfUM1Vb0*Iz%tG&H&Z-$>DxWPJ4hlJ*`=m!#*J z-j&{+Jl=fXm9OfmYKw*;fCdNKfN>zl~OvFvXIS-BX@@^pJ3T%ANaLq*_WGD&&QZZq_JF znbD|E8ONlo^Zeu2@j^}d!t*@h575@6K z{+{uy;Dhfp`1Akef8$%f_k9}e75?@|e?zae%p!2nlm-XS9-D=CQxH@ItrQW}gzal7={NTq;}O$1qY!hnTqhS(8hVvc zc?tF_1OeBda-19xr3sp*plAxN;}8YEa$+eaYNny9DlN6jhE>HZD#YOksR(exjI>bE z8WoDU%X~5=%VTCUgJz?LVi_pv9B(utn2Z=)%n|e|YOP7&7A!^+)>m2xVoETN5Hb)- z0}26IsUnIIS?IF&`DdiaBt=PSS{S*AUleq&_UJ4xBbze#7B3#}^YZCF-A#v=FZyh( zc9A3rLzO59*}Q%gu_~jgCZc4}SzklYN`xdK_WDc@j`0>ENm`IlP?j+T39VL(#pw~T zKW4QKq9Sv267cAk1Ge6LAItC%Dy{ z-45USliy%?;SkLOE?&K4|K%>f{fB>m(x{So0fT{uoXNcS=mCbVaWNdwNt^84-{QPd z-;skYO?c2g^l~~@)!T}|H;4pA6uM=4NAe`U;j`4J-$2U>wowIe)7Nn1%LG4 z{*ZtA=~I5|gASFiZ&M~Z&wlv`qgC+q@dfMG)*&pocdgFm=3Csl`ArZ*{{F9i#MPS{ z7?KHU#yr+JUl=sCI?tXD*x9+xkN)~6#DdLx-@n7~<#Q^9i`}UsbXQ464*Spd>8-92 zIV0?q7G`~eEKJcVA?==lS$UKG-WP=Nl!|rvpXX$Jz#?`@;>&t)n1slJL@G*TTrvcz zQVmpzQp^!W89&PqBaa~PXjfaLa)Df4dft*KCW?bEALyb;NXr6&0$GsB(gIU6kaCqI zPY_Z-5HGjJj2OLCFfou7l_2-Y%bdDmp@s!z3OX9(Fb$_DnoLEkAe1GVWRjN|rrbbL zRW#Y)dZ$fQ05uXQDX=PaoaqGBXrf65i#P1h|t6A~!;=*(~M-TGOIf40-W-L9ta$9Hp>I!;$2|<=XRv0)jjYb1mP_Ubu3`QQ+WQ1kQlmyH!L^NH*lu91| z?axU<0V+1V^&X-iB8m`9GIk$+N~GpUDgjCE)4E#6uCCDTwP{vu$P;3Bj+ChwrcXTcSi1ENm3ou;?m3g(!FN35QX_Wrr}1kko{q|L6Zi7R6kD z{~oVDJz#aG$;#>mpFjMB)wM3)`@?VX?DI#AMq_Tje}^&*IC}U3y~uG#Q}m`mn$9rn z2Ak_QN#l~q>4Iv_C)du9^$ul`p-K^%C}8PTWGSOmz$ZaBEVLpb6LO?9BNy^Zlc#bC z7?i{kRaJ?K7>Y}nM=r=Dr9fClBw2=Gm>`s-c}$SG|HZ|UU%x3PswilfvQ1rXGhu|P zYs6WAP?SiDM%}isP5bgBlVnH*5-CO!L}XDS$aBgpMo1@=>JlUcMFyoTkY&ZCX|R+~ z6rC)Osh1|34V$)ZVJ7M2a{lB5Nz%wujYtr%mn>?Q1Z9GptBeOjGSNiHK(3Y4QwxwO zwF1v`FxxVkEMbrmFFb~6fhw1jiUe80Vt7L8cnptDn9o9-`3yf5S--wb>JC}>6@+|F z6bfwKev|QdOsgr8r2^;2E^@U(cWs?^r-mlvbT`(qsy$>?M#wYLI3f;8L^(&+6jW8f z_olRV)(LY9z20Cv43RPiRd6Yan3RmMW3Ycb#Hd@`d}o6&fd@Z3Vr8{KkrgyIx(JDb zTv`MNeFn$JIAOtfDzI785#x|#?-heQrMJ3{r0E2dL^Ffh@)~{s?(CGsIHKBGCsA|U zJR;8$;(4D@e@r1iN61ZtEaHuK?-Q3Wx|p*!ib%qY^W!;pZq|A44V!SZhvVb~sm}Sc zQ|gTdi{qDgvmrOGZLof0gGqnJFaGL7me-p2x&lUrM~AzVqQSfG=zRLiU2beP89e)f zrJZ$NeSFHTH@3O^-8cF0XHQw#sB>|?puN=K^z|{OWGbN$6pqjGcAG5B5X%Lt8_N{K2|xMwe@V^MNCTJ0e|ttD#n`nL)q00%7Ly;&Fe()! zadxTwvFhl}8oLi)qe(GFwMkj&uyXw>vRTDm+CW@r%!a$@l8=?81fqs0$mB&qm`>4! z9N(K@m@T9-M-WOxNx~03D!Pd-Y0UivaT*h6A$D#PrXgvbV(2!j#`2dBv?<7!YLGlf zQWWAmp`|yWD9OZxhTXz6D-=>mNsK0Dgk^-7mneeH{|7Y7Bm+UIW9c;z`>5(A#jp?x z>UIN7l8Mutp4DQrw?b1)X;}uMq7wNbk|dEMVYX@*hQ{dpHIeHR&V8aVr?hQ)J1Zoi z!~9~-^n8ZnIAlUjt}av7>a5?qK~~17wvA<36smzFh$!WZ%$srW{1xZNQ=%j$ktGC4 zq5u2|X8Q^&Z{6q3A6A)R^987R7W-O)=YO6`3*P_)Naq`)S(bNSP9v>6=@xp=ie5fhY#Lc{K{ zV%CxM2Hoo$)LS)%yAL4CSXp0X_l1MMsIq?NO}rq-&;_cdggZH6F^)Jr@koUnQ7?J_ zhaX_6661q0#|OuJ`;UK%vq!I>EYX&?i9MI<%?9q-lro>usaj~a-lE!UlAjJ~E?4;D z|K@kGEQyPYGg`fE4xjfK%r)L#zsm7Z#+7$&b9OM`+dq7pFFt!g9!2zzj%YYdw!Zl; zSKnJDbY?vGhfgqTJecmuGDM&MJau69faUY&PicjcK-O93&BEr(-VkDw?TL z+6s$NN^7agG|CAtW~?>>=5fYyr^U5*WDKi;tO?X_zD?}q*i9YDRLIi=k{POAVX-KQ zGnv7x&m@V-B@JECNz#ZSi4l}bFS=srM6rL#;>!h+B10?+Y|~~i?<1EYagtD$!sX9s zL7-=^P_tWKKG2G0qN)moQlNFe|3jAOWx|@vEUh#+i$czxeui1EAX^n)e?H{t<0rJ&Iy6?- z>1}LLskNzT35(f~t5;jBt-Z_1C!Y{U0iIuSr6Vvo8&RH?#PJ+KvQZSDde3I5S)W}pd)FBsyyDv3t4t?zjt)*(cI(KRisOeg8X9t?%6vNG z{G!kOdv}R*oyqZQcCIx!Jcaka{Z-6TAT>rllj2EQ0kr_h_~?&i0Sk zxOI~}Q<%+WtSxsiYF{H79J1D}NEQ&BivrNcE5ra zmex2UW-;AIN(+KGKoCo0Q6())q(VejEz&F^%0pzuLI5O0vf^^YC6$-cq_Qk2D5)7u zs)l{}75rrbo#!Q4oZ`+GxS~T*!1;K97r0c+Did!;y*fSFaL<33g4#om>!{ctrCt zPd<5py}V4N+heU^B1$<$F4FAwh!;abSK#bqL?-3jx_6sqM@G)HOW0t`WOZwWcrhcK zg)Ghwxp)<#R8->CZN`HWBts)ns+{dl$bw50O<`AXONsQtBP|{JFOG?_jL4tj%`;TR zWNCAWcemdmDxu!e5wjuLbil#UF>&bP1qDbZ2?dFuQwk#OUXwVVqst*e3`vkOJR34o zBzE4o$I`WHtgUv4r$_X?f=;tR6kd?$bLN8~iLPO{RO&5oM=H~a$I+A5R4R4e`u%@} zWLeY*m>(a|)m?U<9}s&HN2x}Z=a`KKrP3tK9iBazlIJ3|c9VBM_-&3~zeLDfl#0zi z|NY0@yt+fR2BIHQ(?d3Y@cSG+e1_H(nNI~Cee{@b|K2wkUkqqoS)*#Cy#9DjCW^?q zhL|`gN|W*7oMZJRU-{r3uRlA&xmfV__wM1HT;Psf>J@{9lM`nG<6%M}`n+-HI??2u zy-#0Y+jWv@%<6_pr(VI5Vor8HqPBUJ$>|(0nEMHBIj6DFBv{NyJrA-Jgcz-2l4S*i zIl5-iXtdcD6mnVT^!zEBtXQ-N ziisiXm|B%-Hv95{mIe8;|C~l7WlElA1W7<%mIOh7qzhCs6QL9dlNdo10D(A9*lcf- z#xc`ij93W7NkA@TWO+`SrW9n@N{w1=?Q(-EOleoUw3}^|Fhhs~vbjSL1eBUemKEsD z8kKf~(djW!QZQd!c1w+>&2&0uws6Sv96y3W%DH`O8(GwuE_|-vyG0tOST&U*p5jl> z>F6YNHVX3J*v))r^4 z`;2D+fnjm~J6~b7t8%e>NS-KY);6Wmp?;-;JiDNO5VEw~VLF~;N*ZzGGn!4A`7S}? z64(m59%5A5=yjVoj*&`*<<&KeR-M|CNH97io=ljJQwDQ^#I53=_mPzfTAFZna?Z>X z(N?zclnUD`OKh&>yngVE@${HiPoGomY*K00nY$w@wFZk6I=0TTwZ?pMO83fjl1Sp= zfBrcX9*en0dufR<${1ao;yrcv&Y%1aFF!d%ET3XjbB;cJOlz&n_kQp$&-O-yiQmWn|hNM%L1tlehXwgy{v<(rx0aZYp zPe|N^BF$Kgh6KJ(6okwc9$Kx1X-F(aBTCtzxmhLbj~O4&NiqRMjU>ttb;UkN)wDrJc9wZh9Pk_9;Cx-#TVMK(*LnKkoF^Z@!kdjr!-zt)Xf;+?-m|(6lWNTC7;$Vt%zQD3O zX!QoO@sQX1ueo{e9!Cd54tHIy-o1*S1gO;-h&9e9Q{MXayS)5-mrQPOvVTl-vrZW< zDE)|1l{k3$9HFeRb$f?owSnIs(%x$09wbQ4A=lry%g6ul3wHOq2x7s~l1`dxG?z7u z^}AfVq4JAgsF0OB{lypjoB!_LFrN(ATB~tz5V5lMHWf8RaK;qQ5t6R6aOaeAg|~n6 zo6PzXdK(Swy1?V7XI%TnO`P)yC(mB8a4wA-t!5LY+PG91Rq7<6gJxC8QWaB^=uskX z_ec)<3Ss+OoVUZE1>6Z_5 zk~zqwN|J>*!HB2~P(%%*&=@BZBuxNh;y5OfbI4`#JO>KOJi!YWq$K!pfS5}hyT=4s zL_=+1OBL2@D+u`Q?o0q38M z(d%vMRrB%(QXW(5HjpF>**2+Es#ta#Su$w0EF>ufQ)l!36|yuT_X6@H ze~QuF;L27T!amMPA1{%qFD;{*3WAwasY-a03#!$S^SueP$RJVM^lSrX!d}11>QbE|O2~tPnd`AgD~$U-jfKJW9fPIKO^VW> z-fUbJ>*J72l298hvJxi43-sWawRdjw-f!OK>8As{{0e0nU{rFZ2QPW}*K_{q-wik( zr`&w+9+v2FZD)z&m!DDw5}_=SWeF4sB^iPs@Pq&Q51E_}=)Zi0-LUxXzx)B-=$wNm zk13ovSGKyex3>r`rp%6yku;5T<|6iLJpbnlbgjzWuYZjf&vzM|jcGMYGNFPfnjAiT zPFcuI4t;cMO1uy;s|L=KUy}D$IkK*Bel}*gRps7$_jvZjO9WJ+Fr=v)v}zj8JYq0c zXv$S&F{Ncy*!jv8qB3VXvDkfbf+D7PnaXEBd4{QgA*kp@1#g~FWD%8ggd|CvJ^qYp zr-RXIVYYgRvW1w52uX>p)bW)$Ug+VM1yxHV7qd%QeHvp*6%dz)~4&e_Y?G*;Hxe*X@&x`mLqs7gudhnzlr!F(3sg$23M zz|c%?UvE*Z${5WXh-ER4!H%JKdYE9)(ynS$$w#8O70)Or4B4|jP5tD&J7J*0|7 zRT5afUB|K;T)VS{o`pz7%37zy8=itB(^=o4bk7Nb5M3-d`r?57LysHpZE*8`m-%SI z#mhOv-32d?QkrWwxqAC8zG6u{dhiI%yv@tkE?4h-6OxE5UZ5Z&cXoK|&NVbyz#ooS zS+luy{reoe*yYo|{1JMsVCmX6inUBK^GV$)N-d*iuJQcg3*6y^#$rM5$}OIL_MFGR z{5dPvZZdMGWVwW-7IZh-%-w>kU5Uf91B!*tBn@eJ zkDlISYrD?D?g2%;c`1aKb4qHJw`7Mc>T$kegnq#4y3Nv+cUd?& zdhXHPs!>G9mj8c@t)j#tPKVf~O;2cXUYt|{YG|~ZGIq;Emr~?p zimJ89;)uXsAgC28HJfzdQz{L#W`yQAWOIQ^Qzf4d5habSH{PV(X(Hzk%mx@`%0+(; zazU2LNLqu{tq%2GgE(?1gB&SVa9+M-I-ZafIi(z98BH21t3+u)927W{F=>#Y+Zw~O zF{Yuh`)VI&<{?`;r6rP=0w)LOjE;`68!e&~RKeiwZ~PWN|M6eYG%CoN%4pp8BoVAww(bH|9=4fLvprYtcU#Ml)Be?BL47bLTgOsSCNCDSk? znCa%&X$86|P(JE}bRbf6HAWp{AS8q_3 z0(zy2s#t7q-A1c48M=MEB*s*2(lR4Y3-S`OP0A zg{7Tk+6|vFI^oLo4JK1?Co`frr(KniC55~1-9ZhHIXYP2=Lvx?ayE&mHtOs?J7IaV zg*V%!VfHAOmIxLeyHEa(JkL>$I`;A!jg2>v79N4nL9wfR|Bru*5C6lTvvJjA|IdHS zKYZ~i8&@`&o=>orHrT$kLTjl)7S1?&c20M>iI7B?W|i^r87D6-R8vMXbR@aTPS>W> zXt1+k;|vN8pTFYl#R;JwaO1sAvb2IM!Fb|u{~LGl%aZ4x9r2yt{UM)z_yC21!W(ku zo9_`ghwL5B_>=E`!2j{T{uOWByMx}SBE2{wn4D8<*BH%Cc>4J{E9-3}H)8vS#&9?w znfZM6TUQv(rfjUOF`k}tbnG)8Ms%($F&r=OvH@xiZ3-&QDqA-?SgkdTW{27SE@v;E zfm&g7tW%URi9Dl7Q>PbRk+qVXk~GZ_3l+Ig zXxc5@e1R(KD5XRx709wdltc)!ilG*GaR_BWnE15pB?32K?46UOF>9uZqT1B#3T;!S zs;MMiLV$p3_V7!IX_P`15riJ$G{$ijc#eyog?K@PXxEU1l2*$i4jl|dq28)cZ?7OL zFg=?S`yqKLA;}WCYJifGjE5Y2@tT7dd!&j);4SEMo5+ff9A`ZKrw5c~mxKjbnBxZ- zQIQdqB8`<5G|i;QGyJJX9><&>9I^;NY~SGi2k$~~P77f7l_?9Oo(0gbgP?ku7V zCd{T&`sY4wsv*}`IO)&1|Lt$Hef=uAq_efXO}p2?)WC}iuD*4b=2nl+S_@q>Xm700 z>d7qn&mdT^vbls*#>}PyPadA|<_ABd)^4%1{U#s$(eJUfQ$r3fm>=zt`!S3098(in zTkA16?NeK7&}!GI)MRA2U^;eCh!{P8!SSeVJ+eEg7Vugk>E*nPT7z8JIf#wxAV zWzLUXs+x*fS4jK-wT!s(_FX>u*)#mpeX5lvYSrTTr_V_9oX%Q}!C=Pm{t0oKBB=$t z&yLyJ=(2Qm9cOS#t=;0IkG`PY?O;@DjF0=&>kuXds%juLm$-g&3&|1?G6lWSAd5W0 z2%7B%gVST8d4RK+QLWhMMoDwI$9$GD9-pCVJ$%O{_Z$?$OL&JWlN1p`5+W24IWln^ zQl=>>F-eq?<|&$~U@0++I3+GZEXhI=WeTyt)@t~fM_xoUv*A* zh^bUe(l|k{tgv}y9a+?=ciL2%CS?(_7&|Dsj;b4c@#u)F@7_feGu-K%Bua>bm@L=H zqL8E%IXF8e3r2>A)8d& z22US6CX7QAVw`!%aN;4961H7M5jBcJ#;7(?l#;=zgRE)jR+TiCDOCYyB(S#LBhN~7 z(;##g_)$zDEBJ0mn#4#+Op>Y;l8Bq=2(rSRw>D9t8Oz-UYs*y(wImN*!azo{Wiofp z^nAc#c!nSVlzYm*`gSRB3Li=X~8)3Jl5 z=_sm9r7bf!J}1p!HeDcP1%rz*^-i7hm*?a{K;q7E+!V3iKonDo%s{KvF*<7u7ZIV8 zUxbdaY=I#RV=yk z#&zb7PovdfG#(-g8q zanLI^xoB}XIHD|a66sP_k)$z|N`+E@q{u1q0s)Dv08P`e6pJK}C@H8&I$@IX?u~DM zIlw_8#3+JF!KE9iECs?WBq?KZF{PvTE@5U8NV19|n^Y?WL9jrP0_0RA6{^3wSLZA| z2TfFHYHbi3T&vsYq6$GwuqZ#<6!jF_CA5=j^2GGPX8rOs5H15R)OG>pFsvv-fBZRn^$Jwt`YIX?52aEd*AUEo65@ zw77txAoU}{d5l+xST%#xpW|gRs-od|1;6oo_wgx5fHW zo5-6Ylrf4?aP}hP^x}+WMPl#y1&P|^-uoLERgwMI4wh|`4W4qoe?$>EG};#9frH+v zF+97#s+m0c@Bxyov9hs=AJ3^TH}NJ8jnW0rw_8vS%loRH|1mAa<#mDq|J!HE}5T=CAgxY2WISv^gPf%Mm?Bxb(rXVXm z%_Rd#2gy)SQvrdThOKjD^Dg6yT|EENlP-!PvLGT5lI0RPIijIpV$skm-B{)GPVFaGa8ONE3&NKpihIE~1QOTpV}bK_F{El5a`Le1>5h^DmkCVo0c z6Md#}N|r;CM1)>I5P7UO*SWq@rz0oS%M!ztAe4}sRYX!2GY8M{@Z$oz)j-w?bh$vY zblSBht%l8fG-EtTC=~s&NtO64ZLHDkbel6$V`*)b+3bQWE=aS4qExUd zDNjCqh%3#{fUwORw;y=0ls{1B~TV#x|+UeM|`k!68;vx2S~*kXXw zAMxVpE}uR)!rKQp5si6<$Bv zWifXy4}e|F0~GMlr! zv4JGYRAh*f5M9$~)M}szs1*&%uHXhP!PKX)G{%!0Q_)d08M1`_$v*x(z#oh_+ug^I zWMp)C}MFB~Y04Pe4Opqy2D2ft6$dC$& zI8O0P7m9)~5h(;2U8^&97kJ46NtUs6jc^fTXbO^|qeudhsFKWF0%w7k3zuu2nTInu zN0wy_%cfS5NdkxSlL;q7m$j?gSh_~)PDzrC+1Zq8t%+8RDZL@3P#}sbaZ-?^Io*v- z(#4R)*^I@^p+rH}GfJW0%GEWZnZt0N^Yo(!jADhYn>N|x6w9^<2Xn$C#*uTjZr$T} z_l&h`H>qoL&R!g$s4CNeLx1EUR_iRaR|ywWGOCos$c9L7*=DKPAa{lYaYPci>^*qM zWbTqBA&DFDyj0n~v%#kyzu>L!|2}Vja1}i{!#SG}1tIewW8?ZZQ8+?~MKq&J6izA7 zxbeoD2yvf_gE>KN;&=;IZmp3-2}j3cBCpNp>7!LQ_@UF6v3!8aW0PO_IlJ-Tbx~- zB55YJU12&tX5l(yj>el`{VHTGW~+&5n&jCj-fRk*#235A+`6_!nPhlzfoQimIvnxV zx0aYrLW)8pc76I6Gu!|M!xPk24dr4;9D3+RmDw~PnOv}Z^&X9y#OU=?dh4t7_b>R? zci-Xs)h^C-j8PVtN|m9vPpjKycs}5GzE8c^K+PhAdKJ6V!kL9sG=*lPhSppnn@)K3 zdKamXsrTBPI}_U7b!xRuvTRP|x%6MXqQ2Zht2FWBhS)W4(z{hH_33*U z0gwe9OEZWQpPFjm7CvPu;AIhlC=;d$(y!*zls1|ulb0z$wm{5OrqcqvQkH<_`RjL8a!GLbm+3A_wJw$P)5(ghj2NYAVU{AQoRfq(nx+5|)tZDePB2?_X3m^AHwd!@v^Q8b4K!ILj;8D% zopSdZ-yn($Mx#Epr8VAPQBk6V&wu`mIM=!8yC}^TS8m*9d8bD_IpB+*eL}Olg)BBH zrIMAp&G_I2qw_Jl`v=s!D@>d@g;WwmDRH8bODVg*+~s%w^!HHXbDsX=Ionsa8I2+` z46L3`FiE($7^2%9@+`w{*(i#Pl8*@^kNtyFFxtHRowu0}3U0r16@PR}k%bhcN|2ev z^Ab~Qap9kmi5i}uk<}ZRwI&rwDie1B4TG{gVi;Or$70Rkcq^FNTZ>X z2`Qo>vQk?j82iL=j$~?BlEm)ohaBuK_{Q)50K+Ko{4;{_1O(;(CG9D;5&9kM-7Qg7 zQdB<9N00gT=g)ZOCr?On1LxoXH_7N9y@esf#8H4`l&EP$orkpgUCz&DeDo8G>E$)k z>p9z1LAG17UU}Nmj!SrbK@tnR{}28%((M9G zZ?S)@^0R;YH%wpV(K*;B3uC6YCAJOWe9G*4Nqc<6 z$-^>sn5FW633tmZpbEO__hclpVG@umWbp72n$Ymw-~EEY;UT-kXM43^vkefX7XR>1{&UjhEvq!8C?mosi;unAQx0JF>uv-&nu(#hw5G%g>;+&JW515~yp-|EY5}odVB-|p2 z8r^|G9CR<84}Gi#5~vf533M#Nh=J3ZhifA6RS`Q(8t3 zy>rTZ8X)qTmaQR5I)MC=CdbjwHoojYx${QRV1> zib-GF!GTe!dG5OhWlCdjHpm8E#w9oIV_>U+9< zyW6Gh?%|G1+AWnj&yh5hvVca^5XuZ$RY-DBe

US|+R8H-xJdXRj|vvFPphkQ4BC z6^1EN*EQX~#utD49jevh_`?&nvn#S~L$KI!cD5pI6m+}A2agZAp88B4KIZ78i=6FH zh8o?hW_$Azqdhai;XSmmAqi%WBjuAD9B2NjEoa09)bRC)JzkG_}v>88s zpC5iOCi9kT{Sx0VFk3S7dBFJOko9uGqmvPrZ*F-1M;~x>dc@WfIC=jgsv==BKIGtN zLYc(m@r?fQ9;2fUa-Fc5Zjhx0e>JDK*QRCL6q(PdGhnxkdGYOQ!s!{?^$ssd@gs@T z(>+|b;prF8F&!{Ojs4RRf)SE#cbvTQh{TUEBnU*8(eZ$Tqhktxi`s5sh#K>Y9IM+S zD8Nkvo_z3x+nXud^%_~wSuT9q!-Bl5kXIqHtkE)UuJ0~U44cldOA=?)yA9+eeps_! zEE#lK6lI7~iPUw;?R?IoPkzko{EpM3Hml8&)pX4dKK+C!OG%R)XV@k#3c|ueGGxLc zVtG5o?K>nveQ&r>6n5J!4<4K#s5ahu&i=km#X~l4UZLwcQ7NEEG2@=g-J4rXT}78v zY9XP~Y@$ddy!L4KKoqu&x_va;Wwi`QqZmb%aP1ypxIhve;^dsB5vT>A$q-A6vW!TD zgrro+r2@779oSZqAk!!%P1DfSHIgWUP+~}srZK*{z?9p_h~!O$Du{?u3%SgYL=!;> zNb?9?*HH|Ip`z1PGBmkBZq$1khoDlF3hwwAxy;zjB6{61f-aF46=fWQR3SJG=dWk@ z0k{WyG-1h6N2H@^cy}v?hXay0WOaRm&}8IkMr$%bZ(E2`MV{nr?=BHaxVqjU+I`%% zjolqHX~E^$9iq`8&)1y2ykmGeW^=pb^_Sn$-E+}(o!oDbTYWzL@F7aIH{B4#6@E}r`YS};e*kW=08dYgAd$Go9 z8yI?v@nM(Ue8bi2*RX6U!kBJ+f4xsbg+$JzTd#7{ru< z#^w2Ix`Q@JDHF|?NQ%hy^BMhqn>3FI78^7}M@U2{Z?SA0Lx8=$4DB}8w-K$;2*Mqa zA5dRiGdz8WFln>7EwEh`({d^E48?BfxBD!MhGhPlQMXT!Zb{07z0M=bx}sRVp{QeA zMWn!?&MJgLAx<`!%J1NZF6#oRmJuX@nwp}lka7h+goG-B)Py}W%yacI-XIdS4gcc58fG*ra4)XAZscr z5{e|yc(-iw7L$F4`Sk^xnU8F?D60aaWfFKb(IO%vN*%HRoTI1ZhZtL@5*$g34~WqZUO@_xk9jL>&k8)E%?u zZz#tmViMA8yG(DEXqHVaW~c^uagHciOc!h3f9sUJNBguLgXJusNp}cJoAb*p$F29U zClN*_;EV@IvPgJ$%j3`9=lfs&63cX$do}O;;qUQC^l51os;1)Yxr`3_Ob)vI0Z}Dv(<;>&q?s?{s-{;V~W^FfzexI|TCudeh+sKi!N5;P2>MI$y;vdzn9uQ+)8fHLu^4Vh$@(HfYX&$cYLAQ>8{ zCUK=Ob__JTi*7g6je-zX47xUTl~ATj;$4kyC`g(^75IpNA~~3fNlz&_8GOie_LA3B zknf07`<_H8G~}eDRf?$yfB%B6sL*8PK2EffkOcuvyGPeFLPL^e==!}Aq={2D^$t~5 za15Oi4XKpx!vrPao?2fkly!x!sz?+xfwJ~0h)z49MKxM)M1D$H3Wr3Eo!KS zMv+D&qKZ+4y!d88;3uS&gjnZ9;fe~G-rgaKRx=uR!1u@!o59grbcYk#yD4T}bM@vD z%b8%b+H}SuFTQ<>uDei5Y*!IssZz@(R;yvTD43k~X}48ORl}bz@Un`$RJmECpf!Y7 zDL?t?JItS7kqaVKoeT;BUn2b9Y*UVZzDqUjQq5rei(5ufwxzy6AcAAST) z%5GO<+7_Q4JVvQ^RB1-+MVS2|VX&gx>SK0YR9i$za+1yYy`@lUbN%``d7g56c0o-{ zZ+OVo%Sru^EEIY8eg}2lkQOTl@9{uP&zWDc3bZd#y>SF6URo7*Cc}JEmXg}KH z@~aCbCmp)3gOFCtwhc*I;F2*MAJU#^%#{@1+j4g`WlxpZcsrgPb+|s;VYX~4C8w-X zW*2jYgFaGWAVeOTVPJJF7Rxoq5B4eY6iI25g-f*FfYm&}(iMU*W=}In3Lo2Y3H%hP zDG($DyCWla+FX3|5={z`Rh@&=-hJ(q1(wrc8Qvhu7EvBk*EO5zr$^gcVxHgIGSA&~IJm?W#PWErX25G^wb zLBVmlw1zf^5BAYjkuun^*!tv2Mj6Ejl1h-4(A0GIx@ek&tyWxLEJ)&tT2`s^2-8-n z6bY#=dH(%5i69e}6igB|rRh55x+$DR{P6(jM(2cs@z&GwMBLvtHA-436J>!q;CsCEW#l`M1B|r+@S* zg8&IZ_P)MMm1>Bi9;=%x2E#VbUVh8y^pJG7;l9-K8W3tT^oo)v|3fVv2r4u)xAoaRXC)m15Q6ywpN>Zp?EWSb14B|Y-u!htkWLZqR-Jz5!q)NQUJO7sF zx8r2L`m;Yha8JpSlwGo>XS(D?MVJKSWsah#=%$M;n!KF;5=D>@RS`#TQRgMPV$i{=4SAFiB_&$Rp(tZyQ^9FGW;dmX4}Q zNQOmSm8|Zz4E7GVy_zvR-DfwuMRUje{vZDVR(3-fM^p$b)>D#P9lq?yy{Wm~ES;s(JI`IYJGMEK+K1wrP!D7$}lXiHP0p zqqI~us|ZPg$gdEROZJYtT)m#+s&IL+B3rI-$0G*4Hf34jZ$n(iMUiusmvbD~MHOZ2 zP75iCsD+5SYG@5j=F5mYiiy*lTCREh?1E0)q7n+kqUP+y9iEp`W;Iz-P*x3UU2w49 z$8fFth^V|EUktAELHZykNoSvnzNfks{!Yg*Dl8Gz`L~(>BYIIE(UDe3b zn&1EEPyT+w5=GGQ(hVXCb$-8EmuP;o_RnaVhN8S*EL2s6s7chS2|y{;*pfqC%#rgH zRU1%NDM?xr?{dmGrN}bMWXo>3C5U2rdq)_i%x>qS2o?S+fhMPFatu?&)Md1$Bn|z0 zNu8t;1R-^mlO-u>7-5XYNM%Wp-{Uv0o?l|M49c>>-s>UM39nu*nBMt}P9G5k30k|w z!NlhIudi8cBXlbytz^(t_D(0f`>4<6<`t!_6K5iaCleNL&hgiG%x5WuWOMT4M>s;l zo99pIb-K)NugMgJN^N0k8k*C>UxP$Woj1g#KrL!iiioHxbb3QNy)LJR9fYDm$E0io zzW?r)gZ&<>*&NwWxW1V2)BorpbrG{Vdqv`TWOdHhUtJ=|2Az?N^u<#;9fMdC*hUHC z{SJ9n(eCxpRD-y#dF%8ET9x6gH)yREouK$#IJw$mpFq%_V!x{ zNzHW<&^bIH@G}g{A;}Bc1BZ08A&xRm9z0;W++qkNQnf}3w{$guJQf-3?~$evA|iI% zq@iJ##i+H4_vIy{Cl5J$bAvVPl6xt2Eg`C{dv=!~5eErXxJ6QQBuOGo3Zxd;hRb@k zqHTBi`pq?NOCl}c@!J!MsOIeZm+XQa`|Sx~B$Cw$I z87ei$4|*udJ#FUXXrJZtEqT45V|J)&9m`NCiyEPUs?N#F8lk?odm=PcWrg^g`ucly z=zsmofAOcgbd4;xSo=3vrbQm-NJT}Itg!7Kh9(k(J8~iphL1Vvy+heV_h;rTCM#-c zsf{X$NTP^q4p0P%BF%`lD^lNQ6IKXi&3wLQ?Iko)jqiJG*KyXFL^XAyw7$QJ@M9E9CE0Dcd2zvNy~ZyE{9uLTbb0c? zCYs%Gb2%pyD}p2i)8*l0fMqE}v4qj>GdVrt;Bbg{bxs@=yg9$2ly!!O`>d{C@y*jE zlf5CUyBStzfF!}NZ(wLT@oqyS>hwoF5GrbFN=c$@YCik)Aww}BST9*E6W)FAn8@>x z>xSNBf+(kCd4i&~7&2F;{0*n9EJ+22({~@!=^4bkn8?dnMJCR`VKrUS?zuew{+wX7 z!?JBGOQEhJuFjw1&wRWn;P!6A{C2^(Z{c|x*1Lirl~81hR$J%dV!_M#j27XEo!I#V#x`6^YP~uvM8dTj7lRi*cBOWUED9Dst8AR33p4*qk!XsV?;q?T_x<<1Nufl7O#kFo7}Om zl@_WZlcxoBBhb__qHba#FuR*`ce$mKZT9!NgkgvzDJX@HsSYU89GaT4D$q2US~3{y zw<(hQtBbmT&XG+PC-izU{@n({R9U<^<8HntN$#bDl3WtzDnB|h`1)_Y0i%U;v`=uc zLa|gn`SC|MmO_))9PE$K6cMS8x%&2;G}v2X56cNby@>NW&c4!Rn%7P?s(APO#Jw#J% zN)hg^=BR4PE(1k2F?1P&f>q?>wj6fTIr|5D1fIm@t6LPI!Z~?_x)m@@3xDU~c00`D z6<1d`IJ!=^*P-QPcyoihWkw_WlyaMG6w#fWFx)?8^5`+2|M{O&3IbVCB9Mv?@QD5K|^$gM6;X3&@&!i|r# zT+ulgQX_$A5Jd?|;bYkbf+XUnA-z_IR^7rBYyx42BFVUB8^nfwXUzKc*T1zx|Np@1 z?wwVQAfd?yLGII~ph2V&1ky4hDJ}9MMpIO7*H?6$KI3|Xx7(3r6-SRgf^tsF+=s14 z5oLH~#CEkrkt()PK(q^4Z|}%!3CYwM96d%Ap`}X%X@w+7^u|Z%N{*(~WMN8*jwmTi z_6Mx4Zcr%*)+Z@N~K0?Ib@>FyZet(ycPfEU;i4d-J_$F z+}y4xo0_*D?;{5@M&oyJ-41}^WMiF;CU;o_LzV6UmUT0^Cf2cfYF1u zFw};Niz{Bgp5qP=SO+r*ViX}J33PTlA1s5G)^Jg1?DYn`|Iu3*YQ?iJKj&2=BRi-3 zH~;g0hplA%yFdFC{Xqw@+>)ma+h9i!t&oiYE!XAXbj;`f>MwbDwdLgWlyEmk)kb{u zqaTsRKC)EfiZWweCG%Wl_ZQ1 zB9GZ!h-(F$zWbQ#jR|L&jvX@HF4lUErXNx(0lZMlf5OiOo2DhV0^ zKU|@i8mg|5XZMiziDMx(1x=pdXf1@iB=b|sG-7&r$0o^<6%l*XLsCR&1iD>=Xcv;D zBGz!iXne@9BO|6B(Pm2;CCH|Zq3IyYh%_W#NSakhx<*koWM#?lXoA!voV~n6b9?Bj zLXqd_RtpWEU;Xv>G)|lSaf{7jNm{9>Rtu4acB{+w?v`XeXX*#oss@cpl4a1;7;Tqv z-{S16&nc_{Pk!`1!gk7=Z(nkAo8eaqZ@u@BG+7dDQ<5}dyY^UzC6ypiND8NqkI|c& zqX$Qv9NEOv8_GE5>^9`!s72wYY`ln_S5P)0@BiM%7)s6bDnU1G{8Xep>Y<4ifBa8= zf|Ac!UaZ)9HLK;8gU6pS+*iowYo2}clK#;?mT8fu&>nQjn+AX3A?qsRq099ACEtI4 z%Lo794^Xw7{rv~DdNOI|kp}^_Ah5T$kD}_tafmydU=N09fNTrsqDIp|f7ByRV%i-S zL05>&f=wh)WD=c@MpH)Ac|=i_2$G11g09PCbwbnJ8-9*XI>?&I`gVmbGVufYtNQz8vvPbUiXtzyT9g{fEsIr3ofrjV~ zXlj8XYnVNMjc$o__QoV>O&>m}waD?!lN~eZO3@+AXqb$<2!yf^6X5T_Gwa+q)Q92CM53?@~1lugiya%UzHMR7Sk+tI0FTzuCOf~KTHU-1Y4CE_75>y0pa|XB!ayM?~x}vma7EQ zG!fL2fB$d3MRt1(S|YQn8`4I{Fcd~ZlTxZ_4_w07W%AD3w6zqe20=>6(hW&iVD{Qv zy_u4`5BTs$hrIg5UlD{dab;tT6$ZUNub+L#{$YpLuXarR4Mij1x-R=e7fneKW1p~w z>19RVJVcN!TKyADG}@}czy0QyD5guJ*L06eUVZr`*H;TZ{rC~>UW@fFK4*LDBO&pB z{;yy0-cNs@?Pkh>(dMmBf6TBaV5&M^4v&BMDVw`1G+U!L9uRpu(qK(z*rq+~vYp@Y zi@$os=_fzr;i$`U8S(trUt#xqF7f==H_T_ZbWct( zOoiL?OAznF<*U#`mnCGWX8+*`f4xIXQ(UniDGTC8L~9u|vQ82t)Req+=#nlYbXTK0 zcBv8pDHE}}158OIh$G6nrrVw%i4w9X@a}uZgi#80MqP-+;hG=3(;+Dmdc6UerJ@=d zukY><>pr!tQRyvOj(QJfh&ITsLX;J#qKYBwY|5H&u|aZWyhtG^cbGNUDlo%X6VEt-~Zp#?Q6BaMdP})Oo&Ud8#x6sPj+aFO0HkzqZWIjS=;g~K-5mO`r zRR)Dvv%I^)=)J=(yyMV$NLXx{&R<|yI^*{5fWpc1jD`kTRgeW4)l+cY7TRostP6-m zLn+pnl0zEbA{G*17=j1|_Yp*Ko>A8kx+S5avH12ic~l^XGLlho^v**n0S;=BhKeHa z*{(NiG6}nqsi!vMzJtF@>5WG~i5aJqqKu~N2x3C$XN>kb>^b{vrWuM+l7}GbIxQ8> zo<76wxJ+-S2%^er5wN#+Kooi`<`KG~KvH1p_b*q7bIzWB$7FQC>ijEw$!0L<5PBhb z?IIfMZV-V-`zKg!h}SzvbLzOD zb$G&9ObNXWUNFNok5Db0qmzf6efJHPJ0{Hv6h$G~M%ea{4?daDwRimWpZ^V#tMTYj zpP&8pH>7HhlgAHHtBi;5zlAPj$g)nBc&G|&?_PmyBGv_EC+y-ano=RV28KIC%xh{A8o{D0GHe~3p2cpqq}3l$MKOjYV?1b4mL-({ zWv%ed&5j}oSw#VUETdE<2QH|xP0#64Ryma{k}tyhM3h>@?3)O>NtR_KenK=~VvRbq z4<@MggjW}@I5|0Cx7lHAF8J{ue#&CHp;2-gyF;>GA*XB9flHc67_~v3CkUcUo<*p6 zj3zoLrh;aUvDJde>S3A&ucu$J3D+FyM;NB{TMPQP4&+S(s;m)a9*qo@0EMJ6aBXBo zy^kUVs2j2}gGR*AY-CZUZMA4SErQ*Os3>U~fzpc*C4;(5X_|`J+IuUOyRvDtX| zyDfKjcWiel-O+^c{+PGkKc+iubNX;hyQLx{Ajl29!2n&BFm(e(ZFv1=%KU0dR)t*N zZoz5ex)w>8GI{Hiv@9@t1L|7FbS?5MB+CnWlMzK((+JQs61uD)*CKvUaWxHC#ww*^ zB2*>1nA6h=7PoVjs~ywJC9>Y*-N*YxTaWh8CSKnW!~sX^?RH=9VC9*xb!|`u!VR zw{=g>lqDWM81wnhzC$^{K0z+90^lz zAlE z9v>peI=jscLY`4pAd3oWlOQxDvZ!F&Ds@rPvK=&Cq-wxW2M;G`-7&K_w+v55Pz{h|0Tc;QvCtI*#a2m^81nm&%^avCg|aS5^9Vr@ z*==VW3+g6&bQ? zA&ClAQ6f|YeZytB4WMx`gphFIQ^XNxSGR~Xq@@6gP9eLHCoGmT@>Ig;^{EvBvAIvU zoOE2OJZ7^DXk?KjNJxS+B*lQy0NHBj4=q-ATN=YcFbc|@41$GX#rIy|8dNH34HoMi zMK0lvCamW(61hcpWMMZ2XV+W$`xAy;n~&ew!&^-u%2}lnWmd5ALJ&oC&7}A7J7~on zuU}kIDj+64uV0)KL>aQAFdtI*2ZmDyTpvakRd>%hMV7-_U*DZehhmQ&7As>7+=5PL=e}&;3 z@L&Ir|Cs4_uXz6a6^m_z-Ez6Ry2f=Z5;5Y3fA}f!>>6%wxtpEy{j)oM{MjeGc>Wz9 z{lV`uy?nv&_<(R5(W(_xUEu9b2eFRGa#&91h?M;3;}1!rYrgxt6_R7KTdj~b7K63} z*_LfkW1BLDCUPt*+(sF)q>vURO4T4KBB~@Ihy_Ba)9LE?K~7)opy&k(CBwE#lGa!n zRHcAzD^yj5+qWq5iqH$_b#?5nOK!rpP4)ygOGN;>-r zj;)iY2`yK|w8zw0L!8HmSwXb(v6~oSWKl~3f>e?EB^}dd5sFleLEF?x>lC?Bhy;f? znG%%>RSAly5fllH*8Lp{TF{7!j4<=q8;nqNg+|bkwH!q&(M1KZQR!P2a{=1gh@uL} z^PIFS=(O9gT%+Y4{?!J5z9UUj6y2rKU5-X?BPluQdd}TlLU-^0!_?3XkQ9@Hw-2x^ z1xwbDMHd8xGB1!6i$+%%3=FQHJtdDt(ndga`dFh06aijX;5Zc$HAz}PQ<3Zvg21C? zO3bT}>8*z!rnFirtxBX!OFn$}l+n?U<@F6$FK$SZhJ%TNsvBsn2E|sndNaoz51_nb zv&#vKhU2{s7w6Y({07x@8TD;m+{|zso3dD8k8QkVg%`wliAcBS5cma~I7N~j>gxr0 z8u6o_zDu~uNb?nOT+`{dxqNm*)YObD1+zD1FW(U)DYd;vzI?@Ms`J@9`#k^U4OOd0 zt>yf0|I7bQ;6rcJMvOrba*B3~(dh}nHY8ZASee;H+lMh+m zE!eCQj@vnkDf6g(?;E~+_LNlCQCcGIaF3%_g*Si0bRO{VlXq!~2D|fwV0MF{%Ot*r z)v}0#07(|m$Vsb`EXrt_oTjM}Wu30AA_zMBdu>{Ri0vpSYE9J`1bI%|vgx!%8qq?m zYE)f9p`cDv1gpcSBjGOtWZgtUC5{S)`@MU;f+Vw9@9-|pv1Ap~)_MP<11`R=5bB0P z7Kzq7hLa9;C6m_zVId-wDT~+V=(2z_?$GJ?DJDZMzPn(5;?gYNZ434)+9dhn2^KmQy#4`^#9O<5opIesHD9_@3xi8vk}5_wy)EWS{}3pA1lnn_uE)OC$1mz*k>^t> z8f6S|T5|O05kirW#y)GmU=y4(y<77BJ442Y50IpS%kMAo?*e35CJsV!#Ub;z6k*QN z+cNCxeDnD;wv~=$8%){;J3nDOaENw3!-GSffA=*_Eul&_lf3~+xW-E}4vtPqqaBmO zQ}QrDtTmD}WV4KLI&Bmc+`TS`j)N?h+}`nz}LgiXNRo^!tLRz-N-1O+HlS!|M$O1=qlhy59f!8tLQ!ktB&U)J>H;#~M{^vUu8gEu zq~Vqlfo|8K5^EI0Mr(s*s1%JtdoUmiBI;ViHcW1#8CJ_d5*rLvW8ZLD8P`;~42sBJ zcYtEpw6q3ms3Uk4FTT8CI5ZIy5ly#($#9=mZJBx&84VLVAlen2?oBYL(bNo& zkZ83<>ne&o#k3qu-6GrVh@+UK%uq1tjrSM~ZStgLaxfr|W9C;^)IulC6Y4BtadA#l zwk&5G3dO-6`b6t1wzpeUTC%tVN}~0gEK2BV$=l00`e=e-uO)fuRXfDLFVA zbMoj2CBI>NouIl7FFt?HGFCWz^bTd3P^f+Oj~p(azd-Gcpt$DZJSXZjrlTJF{eZHL zNb(JFQgFE~SS4##u|g&_PL7VLeDfBKY{ zFJ5zWGNEp2o__F2`Mmme!SUXJQYwT~m+LpL*lac|u5M5apM%pewy9y6E@d*O zYIpqZ@BWF#9&^3hV7mrd+hSP;Rh#kp#T#yy8;GR_I=@T1c|H2Wkia!5 ztAf$q9s}RUwN>h(L6IuGK&R(OeAmRbVShZJ@4HlWMOU|Inm{NTj_>0K9-3_uPWzN` zO6Z3SMgziWpE!ycj;D0gXsV7PJ6fe9==sD+isR~RcR8A_p{oMj(y7qVlmyMt5mLjl z4LU_*ezC$(8{EAEYSkyoTb5ThSkzcO8_JR<%jvr+gTBW8vqzx2Xq`qcG?0ePF1_>c zJEJL==da0c*90OX7(0ltk2GP|Cm`9luJCd;#1YH2Wi@PLLCyBBbD(&PHo1>R^vQ_Q(|c}=4DeE9T$tG5jW zD)){?bZNqPI$#^e$Wr0WBBhWjZKWbr4d3esb(7U{hZ+o+`WjhQP*e(sM+4eTgk|XL zX4j1G-{P9Pv_nD?(_MtKg9||R@V!9dk;zDnB&J!aearqgE6;f zSG@QA9};bMJp1tbwDAtxHW-f&Koqn!Y!(ZOw4uLufaUA#mP`6hz$YL7k~iO+v55@q zVaTv&F$oOP-HKoR@(-L}&3JQL;_RI=K03fq3?9FGOp)ATIwAdW$f##<@#1TA+d}O+ zQ~^Q=3{@bNh9u9}n+`EGf#>zJFp{pwXARvos((Q`2X>olU+tcaqjai&uV|5Mvo=4j> zSeA<4a|uRAv{^|fB=L63;o&~sw1;l?xxHD?)(ytMJaEXxh*>lz&r@_&B^(SHP43b6O}>8nd!CbkW!KsJ5EM>WSccz z+fp_;MVuo%9kVIu2LsGpqm?QML06Py@rJ9jIey<~xHm;r8rn)h(4cD#vaD%41*vFc z`HpJSqT4oY*r$$A%)r46d3qLd1f7RRy}_J-7Dj_vgcdLBibpc(;5p7QAE0fEsl z+8?pGQHZjX2al%gHVLnve+fp2Dipr>?N@XkJR!*?v-uorc*wgS9Po!0Ti*TX2T(1E;vCg7DBGAU-eTGgbS+0u4vAJb=$(nt8}R8LKIZCnho+kh z$Wb-Wg~IdC&v~=R5#xPq*JCgAIX*nXHXGi)e98H@DF^#UAOua7alP0u7#@?94dd|$ zRp$7;0rUBsrjr~V3~>xV*l1dYs_PiWfcsCzlts+R(J@zNZ|Uz1iIa+f)?wNXWnQ4! z9!lL}X(~xv;(9tQ9g3onXFHt0N7GEwIHr{i!@U8En`?TuMwS<7wo2P&*qTOEswh=Q z)9Eysr06R0n=epxk3!LLeTTfOXxAyV9$`8LNuINLb;jW&WVUQ+n+R{zBRaL@i?2RK zwV-J-6k*}GHfat~nSPgKzk5Re!^i*r7n|i8t*0>@jA&%XI-23QHl|UrS~j#IWZD~Y zu|4OV%RuyipX1KOWTo*)9MX%@4wXoWz2+gH;?-BQpk4Y}xve~Rq-GExA zeDB8}@a=E@Kp|De_eR9?8wzwDy|c$BpFT&oeUcLDT40+BswN0*l_Jim8hcY3_ zYW~gt{y%d%(K$F6@ykDa$^FxS{`fIk7xC)lC7SAD_eNO3fNhc?OqViAiKWVBl`{ww zzWDe#fBCO|$n0{?C=@7a4>t%%GL;|w=qdBtD^$&6(DO+16;&Z9s+>08^8B+e$(oX? zR8b6zZKj|YDj)plBhu|HyG6!}Z*Q0v3eVm2ps`fwt?X~$Oas{hoaf2mI-xD8byRbK+y^6vO*~v zqO3zzEAm!F=4<>>K+<&NnP7Rd0NG$_3PRP0rQq^xP!$lt0Hn^|@jjdUmc{&kX3I0eLBK~xfB9dW(BFB~%9;|>cQF(LSxcfkCGZCr!lvQwWaXO*mZ_oD zpvVqQQ>n`w>W;RmF*TRapMWCK9ShAcpsKJ<6~{Me>xShvChIIF58vUzyC;0`;UmVL zNtdM{H1bNJ)eO8qC*3TNQX&*dba~F3mscpknBLJnhT|SR+aTXYq?$^)R)fxhUY-==4gBn81#LxtuYx3-LfYD~8Qs=+@7w_{Q z|L?zHon`zV|L6b3&Bcs=`!~NsSPfm1b2E#vd<|I_bh=6yhCF_HkFwG*g~oe7eo9@$ z9G@KU=F{g4r#)JA$YkvB{PUN1p+!-ysIr2xEHQf_LiJHKsH=*iwYj`4iBbbichFP? z-;f-RChV@R$t%H|%N>XBJR-DVJ=>{quZy25&VptA_ zuAtdEhOQDv6^Hj95rjj~9W2Yaduq#$rY=zG7Tr)$R0(QFQ*|i1LC_B<+Y(h2bZtx5 zNqYAOoIk%tR2y*nT)cRVuPICq_sNCB+47qCd`{Q3ru|g9r)fu{DQKd1_HfFm?3Ht%g(58#mbc)7h0tf}y4p4x=^~j5e zS(dY@A@Ik9uHbqeajjd}p5V#hlseAQESufp7FFupzFFc84(Qq)=dWIoqmpG6m?oxU zV~++*M>bWI&}1>2q+?q(VA&*D4wjDAROEo8E2L$KANDYH$!uF74TZ1%@eAJn@z3}V zfBPTk?>%7uXpj9#$i)|b#ByxzJvc=+4QVWi%C{JXds)XEzm86lZOu(ggR=Y zaW#v0@F*l%ZYUH3&#id-^)&~l2UIlNUS7}^5nq1%HRIF!++5D-?+sDaj5JH2fjCXD zt%9V;k&4SZPxr~AElp=|IJEJCkTktS)odpF270Ejxq8KL;&b-m6&MD6+oY8xd0KLE ze4maCp(?0G!*X>?ekJ(m=Re{3r=MVY0iz&be{W0{CG>}5inc_zz_7q@b++3rVShkf zlz6?6EL~ul1{fMilv2wM&#|#xk0jaAv>=8Cny%3alkIxRcAHQaIYKsAwt+AVL=xc~ z9J1P6VmShDIAy(!sH=#B69;{Lh>6YBKy7E!_Y8-0dbXb>hBS4W7MXivqo%oZ*i57$!N;i>^Zt-6Ph~GlEm#B zO2xpoZDw!IIrWFAszcs4XV=83Z1f1*?asUZPAcM1=KA{8?m{)VZBV*|P`}AF#&~}L~7wEc=@B0i!dxZOY96UH+esj*}UtLnDI+|f3jR4yl z@`JzlIY0dVW5_cW^DSrB8CQ{t<`~=?+Ss;@EK@AY;UElYF&U4?_p@pk8!`p)#WX=-e3t0)6~%wn&c1n0Rf4N| zTwT6lx^FOBUi0$BoQL=K*&B_i>XhdnpOI}Nwu=>i{PY{Hqm178kOxoi(HnZ~?LDGv zO3q%rrOk8FLW1csJG)>PcOV4sJlJDi?Ft-sKra|#7#5nPW4aca=W_b)V=N~i z9F8%<32jkf3lm`~6rINH`6cVyYg|7dN(+khhI>bSa4NdarXLJR6N9Rb(d~*ZUttCo z^UE#si(9PFpVl?eK{UuNU>G8K7=<0|(PpP^R-Ke-+#5BUdP;C^=CW&LBQbjXN zpdc8HnT$*t%|^pQX(f)QQ#2_;Z|EJuhHyGNx;mH>^@ z$b46GdwI^_FhKVwynQ`~qF{7?#AmlbkqhuzZuM%9vf=qFO_w)}lKunxRvc3aeF)=Jg0hBQzoL91~SH zXzLVONgD4cih@kl|5Wy6q9`3lr%yRJ>Z2(YyLiLZ%@t+QV(8ADQR8;ba=v6Z)VR8y zlN2S284#~CY;v}n8-hv5`t~iC7c-{&6ISz-*`}hm_lQciSVFM8y5`mMTXfgu+n2ZW zh5-Xx(#njFKmG(~=&{)B=m#c>Vlx~M=!YTe+XO|Z$WEb=9lCDbajg`Aq~*z@J>Gux zHM83_=jZ33!QuTwWZlpLQL>{^I}GdY+IdV&uw+TP~=l>kjQgM0{uD`v-9lLC! zl2_j@_|Z?lk8YW?Y07M!p>~2%Z=a{{Kjh7~=h%Twkq8=9$Mys4{s2>#*n!PQ&mORt zpAm01eDnEB6b96tAn$BysbV@l?>~FMyYC)T*A;D^Gdi50sgg?8T)kbQyn z;*+oN`cpbo(kSKX@|HA?SS)4~O-HBP5oK4Kgx=W43v`zA1-tbQ-88Tq6%>h3D=f1^ z*IQ&=(KQ9KXvp)Nwn{Nfg;rIdm3IrUuA{39R8wQKU9o@f0a7ZoZG)*O^oBlN+hF)U zNujZQJ7Y4|8SG6dYn8>@TMi!fxp}+fWKX4c`jpL8MBPd9bws`?7>-AO>VC7R8_E1) zj?-4y10TcHNz#(4YG~JH(U6x(wQDR5PRWA`aVOM|aUN%IKN3UmuJOwu}G zUPBN*s*FY<{m`I{OAZhFv_;A5iy8gC2i1ZsZaH6USfw@h z?%!v=s~H-gbTHfI7?#J$-iRoPxY}kYs!izID4JjuEm-CquBFrSe3mym{-=NObDq9? zLbNU!?uEFP;Q2Q*grd+%m|xGCOf@FGfZ5v_*Jmr1Sw-NheEa-{`OO?N4EW2RzQ@&@ zYoaKnZ8CJDA}T6wS33?5dQ?TitCw%-+6Ey6oocc-oN#bDW<6h{NR^!^^v;w{g=JtNL+in_yA;o<2%%lU$;2BDg? zT}DriELX0k~prZ zI~9aV+tie04V^?cG*k=PPDNEMsye4@3W_YHEi)Y7yR%`2D%Y1g@-)G=6xKyenw4y$ z5~YaHdXhJ9V{TvHBHNt0C>b3dlEyox!;rzf12kb%mnD`1X1~Y$dP$l^G<8B?I<$>S zlg8{noFIh`7PM-~*=&Iq_ECjEMW+!Bp6RgN&gu2Wbefx znq84bG21M|b$n)5uTkBAB1^DMhrwui2XU(_*2@`EY1wWUEY=luEx1}0oNr6^_xG{Q24Pwp9-lH8IMkx0=~DLlHf^%w5iz7*tSKTRlNVf0Uy5m0A$X`fA|#FwaMd# zG%M*egJ_c>^oFPJK4Evg#_}hG14&lbbcV|3AAd$LoMLzu4@U;CU(UFkFPTjGOpjcC z^A9gjJcsYS|CrhB93fn6P38X6_fhB&LSeqTqDwlerp9tqw#zkDsjy6Uj4TVwRFR6p zI*O^vmhC#>a*=ZS^a-A3@^}C4x6HOR?|lCUbmbPxl1-6Nw+dDmknVQW(jeYO7`BJn zRru}@p-4Q_MAdXG9Zbi^)&xmaV;L5@Yu#BTEel<p%Yu5n#xfPA;{m=M-~>b3N@Cg?m7{TavF7UeE5;Ka!#1hPlEGw%=MOLk z4rL)Jlmf+`lH^+uDpFV3#50Z#PN?ey%gr%upS;W2Znn6lz_ffY;HRhmWkG-Ele=o5 zscN)N$20@_wo4~1%A%p|1cB$@HRQD|u5QvK2`w#-=dxREkf=nPg1V3lrej2#(4;A4 z(SRaZ&9`JFc)bCpZlbj%@odS>*){9ghDMk)RmS4-lGoop=k@ECym@`jDoL1C3c+Md zwp-EQQ?@nz!5G_h$kH8Ml_AR(iJ)m3(xk@j^$92YJa}?IlV-@SMz>nF>w>FPlC<#C zA3Y-sb=04*zOXN&gAIPl)7%o(j8UXVB0oz zp5aqKIg- zpq3>~xuu8_c5#Ykio5^ZuyA?-mSv*~g-6ex02WPAaqo1D-?Ql*+StCq-Cz=d_mc1V1#7Jnl?|E z-z+gaou2O?H4`fsbNui&UZa>cq64jyRAo!i zHblEEmaVc~uh3P6B&l&758Y6xiiGuiO<5`+;MMap)@qOUe((VwJ)SbVJVO>aRl23x z>}azJ!_~Mvzh<+ISnXoYuQn7_MU)pD?hQzG3F|6jzMhkI8mi*(;iCcDRYD6ON~&6+ zQzTcn8IEV;*)@47=?}*khCnv3+HAN!zvT4YBQ&WKh8kTZ*+2HEo0e$123zCR=Pytd z!9V==bM~iG&Sw$h$$;Pg<_j9rh<{Mv(G3R$=kOpuGcB1FsNlqt4Iz{T%Lb6!wv#` zPh~PZV3*H1IeCVzsWf>_SL7^imUNoU{=F&p_X1|GFUWI+$slBUIK{F+*HnVQM+z`J zn^wSR?+~S{n9moOK|q<692_6Ai&7lVp{^UMN@Cb1bR9*j5(FM-I!!0AZIh-dal!$* zX%TN%Xq}{KN|e0D9ft_rLDI3FFPSeQ7K4j*Diz-xd%Vigzk=HGr>Tp{n zjNBfpZA@H6*jA0HHYAyWEiCG~#`F5rZNY!@+)r>Z|LUe*GE2tZA!b3E-k3a0As0FIw(;p2{Wrg2&X=TS^HD|p@&@3Avbtc0J zhSw+Txg=S}cD7=1yFyn?WLt1`IY%2l;;(=5ltH!T&9~nmgu~TMf^LOu>V~!K_{V>I z#Wqp6zFJb$0@JaH+m`<1faP+@t`PKk2S^dJKRM*Det1fqCNyP%X%!R&gqBX1)daRq z5@i(9!*ML`k3z^K4<7GhIyUQF!|ioNyxEdQC5~_L{EHVDQnH+7bW-s6=`oA>mVfa<;hZrJ#q zfnjQtaf;e$0%D;j$@hZvW&VD>`nVL)YOV#dN@Fn)?G!d zAy7LNUC-znf->8(i|)evifQ5XeC|JZ$k;L|qJ+WtfcJm!h+f~Psbk{p4j}|lo}ic- zGzyxoP?ZsBSpbqEE*Xw{#G5siB`J%7R)7|mv=U5DWjwObT?Nk;_@RriT#8nwE;BTv zLZ}W+TVY!|dSH`pGrG3M@m6D6n{Nd_aG1NE9bPM@`9Qy+Es$1a^o)$NtUY(sc@+}g$EB#D2tfA z{*X^T{sWEDvADgVk_wxmr0z2Aoj#z*Hw=dc_aDB)7cVZ*!;o=c(o~Xd3{@o=4P0J- z^9?6YPH2*trl}CJ#dlrGQXvR>{MEnwm(1cVsDdcV=>;LPn>po9qRNI|&p4q+X6UBEF4=xT{;d+Z;d(6t&_ zSy3b%RbG&9GpeknX&SUvCEaEuQA{f!FH3gwyPI~p-cn=*wr>;kMihl)x7i|e4P7&l z)O3}^>kUcEiZotBm5{|7q$!YzWb9d(nu9J>r0kH5PQPbk>n{GJN4nXth$UCwp0QrE zD8isO8PS{WW7-XxWz$K4s%unLOPNYm(Gu4)X_bz)?XXl6Q`1qY3Cs|~?jfjXHK^K# zi|ZGN|H_v8I|W@gIicNWxm!^v6H^mb*=#N;%MwMCR85On8`QN#Dqv^|rlR1J zV@ZvwD7n75#1484hAy^NvWs$#kB_-NyClul++N%e?{b#cx2Py+n!)7w5Y^DpY!lzN zv0dD*-6Bv-?0_5&2rAd7-3%^6O{ zbW}J_gQ^%zh7R!}?Fd4_?J~vd`vg6mJdU`!T=M9HcS&})=(Wb}RfcOy z^tR^9&tEfJ<(xh}rD_`t-NJMGv@IBxiEJ9Y(4j3W#^WJ|DJbe3Z)jqgIY#QVw31$^Q@0B4evhJrw2-)FO($IHR-?#UqQ!=`S)&LC z$1*TIjbxRhYIl&ptb|pqvM3Z(U64gHmgy~VvBS_^bn6gV&k4;QOho*NlxQJpwlh@GHAi+{ij9Rc=C+yOca5%saHKI;= zdv<}_ACW|B496ti6iC%ZvqFSn(bA#oD%-^d+7?meM9URf91-u<#M>>Zs!|p$Q67V$ zpqdH_2F3P@o7pvbSCee!+UZq3y?rK&2bx}&Ki zX|1z2^f(v<*s6~qbmFYVwnM@&L}_Xi)u1RUwwsir;|b%#9;%`8pZ@mm>5W2$hhr|z zUSQ}Bs-toLXh@Q+xHx|ay25XM^*et4(|7PjE|Y1%(`Tpr_-Bv#)jxeflU?)n@{%_f zDSM}nm@QlS(}0VsYhGPnFc`YDM!DYH4|ajF(M-k{EAr#E~0t zKRCiOMvS~eZsHAPQ{sAk%BDo=TwE+Hq0@B=6Tf#?`?9-1up=Ia}#`-f0xxS`43xX1o*bZ1`Z?^Ed^!-E6rD#I}i zs=P(B$2g8dol10j$Z&dqV|(1&bExwI(-3Ty3l`g&ZPMTkgF6EbI-VubRgKGwTe38! zZCh;JBrh8zf*Qg8{vMrXAv6`Gs7Y5FzWVALwy_{;LxO^XB z`PnV$W=$St7@dx6Yi9E~o~w{I1<@*Iv&oSPn1+vL-i0BqueVffj_XTWsS!&_t|*wQ zO_CM-Kd4)PSaGhQqUWXv3qxHY|S$1RQ;|8t0>5$0@)~7 zUWn=SY0B=d=^{>faB_eX4r!#zCTXbB4Z2|<+8W0(?pi9X4$m=hLkrb3u>Fv#F)6B+ zBHECySNMU!abG1)6*@(usTDe*qPiYxYhtPzr$>)a;|xu^8*pk{W9kN`X@YDCErDyf zjDr)T=opUMBgcBVW?o)n4U!^8*Y;&X^|5Df26(1j$}!eruT`+ohKbl zZFcwYh{%k{%*v`lS9PO7fFwW?Y=CHRL2%1Q;4{<%aYLXt1c@e_Ro$#+W#t@^ksjgU z?q+V2n$C9~M1%`1a2bp2h3<5rxL1D2(R2Ru{nef%N--K7M^bhTy^Sck;}ZKgipV^T z9y)qmV`a=|Km9pbn6g@LaomAl{>L{s$tgei>CdrZz;Q9oQ1W2$XVtrgkH z8PjRT#e6}rx}oTLd_TnKf#qXPerR~OUsIMPz0r8ih#<;1J-@^aTnsg7ELq+@pryx; zfA%>FhqmvCCK;yOP&N(QzIh50yT zn-{$K;|KDtV{|@7wKcI5V?@B|$r;NJD+E6I=F5M9Y%{@JH|{q2_NI3rLRfy4RP zCBOOGUl5H__SL{oe)^KJ=d*rz%j&5`y8+4x*za;?SxhqZ7|$~P;kRFLHb0?l49Ykx zuFe>b0|I(pe|kmRm8>6f{5ZjL6i+vMmYb5MY1po69zNb-Y(;84>b7TnX!+}Z_G4D> zeuWqc2G#QBx4+`=|NhsUzxssuG{*5X%CYp_fFA5Wm7owNGfV?v9I(9kh}Ato5D|DG z$!LO~Ww>d^cyUIQr36`q7Y2k`K$=Z){4s-+H0^-IVfC~_4;59t!|@gQzM!phP?EOY zq1+bfD)t|9W|IgLXu>$c4ID<%2rp4Yz95cMf{~9MCH(5wU(vNK()8$J&GzAu*{gGW z$Hfm*q=e2@JbZskU$1DY95=8$?rR1ODhv^E%%FPm?ukFV`wAb+V(}veQdad>7}HU- zC7rE)P|!a(w))-s|M)j~RY5q$Q9b*^3avFk6qDN>z7yi3n1y4~IAc>B$l{EJ>o9B% zB+(qdw`}k3d4F?*6UQXVBhO2w^95bC$1y!+ZCPB5p(}{fj3f+c%L7(-m~LRdf2KI( zy!m#CpUp7RVupb6Btb7&zPP3Zd? zq@-?3Bo3dyT2Sn3zI}Ix=O-Mh8rQM-QN+`>WUvB94yaxcry0Wl(~~K5HMWEQ=3o6w ze))?xy!iYz`BTaC%xC{l@O;=&YDG3lk+MNlJ*!>Kr3it ziP8hfbc`cBy1rq)m^1VpNffZ&tZ*`i_McKh;y3~2<0n)6Bt=P=C zq9i7cQlczDIxh7-#}5@zma^M!(cN(=$S8p@J!+is<~P4bx-Drkr7R#nY>|${bS2Yl zLQ@>b;xVJsO9p%zZRt8gu`C${AeBRuPPn{$L6Z1rGvN3!qmwDpaacVzk(# zieey{o!}u+MzX%WW3xMeau{?+T@@f=2m+FcqRCe@wdVX{itRN@I=HTn9W2FuhmJFb zzGb&BknVsqJx!4_nqQKJ5qGyA5lT|Gk}#XIT<@uyj?Jot*%|ZGIpa+7`A^RH?zg|? zyFYx(V_tLp<5y(Ufc0um-nKNtAxJ&kz9$Ysx^6(aA?J&j)zck!_s_W537u|;BNrtk z`@F_VhbW0bOZI(B-sE(qX0zQ>c80R9xV?Fc8^nD0<~?73|Bl!R!Es5)r~LdUuNazw zC_JZW_nciWc>U>&UD=~uA2*VGeY?lXm@mF~$>a0D&D}@Zu4A%@xZCWQT|^X(##PXo zo|DNGM@I;4zzJ!G5@+hN+LR=tfWdZzJ_x7Bm;vp9J8?*CE z8BcutK=Jys6GkJSsvEete!*Y;{0mM_5?oc$=8rtwtjWe>tQ{zd1MBscZqQgE*yekz z^>H1aAan>Lm!1GGNpYeWHx7xi1T8Gc0Ro?@hHN~+aXg&B$Mrq@Fl2Iham;(xHLl|$ z-4r((6C?@U0C}~=l>tL#D3(j2$U)=a!{H*(k|+BL*BcWiWBfQI&vS%@G!=xgVf-?qq{oR}9(M&cD3Bk+r&j{Rz@#GvOBtZ}% zY=rOlDCr@8xF`0*`_Oe;;o{(hin^^qTB0Z-FSl6w|KBJsm5-7>X_V5^gPbtYHP3IB zIBv!$5ywLv`Uqn%x@BhqqKStRE~y9QuE2K%VI0#p$N%et4Zs_~lwrA2S&*a6*^7s1R5@q3HV_f1F|Z zhR1D9;V81MVwNO)xV=F;5eC74Wh5+pCmE*^+x?!i(-F&u4V`xQ(Tgko;qSg?JY|`Q0ymfpQYuxMhBJK`~gOAYu?DneXDro^?I&^Dj^6nu5?I2m*KYyDrN`Ikq8)uG09VlJ;AzGi%VNnIW|JwIV^B#s+XS%t|JgX!^N zpTJRQAu-lcF<^@p$9R-l5a{FPo-j4S3F+$=*HcItV*3Wu4;U-(hzKKxx^~dMB6TJ8 zG-dsC!1EoFxW~EY_l1Z{4P;-W1O%Qoh?eM1yItV=u zwuG)>Xaz=qLZEw%l?Lq$G%`Rcc-ns?OJiy@b+uz(RHWwM#FFLxnlNyP{E+wGJ#z74#P;z6gPO5=-tzwa zJ#n0IaXO`G8uq&!D}B7NM~Xs*A^CERG$|*e7_D8No*och$i*z-?xx0iA#>j%`;Mp0 z0XG^`wJn~b82O66Z;vzKydnz5)J4m#w@A~W+?s>cj6x6TN*>owh{KxM%WEzcR~(i- zw>KXdrvdRaqG=85M?-HqrgOpSp&}t*`MlwGzyFrM`k7`vmAslHylFCCohjblZooa- zKNHX8{mpx3i#Z>EeM_8#^p)lFpPrK+HV7gDSKvjO$J-@M7ot?dSHHZ$A3L0kCT#W{ zB1kx!ov^!GQUoDU;u8iguYU3wp#yi{yhGZK`Q=M8&+zv5@A&aw{FL`^-!lH$rvy$) z)isE6OP~VI&rWE|94Xhhu40>aIO7G+k1b6LgK3b`kflA7QAV#jtnkoQ;tH3-K>n1Y z^#Rv$2vtv_G|KMrluMcK@FR!5>}je7?fI;hIbPzEcL$!I_Jnc9XyOru9zi%IOcPqE zI4t*=z;OHZ&9OVj7Z&t^T=aya!#`<(DY0uAyqjro}_ej$KCxiWoM|{2G19G!p9RWQK-n3R*(H;4f@f2jC zs5rsT42QPi;r<4c!__R~!~1(Ciz$H=bX`NyK{B4v>VYJ186_UVYSMH>;CjSCMifOX z_YF!&UR*DDd|0DgkG6q0KGG~_(*;o!Bkcy|I%L@xBL#6#uXCI9#je*o+A@Bi^PNIS6F-c$F@(HE@@DpGi1%68Y#V{k>t+2WMt%^KIuu*x}7 zI(Id;fjE^&tB}f}ZwflAnPef;SkRUQL6#u~gRdOwLxb&Ww#y|w9vT-XJg&iJr&G3v zXTJF4n!$DmPoR{C9xTtxHOdPRPQor9&?@H8X>RU2D(g^pmQHu<^8-(-Ew}e;id@rn z1GZ_$rdw|6EHgq*soifyhr&S`^}yx98u>bt`cmwPk2E< zThxrRjOUxTh;~C7j0seL#1cm->%%>5TT>g4&U&;%j~KwHA10Rk;0@giP3U+O!xkl6 zdOaX}n79+}`sTC#b7R^SLp-6>8k z&nQ>VEM}i04J@ul?Cx&Zlo}_?IPoO={hn^nthY~?-lOO`;&H^uIOOf`-_l8e>T1d+ zCY|^UO^tM1yf|aGdZz9)&(AxAmtbwcal?*P6YF;p>N=HaYb3I zh+@U_L(Z-)X*!?tAAN?-4+tHwdA!B?38xFm^7)zB**Qb8r)p|iD_NY*Sv_v>92eJj z7|Ie)!1L;W^&NEEQI|PZN(QS*qL}BVgidoPj@``tu0%$P!^ehxHX~oIN#|q6$(%QT z{Fd{xQ?ewXMl;PaMv2S)dc*nbl%ITZ#d?sOoGI4D1jlue(xW#Gi!{QtJ&x#z{g5~B zAIZX$#mh0<@`*G`Df5;fa5znUzPqi_2#RgV$>IXD-P2SqPUNCIc>l1)myo41wAO6b z8?v(zkKeuL>XXlz%u|YGLAfi)tBx1fXB_esR!FRXULQ#uRWUHRI-{?9vhj?ea@n@9 z+_p^59lEx~5r$p41>o>(D5IKTJi%=geW%e{Q>JErF+B{!z@gfcc|F!zs-`6oKB`l+#h%^n zK-V`Ue$46VjQbB;Y62#&7F@qNpXBmcHwF{_X?&+G2#F>l%7%af~H&J;G#$ zH;I|fVpO@~-M8-;ltxOhUdrX`ONORB5;1~^)zc&ERZi2EAO({wWE}epWzM%>e}fZv zd~z`+A6nA!i0V+XZ(~%J(Dn^=KTza5a0d>#AejclreV3>P_!l4e9AOS=?;*N61wf0 z$6d+bN?u%@Gn5t9;RuLmOO)rb?;C`22pk_baHt1~wmp#yalMeCQ`B8f)s%R?qAMHn z+H&`t^SfXCn$oy@a&f}j@7{Cv`6u*UftC$zz2y6^zQOgz4DG<>*@%zNE3PjSKE4~c zm_!)SQ}lxK$rRVoeEO4fo(^l?-{0c}mh!OY@_f#3fB%6$es_!KIXKegyAKb{PbLWE z5~zs$a3D$z-Y8;Mw(PbAXXi66u1*Oe%k=bwftYGj5zjBF>YnA}9>-5v-qu7(KoGkG zL4uM2X*QwC59p#Miyg*Mh;k*;i+OA%cY90Uy9~WyIMhU0ita#3pC}1&9f|T4`~4o} zft&aQafIUrI6*|7m-NHH_IXK|`n>u6fyc)kMc2|4Jzf-3Y@ZpAGkW7N*aj;&E*Xi6 zrthd5%iFhaY0H)%^)R+&97PO9q5Kf7HPSKci=5y6!`BRKhzAS$NG{an^AWMrcsKo9JJ_gBA=mXSUzw0_Weix@a=oX*H=WohwLj3 zs};#?&Wr0aTu0GYEqPP1-)!kkhwJ)?z60fA1<<$D>or}ad3xN@wU(-Y(a9y(FK6iO z4w{<2ZDIx|xF0QY*dGjrI%X>=Wl1}CX<0+eM&Bf^j`?4fkyyWsKqbqhK zsZTnR)YX!Q^`7b2XDCb7dCT>WE-ALhs%5o3Fh3h%nt@HD8P67&c3}DN0X=lsp$4-@ z_=3g^^fn@nL)QBZb={zR565v>oQ`?E|A>%=*?fW&2FHa##oVlySVzzaA7fkcp`aH& zXW1A(iV4yTFZ8ggV>C{g&nDb`d}Lqsy#3f9P0z*rgtD%1TuGkiq<+ZrdQTuTszPyh z-{8d|zy8&)P+^F+lDBW(F^HCU9J5|;iDr-0ynJ=ep27 zBV0+d>j?b-sRYJ!xZ#*hwdX2u>1E3hc8EbD+<+{J$>vj1-(}x+%&ulQ)f#3e#F2;X z2drs9Te^B62vfSeLB|%^S%S!;uJ-7@JqnxS;p??vaW+MX0o4hVayb+wqckNiJFHmY z`6H%_6W;ytTZ{@2Cio|l!9cm)Grv5g-aeCLbDX}y6&{O=8Q=cqI}W=X8;6u-Nf!lp zS`mf;AHRJhoGfU&f%)R-6stRpHa$aE^Xc^|weGpOdtyAvIP6-4G*n%SrzD%r4k3<_ zEuLdJlmoHn@UScB28FK-wT7x}js!~)ke3Cgig09=3KNx&#I2;;$H^Nv+TQz+5;SN9X2!&-dj!*+Y&dqAem#3G= zVL%ImmL0l`Y1=1UImYUaz<23v&U|r3m+$ctkNU7ddl{2t%;RB6&{Yg&jZifzit&Yu zHUd4gj7JGYU2%DK!G8Trl!TmQTOM&i zho-AIY#QP;!Eq#^tI$nFnnegB7#u|wjadoFI31BB3KU2*N#GNB5q8jI;|Y20;Hm~G zT>7>pI-PR=a8G%t2#9fo!8jhZ*I^2a8~Z3xvwRrvoF@+Jied=){r~$FXD26&`-*fF z<7khrX~-N1e9bTl8JY%jFpSSMo(S=$Q`W@_Weum<6(6=A(1;_EMFRSVnPNXE=*jqm zb^b^kpWup)ahOrtoUZPv`U=N$=!=#xit&;Kf|56@17CUpcfY*F^%9yvlVmB&hwu60 z{hBZT`mbqGXmwZ*XF$tAQ|z5PpMDhRBa_l!Ntpv>i~6rE3SmDCMww!cRsl z5}&+P#DP7+=7yGdGQ!h_UW`x-$FxgV(Der4x;RllwSHvr@-@DYgn`HD$xrF}99x%s z{p(+|+E~2#6dm_qTB76>X$(;;8MMdQ#U!AO_U$mJw)sfG>jKOAtC z$NFi@bbiYAu*O;lVxPXLj_#*XN^vOp^3^9Smk)G}!f^!}!7vP%uBFwQAPT7(kLTwG z+YgNHkMT0|?3|ms9h2Du#%PL4@%E2*jL%OP`ZZf;gVZJ2DCGWr$1FI$ZcU9NC7EkE zRAAeJ*)*W23j#l->m;G$;RF^d1^dSeKlBNG#bkQI>Y*VVE4r$uK3GO418(SG219Qh zMw1!P@#SB9$^L1DHkL3Pp@he19E0fT>w&J-EXE1jG)%@RU2#Bp5~(EH-6MTJ5c@9U*_eEn zlg2T1BRD%tX!0C8^%?L;LznZbOV-P0r1UW=qwaU~MaNb63e9w{xgZP*@G=%I(+MM_CKZ2xpY`%c6@zd^YU%6J%K7>oez;z|#RAdV7t z#hxl{F-CHd#`sF|`9J%Dc9-+@FCNHSm&xg87-vozO^|&~=#EH}5$FoX_3?vann03F z2^^QhZckC>c%H}V@sYtOCet}pRglfE!1nZ=CUSeE@hI~>orSLRn4evf`U>BH)zgYU ze*F%aWSk`~x3{;!cr^CuBv!B%CM^AySD{Nm>jp!T$kN`&0xTH9r~(ATg@n)Vd{eO z^O&dABS9Fms}J~*!{N{nx-p*T&{R29qcIHN_@q(9oA+BrGoRHze#^*-sOz3A4f)G| z`B(hg|MMR(0qpW;oG`%iC8qC)eT@iw;!>fFp>12rx<{#$`Fz5Mk9Yj|M^_xS1~XW2 zI<#Z?!_5u5P08y|FYzKt6h)YY%XZsS4LL~`(iu%MPKlBUo~W>*L27~Ra+Db8dx?z& zGE(3g0zY6|?(nk!Cq2IR^?pFCpZI)!N>e)+)6f?^DspjSMXx)4{rA7+x4-=@cke&o z*_vLsyt{eJ>(4H^d~rf^ea?3EjN=Cg?Q+?Q4HiLKWt zbw#m1X0(N}L&YA$ejo^3sxD-Ecp#c&^rjb53xUD}~S(_%1qj!QSRG_s(x4bnL_u{Ihm z<{7)E2lB@)Zam`h(xodK&dc)dl|4b|BOH(2^Y+;Eh$8xG&;8Q|Cv=%jPqAX4YX*W*NY_YCU%aB;Kk@ufl8jC` zJqcLe-r*_5_aELdI1{cudCk-P4XbU*{3^v&lJD;tWVRsmTa-CE;8f^ScP;z2<<<3^ z#}Ch}_8O}UjuY_V{gUZu!r^ehjboHHlwE~YUaM-b3Kd`vC1}l-WA$BCb z>6uJVDT*D3?LD)}2#msY1YK2995l7=F-DL%8FgN{inbYOn**LN7#fcx1o=-CTP0y}aZcL| zbS(^rJ?>)8Afc-bb#n}SSUj%^4`o5vqt|<#iJPq-Nj(2arr|5lN zzFZ&;Jm22)`qedx4(kteeTDI6EUp}+*P%Ow?s`^rg9@jN62Tw-@H@PdYd-zi6`Q;F z)Yj!EKRd&g4P{lc+SZ(3U(sx~n6BmOdd&U1cRZGgI8JzZG3NWXx9BJ&5EU};ux*c} zqwfT1=+T)T@R(0e*p)eX*P*ng?Rs18g@O3!1iPz8JCH6u7%BrtgTd5h#m;1NglA_5(6Y z7%e7Df`DP@2vQGU4oqeNj_7z;uh}f`IiH`=Y&Z1XrwmxSp<@^t@Eh7b;Q#r%f6sEc zq|_jKO=l&89_agmFqTxnfA|mYNrQmawsc*?ey@=T9LHf-cicbk+28*!{7?V0OPspM zLxmMbOf||QZ#S4Y;`^`P;)MaatB-w=cEI&xtmk2d8tcsoM=|x&3dc#v*DdBsvRmKa zL=Xy1Ct!0Z@v}!xUteKbOH~cb$03dHkmr`Jd8A)C1S6Nb?{BEJMW=9nF`}<)gdg*p zcenI`L(`R5T0+oDlyMOaH)@sslL{-(S@+Cih@fYlN$Gjhn#z;^|q;$y3 zoXAP=mBCRR`|W{Zm-GCzqAF^hw>h7`enq{%XTRHU`(ex7;~J|xgmY}T4_YuEPjGAp zMv$Z_u^)2Cw;0>7+c)%sLq8m7+MM^_en+bvlG%hbOb9%mFaPY%5mvK$UUT~56=6DN z{qa3XoFc5E?F!y}^T_0EO54CU-+Z7B$6Q^V^7gAg;KVMGpW)FWrH8cx<7r0U<;Y&+ zc~j=Il#i>1C6TDE=$6|CvY9yAjGyVrEch3AF2T_^~iTU zd0rz>JguHELxr^+t{>z3g57#YRg{=c6C@FF6mVD{==6Zp7ByHDhPrRK{rJc*Xu>4o zP#zeM78p|zjHev-dzxC1Yt4Gs@cZ9>&8DddJP)j;5(?jSP}U#;V>N-RsM?;g=%_m| z)*^+XcO}BQSR*LvmU#+ivpJ%EB8Yr&25#Ri=~3iOg>VgbHy_#LB_D6^$e${#YsgZE zr?qB$I^y5{?N?O$f^?Fg@L6wGh`c5aLzHznJxhpZCv2bd`jj{h z7^;p}pI#Hw)7B+r(_@-~{nF7t?E^&~W>4&1e*J7~u7fUb6l0E#uQm zs-_^GjL5fpTrZ(*2efV&w4`nfS*%#E)+hnHT?w9~*M@O80^Q?90mIGHSgkoP&4VE!D_w169PvltfOf= zOIf!BO40Wnb{N<-J;6BUPzbU(A{nJPPQWOO7=|9lc%3oFgD|&5ENRl|l7|ZR= z4X!KcI)$r3vPs6r`&+KhKV>|dAf$`uOFTE^u-RjRl)N=K$q3yGyfmRbqe1{rfF>QIfZo zu4(ACB^<{Lx@WyLOacW##GyD48VB3==;pw7UlBSAEiJmSWFsHE6uKH+7esMH6h(+Q zVEuScI+<|T?3rFnF;PNK&t`K+m?RWPingIKin?5)T1z&Wuq~hYS3mzB|FmtZTK5PG zcCaKtis!hj_Dh!4J;IBC0j+!DD5GzBz+te4=eoteoU*TW1pR<87C#sx@Ttp&hv!?Y z>+<5$F@3or9*r1}rp(7Ft_7n7#u)OtqjMCFA7F%oD;?VXfz|y3Hy<9bLCTLlzoZ)m z($SpPKmCG9>hW-Q%iEiK1_?zy5c?62w|7itA=6~Qp+b9-pZ|-`kgnmA^MuDYUlB~l zy#4S#k2oo@#`h>1QTZxnqdWw9zqHB7JyyfKNgszk{2Z?yH5NyB z^p(LuFbN|}I}pbyhiy)hW=ztAwz2rWi*gKBgXt7XWn}RPjYT;c<@h+hI%ahnFgRFi zu>v|{SZx~)jp6Md_uSp>DXaYGu~w3*Hb^()^u+=xK}%={NjRDDwB52h9PnKD{6`nG zLybYxYKQYhN)ks9fN&JJ7Go9L>y><%@;gv2UDSa~F{Or~T(K)20#xGSm39uWzi zAJ;s5yr)A_X@!bi8lgGtwv0w8-+c3iU>Y--jgQt>)8hmIbUQ+?=lbQGfBrB2oXhJg zr0*Ut1}wr8#|!RiNJv4VqJmjx_HXtWHKcg#fUhdsameGQ>LR6{3N1oB>AD@ z>HPywtCHKtk34P)s(nG zVH|Sz{UeFz;7>vtXN0kWygZPoju)R^qG=ePUa|b}Na9=Ek%O0xX{(wSvk7q=V@!t- z3hg*_L(Ajp{)Z&{!-96bgl_1uR+ASS`o3q9j_K=$@obDILfW<^a%0-IW}3`N+?eyQ zM;vNqPRKW3eTQ~^MrSkJswU5S<`=IJN}>7|-M3WxoT{zZ)j5Z9&Fb-i`^S44<8XeO z@_7G_s_S`rUgL~TXqC&^t81nUACOF@BPOE&uPNC)=QP6Q;_8yvQ@C!3@>1e)jH@;4 z=N0eYKU3v3U;py=DNG;HVAWae~C!n&1 zC`_q}f}WN?`^(Qrg}{|AzT@D!BU)jQF3cA*YiHC1bA+M0f-7=)!WCA#au z0j&gxDMz+qU{kjDWyQUickttPZPN=LG01jC4F;1 zbv1u>9Wz;YtcyMC&5n;Z&uG)J?kc)rLvbjv-I0%16a_c|o=U)rNyii3Z?-gjM_>)6 zKhDJa#!|PIrmUII=iJ@iA*CfR_Dthr52)&TTHW!m+VjhQ{EGI_V#J0pnepb|{Q>>e z26I~w>Xz>A4WnLjolXgaha(^_bLxMJoBERkt?lu~HNqgQgSC>>i;07fyXOzQy8Z&; z1{}%)j5zKk3(fY>GMZ!*hmz^_B~B<9Cn44g$tD5C!+SQ{C+y%dO2^2)!z!0BNU%nr zO~-z>!VEip{mb95To&y21?kC@ATUhN=A@ot5s#VAPMOY5ko~~(Zo_i7!S^I`Ftk-m z7zfO!3C}kVJlrqYZd=AD7rgl73&!z?yN5MzZyvE;#?>srBVsX5czn1;hyXA3@TG$u zTCyl+yLrM^Ev}oQbxF}zDCZcgCOpX7nqko7+YLzwT{lpcC9~57{~u{@vMgJgo@qUQ zw_0EBzI}J6izXv7mFks3LX^r1Lxq^YKts3zE~Ku8F^`T!;t}8Lj7jcVKtu@!nGpo`dz=JRUf9({)fw!{8%I zDEt^fDRf?vm1jg5xm;aQWfe^~()AvxB3H8owr|jRiXSZ=K~bbgETgpi&EI~-cJDCx z*~bj)bAl8kIV5?95t7~xj6tEr89{j-Pg`DnIPu}W<-=i*&KyZ;$nu1n_aD#_#pdQiKvHF-dE$t}e-w5~UPbk&|gdRa~(sD)dKipr>oET?(IMD+n@g~58GS1 zu4iy3l$2DN;{Ksy_FG@FxOzgWG|gd8nM+Rl9s54Am@V0#wyd`s-mJF>=}=*07z0i3 zxmaFn^^%KuMp{pgkRlzJ3oSjwl+qb;@ z<=3cePOovR1xnR1|J9ttQDkEg7C!PXnKn@5+xy*2{Je$mfN>m*7tkb(PDk1 z3y#iu2J5)F-*dMgxjl>=+JVHR*io?gP;;s`SQofoKaf^W(OR>*UZS<;(49E64(S!P zhcxv_=SUMpL^6&esfNdg6MfxtIvvPnGa5J04;~jhA@(F`h6p`luaKc&&?AqhJvw9@ z4;^=JTHFvQ7bW$vL0AJ)AQ6P2X8ZmT+js2m?&n-~RnK zxb}#Tk|Hbk@cw(AUuKx)Gaeqc2-i=VhUP?WX7sA0wQy`4cZV%bXnfGb(SHoY`;UKq zxGDDY|K;C+M?^Rrk9cza$K-BQ+^+-haoJpZ|w)FN4}`Af@pK@q&Zx?S)pCW35+4WFAMV-LJxw=o`RoPThu6G%^^ze*cBcWQ zDqei@6cZsU3;O0nHcJSj=b;t+?(hCSg@mhTmjtOe+-+DNT6}6SCTG))RFz>Kr_SxM zagcx(8Y?43I%iQtgj5`Rm}NP=vk(C>Fw}xP&j=pQ77Nz9EmA7VBGPpN5fxEboQK>P z?BGyIj&l|%G%*N*7;sTwV<5&bU2(m_D8(2&T1iGPa6zDS;L!KjXlRZNqqUT?3}F+r zF?iXs-X7@cfH8*0-I_oEJJrw9Dl~#LD-aP9B2q-W3~1%)hd`ntAKq_}(qV^=wzn9S zU`T1Y0J%Ylk@jS84ul-Je)bs`*Ox5M49(Hwf}lDtc)YzMO-j~}TZXP?y*m;_;PL)I z-}Wr?lB?%0=#EELPp-)l4MQZ6j^$#-FtoU_X6Qz;B;og;RXn>+$z~-{L%Dp)p{ofo z<(pUUST1I~yL)7Gfrp!W%JYKF_QbMU(6*jgq8Wu}|9If(MF~1#a~SbsPgds4^O39T zbCTS1c6Nm$5=dzJk^SuhXV0#=d;dKuPx~|lcKp@9`0xLT2qHJ)gd;?cP?3nEN-ps}&<&oUvm`3Pqsh#IDqEnl zgg*A*M?{p&tDG>@+}&X zG~4?PDpB0-H$)p4?1(lH5vDXT@sXj^u>9gph+ZQpbAcwjMGa8^Vfwp(7myy5jX@7Nq1AuA~p$zj`Yu}C;8 zb5`d|gwg24&^1T4+byZikvO_xU{?jC<2+R5V6;HVfL0a#AUO4b_v>38 z_D4d4Fr3;Q)oe+c zXpjlD?HHN~Jw2-`zWLjKKnO)OOD0%hXo(`Se%ztbk-F*8(IB!pw>NuIF>rBN;*H^S zY>9b-69Q)qw&{5C=>;k=c#*Mh9I|aO)sn;GhS}wcU;XNP{?C8=zjJ%{n%7_blIC&E z>d6xAa?XoSxXLS@&X-)zmaNJ-L4eWK51!CJC@dMqmZChv#}RKmQd_(!S;%vo^4uP7 zaADx)?pyx&kN%ufy=CYgc)q$O3p?s}8`@1zb++WEdCJ}Xgo&EN`oQh_$Y-B@h8sKD zsF^JcRVC5D&|C5{;qKv)<$O+R1REO&`kCKu5+nnyO zrHzUgpIz|!^^kRl<-fb|)})+4n*TF?D)AdV5`6N2&-GGW~NDLc$(h!C-O zikKj0(}^s!NA!Y+yIV|Zc*u`5$0^@TtPU*lk`M=oJ*iHJoxrA%O0sexX8-^o07*na zR7phP*=#l>Sw)c~{P}Bwh>Jblg~9*H-G%TJ#0`ny*Qc7)(L^;;S#@J-L4 z1FqaM;OzDx3Bj6)^C@rW;5EMMs}W`e0I)u zvBcSy_v?nI7a8f3Yr59)^vM$<8oZ_n64x9t?}f^)-L+(*=M3-5N1lPBoMabj?I?af9dT`4yXE%W{z-eBkBF?^r##V0~&K zIzGEzVS~jx7+pk3kM|a7;9`mSae*R&i7v7>X5A@m$i0hOPz z`0@*u*Pn5!jZ<@pj9BlC+VWToQW_h0kfhc!)`p!A&0W`|4!L$}9yg=54w4X5LX zcN!5oBs0dgK{!EPNVbQb&wl$SRMmp#Pgb0ETkb!6pg-*?igU`W%(-n`y&u`Iz^Hk*d!qGEsQxV)URD09Aj`-U%m{FLB4sZ7{+ zp53-4Q5jFqmw4Y21;i+DZ(- zC0VWrULuibX(*K-!J|YVN`(jtEi}X_0!GS7kDO^mjFBKcN=}{97$XD^UNYJSDJ6u6 zP@0i|cM*#vAi?=*97IYKj)=l!f?1X_29Hcqd`t*Yk(k-k0COH|2gcUZ4QK2RBUO<= zbo8#F%yO(eGITv|@C zfQVD66@x>dNfJX)fwS`rAp*{MzWDqZSzZ#OqnkEy&?>j-M!`U_6CGUrUIE7 z7O5ttl4Cz$s*L%QEApaZSrz=tzx+@5qyO?x$D z5I~p&48s6Huz7rm&K3yoP#RW?5)nMR$2+u~NQ}4j2lny>*|Q54R~ow+Ih!vD%5ggE z`2OVYT^BH$1E#`R@B$>VCkK#mAHBz@e`B(dSQTk2S03Us9;Z=HWmad!kXCe8A`& zBU7r`icEXfhnmknf5O{0@5ypSIX7$%M?Sl{p>ovcirTz5U2d&qv07M5i+n zRZ=7=r(;XoZ+Lh(U|q}lam%Z>Z`igi`*y}4W~{EhM9;6#vSf9={HSfWj8>qhObHYg zABJfY8xshcOlwZ{7H@NY_80#h$ z1#u8Od77e&z<4^MM8@|oU-9tv752@V{V!f4n@1M23LOQxQ7qMr*m?>n5D`={`=>8x zDK%l3UWOpRB#M3Wj#J-Kn2O%^q)CbQ5$6K;H@940e@R--P)ed@ijfshRx7d?7kPH#JE}xLieUUcKb*;lOc>U?n=8aonHSZ#HzJU_9QTGB~>|7;VkI8L(dR z@K_^~0x5ewym=2%5nLpz&S;v3-a4}Cj3Uj*q@*h5#KCgEJ0Z#$IVoLdn9V9usX6Q% zS5KGR-5f|w#>2z+AO+8#KVkjhfr}^CG<8pJC6D(lgA>eh&Bgfwr3-MH+D{$l&9Ox& zO*>4dj8h;}AjAps?jqhRQdcnA$STWF68dJO$4^;LF`#w9=%xqkoI{Efp$$F;v~Wl% zNwh?1aC#(2g+ic2f`}IBHAX~)jQk^!D#l0*8Z9(RXhbl`IBnt<3pNsncrg-?6KmZ& zG6RY91mST_LpubV)E~3X3=)Atkwk&iip8^vKGgJ`#SSBfeNRv@_=q;3@ff2KHsw&) z{POi1zWUWGqSYMMUjrli0rny1`qMw;>F@n#JnR%wl(YjRCepc`|T}@#e(nOZaHo@L=gx!V8@6tDQRU83X;TNV^8Nj zPI=1tf)EYTWE_qy&8Fv*^Ac4qIj!%wxL&c_o=A$E7z5k&25pbb%Ngl%fnA?SgkiB- zfb?8{x_UHfA_!fcHN+=5>seC zyx*YHIS+>&?RFrD3@2exWz@c#&^!kGU{P9PjHbvUufF+~_je~m0*7NwIj@+N3Bm|2 z&n{3{?(RP@)O!}y3QLO27rc1!f(-C&1F@$pORmml+j)OzR zp6D~u`31+#n&s66-+uEoH@g$ppRPC@4hRYLw#6}^Wx2}VhTQb-XeHJJ3E zAZmv;0v8>*%t&Ow1PxJ^HWn# z7#3+t^o|f<^dGOkG7wb&0{h(~ho@w(tN2sWF6<55r_1w*I68T!!^yx^v8*fpMd z)U2+aGK?NKZqd?l>S_*ahb6&eDTsgol$mPhra1u~=ciDK!en$UQ_3A+WQrX;t5re0 zxn;B`YMc^V)u;zH`*z9(w zN|013L*eLUq!)qH_7&aOAsv_``@tpqgLCNr@&EWA{*8!&zx>m`;O6E%*~L$|D5i*y z_2vyhiH~B89fXK^TiU4ps@q%*7L=uPuLF~O+Aq2noplR z<->;!jhHANwsr&}QKu|RO;wcKt!qZ<>3U0=CJe!G8Z23s(hm-uO8QezQkFC`|ei}~^&`P3(ntmr(v;r9ud=O+(ljY@9GZRU5 zfzUlRB#gl!rNCNCRtUVE@Ir|)1Sc^<;>9HBkO~k6VnCY`sWgN4biF48ftL`XK+4Ia z6O@1$(NPk$B#f3sYT97}Vf5n(BU5I1iR&Ch$aF%IX9PFUTSu?~A3dWV*gQ1UhaG1N zMN(LP^poFXe;j%L%U@6yfiJ%JDP?trkcvgM1gR;q5~RWEjNkg?bAI&2r~Jv!{)j*O zSAWj!?Mq^RhwnW1H*biEXR|pFMu8U)l_I!)YX0?-*{s0!ku))Q;jtl*MNO(T^s8nGVGg<;WowIL_=(J??j$OUyzxk8@_CGp@{=u1g8|~q9E+|SZW3#QRSTZ;+$@~p)5=CnPNFhxqGJX!^?p3ZjYs1X5bXCVmi79j(PO6WsGiK+XFRtO!?%AkNY z1hke!34PO|Qw<`34EP{$Za{{V7$ZXEfG3KHp81cjgOd>($LTZ|+0-cxAFtsN#@0`W zpD5OpBc1>OgY4tQ^IQXw5kE%4ssVnDeGSSht< zj04I?bkyila@-G?PVu}xa8@lCd}Px!x|WW@q;Jy4=?CtF%dM!nxH(A6OB#S zcRNg)GS_G9$2DnIP8g!0$9qA2tSM)6S}Ev8Ir6<&Z35fK#K(32ZY3=SC*1_m;f z<9$DM&@qJQKzpLkrm`SaY}W@AiWX0bC0`h#i%5}!9uXo%s)+KQqB4X&K#)iq2x&?i zHFtM+jLnh@FUa!gx&8hhz2Li7_k4JLk7uB3ws-{h<}Hg0jhC9gzB^InDZxt4&lUgr zcm9g6zIny^{vGA)jPG84ASjDYH332N3K;NGqMRgnOOeR`e{$ePD2jx>^_Wx7Vl}5Z zTKdki4=Kw4t8-k}l3nDCM&KR~Jior6b&(=15L(gON33@&F22M>k7VTRC)cQX zifgLF^t7&ZVtKYoC%Yr14%x7n$S;G49 zk)QnN1>b)6mR@Fzy`{_{gus)tf~FmaLE>Db>m8?VkB|iyR~5(2iT>zNCZ#)eAT(Mk zMjPqkN4sf+F`3LAd14sr>7~*tL*k~CsVwmG~ftIuHXy3_=@1>=997R7MP-l)=Yg(w2`JryW_Q@zSB3rtf=Fr3qRPR75aA z1e6wpC<*O=&dMq4nSmk9=!cG~Ob}YpG!`j(7G=q(J(>)bf_Sp1pz%sDjusI$+uez} z?um?CJe!flgio(amimlc*K_}PLXDEz2JFq2CMb-WGME3=U;KA(Cj=HeQE z^O8Kfpg|%{Lftk551aa*v7iO8oUa(;08_O_)3qd-rfWx{uso51HHLMZhV4m`v6`)T zIKC&bQ-?FEk?LIWJYMqG|Lb3~s~x&X`0t|FKSNy^6e1hFSqLPGq7@41~Ab7eVlFu{ZVUI(z zIJ;zjIw2B`=z7MG^694wj=K{{X4oEfT%MiL^g9lx3AZ%3j#E1@D-?YvxLPi`z1gC( z8MbNAIxtTar;xF)K?Fydl*lM2N{TgHEEMb84MKrQ5}MW_$XJ#Mr(qyQh|!bgDc(sk zlhciX7!*3SL?@WfQtA`vL}PTIw>?5Q3Ml}GmWCK5rAh#S6@u#|W#1f06<7jJI-*aI z0s;c%N0dlFPMvNS!ZZU94$VYa5o#n@i4$OwoG#Rp6U=(t=$UCr$VxKhrW=9~j2iGK zRFa}XikBAOf-X}!R|6SNXo3l-R1uwk#!)5(BK1TUNt1+)^(3P}rvfEXj*pg8Jdo8J zd`P%HGhBR;(~dK4KkWJR`Hy*Wy+nzQ-Qxp~A71k74-K1}HKtVTw58a zbfB6^#y5Rg`hK@Z+KBKK0>bgTIL68RP6%U)5Bm*EF zHY<4C?|FK)nuHKSK@e0)M(~pmM2Sdi5KF=JWlk}x zCeeh6tT%VOx!ZHM8F3+}Of-EvFxWs|Etpp&nHGHZdzZ|NN*>A=PL3>PzWDUq=!Qz;kcPuTCbA59bkMrT;*$x}n!)dT^l&KUYI1?vSt zDjh)@_G6D15+z20_KbEQHJUL_bLXiO?LU$_Jni5aJ4a%2d>HX&M2LV<5~%{pJ0cqC z6;cWWlax>yOpdy1Er_IGSkizIKy_6i=5hoHl zC#dV1(RT==5q?sx`Dlqofg8|K5Orj;8M(h((}|vbw2U=~AVBqyLNc2%D^s#6BbgNx zGeJ4iqq~STC)J%Dc>a08qa8>VIp2ME zhn5DJl<2hJ`}>~L+Hrn1<6?0|TFw|{1*7BP%{|&nlua;~*POKEA!?3R(u;)q!vje) z|MUfIq++w#A+$hhjZhUrWw<_>xY)zU7y|RzC1o+kD1#IUUI;3E!C4|X!;vXPvMi9F z%=qaaz98By?eV~2z2|Z5IXk~Vw2pUgcXWNvStZd!$6?>F-W_P8rymcjcSlYwWO+rF zl+4RH`Fw`70+S{zE><*k&EO?fnbRH*Z0%!vwq_h1pS}15VLR$}>k78evIU_~TVic=R*QBkiS&|(r= zoK6-Y)Kp`doF*!Q*JvZ@qCm+hNh2=|36eCOLeh=Nks|pBHi#t3Q|c6>10qa#9VtOb zhgJda2BMxCYl-@(5OY&48AXC8lFCWfw2e!yL}H~s_{CTusJo1)?q_~Pc!PlqLYlM zL6!;Ioxp22)s|#lg7v6$vR`Id#`3Hp&r7Vem>i5T%&rtNLOIvmZ`M4lAF)HizVA65 z8p)sjVZfe;FvXlBJF zZBx_t14M(-1@D~aF&c!meE;hYXeUrHU?pTlj!7owR+{F>BqLE8?>%EPaHu^xc#fxt zwHE6fR$7uwO|hua^5OLx@~T3`z`Q)edPlxY@iHYk&x>bQ)Q6g5J92q-MQQ?lec;qa zc6Co}14*H%vOqU>SnoNXFEQw;yzrKbGUIsaabm{yc*5i}c85J_`Y~^+>1l_CUEQOl z!TYJx?A=7v5Lz+z9am=+r|y7vku;5X)sY*C9YH4h*$C13yiTk4}H`hj6Q@zpQBX1!i>*EE>KGt?vA zkxXp zvv@2dk~D)jCV1DQl)@yD!8<~j1o}x5h+ZH<#Q%S!y-BNW+nwe2o8_u@b*fvv`zk4< zkRp^3icE*IZ~+PFgn-0gaLf2pM8{vmxMerovb%{Pod!FNv2g+6%*c=;B*l|nao;UZ zvCFkrF-te*3A<$_NEc4$!hy{`Ypyxx_>b`$PLNXql_4fnOiccamVs$J;pUMT&kWHs zjgeYfvIJRMlnCT7W0ZJII8m@u%xII*LNJ7cTy!V_kyz&0N*D8rC_7^ylS9OqH7>#| zb9oU&!5BT~enPnlRSAYT;)WTeYf^y8C(hH3InCV9XR1xdUw{39_q&l--#jpl9yyh( z#&XjlrC{`d7&QCCOh1N_!(YJdZBL4hhyF-aOG1#3pQ|FJfbShrMT|5I!+=Phi^Yn; zkL018C^nl5g!e2~l5;3AN+~5tN2<1B3K5kvCL5Zj;qGo^>=XOrjtNCoFWJ7nMd%7C zJ*t9n%!I5t?Ixn|oK7clj%1yY!q8nbd^l`ru9i%@_gt@P&TfDt$YP{19iM;p{oi6i z=gh}1zKf(FT&DR%aFOl91FALT9C1V7YWa+(o2O{iq16gUix%Z*@^1T;haYiuS+iU!&eI3hi-xN0_}+^(huy$wf8rDZi%QU1%Su|FEDYIC1%#Jjngv=e z9&0=$fB56?@bsqP^_y2b-0pe!F!H-U{sX@E$tUEHn8%65+Vau!OYYvE7^V`GSgk8w zzPLc9NTMTRIP52;7!g8obG1R?dHZ@t#E|ou(VYmY#x^yl^MLCo>dIn;B9DpL7b~Qn z1IY)1sK}3FJ1rIC5a_y&ewYYSlc^C%WGbVn@pMG%#KI^L2`!5Cb-OzwWQCQ9IXQ9` zXk{4#NCOB%0?eZeO?Zh*g0{UZgcBr<@8=gG7LFdfNs||#HR%u5ZxGm%O_ldHeM(!~V#+ zvwZe@pK%${9q7a_-+uL*FKDYPAXBRfr4&{*D5Y4)7C#ju{C58> z5968L{>0VtDZzVWqd3+tNfa%o9g18FJ$D-~T;6|ISCu`xD#SJyO@8Dn9+*?{M0E$>b*< z9v-MJu4t>8aXf=uAf@DTQ=xq1r$70Efa3mmB!on_SRiHK;-c6uciR)PQk;hgmEb%U zrF!ybDv_z`vQLlWnR5)dluKnBq_;iM#w;=Bu3W= z5wScj@X@1e@h8{q0v95U?odh)D8=wyRgz*>R0vZsdd=Vq4mpJkNf44MM{;fOe#TZc zRyH^nFtQ>)ChL^YCH^Vv;v*NDn2XglOd5p(5fC{-cBCwcGLU5eAxT*vlEL|6eQs?{ z#1MTk-pnx*eP9|Bjd_F>q=cUYhwT|Z1(X4i1+reC)di7?ag3a1$HQ>IRED>2?vOHb z*B`ih7&#wDYO}&+OA0mLdHFkJAMidRs*I#0md?{i@H5gXa*idDrb_xPxXd(+_~c6} zPJJRV(nq6w2-OO*wrU!8Dxc`#lf+8JRq*8%;<-T;W zzM_*AfB13%!V$7V)q&&PE8gF|;_dbu#(7|Y!|DnlD^63-EpV)^@Y16$8#bSROhWQu zx5HXnlt=OZC4baXvp=6%b(aVSZ|>gntGhi}CobC+Z{F-^WI!pH`V+^)fL7(`d9k|S z*|QrO<@omNJ-_(Xd*pJ1R1pzQ$S7DfhDB}JJ{-8)&B&&qpB+(pOp`bcd*&&!-%bqk zOp==CFP@-9zvRNQ}*|CMvOevwv#CF#coafd1BSIK9ixr1+ z!niW(yS!SnPzCE$8$h)TPO*yvZ@&5#83XY=VY(&q@qYhze)J=}te{%4GL|+A{=tv` zn8V>j&guVu!Ty^T^rC4w9CoDW5lN7U^lsu+UqE+_rCLzbyu-yDuy|L@Z@7a(g&4xq#4uFMst5zWn-EAQB&4ujp*YCm%m$yq3^ zVLE~=JwzgBhLfXfTDpa0I`8pmF1Vazs6-@5%|e#lFU7zdJn!EfP{u+|1m_VX&c}&$ zYmiZq)66tYWw)e6C4~?WTw!CIKvW(_vCg6;DHN+BNOCTBZ`~-ODtToki=|aQJ{eLp z=vc-xIZM2Z#3)J_M}idTQ4xQPWae^D)u}}Zf%g+h&RAQQ&MF5YH%OI8b!3_X<1~>~ zBIv{^!Z;5cykxbm2~kqjl6G~${XQ~Gn&>T)6D-<_;WRQH2X1#Go6R#`z1gw-Fr%7^ z-S*7gZch*u(R*q#E32`zs4S^fO>l}dC1P-NSh~6bBYAp#LCgm46G>&fpSgZ=Ny-5? zdr+3!+XL4xFS$Plu5K21m#DNrE;JwZXKwc%8%E^X(6ol(9LgPCjnvL_xmwaR7c_0h zFi-d(c>DD&KmQ;8ce?vMpRWsS!Kcj6zWy084U8xETkO!Lp%P0%6ey+Gp0>;}aPSVT z1bB%N8rSz|Vd(oKr*UF(8mk&s-6gAL!>e~+GTX%692x5k_B&7b-GB6BHj9p?v2@Fp zi>@xp=nQ_AEH5hR&ahl8&{?uHp51<1#1$X;)rWWNA4cBYzvs=nV<}vhmXIWuS5FHe zvo)lyrCZg=6d02uD`G4ViItrHDHwLI?zAjEMN*grtMyKqfF5r4#s>>;tpVB|#>OS>QC6cFU+TB6%t+ zQO$ywK?zC1Bb6?oJ_?JvwgF=lQZEtNVuTjNoE&h?Ei0B2y}a6X9?|po}920D%^k zrfLvEky64jA*Cp4cho$bMu-_B6)}wvCQ_2zZqHQGvby-JAb@h_FnOkF;_EMO`RNyL zi^^`6RL1h^?mhh+n0?|nXL2@3ZOGB#ACqBDXJjStN{~aK50J89ih}!7&v|edqwv## zs!7a%OS$~G6FGpYEq&ipcP+zq;Nr=O*Kd!6I5Yc+E(t#Q-g6Ggaoh#edE(~9M<_Y7 zcvj<_VSA8Fr!#)q9 z>5jTufRaRJE-x>sltuW+vRe_8#@Gc{S1*xL6H;VVbzH7LBjrHXuJIw`)5I~H*v7;* zR-h8ec^=+l=2<8ZF*Kis<=MY$}H2&mJbxkD%`=MvKc}koo?vH!E|NGzP zljqNY+12k9}& zqv~90k>kvAxj+iT+)of;Q`KaZ7+j)Knql-L;aPMNVKwJ-fmF76f7~+mXLhgNl^6fH2i5X^dr$D5 z6eZ7|zx>S?bfX)Zs-mCI`OV4O~ko?3X)2g!p)WvkwK>XsES8?Do1l` zGC4Y2l8`HW$R+kEJu*4a#n3W5&YNSJkh&(PBJ^oM8C{rHN)+*rgh&M^oKaXQh-u_B z9FTfO$iy%YShK`O2}z)}EJP3wgv2~s)IxAR1!Jh^P#GbS2gq9J9+rSrqn#RxGLpX-YqtOBoR|^ZCs6#RYQ~H1(P|J33;YQ?6zAoiIjtA;TKrb(8VYMSX<3wfpnhS9OEHk{9Aj2vmYNLNc1>nG5x z=}#w|bKLFr{OZ*m=lzJzig_OC-|bln$;Hi@o6R-PHdiQVSX3R<*T4CKuIq~Z=^j5F zkz``XyubT~oD+U_{MrBVFSyC@e7)dFSJ9XSAqtFM(3uU_&pzj3`8gMxC%k`n$Iaz) za)^xc%%n0xoZ0Q~S*;s#8X5YLt4+iHc&2xfkQJ|9y<#^cx=YD!cS0MeV&-;tX3B~W z+YkI-|MClD*JA2&^u4-VBje27hj*M#Bb%pJ{QUL6tA0l|hNmw(+~^3t6sk`l;6o-6 z(OGeQdC7~5D{7IDSt6^BnJ8EF!iPoA>5ye9NBNoA7sC>bFt1QD+!YPDjVj)ifa3r$s% z5fvx+yvqR`iw`h5L9O$YQRW`VkIYtj|hjSBi3=I38i*7-x zGouf9G=rz?*s~(fnq`}Lxmlouq)jdJd1T&yU{N_%ZO!uXniMh@t;MW5X1QQEjhI$5 zZcm8Qk>^)8_$q8vEJP9_y57)Vcj%{R8#BB;qH!CukWZ=m$<0;*)Lwvb{#+b z&gZOK!{j`sHW;BH7l?h;TH4OA*(@+Jk(s$%)+is?ACGMN3@kW~9&2mb+8{;dG-S?G z+3_lw=!~JQ8!kV%oCsmwm$(P+YN3>E*!4qX9=Rl5;m?lUbfkw$1?-NtV z2%Ql^F}RszV`&bM0%I~E8*(;KWyUl!Cr5A|B@GYvJ9Mo%_9tX^k4>ElbU6`-7;%2$ zV!1%1jPo;Ho$)S#_Xs(W41}CXMl(k^_Gf|@EL)44Mr17C?RIw}#F6F7GRH`NC~n3S z1?M1%aiEfsuCnF3OP+rAsH*06Kk(+m8Qs9m&2!%O6MN@5jc`1SEHAI=$DVp^X*z?; zn)B%dR&#&1C;EVnlFn3g7i(NNA={Sr-+&gpL&4M4Om+ZGY zjFo)!yyNcH(T9o4?uzN`$hoEh^qg=xu~@A5TR->?A3xpj+0$#>amR5UI36axet%$j z)!+lXx&6S^)rvRY-ZS+F?hc+qo(Nu`wPp&D922#*Ja0BkVSt!;=sl={i8WL-wLwV7 z)pE(jwc>OLxFA`ogt3N%U{%*_-OPAAak;F>!EioLgzQ*Y!xUy>(5R#t+z3Jv8Ij4* z7{xpVE>(jcCAO-F)tQ_W%erOE16snapI9i3tPGRS*d~&KVLW?0Gp#9Vt4JAAY1K$7 zLo|5h5V-*o*^gwYFe2l`gh{e=iDgYfBXY!r5tAi3S12h-aYST_|63}2gqRehgv^={ z0#=$wqNpfhY6>7#87oGQ%dvdM5V1Bh%o$MtXb2%lDKiC!$*MG~n5MYVqDSS#>>T0H zGYJS&1T2j*LbsmN%oE!gHVAK6iQgm&hxZ2jFZO82{$FQ$~4s# zOFgnb_9U;URfei!2ou%WaC5!jaCDqcj@42yK0419ZFv!*5@8ysTEjRhz|(3;bNP(J z?UvIZI1GE9Um0%SpQw!G4}SO@q%0%0t7}f%1J^(Ji0y9Rcs^i7$D8-BSgwByFSnQk z*XtV=^%|X*D5aR@neG08C)ZE0ou<9G~e$liFphh9z1#WGO`i#A{-$b{fA&+G>zGa)IaJd;C!Bydrq6*Nr;MiFx&050=5wk*+Eg+k?s zkVQ>5B4Jc%z|0|%MJ&Qy0{u7hcrQ?oTZfebvc%=U6e2>_kRwV6hG`;%k{ER%l7k}p zfHE_kF-QqsWTI2lS+X!SZIg*ZK>Gxt6wXz01*sy*$g)e!K4MKvKS@@m#?}p^jMPe^ zY)7)boccs0q`=tkAV;jw7%kZy17VKT-GZ~9@p;13BbV2fVV>xgWyjvmf-q~OnCXmX zSv6!m;9Sq56)dvm*=H{im7=Q!Nmztw*&QZ+^3yMQ_2pLx5jh{WEb5NKyEF6fz|G>4 z7tcN-Mn{bCH{YTE?5F=dLK`}B!+kpO>GgNWrsLEPtgbqCyA$X0iR_M~{)DXz>*WP8 zD0clVPB-ZGnomFbBkq3r&+*O?%}7^Waz6J=TGDLVlB78~E<4SeSKrbt6?cc3q-tud z5D^A5mbbPGXp>OVQnxL?{KBmibFsYU)NirYGWH|VR&45;P1cOT zfzT+KsT9nvAY6^INIc7{OWuEYOH*xFuhvN6+3g2>R@f|&T48J;&yl;+#GC|q_Q=MP zePoV_*-vC8$s)6|ig^x5CD68E@FTTpAv-dHad3=ND9N3Afzl&ZRJ4l*pTYMvLTFqJ z2n9TT<{80SEs!b^$AnUme(b3#P0FB>Dc2UCP)U$gCPZC!RON{o<}6S_(o_{go)F#< zUFkD3qC{s^NX#-o%D9w}+7MGB6Ca@rf+!Q2R0{S|Dgl)=qJ#z&NwFe{NJ@!DM^rQ* z6F!UxnFwx1=rRMhvUHY(EU0oM#ss=9ylvsARl`Ii>d0^^-s-Fd1Qt?YiWAO7+FF+C zpm;>LnK*iEvqt*?=P87eTtYBt!{jAZThR}mn`MQoV!7_9NX`Z~OyI%Gh&GmK9;llo z=i|)vWlfkhVGejV5Q4<@J?WUZx!B;z^mlhGN6A`iHWxRbVRk(qfAWl#lGLq535(V> zAHI6S<>!|)%MFXVrCBd&j%^9o{H6=~qfh>r#wfmd{Uu&m;yiKp?Hf>@<#&F}_dfnT ztgN_Pt@-K0Ys~eAkLneTH0=8WTlayh#S=EmPx-gL`|tA?Km9)+=Z`b%rehbkEUKBT z4cT}O#?*m!=@_;Vtt}bJ=mSq`i>6_*TJp(9FVVr%TwPGr4N_{J z=PS0`J*uiXPc!HZD?4JlirYg^lnxm^rdjaK`&XraOk~#Gf^*Cq-rVxpi;oep1k=xc z#EKf5B{$F34Ce!PM~@Ja!Gp??dc8p8fcG;EhB0SkE}~LDjaXX)0v9|6Nem;1gp{&~ zTe>d60q+sflbb+{l3K!S66bTEH4R31S8TwvsqELsrEtg+fSyNr{vt z$cVr)1&Dc1M}&wB!9P5o`7#zaDkTPPub6f-yW=hAFmiwVlEu2BZ7=AWj_Le>Qik7qV!7*g zw9A(~yZ!@CFYb95w#0B^&X$f2=L2Cr(AXPHn)&kWH+=l`8KZYNU*L43NTigpro2^e zk0UpiHCbt9pIBZPDl+S5SB!@pU%k3V+KR8=-Lhymgm`8c1F!cFoccrxW0{}cpCDHx zE081}=E#f9CDl{Gn{V&SabJTJ741raSKPgOPso}WU{WWPUQ(-w$}_gg(@}wi-X}nX{r2 z6XqB0jB#A_fnaX&)k667z_ajPykAccUa*8m|TrL`776=6H zwC8%YqW$<8ANCW|)Z+%n=J}dRuh^b@PWy>vS0M$gjK$c7Yyz*|-Xa2o%Mq;;7uQee zt}a=+KwVi>PJA<->8I(}F6du-haQI=|N3V?;j{1l2qP2D4H&DDB=&FK@#69&&sN{( zX??*LUw^^-{nw}*A$hJAEnj~7mM^~gb4GtgD9zRNOG1jM+H#&ov})O`I((aHyCqRb zUVi+PDJp8ykWEBm*tDB6{|o}t)O`N&C4ck>e~aJ$?q@7($<4)6o;|rCx{+bZxH)s0 z0vFG&h_Rq|yH&?W&tLHLrsZ;TMbrD9S-AiJAOJ~3K~yx0Vt8+#siIfs0G*SpO6*3tJ3Mmp+7-ZIE%oIxDy+%+8QP9P+C(D3H zV3H;Hj5a0eiIo@)0ZCSh>QMw%DkH2QstDO&rC{0AL_x8gri9CeDHvjqjOPQFU1%wgPv)u0q_4(}L!pg+Fm?Yl2I&w=aJ6I_~5)Tn6K zd&NUuV4q!*(twtp)Aqz>DVe5;Cz}l-dTbnMQXr>^MIHF!t6P5Y#V`4A`z@lDocaTA z-`uf3M2@G(#YfL*TFKKz&F}y41(&tq+uOIiet*Z|d}hoNAp><=@$r)d8Du?<$1#VCX-xo(-zQWwNf zka!*+j9jXPWJ-7!L6}k&APg>eV(_Ho@L6#f0(kLQgHxI<=HQWfLZ-;Fy1->evs5TG zlU2f6PtK8kn$SWN{x+>(F-lI~YQkIw$Nhar(|SXSin?w2;q~9+;lmfKHcz>{GK}Mi#u`G%?AfB44L3gU&D&dI z8qsY+&KBq~DkE#ls_xJN!_lP8ynsq+rjVHN)ET`0n;EgdN<&N&0)w^{ z^DJ^^`>I`a7IYW90s(@ z98;t*8Ua|X38MJWT@DZ>&2;41b%P6r-D#lr(E3c3BggHQN(wn2V z{zv~Y|MUO&PYK68)9iVD`!#RwZqb!y@{UfFqY^1&O|j-(F9h4WzvfhZP6!DX123Mu zxmc!q_xzQ=JNW2b=PuHKgFF75Cm`E zKd{{oAUEvy2QHT@s;*_u11U5R2gs774BP$=-5AdIfeBf5ETPZ_nnn?QOIK-vbGSKR zYC|G%>SqE1X=aqr*iKVPL)H-78JX)+e3l%6;+KfhLLR9a!~PtwGBPD-jAhv@aBd4^ z9!@dU>H(rvdragn{rXfMZi)cm{H20G{uP+BM}9u?7$!1zGL_9p1}Esf0i&OPpr3HpJ}6LKA|<3yqY4$%7P@sxCYWDLbu{L{`xw)UvDgl9xED*R2)wa z>~6p0$+O?#pZv*x%0K<@{u}=A#pk@;{(_(V>NQ3*B&m=g@$LIp+_W{ne0an6pS)l< zpNM(OFW=0_V3?+fi>C|j??13R44AvnYz9Nnd$c< zo2!Oqxgmu!L1^}ed#dG20j<`E=txSC;smmcpU561Bq0F;qAaEir2srR145#d!bgFS z9!(~RM7gyIGODzBpz)a^qzQ>M5g`SV3MC97j!31kBIDoP8tk(7}M zAtfdi{bG&*nI+?pFg7B{9FK|=47M!<({so~1zIQiW1wpdZ;odwZICgbno@F~ye@i# zP6QvxSrMc_Mv5?(BxCQ01dOr7Snl@c(KF2_$dYBPQFCFKjVUu4LG~G)4b$NR7O1;5 zqnA7k1DCd8*E=dxF(JACu%~J)wP+v*LP*FoqMM4#Md^?`^#^pa^y41$tYK|_3#ORs zM;1-ZoF+~u4_fj+{j>j)U%qo4ALdvYwh1t}VabHwRP z)o8kf#p;Hkhio*?MJ{fh(AG2O?H-#Awa|S3<7YfuTb{2f+_=X(g^roEu{^(7a#0J` z3xidGFdjMeTei1n4pB`>T7Pd|>NP;t3v`TXfMNjQ?v>`w`yGzGpB3y>~mW}k?; zh(e|o#556e!bgup6{eUe?CW`+@h+l7#@5yUd-v8r2ohOU3@Ksi%+XC~tqD;Py++jr z^nfsm;1%MrN>!jpZbD>mX)a-d1ccJ$8AI`4=MYh0h7t}#W{r%+ttBNGArV4DnJ5uO zKrlc4e=hE>BudY;6od>$dQ|e{;4uOe5s_WN?>zdsLoRksSp~9^_%x$M!Vqvg5<_!W z^5we5T1!^3aLy`2#&ITbKRI&p)RjPm!cNO>Vrj(VxKc32h|Yo#9nuJ7s!*bXXiK}c zXiAz*6tj+@WZEYW{pcQF$O8SCoJ%6pRW*LL{|{+z)}z^WpZERNxTklhxq3JQ4-Z9} zgGE{~6ormqBuD}%HV^~}Vjw_}yIkfoD4!+CT@b_<2@nUid0|HgY{{Y|N+J(=#-6IX zs@`!=Ys|%ZDdfh-0Mj?!Ko`(e{qD8bTF?J^eh-JKj9YycRKjrHwKzF5O#^3LMZH?l zkDg3KSw&0+DT+tF){3KZ_;Du0sW|FV##AdFUp?^2&%fmLt9v%@wmiPwV}wL&&F#hi zj|JT{9n;{8HIj_X6Deo@@&EZhb9VilFW%ho^8PETdWF>$wYBW_Z`t+t*yf5kj%YPg z+X|T!b8@WLPgvGVy!ZV0hkqA0yhTK<^dRcLPc}ezxX_%?%nwwRLvmN_A zDN0tAMYv2`LBD-qnBnTlEsvW!d_3Z^=l$Cyn}@IPb0KYnDbqEYem^oE1G~*km=nP% zg3p+$W>GH~!$dzi4lzSgJh^IUag6;QH%WZV_*f#3NI{McvLs|jRsspgsF=r@EF?x% zMWqyl&!&Y$Do-YGxn4lZoV7JV7EDvbQq`6mCq#}IDvYvV1g+Kt1VMPLHiRiKMTci% za1K<$tArQvbi`Jm%8ohvL?+-xf$9e-$V#4?CSCE`i-eY$D9X`Tn~cbb6h%?0GllCd zeL2$STp*9qAfzE9iCW@ADvmZz5lkWw5IGlL!LQYCr9dUDs4)UW^3;{2QHm@Q*UxV8 zvn(Y8X`-?VW*3k|6argC>SZP(NK!CIN1PKvMqG$!9Z&+KEY}BOA+9JCwiJ7wP)!bm zXVn;_l;kX!#$4>PL`05MN-{W)Qkv{Tp}HDD5Ro{JtlAnc1NVo4q4&fb*dGTreb3$F zhRI9j!Q=hR<;99H6%T(^)jWBA#aUbP!3Q7k(RbdbJzH`9^b-4xTkie9;5=(nech7% zw*U^RipT8+Ld3m&pv!NG`N*WSux$x70RL8A!PzAgHyW zwzAOV03mCnsHu!ZTY-`d!DoER=x7LJ23LBMbzKlbm6r5VPk%U~DOe^gB1>KIxSyHQ z5n;EFaM<>AtEPy|*BK z=8*{yq9J(kwF~-d@6c~IZ~5*wzsHNmuZXn*dR)r<_V<35Pk#1K_}RP9_%Hs!f5|UC z{W*X9XMczlo`AzPn*GBaR#=j-<=#6yf}*Ic>Q8% z0cDmP`06A6(bAtb!9{PMFG*hVtF zzUSHVYnCFQm)G>>z#hZA*?sMT{@NW{Au%}KqSL%m>70P z-aYngj*k0X=6D#Ghs>BXE(wegjAJ69n0#P%0;v@-dZZSR9qX<^q>12NAzms;B_zV0 za=|fEte%M&dt@$mQXex`3UpS4kf`e#kxTdUFbAUZ)GE_hgF?}DU3n3NOim7wi(NF# zFi(Mbo^gqi4Niq?=3T`5l7JFIBS>Yw9NozeUD_`4DPRE-$2xwW7 zXF{BU7(yacIeJ4xnj&D5G9t$!w#9-U&RLdF2bo%Bw94qH3KTLKQd9^HLBiR(V|{hb z*~Oau&{G+KTIv%eMd5=$oOb)54P$mV7YR8aWHDV>Spa`p36x08evhmJhyI9dHCYOx zD$!4&6ftJn+Mu;1io_T_RbxR!szp^qLz$^{x!wt**^Q2V3?wIs-r@a>WTagSyo~Jo zz;^G*bR0%U6o$PUnOtIanS?30WMir93SD=or0CXX3}fW!vnw!$>inFe-&0$G1$Oc9 zn=k0U|DEqM<(`W=@appiV99TP=l3|g{e+&5lqde_zxWBi^EdxJmi2Qks|yxQOYn}p z>zSs^i?=VB+yg>nM(OzeM?avd%G|hKm$n8U6BoWl1kIvpu|{xw98gV1LeRBK5EiLw z4*S6VAQ&CgTA~ryq?wMHPruyq%@3ckZZ(I^R}8`9`pj2vH#AS4Gt3b!msHC&7grZN zxxV0=Hy6Brd&|YuC0%P+)h(;K;pTG9&0@jr>YQiiEsL%~35g+~b;ZKgbZtdMQ|l!n z2$XIh8)jb?iqe{8W7!@B2~CoMWz#Xogw`4(D-aQlq^dm51*U1jRM6N02i)#=tQYpQ zAZwIeVq`_klB(8ZV^B(xoIt5!$BZ~~4)|Dh;0lF~2BA#3Q>)W`HhFT=7*56T$)RNF z)s~drXq`2(D$&NW^BR)WNI*$nj_5*B<-!^>N??>isd5Ubr9{gz+pbJYrhLCqB#hG3 z+R$|ZO`^3$EV{V4rdgly-S7T@tD7YLN(EWi7sAG6zjN@Z$xn+LZ0dr&QPb-`c)v-33Oj1NBe5%YfJ_1mBDi`SnO4)@Su ztRy7QlnU6rpB)#bL#l@RcdszU@ZN{tVEgvS(~oXwP=xV__nzhXg7NW@AAI~i?_PdE z2mx}%W_Mtm2kP?$!*0X*MN4oI`qCu$_U<*3rU)P+F`qpB%1D^DcxpN$(OJ_}nG`hM zXD+%1ttD?Z6J91RItz8nW4~n#2_uWhqje%Ufs&S(1GVjN&Jkl~aK4x>TxQWOfC(=~ zP?Fscn5MZPgPMxN9MD=**U;~eL{nqrL=F~mz?hbP-jzxhrHItT7)raOZJ1*sNkOSI z$!Jk9Nh*2Li4mqK4H$?*9?dx-kt7j|;x2(CNhFjCC?SbCkr7BK%A=GcT7Z$6s0u@@ z#uJ;2MUzY<%n@-K1ucwXaDhs+v%2!*X@ScDv=vpZ+D&ArWID`G6M! zB@7XV5t=axDg{D#gs`M^ignr=7iVOa1RNojav{X2J;RNtMT_^~Qc2P&qfs#+jb)k> zF@=(3%Z64bg2=R;rLw9NDR_m+nbsOYYS@hi6SzFy@1`W^cE_P6-cpZ#l= zXH7XCVffWA{)D5OP-&o_kHqNs^s8U-@wYx=e>`Avu_pR3lGR*t)A1fHB1YEq+b#R! z9X?4O4-fP%P@O+v_K{&K0s7w0Twa~yMo&zRG&%h2_~I{q$>!Y)_M3^iwnzliF!R-m z7xaGSt4}{?3ZB)n!>GvBS;yI;qf&x>@0iAf6qdGXNe4JvTvF8rAq-M#Y*V9@LMLd= zlFPP*lsJY+KRb5gSe#81)Q{Afi`AM+DCXh7GzQE`tzWe@(=?HU#M*?C<*1!qX*Ucm zp-rUHia2|uNHn!A$KxQVOih#!!^x@`5^jo^+7!TIR`juiFM^veGU7uZOYzr7PlO;R zPa=Q_C#xoq&B@du$!N5&NHj`hLMXs|Ap==PimO@ynUph1fIuN~L}U$40t!Ugy%Y*- zH5J7_t?UvlTB6VeldB}HHQX-FSgu#pLZQh>D|qj{Z%|)fa&i3ui}TAuGf4?+TCyuf z6)g(TQ0W9JpmT-P1!5RNX%jJMNJU`Nw%A=uyJjwC6AFbzn@mgvqL_n61c*T(qbOmm z6i}gLD6n$^-0k|KJb2KUR){ur+tzVXp_8RN)y_pXQ>3&Z(E%jg6-t!Rwq;oawa z{*d|Y=ij6E2f(pB>yT109|!is%<}w<5CW#E2yx=WZ{Kirz91&g5FAz25N$;=4N+?@ z&Ms)}irz<#W8zOg`I0Z+4(y!ZFebM5Bekhf!gGIr&)s3i-EqTicOVdPF)%rQDzmRJ zjU{R5=b15QpinfgFV~o=#vseRHIB#(!<=~Z8EG<2Z8%%Eq$H?R!{{T8Ed}mX4MKaS z=rK*j7!yKEbe-^XnM-FRb4*C9Sud7oBTM`*d&U4`E{UJNhX0932o8k6M~#oZWR*qv z;Pq){Y()VCL^2^}a)g*T)!jq_6oM>kOvt5Q3^0U3 zCbfY%mm{`rB+`O0iiNdUZK+jFXBXI3(I>?mIZieC6{YM zZ7j+HCQ~7)Rf&uyB^U>VZab9hFi9|Z&GtUvlVG&) z%c%I#2j6Di^>nu_5B(dGQFs(>dqHDbQcB#v{ghXauleXZKVoUmxLKW(;zYZw`Rw%{ zgD?ang2Ye$=zrt#=6(9dcQ_Yl7w0V7itXba_I<^-fBaj>ekRR|T58%wTl$Do##Cid zz1@7l{o8vUwmoS)Fir!b8=0LWN6ClJKH!`0-|GL zEV~6yE*9J@Eg#&Tv8)1BogjELP$|i?>orXUe%{lG%#7e+KO$*3Un-^$FgnuNwv@H! z#Ic`=GLiDgems!E#L!1V(g+bDIV!2y?>&b;Gbf2@BsxK*Ajbi%z$AsiA(0>gb*Ajt zzwVwAnIuX_ol**!ZP{gWS+p)e@*2-fOr9Jk<~SgvB+DX*<$SViri@A&5jD}*_*lBR zvN+A1iD*>{7g7p%qmkAiR5_{}6R}dT(1xlFG|I5B@U&ZD(O4--(ok7R-BvV0leOo= zXV3V-4}L_d77TeL3CZibS2*G5kNeW5;r8fk(9(d+1QAaxvEsr*8-&iZqJ00(OI(OZ zQ9~|cGnrFi%^S-~8&vM_NtT(m$Ysv1Gm#m)keJF+8-dTDqoS%Ub5K-9;iF@F|9~)_ zV;nF|#jy9}DN{G+)JAZ&=y-l3F*dO1EKMhAnx;SuoaWhjft87-mh7i@RN1lUG#6Lb z=&GS!YOIw69k`qBxEmjN@$UXNU(ko~k@|9ptk#evZJSwC0fa+nf%hIMC0$$b;;UaU z%%zIP=t3H~tTnG*{1V9mBMmAitUl*_xxjSSRH9P$;rD|HH*>Si((oZvkJ0kN;txh$rL2|yTSgp=DTdt5s zvmK6%^OpXw=YG54vsW)UdO<%NIQEV(3Zl>?0Z&&gVVYsebk!Q66}#<7tqheG_)!w^ zw5rDF;+hg!qh!MBibRFZil!;ejXDdowtz+}McZn;kK`B$K2fhMNh(}W%;Q8BkhCs~ z6@gC$85BeL_yiiMGD_CuIGyIc6%kihVp5WYgq)F4K(3I&5R-@GO1S}|j9+p@WLX~W z6exJCKq=oz_#_Z0v}#HWP?fs?03ZNKL_t()OB7>BB@@~RtWa2OXhn@piq6z@b%l_o z%z{;j$3iZv0c;8 zuvo5X>np6=F%R$9`-$&=?}vQx`W-iC-{xDlzs=$G4#k2Y3eq(5!zX`>Z>-PBAAHF6 z;gP2o?=k%H1*2FJ(nOv|&dxjhVaG5B9{PdWTgZkK1HM1<{`>FK0x~4}{y@l{C?`UY z{P1`F2J`(Jc8^Ck_YWMBL(h^B8x#`7fU%N(5_liTO0l#{q7z^hRb`p_iFUEz`PGWe zX2at!6{OEtI+Lna(bR?cxsOpMoD)daFO2S5~x&ZuBLXf#4MND(oWedxWuM(elx^KH~5EyWfNDftWN|X`a7##W&u2%EkE_EgYM9APdcT zQ}OZj1s`6nc+zRkFI%h$#GDu>N4;2Lwcszl_!Y0WJ>!&_LSQ#|s02-IsFW;imLbwK zmgGhzpXo#4el<;l%Edv|8ABEowGkL0N|4`Zl5&WuLK%y$3Nvf=kztq^2T!@EI8s)0 zwlqN&8)qU;zdlwE2veZ`F&FViWL4k+M8fHa?tmm9q)f;Og+Nj=%?gj8)XEY|mK$A0 zPsOLLNJ5gxSecOo(4`|R6F>{39WV%}j>k|69_-B9A#-+q^P4Z|?e-BP6`RMmyxhIwY+2*=Q)KLTPr`fWOBQ)x**&2$ zXS{p&8A4ZFpI@*Wj%@BXr+Ht;`!^r59Rkn3{e6-aXn8==^XBm-SGOPV<%>^AS)i(# z)>ddTyLSg}FV|eG3_)ZXL6n7X1h29h|z_9AH5^gH@_B&EbSj>Om&hFJ1sIij^j$v{)8Qj1+>H=kj$CR8D9zMjFT-NX51&OP{pi z*H|GCs{G6nK`k|!UypDSB!Q8NN@k4lbXCQ&X=znURT)gRB4+_c5cPt?E)nHK5}7#` z_+Sc#wpQGJc!Oyqs#~+@EX%6lFwa;eSzcWbDn-^c3X4!6Wtl|$x{@b`a^_JaHL98q0!AqATq zfXiT8j}CDLJf?C&hID5oxQIF?niJc1Eqr3#E4vA4Z%D zxMMV^Ooo=(jGM2*HECxs;QY#b|s}z-0=v<-NBJyM+ii)~5XnjtM zk)xk+DYH53QL<(c5*9;_8j%G}ty$J9#H=|SVY7Rr>MG{`NUcFFmSmA=Qj2?Zozxpr_oJ6n}e=KjEb)I5&x?qOm-dS*&5 zn2i%vJ=568`tl0rC%m%!;+J3W=F>YQBel&`RfkB1C>%l6TzvTT-Bw?FhyGw08FS)h zd4X9kc>U!U9CiawpS{Od?ggEA%i}nZw8nXlkQJZ(@{hRq?tj3)|KtCZKl+#dnEPpi zZYrKWeTtAB=a(O1FQ4&;KmA{s(cG+V5L<~C8QZS0)=-jgOXWqSeOIul@On5Z! zee@yDW%j#~b)9(gW)F;rFtX@s-fiv(UgGII*E@-tGD>>qZFyPm6?num8Y<1wL8xzZ}qP{sJ><&a@ zsfD0w70yduyxVcUsOgps$AhQR35jA|8*Unn>nEg&jBe)WXJS~QT;%4-3Yk3KTdvm` znGNmYg8n#Bqqsh+NsDv5m0Ul4&hg)ZAo}{TmC+=>r&bMa4)n7xkuOmkyjdJDCNueo zAxUI&&5wWQ_vz<}hy5%1@V0nuhj;v6|Lh;}`Ct4Io5vS4UFL`1{kvSX@3WF;#5g0E zcsv|vmJ7~rE)ZcNq(t2qcJm%xH*^;(bkk8U8)hfj_l`Muk|}Yx-Tjs{D~2I3q7YV~ zF$mp}V?nWAu3Fr@XMa2}I7c8-wTAVoCS&NQp5wu>J493k!b-HZ%vm6+1|TOVQYc$0i8ATET}7k(uOQbkYXN6h(ah?;Pf&xP2kfEg)vIq3S3I)kjX+& z>FVUiR%Hg8OQt&!(MBREBoah8^-e`X2<7XOB<74llhdz9R1qx=o`lqz#8~dk$W!wP zCF`to8TTlI)fS{i%c>-#ltAkRRxPNrB{tcEVP8sHmlr@8! zOTL*z3MVs7G*qg_YK^dzzbn~4WG;F{oabU$mF0>da`CDoOEgp20;m{5EG?S;$S4FN z2ZSlEv~E?C1>9{9Y_?}&VPBF|gRaFzDW*84xt%)L03x&^tIV9XJ zb8~e~ntMWBXI z!r%g2NI?wcXdi^7$}{VW($`()@`CODQ=UEf7Kgq^Sb@ojce@SEdchDScyv7^$o(aDL~J3UVwa6RlMlJ2?Rolt@7-y3?gOFo}c|AP^XpkXq0RMWp~W(^d_Y zkvK6?+XbTw4BnGt&2E2SylMV}8(6jtXVAf&|SKy3y4S1(ApVmliC-rxJL`Dg#= zf8x_G{%@w)@!jXok|c zm(20VSzR%Y2Sk>brgVDMQX!+JUAOGU5o033Iclv4WR5Nr!iP?f>*7n#34t&D+VW7k zqZms}(bV{G#Au7hF#8#+YeI_DZN#jdCfGPgJvkhMmqn&~j(f@g9N>O>YWhKY;%93Lf03TBt7Wujem z)Yd=_><<%h@O=Eu=UlCzTdsKe-WuI0?4je+FF)sl55CVu`~6{&)V;G-XX1K6Ps z0%Z>vTX8&WNl{`dLrjr`Km?DKFwLpJ2sznaRU+o1-20f2w!!;YAPiDqq@s2KoXkn zVnLRQX>uIKnGiC^F|fWp=i`sQ!934oYl$eNu1?eoMo;gHfD0ip* z_5n93$Q3bp#&Kro9l>Yj6fwrIURi2ABNEh=CI*3SEW;2etkQ_gGkxD9r6vVY{{5_o zr$1+r2>vuK5t+$5q9}wAQbWoT=L%;krumdlE{-jwGcG$2hC@GNR8^{N)UU@dicEw! zm%3b8fOtA9l1P|JlZ8M?jZzjZEJkXyG-XG^lCs5ng_0E>%ivtO6Xt{v8Yw0F;|^0- zyn5(S#?Z6|5L{iJ;Zj27Ol1s0mFQ&KHW(R^6mNH!1oLrbVQZw3eD&pL%)RIG?2=>O zv)$csd3}Ly7o1-%&@H%eD&r-cNV!;IbEd>blf>v2b#kx?0l36CPsA+nF5ul%x~8)) z5JECOjvy2PNoP75U79MgF>JOEM5!42BkClI3Ym+I)>RnUpiN}eXl$biQgFXHvfl*! zJo4=FjPvCgGG;(Bp&5f=7*pw~l7ZS*oSkcABROB!Oi{4eY&gE%F&$@|D=xmnam%`0 z{N@Y#ad^#VZ(c*_SufUTA`f#wwH@8+oK4(;R#eMt#D3)Hd!#r+!~=(MLlln6E>Ou} zvHanm|Aama_$XK}8?G*&^7_q}#O(Oy(;srPEDag=wPE=|1)h_tS|iMYW+f3~WN;Jx z1byE#`w7`rsJi3h@7!V%^hd{{)yU-0sT@OuR@6o!aspw?&X-|01P+G-eV>_pz}6Lu zN~4v-yGW9fPE}l;w=^ar-AHXCK1C{1yur$}Xd4-3kWx|UjzxEY>jNr)wu%@eQkD=w z^np3}Q)R2ij|C*)LcnSWZo;Lxd~KMKDx$T-MTwRfiNYp{QW>i=Mx1upITT>KEZ$*M zMu}9y9kSSTjZ{ccP)Rc7!akG5K58q8m22jl*&Sz66l`{nOw)vSnfv3&;9)lhdhcnP zj^i=Vbt_t}ShS|R+>)g+H3ZMy=8jblhySp8JIJOH=mI%K$P$IY zDtm%EBr0n$S|as?=}L937SL&kNfL)d_Kua-C?!EuSYe4oW*;DGB7uuV=Jsj<6v#zW zwM_j?rxjP1XH>>wWJ9NGs>%?Y;&`0s!^~%&y~O#67jJsze$V;!|4Z7N^xB%9=XuxL zf6Z!lbN1=0P8BH?DYFq3ONf=g2JEy(21W)+1_6?({zLvmW|;&T1OXDjKp+E&;|yde zvO(CEB~lbcvB+W-tLk+7>~1w*^R^khTgprUN@sjn_?shM1y-w`SO#wH?l|9^ayKg$y`yz4>-HRqpus^D zguFyyfy{Dy%3&U1+jIHu6|Y{u#+Ss|*+b;q^X*^xO|(^99`}UkS*(|s&Y+E??Iq4g zXmb?^j5F2UD;Z})+qTHq(KeP<>)5QeG`eTgTXHxu&7KefN+~RrD40^HXBuG;`W|zd zGW#hJlO-1oMS``I9GG)vy|G+f9Z6BtAok#CWWgUI$|tOFD4_{CaTJMT9_gJ$$V5za zgB%KUvPJ3!r6bCTicJxkIYmMaHE!pg7@4F+YmK!LO1M8OMN$B(G-I5|Xrk5>p;19I z4!Lf(g+|aZhnnE2rA4X=DA)J?;ZO=bNxavL^FWFP5A24(R2-vEOh=frWIrA7A)u9G z7zSLUIUEk`hXdY6+P>rU^$j6=j^l(d4X@w6A}Pae7kTpVA=YV}TVWanZG&xkw%apa z-@f7QX2)?nQlwycx@B={cznL(cyoj44AOQiwZpUxIYWvPC?s(o-7M}{!7)T)^RUm6g)}A5&nFun_ zNK1$ss|2gYkz%Z;pIq6?IcFNXsP@Gi$O){1A}Z~{NP$q6TxN`LlvHofS~&=clIw#* zCV_~8l1Q(f+ffGD~u*>pln zh0uah64o{dS%G=pdyFyFl#)S-QqN$;P_m-vL@XXDH4CTdnjT;3xFQRLQW&R+!AH^z zT3O~;onKifj>8^}Vvd5rXZBNMzaO!(@Z!;m#bQy_hH=EinP#Cl*{pf^@Bz!UM!TUV z?HY?-EqV08BfjeJ{^Ei(#lN8EYT1TA%WE{G5OF z@$YfG8ps(w*!FyJd&~0=o}tuBuHN2o6%6Z#5BTNfYfd(6_Q#nVbx=l?bT`~US%5XXU13O7Cy^^B%&7mbiCrA3Ga+h~MUOw&+*^fF=^ht`^_ z+Z(Rm?nn_Dx8^wBa(g@yl_VY~tWh-sEJ-pJZ3K;~PtW~0(RL0YG7Ft4MUWNT-tF*5 zMV69H+i*MHQi@^G*GzB~G+kG}%#Abn;?drq`vzYoZtr#kGMy9b{ftx*X&Ooj%s%59 zLm4KdZ4hOmYgYJJ0~Cx@SSu(g(hA2EJxWT9l?-{pO%>-F(p;HRNfL9_TE`@i%8`n% z@=z&}rBwZOal{OBslf|5Lnd+;5+P=^P3Roi4fk)ZK5?{@@$B+i1(NyEGAOCCMla&mgks6pkb6(6q;oSt@E9j=kW z;o1uZzvF6m!?PD#PBs(2`1z}Pg43B43R-8R=#fHUj3CC0Mp4R)zz|{`A0S|zV?P9> zfG7&B)6A*1?3##=hItxjtl@At;B3QTtR|k`3W$bWW@aI1Oph)DQ50O?F^oq9hTS0} z75GvRIk3=%loh-E1W9s!w&3%_5!8ZdKZ2QfcL~$|JbkiNJb3YpvbOx-M}N%o-OPLM zeaO3amps0B^3@Ca|NQ5_%d^b}w>=>UShqd?_6vUWvxdL_AN;5M_HX_}av1o>|M&mO z@$S#L-D}q8k?D9x$t^zKF^(ONP9L*bbu?Sc@Z}G9^YRS~*E9MXy2bm*>2v~dC>?m%o{;>A&xxCzC#8xv70%E$8s{7_&G)bf zK}i*smNN`vV!JtI7zX6MzPjXq&l2q<(V~GRtYfDfVF0HsB?>$fbBe@VTj-JtA!d|n$SG17k@qPwltL+zlrynprc~&) zCg*^Vg}Er^6j8Y#V#cSM$eGDVp-3^KM0F;mR8UCfVWRCCW|g3T5ss8+`le+Lh2kQr zB>Wt(J;PN103ZNKL_t(hy}~suH?QBZI@xmd?!cKVqzgFPobq~i!{ys|oSpp|?WQG< znQ@$O@tX6q1*%ySkT`Q>(a(%NQ)Lzv?;~<%9&220NQsaqWT}6{x!Uc_A(2zUD9NTZ z$Q$PvS~lPq<|x-)Dx8xF@n+3z`jf6Z)nyxSjnbpDJn z`oFfI|9UOAH4JxO68wPoca)Ox>Xsuf`Th_8NB)<8_CN6bKmX^nonx_nKp6^Sh-_9T zL^RR~_QxIH`tGlDdq@=NaLrSOFtVGjSu_h;V|jZhy#DOZc>DS@zWvSbVr@rf7f7ku z4M&XY=({!NkJhXoUrL@P7Fdwdog{KWo{m||h{_lAY6@7v(Qdew8jT2|MS z%Pd_>r|U;B&2Ze`afoBhl(v>`V`)1{qc!cq;fE3LB_(Sxs(O@DO%TcHUS=5zs)*W- zri77-93<8iP&L*ohe+3HqF4AiV}->BfmES}&{H5M)IBYs!e%VaITp~iB18dQyP{dFKnlho)0qyX1xbe@Nt%<#Nf=He4Te?4|*&HG@C! z@h^YM-~P^TRiupC^W^bEjIFZ|QgL&2pxr*;N zP9H3Jx?OX=-O{;^rWJI3U5Ml|qn#$q5vvSEDCP<74uNSdxTeE2H7a&@7+EY96atGD zE?UcBKQrgR7z-&LAt#)3mW3oAOP?{55Es_N1zCQzgz zQ^=yBacj6g1cu}(#WAJAE+R)A*5jpnQ2TM?sf=g zcsC|)kBK2R1ZaQGLj^&9Zgo^SEcY(Ke0c#s1^)zuf zj-)X#XNgp~?S%JaG<$DM3+;erD%qlrfw> z+8|Zt?&g+x@+c8eHZa6nY?BB{ayuMYEFGb;rAOGpoFhXxkg~^E5K-O- z-u0{(3+52;L1UCe>x!I7DG{=vF$*Y}k^{y$a#BP&;hF|#JJ!t>ts5FyXr!pO*n4_r zMbd;CRw(p+L4rh6vZT|NC?z7#jJ}YCzzEG8hZ;8|1-S@B(r8r(DUq|Jbxn048G%AG z7O+y$XhR^Poucb4(|xeMHieVZ6-sCB=3CNSH{z?#a(#Ql>FFuAhj%0)nchq|?a0HC z-}ueH%Rl{R|1&upxZS;@G0YC5ZE4Nxp439>9`1LNQ^LNI4ZiXJu3ER|%Qc0?aoZq~G?hT{-Osc<*! zh|%-OPyU$fUw!q0Zo3KHIzIl3A3-R5`0#5a9FyNO`-aW>j5sD1TBDnuAQDj=Xx#~) zzWxO#7ta`{BftB*{{+#mnEXhX64D&_$zOa-t9#O%>HFGVov&6k&^~8MQ5=WN)tf6? zTicA6U%aMK89yJmx!ZB)YfySX;mrM$SQ?aZbgMP4X_%+TI3CGGAR~}w#t>O9Hdxcq zbPgd5BG(pLYt3Oe);qJdC|PP3Fl15`j1wRdB3H0nD484}4+Vuq7RfP$dx5{g35PK? zBGx*IOqpCFo7IA@afDd);>IYfwP*tok29Kf)u5Y*){@mp%f+J?XeX;s-?cQY1~RQO zNKqYN5m5o`s-k1FC`1Ip)HhTXAWKF{C`yx3A%%#})WlFA z(URixJ@g&2ypR1=h9EL++c8WDrv%X}mS%$x_473vKKuNa495de8GiA}7o;QTSPdVI z)C_l*SXD#&N<5-$n|OvLxLjiTWJ2Ov#{1yMV_Q$ zfl48jDtlELl#KWi7=2>&xpK=?jdzZ@hVLs?jVPPt0;wEvPL!0EEkp&C(yz(rGcxfNLC9Deqv6AyZwlA)pSIhnDoTU&ws+7 z{@@S4dOu$xACffB0jct$$PEQ`NZF*WMna2s! zSspz-WxKJIG2nFJ#7Shgpp;T)-e!T7g*j#XPz49)r)NCeUU1rW&={i7EIY&O56s!K zKh7xEqKe@3WX16~vO7!^Bz}h3*I)xBEd>QZ5N6Go5_1%kkSW?T6WE?CNEn1(qGW>~ zJw6m-0OK-Yo(N(h;hE#i>7t=;3@OZn`A88GTQs@^oH4b%ez0J%TA-9-KkXlrK8R$Ni-oKnh~@>x8HM9hh)i26{=b^Gf>pyYr^ z5JxO>e@M5HhiI=Z$I2;DTTmg9|fsW9wdfL9HTes-8 z#b!-wEG5B7+hNp#xg^>i{_qd}1!t#AcCX%i^@1*`@bcv+eEb*JoW6L(-R(75KyeN& z3}H6768Sej`wNy*bA9aGa<}0ZK}Yu`tSVToP*$UoMcIN-hJ+%-gpCv3Vx%;N z;rNE$H8d-OT?yne@!pH4ESH9Mv7m7hYYo|mnoFi#jSkNGv&K5H-o9(ik`5 z8z8f49aEfm_2wW1_VhYb{bGe1>C+cm(@hWsJ|GW=ev{%v=&#YV>`E+aXEb zTpbz4$nA9?`hneeWSAlr$zjY)W#X9NXCMEBUMc!+!J_H^1_fP~T)zDU51&8aFb6u< z5yH&7t5>WyOTP2sBZRMFh@+qAT+JQ6n_=Cz?5^J8z30W_3l4`n&Q2cC8jJUyzx9pp zVzuMw4;=l#!v`-Q7o2nWFmiXeBZNDI(Tq7l$<@9_B{eE7DnlyN-0ZHgoS$?EHDMQk zsz9=?E3A5rXe7O|2$9$;`D5RGM8kGfBHTNM5_pv+}jF320 z^>w09A2b=XssaqHB_&(5ghp#*$rM1Af-_J`#p+0DD+8N^$ceVCvsoEPR>Zuuvsp6^5hAh{`?D`Y#vaA<{$rW{}Ug*{~IJB**e2= zz2z`WtXjotwPMJDG9J*WE&ye!=%2|~qNFnt?>%z}lr&?MpisjPMX3oVQc~I8Qc`5Z z*j#haieMUQ98|Sj3YNV_NsVqatEFU~r@Hyi0v~6P3K6T~YZ?oFE|ehXlwjGmoGjNo zIzQvXM;DwgdltQ8)%QpW!(pWBB;CreTJ*HmL7M1KB*F@!Ph6b!eCNA=izgS)c=U~5 z{ptlh$Ci^vFL?N9OKU744tTYvHv>O^d5NDK+MRIu_6y9a$1NP0CHr*Co6BEv(pX+y z?|FCm3l3;Xf<`N(6@2>TC9P~(m<97V@WsoIIUe`CdG{GZ*i&L*YG*bNd-~Q;q@!;a z>~F4#p`ff|xjx}I9@xLW=F2y)`Nfx)T<(wfaY9l9*^YOf&u;>Ew+Eu1(59kc_BR8? zN3su9Ekr?zgw6#eE2;4MZXgVSaf&3RNlG!429PLSkfq^pD0r_)b7CGsWj3pbbqX(Q zNCBacvZY-ZT3O#DDbLI~(;G()GsanLTmM~EBuy)bDKSrhA}rb}j{Awn&t6~`Et`ui z{c270iM2f?`-BvgECnu-; zuyC;E0lqtBvuNB!$kC%Fdyif8Z^v1EUS~}eD}StlXaynyt@*#DbpIsG>qgp za(R7)EE9fjIB6H`-hRxx-I3GN2W%ES`~6GuoS1{4Z5?lK-|=j{<>C6Q@}7o0yZtSX zH_vEPkIe_PToV1ne4Hr3bG!Q-rv)n20?8DX>ouE;GfoyOPSzWGw_!XK*0w{XnrRhN zjic30AVffA#poxlh67_RBxOiK;B;cS(6p|aN34^$?w+HBM8wE(oa+`j8;lkheLrJ6 zg>EcXwsdZVPq47EB3MlQ(o@JdQAHkFi8{N6YUs!zqoqNshV4bq{%{R)WH=_W*Yvhw zwQe~ckMzByJL}l4mMB$l+d`u%2wspWviwzkvn>iORn6|!7Ggogsu+VBRg_XCXA~lu zd;NH-&aGH#j?(hb?Y7xzXq*lEA@+Z9c z?2^Ss)7nC|i77|4)1;)BQ&q27nd#bwkY#mOS@8G5jK(x1rI~!fS_?FktkEfs)q=+^Jp$jW(Xk_O4F!9CJfkPDB zPJ)}OiQ_mk&xO0=Na#F^Rg0es8O^J!&q(o>)%iKyqHtFvcW?g&LHk0Cyt$po((vW= z6;so9L0Y-Efkr{WlgyQ+; zH$UQg?_IEPYl@a=W%=~&FL-~m1|~urxx9Txx2!tm&UGBe0kx=i$r-^sc>5t$exQAD&+w7sM4EJAva z_i;FRM!P}?fp)c^?G~h1A#h4d_QwNR&veZxikAKUh-*7+S>11P>%Ku4SvB5LRuZN3 zXbf8F8kw&^3q|!?T3TVT66O%eQc|+KhrHFPx96oK)+bd-wq0y!jiv7z zaxoO2F-mg&aLqhrtgJd{tsF8oC}SD#5?}x5LzE~i+K%h%i68ywQyL;4y!bjpjC}mF zKfvmaVHmKoAY%RAt%L1(;K4bx%N|9Q{gMMA*9Vm~3Z)FgoXMepGUSjj${`A*;O~L= z^8UW=iD^P;g;ADqm=PYFHAqpf7qg!rCRPi>6e2N3LJ@>0dGug~>pNr;Y*%Yq*P)Xl z1{mYOE=={bRy2)_^bQ`Kozy@_B`H~O_bze$*0WqKpe#rs()TU4F)VGs?+Q*dU%jAJ zy206wRwPbOG*$)XgJr$`fMGsCFfoT6O7~okuNc_z{*%Pl9ww}Yn?pT&jU{q&@|>rS zKjgQ6>+chi#;Jzu<2B#?jsKGW?sxusoNO5Vfp5L{jE5^tqa~t^JbwHbg+jIlsVmlG zxV%Bg%xa~%y4w+@#>e_a3JjN*Z@4)O1ZqNrm_5h4z%RbMHh-1XhifJB*vn2T{ z7M3cLbYTpMaVixQUX%S$5@cvdlVG0bdR~!*2M;@xQe0o&QnIAzmfT4?+4AD~H+cH+ zDIyJ+lGv`>dr+T58&M^jS_6fmJW6B=>3+6P2vzDsPlLNBg+!_~)Rc5Twp4c;aVGhC zcb=w+oHMz!lw8|;frjX5J58~QqNxhFEV#Y9;@Pt&_%w4nj2sRgsS-DrZ)x3zA`2gW z^ppo@4_FCF>pIrU$0U8t-~F}kabllxojk6A=^zkV;T8)#6GaM)C@2*OSzvLrP0uV7 zyCLJ}%G#DvBJOY3tc^L5hTPf*dl+IE*p$*5XXV zqFoS+=IUy|j~=BnSI1kHJ*?I(##x-|S-KU*W^4--hgBBxM7uCmpd$-s>z>m`4QR{h z(z4k+<4KOJ#FROI^z5q_^!qP<8<8^m-3>ZySR2i<(Y(95;d19$xFhGM8e;_| z&)@@xt35yb;SYKLy$=}2BlGC-@rFPA{omz}{`B|w{tv#-_rCSF`OXKw#{Tvt|Mt&* zpW+(AJmIony8D#Z*8^jLNL&4^o1QTE`gB~j7-JwEIP7lm;*Q2@&sTuJl8hGg(Di zr%A$~ltHQhS&;&WBGI-GL_%nAwh*VnFlU;sP*C`}5T}Gpg%SbbI2;SgLlA<+($Os) zPd{up**aPmA;V%NSZ+1TRYzw$yW2PX>Nmf`yW1PyT)t#DPMkg8@cy?>>H7)YL@0`q z3KD_BVU!}L356o7LJ*ZJX+=Hn`5bZgz;;>cTU?Y3Ig?^dS`k8Uj2@?|uX?|~!x_op zSm+x~-zbcbOg?gXb<63}v0575US4w2YT9-|_A__GEw|&yG$cyCh8#J*8xfP|`FrnU zX2rPw5^o!R@Y6rzH@^LwT-XJ&OzdwyV{z88I<=fV*>b!+-Ul97jL={-vmc3bW?>{N zt3Vet@_y8zhC38cR0*t<1*sJ#M;a4xN}-G;lIvNnZ!1jDw&duE^Mux#Y4prfKoVIr z4T-|wHOd=~hYEo&*>W=n-repv-pq)UDKaxrbHk5GqO`$1=vZ$Y>+=qJ33lMg^K+)- zHM3t3ZzNY&R}8zGuU^n;6tuz@1<#NEvsjx=Ps#Oaoj0yo#5PrvkZ z4}P5=|MZ76#&S2*HvNMqYqmxp{J;->{BM}@0V(bnkFR-k`3{){D1pi|7rkP2VJSJW z^S5O7WF^?Hdqk*FwuFMw4uzwbgmeO-1+MQfTC>?~ShOA5Btn=uKks>bx@5Di7*VMb zt7T%lRCu4b83q!DIY@R>V2%YJ1b(iYcWEt7S0LOt4^@0I11U1ZNLC3%;pWXABN}qi zWKsRN(w$IpBo~D<4JCn9g%}S=El66@NJ$VAtF^-zhq0MQ?_bbwmZW4*dd=CzQ(C84 zEnBjJZ~W>D((%ah!HTmNPq;cnveR_MpoOmIFalC)lyns;cmGF}8U{d-_juS^utL-w zg%AR%|MJ8Y?oq6%ddf}hXwqDNK647pDWQvi7-)zS19IP14W@5m+a>C2zeEm~F!hwjgi6lC9WbyK5- z8)s12p<^Q4x6;N4q_xb@{~wIqeVo^s?AqIB7{LphYxibh^(WOL6U{3 zLi{-4qasd$TxL=ptN*=ZqF2nLM>h2?J&lp$xMOKFOQR{NFixOVOG*ym6h+P?VTnUQ zuM}>p*^hgo9FUuqtnQGq!*mNShqsI+fAxa?!yo<;XXh=ZjC8AlZ(oyS!)jgFtk*Qk zaI%r?uRiC=c8#7aFFyJ^e0KE)V;rqYG$wO$`V4IsXl}TE`XsY zxI2(2oNUi|{P>Kk>m66up1T`Jhrl!iu5JQp3TQ33+uvejAk31!ak$QKdbZ%nqZ5*- z8&g>fJ6|x3VRzW0oMVauhN;RdrJ(2mrz9bGdS~f1H4_@Jw(7cFYsr9+4xubkgNPXs zbd4<%7Sn9G9y9NM_$xeq{*3pYf1R7dHIq*m)1rGxl#yLHVip$L^~l2k<`z{nLX03K zQ5d9(P&~RAgedn=_Isa_s5Hqa?mgW(63A$&am{^TKkELRr4eYRX~tN3 zbDSnt=Z4M7Aqe5&)<8*+4%z&U5jxYtM!(<%OhQv$=;#?uRKZwq%75il>^2~QmQ9CNj1te z239VCf~Lu!a{Zl^+Lbig5+ztuWv``FzqNFR(&-wLYzs)xM!40UcP$6SPC*I9)9p4Pq&UR z&R@NtyMBo>CtQy==;G;uWp^|1XmgH1^Z92tNR9|`$8hxpQl62eWQ_N%u5m9%Rzf@R zN(zn`Bg5=TJ~8Y)<8h!-K&i8Jg~b)xrDYleTK5Q5>5wT(Qh{TPI4f%wwK1gmP>Z%m z#xWx>sA|}%b84)aU)#+Jqbpnb;`~Ft`S9B;+BLU6F_ww(@FmDhvuK&-J1$>e@$A{J zvRZCQ{>b9wgzck`$$%@t{ZeATYX(8JQB@#YY z5{48RU22|P3=-!0e}za)0%0`HN;10IQO&A?-Ib`AUm%rOH4?+U(@IQ?A#xaw34W6b z001BWNkljMt{f3)0BdG+Qc)@1HX z=I!A~xf)m$ht?L?Y#67GlM~C;AtM{j%d0PuLbGmrR;}PJWPEOU^K#Gj!9z?L_~Re_ zKQtzzn-<$Hq1>SZNDEfps4h?Ld_u?;gRVYlS#O|9+R7}ZpjDxW#P!V`As$Fx za`p0xrdjZ2zauHh^5Fx{&(9D>vp*h~f@Hs&iTQ|^5p6m`%!t^~D~nRKIHk&zQV{oH z@|DwEb=5ien$N8xMnP*0F?*yG#8S^$AysUS(CR+)5wz4KpQ{D1Rg{!Sc_yHVhq`Dg z$}y*iGlJW_=h>4-_*{_MvhxEc>mFGQuV4O>b-Trn6Z^x+)h{oBj1VI^CU%D%UDI#~ zBaH#oKO}{Kh_{%<8h^~#P9bGAqQq3&YGnn8SPQEtl+fffqf10(Nr@Sw9U&yFTA+nM zn2uZ`K?r8QuXA!NHOw*9(;Y>V(}a*2t2EkL`o3qFBgZi_PabThX%)sOP8JJ{)0pl) zGFn%ic$`M`LSYvj{bozouemwydG+>&7!|T}ESy1_$mQ)N*N0m=6UgRo5EAHgVt+dj z(jF%~jRp5$%RYNzk$mvM2l(SeQZtyIoxj0aO=}xk>xd#T#eknYXPtsEa=H7ryt}>Q zgZH0OM8@ZlxNa=GEGx;oE3q<(_6^wS#K1JMKy)& zcZGMiI}S(B&CN(YjF?bi^{d4K*EV1TwkTGs4X#AefoLr42(viIX``$ zu5~lG(5o#Zr+4Q7#n<0tCAXLJd6g|MJ{p1FnKmhT%ckvLTe!QWASI zGb1zl8@KuT)9ucKeZ`>+kh4S}fdFpYea=4b`#ftgojzhBr!4CU!_ehPa5&KI96$J% z{~e3;i2I*>%G3MDO!eIxFz$K%@&&t{qhL;>YwAMN2hA8Ft(5H61Hbym&w29X38tuU z(bH`4?%0q#;mF-b(wxFCosp{=Bl z3M&NCI0O>!6otx|;x2lIZe+LKaeTi(+x*=s)SRQ~Ic?h#T%@UIY}%2&h zy}jklmv31fpK|$p&8(PmQfU6ezx*>oXn1u011`5Ks&c`^KI9jF{}Z60o>-2Kj#$nu zZt#ehVG!PD&2CW@^sz;zqjB8wMgp)+8A0O4~CG=E|^8Z*!RXd@6~B1MPvo?SQM z+YaeH$IEQLG{)qWm#t|^%VCVfkZ*itDOlE1g3c?v5rqgNRtZ8k5Pd)wD$503q-Y|7 zlA@aOZrEd{6GG^aJ`$rrRtx$~&tbLU$o?)|?wc(!Hk2gx{S9sJ5h0;XM8rhfUJ{bW z>m{*vZGNCe--bdbSMm9H*)wRHs9etQ(ah!qr>>;k`k>-R_7M#rr z4%-%~EmAp78qMrML(hTk&|;Nl`RJIUve*eEVUP-txgxk+E^+$-Wd&7L5g6(Ffz544 z+aEYRYB*ZXS060uWQHvoaTijM2qUnQ zBWxpa`xhjmSY18mu)QLQz+u=SDoH&zlrvB|`=lcImo&<(qa}_Q4I(9!jK2XSMj0^D zV1y$2KoXI%D()Ivf>K!ulXA{E3>1YX2}ux|gs1I0lv3>X2P#{lEOai=w_AvT*Dv4T zy~i4ziJVUH;RjzstCF{0y`Y>bo_}@4WLERP{rP|54?g_{7k0{07w8!HyMO#K{jlM~ zuYV^4FABqc-*bFX=kB;FkTH>>B)Yu1Goq$2x$0`PV(^Y3W&f8%(2t(6b0iUQB7f@( z=@E5B@Y$|u3qc#JCMjx3#WebeWnB*Y@dh)ll zA6+J$6dB<>Kc4XX#XCOuaAkT*Ii3c6j#Vm8GX!_WtYp+lR1v5|eRs45HesJhHKabWNYDJrbe$UDKDLL+>{ zi3}9j4v~{5ijxm&o_+R=cW>SzkX*lg#m((o_90MBXV_`Q;>a?no<2sJnPEDe(#I|R zcEkH$KV^O-sAmSLLE90lphyN03Vg^|BB>1CDWuPnZy=+5QZ7^!MM?B2U$4`^=mTY8 zky0|ak-Dhp+m1=?C}g70mRHwTMCHMFF4xyArze!AWHy%l9ts@yFkJgb5?DU87`)>ozPNG&Hls zy+`vqL~<^T_?W?iA&xmCpgakY&6`5uyeFwdWi3Jox;7xwT_tkJpBzzTvlnE%)Xic(JzMx&JFv@p-lOt>af^)a zIP9h@rQ^}$g!a`H=S#`k+t0Y%DL(!1J+Af}p51)O^2rPh)(R6KRydJIQU^@x{v*+#Xi!4+A1)r?N45U}bIM>~xV+Lc@Se zHPSSss>C)m>zh4RTAEU$qC!ZG)-p@Z2F0`}Fg8L|l#>Rj5<)tBP%M^H#=&DP9G{l- zl5OEBhN2w`p-y@WvvJJ-i%#2PYQkAH>$`6wfaG_|I64i`1+{eebEywLpY z`4==NmT!FP_c7`T+b?^Twq&!~v#bpl4^L^^Kyr!QdO##VI*cyxp$8R-en7b~bJJo( z$3zsK!cOxu%m`fa$fnFWeNzxbV6!_gX=b>PXv&7l7Bo$T8?ryT8wE-UthKlh@dt?? z9Z}>QyF}54fg$9dO-0`NxGLj`(2AmN`1spjFGz*#W5lTo_y^-=jTge9PtWflM*ckCe?)9{x-XrfLW8PgE93i7Zc8B$J~E#MjQvy z-8a)1Jco89U^6#tRO}BfuPC|>9}^*&3`jhTBs4O?VefFApfVbxG)5*;k-62iF4=b- zUXsK8G7*!56!LY|YGQE2Frp$9!hy^{L0c-?q2=kPA94KXKIe~)X~!+5sPGD080meN zRW>qFYDH}q)YC|zETwE{rV9?+9h2FT%T>!51C6l=@;93i0#C~2{^*b-Vi+idL8`lU zmCEYekn-@$c|cTHQ{du(LTOwY5VFFJ0;wkW!6RhIJM5UV=rdb!JUiz3+qazFTOu@g zKhoHm-EPM?cw96zGsDBvN4&dyi$-wo{wWAgbbGd&6@T$x{uloBAO0aR_H5cMj)Cv| zi$7+0zRc@F1lu+-cK=ip)%3w3l?8d1?vf(Ey@kV}DNKWwiWIV1hiEd&$(sD<%AEN_+du5CZye2>Loe71~|3{iRp*ORt zf5Mq=F}$Snftz&6^Vchs7ARRzM9s8*K%q5L<9K}W0guj~FdPm{ifn8ME>bE`UNH9g zyLq>BjDA2#$?AH;<@FnOw`;cEaeHW4^?QU!OeRxQQLx#pczb)z7z8nCgc^}Skb*-O zmJz6}K-Usm)JUyzI3yWDl5BS_yOaeKg~{s@qu6(m(M6nxAS3-aVvHtu7)eCkG7&V7cup17veTUWsl~(ydFmwblQrVJvTJz}r`xrEBdxczBVywBif6k;h zLQju4E$1A(;SUhs@scox+4$YP+DZHFa4a zYs*$^_U#R236JhSWz&wldi{*$$$~Sbxmw+FcJ`Q92!7rDj4!S~=W7ohlEy7nF-NoG z-dV*-z2Iy*p@@bwT2P6b&B*N0jMtaXDNib#@7Z_Ig@7yzWLYt~0i_G3Cj~}n2A|N{ z~ENLcl(p{Ng=sJWk*h1b-b@MN1!jMv+9a>_HY<5|H)4P^F^lWw=&Ue(t zl9FIj7f2HOVTX?plcBC_0wF{E+=vSig1`!e^bzSiDkSP!GCyi~`pJZc56-yx>IF&! znrY3vY1nRVvBeZ?B7KZZ7RQ)!&OQzN{XhPi>8wUqiKaQ_`t6EGPbSRI7L0>pY8zw- z6xyKf274mJtoV_EF183+VDD^{ip;c5G8-$s9}yUWPb86V3P}ZAii~}WQ7{rYxPkj; z$4D*cTttixY_6qhtJ!VVR4B&72u4v)8*Vo5Xxo;u%u@E3FJH6SI3yL@0X~2AlI7xv z7uRE!H9UU8qmRGMxVxpYmd*Bt{&t|4C8}wiVT&nZj6udgN}h2X(Im7KjIBrO5s0Md zDWXD1%N>RcEi!PTnilx6$2o^JE^Caur)_(53X31791aKC{=mt_ zIe+1HNhaGP08KMW7 zp?Xcdpt3c?kfW8Q)rgeID-uDHhDgFEO^i7KCK4RR_BU$`DGF+<8NDMBNYdY#8$7zw z6u=ldk}8S1z`KBu5^X_5$F@D-ikdW)csXMn1Ep;+jph9O9uQI1FgTrgXMUinDonj# zvs$yh>6tYJv$;i23`s#!k<;@9Mu8UMH(ll=AV!I#AgTOo5Pcw}gi(sNbGa*>6nFM0 zimD(AXt#T!hxRaHZ6>WYw#JWvN@q0DE+iz5wrxqhCk}~eGhtRvP}0%w9Y^&M!_c!o z40k07$#Pzi21BJI%1%H_p1pp?(8FSR!B2nsbClncQ?kW@kR9`IPJ5Gj8~mAYm!sS&0oIE_dnAw^uD@IF$N6Jk(A zWf8$+lBa9;7|or7tfVktt0Ld(>IHQ*&pG+R;GE;;+A%+^@VY=yvb*|h@x#~q_Q=lb1_`mBVYY1_AqZilibEKe^u z>>bOq#|%TqvtNJ455D~!K7ROh{`PNv#o2==NKJPb2%zV{}316Wd+K5CwzFsM|h8 zde@_LM42il$5g&?RF%n6b^>Kt;C(_>f~ZH1CM8u_W+1-SoF7lvAGVau5np}zhBq%i z=g3SkBV6w`tgc_MJ8apmp0T<76|<&5%fJ{U&Aj5UUlY0mDT%DnRT4K!>aw9UIn@`v zLl+*AT>i8YJ&FA3^HZhlqky{YjYsvWI3gpD7qo$es-xD+YT2JK1O03 zDOAK-L!mTfQK6Kg-SvcFWJn#xD8{Y9?O<99ri+SH%sEi7sIK|t=U;GfF=bvYv1VXy z9gAj8JCywGPd;OQR&spu&mP%-{yxBBeh9|$ z`4>MYRW-6G*=^UHFY@|97E_KNf5@8`SCpo~P*4{&CMp&SL%&{AR(XedaGt>{gtC~T zq?t{b9!;1`3&t*ziUw;dQh?BV1d*zi4C9{N;ebk!F-B4-DXjq+@nNK?DoiREqr>P1 zg&=r|F##7Hm2Rl5X44(mA3RzWC|MyXGH_0r-0$`tGe)$6$*JV*-hw!+NaKMAi!++$ z9AS^?+(0w2n7AW}h?ON`)Rcwh_rCFcZeDHihs5(&ZwVn`?1XXDOzS!AIP&=8$23PX zN+v9b7$Y=R^P_K5mWEWAyU&>h zAw6N-^1*u#SPy%mmdq;4{SQ7Sbc%RK;IvZWT_nX0EhVG3Xk#etgwX*?Qd@*hC^f=0`t12EDUK(9EP4EPE1IHaQ6Dj{rmThzXo#Wa)jII$_nuNV1vHkZN1|zX{rV-T@JOXHL}85J z4hUmu501%E9^l46ELgcLK@*BH9pfm&s1OE~rwII=iWY>D?7KYx?dYhQ8MCQnv6yDXQ4|;f^#qhLIoN`xbq5MY*_Fr~mvP`PN6Da8wrbVaP(&V0GU49p9TWbUlr!V1VmQ$7E8Y zOu;bj@m*j!pQA}c=NX0pWwU2`wwSY6ESNPJyQ^d_xgYi&>(=Gfl}n@)(J~^1rfWwg zMM0r+YeuM%`LrQLlizk4tSoTOp%K6FE%_MHszj?CXh|YpO-tL*`;;jwBBN}MPbR#1 zeaq%%%l_(`(oWdjuF<3Chu`=i*Kc0%^r+^4{U865kB@4eKYLA)MxK9hL$}-W@i!l0 ztRjV$aoAxhg_t&o;*@uePNFI$LA!w|DI8YkP zFgQ|5Bp)y`8$XisbZsD{$lykl77Sg7X(~n}x0^L#7zw>+w?FXe@-@fjM}!cVTSZm$ z9L58y?Uuv7%ROc(vBi|OAJ`nWltn=p-(Z#GM?e0rl=TunjI6GA=)%$uj%Wft0l^@( zri(99}~s`1`4u?@D?*tw)R$<4mu(DL5A;N{JhkKeyw z-5aXu6v;7@GO$^Vyjxw9+#X?%5TXC=5A@A`;OMwQ+XD_q?|Pno_k!0~w+zu@t)(3T z_dfkLP1BIV1kF9Fs9C+ape!`q{)YD+9pwpY3IqbDM{`c*ilSPwSw*56`NKas=ZjxI z=X>A!7Nby%e#OPvoKYCwd-8;zytqP`irMK?d=QEq0BBLA9qL+rx$bV^q7zm zyKavkdQ71hx{eSALUaV*<9y8JkZ~jqS^v2kdM49~sx(X|HOWi1hXX_O1fRK2#a)~f zBr)VY^5`Q$M#{2g2z#UoSQAl7VoQ_RUqx=_;2mOYu{ux|2JH=DF!Z~TvXER~zox3E z+-|R#+6~|R{eR7imv1@vJ;qB+Q88|2y!`P$FexjxTZgid55Dt=@BQAt!V1SxqbTO` zF3!5=oX&2n&8lU+_Dq`v z!{%b7m2RxAi!q7Bk77ZfE#l4wjTmzRiVogl>#yJ=whT49R$yOZu!ZZ8@hJS z#s!WUDU{};2j8NY%>6LF-$(;g;egafmlmR`T-Inh)+hq!cx~K63T; zz~~Mr9XVYtDVq`%B}#%)79|b!q#-2;NuhKi;E3K~tw!I4FuH!k`7Q@vDoN6U&0!#- zNIsGL04`9~8l?@v3#uX^FqCCY6q&#|b}qBFW0s{S0i!SoRnU6yZov7D^{S;G6HQsM zS-+-Il6wz6Vbkt;`Q{~MJ;lo@XCK~Y>>|OBeEtt_`0C{s{EP2@h)<5gZo`L9Kc+4U zRJG)=>rr~-Xm-MEvEajxKO$L)@Oc3CPXLozDTGM$BKxXRG<054>dc0VK{EC#hcHCu zUsa|chJm^=*|-=4K}d#SWVP9Y&lHwO;`Y#U*pGyukV-Iip4XQvRH=Bk8n}A5=Hb~1 zN6VVcW(8?r^&w!$L)R%#e~b-7C#1_z5Y38)2C=5Xh+XxH6lX=2z-hJ{wZVc z(AwlTx3C-z1Ep4!*5tZpv>@-Ql`$)7w);IUI%Jd?;0Kho1tPoMio zVm`^Yf@wWNCrt`5|D7`5z_f5o7Znem9&vtuPBWzgd{+uk0COjz$bX11Vj zd-lCxOah-YZx4=l*O%;9_P0OK8cErlG9-{jV`WKFGafv8#8Dk!-(!WMspfRuz^ppv z^7az%HVFBS_5Oek3Bky6a)$2|%jpB&Uhat99HiuQ{w-`eM;2#1dUC`U&wfR6BO;C5 z-mXb0(FVh$YLG(Eg~a)E#@X=&GL`tTqnc`jij>09RFc=PF0qxQ8z3fy7n!wOn3CCK zib$Fi199+-L(F?fRbXw6GMYm-;9|aBR=Om(NOB|A2oMUXDhgAQWMX?5F+yUDAw@_& zA@2@z*LCuib9X^cs2&J}&n3&WhV^UOcc1JR?h)QFRPB|QQJh*tu%gYyZhc%PM zlCNHE`0`!P_4XY}T7LAC&-k-H`xDZ94`It;7%9pL+oajv9w^HrYCEA`mLxTxRHEAm zieiB^1-6Lj!rftd4LUg>5(+ksEt|0Wj?Pf` z8#MbJ)I_3y>(znXc4W8h5Fye`EYjqanGZciWpzx+VzUYNYv~I=~t|8R}`jUQZ{r$586OXT-^Kc zw?EK*x98@~EoFVi#mNKedBb7T^6t7viH>3O7F)}^$ze&KG$e>ZOZb9w{JGgW(_yj*L0m@ecRJCmcR%}(+^o&v)ODo3wp3SH&3&N$LEb3y>E2cigs1VvTSwjIt# zJc4l?5jrb%1cB&0ZP%e?0M}6%$rxJ(*K;!Yfa&r+@%9lGl)soel=YZtq-7Cr?OY{M|P#7C2wPvz7!&ZsldrDPe zM8W73gU=LCDRkBmsoW(t8Y)xJwnOH070~E{c~LO>tX%a@V3NSd#Bx!gHJR%zTXy>m zLI+|Tu~D%ZR~$WDW>)vKqEb`(QBm27t`BV28{U8aoS%I0IlI^*#GViYVf~I23-&(H zhf8iQH*8j~n3pBOZ8&?>5J*Vj^KDKR=l~+*n5-24v{tHc&fyVgC9qmE2A|PY2!{TE zEowr{IHFn8KoA7)@F{b)OIuJ#f%B1}gPV1i-B>YVO^J|_;c%c4Fqzi*CeZb)c6%-_ zcXZpHy3thSj7c?Nh#svqi+dL&rMcejh}}r3HIL8k;l;?zE~qCJi|LH#U%meA5A?~h z=Je>CrpRpMtD9@AX_?8MXV2eod)RZiT`@{eJ#V<})`;m6V@E#y-oIlM8f8mXyBEA$ zy`c3YZ?1ldIW~9^DV5>X7r!8?CC4ZCc>DV2RCFjIICKNSdk$kuvzSm%EHit-gR_R~ z?V1n2`G7zFFaN;p_L|^3B7x@EVhYRg@tj%JP!tJ`6l``aTjw&XxgYT%(T@S= z6o)Qzz=gK}`7{N@_)PnXsvi z$v&(YL1}!Flty#>Ffl)tym|Xm{_!vVg3aod=U@GrReyuvq-6i$0;DZm|r}MY`{3n0SzyH(!79lkuHf(M#*>$&U+LwIxqSl;7B2h=|!QbCrg^DU`!5&r%;+GG%^|Xy(5T3 z2#&rR*>1OtV`T3=o4w=LKl=>hBaEJVk1kNgA`HytmUo+LcH5Ds_s==JS>w_`qUAf^ z{w`ezv}ujDkwtUH@uDJ%$oYeF`X0g%^43M>8-!0Ivdlk!p(dEJK?s@KZ8&`Buv#(3 zT*y&cpoBmxm`3a>2zSU4Pp30Wk&R|`~e*czZ4JDWKhmNzy-=dieH1meqO!&dqKcOj? z)X8zL_#K8~vM$MCD#L1b&BRt5A6-DScq3UH-^Xn&3KI z0$U1-GH`nFn3LIpdTCkcl8F(#{Pj!Ty?g~x^38Am5r~1>*2Lk!aT)OKJ3cr$=Jn05 zdA+`2wyY`V70L#7H&?iE&3sxQ$3(4a=F^(Vyhas@>8u0=&7?pJflfKC(+1C>-63RR z2m=C%QqYeBo$nck>^P1w#){?d#{z9`Ielxx}<+7!H{rdjGx0gwEl*HD5gYC4=h;eNPVV3!1WFvwn>f38e*# zvjU?b;87wnr2Mc-7y^kgcu)~Z*5VR0&PS|LNaaz|&<%Ouq=2d}h*I#?t9R_X9+$w_ zyr%5>z^*+Ir67dJICw&ecXnRCM(H_|Bwg@{x zRyDRP`0Vu?@HfN&50CFNx+#nu&wl+Ywtf5CALyH#8&u_ZarK(}CllJkjub|s9r5M_ z7c0(A@A3BaCENW9EdytZIool^=fC_J$`+_b(g#P6rku}N-+J7B$7nK$Zr2akrsHk5 z<#n(5fByRaq>p=UH*1D=;NsZehb=E(f6jWm=K0UR!W`XavmN<^Kl&~Y9z5XfyMch9 z>mt?MQYv`!{3R*mJT6kubv;#WsS88ud+?rd92kSk$sTRk@3J(#sY|5Ml*&-Zk|+iH zvB$fFHHst!K8zTZEsm-vkcGi$jgcj;4`?MQ3WN9gnq8J9+D=HOWYu*<1jWRnBE+_0 zbJ;U3XCyhL9|yeHlENirIpgh%OU7}Yp@k#_kGXRx zn}Q7PC!?8G>jRUzL;{6X%qE%D;Js%ysnJF-nKh(TVYT3+kKad1&8`iE=(xJv^7OsO zbY6fDG}RHydlROmq_Be9>yddmBYI1aXJ{>Hg~K7JC#QVz;);ilP6;tm6^ZWPkU>yN zFq9;308I)3EfjI^1ef28N;$^ZBekY%O1eH{kH&E%`jI3&bzLH*=B#^G3_A>v1u#9$L2B4bg!ifD=#zs^ylT*Qi3V7bi>}KH&aQMG_j{ zDXg^|cDEGznA_DaS=uGD|hQPoT*2B`}kKlu== z&luClYW*eiNe0Ma441dp{QQ?|9(~kM7nUeO-f513SuwD=e$L`#!O`>{uU0F(e8*q? z*Z+&t$9vCQEs!~xJcz3hM zYsKxmOJ2X(5JJFOi&iDJHi+2c#(`nzaVde4Sfgme$iaKOP~%;=-Bez?@syhLwpwyb(A@OFl<%?f` z&e2iHy(bTF>}mB4ht#n-?74UUh{G$2FKzU6VJcF!QcU8U>j*{JGB&v{! zrpo;$U$1n^2{xG!C{jwe0gP=RID9`~?~uktX{f3Sp|XXtkcyZDb!Bk=K;QRlHXCeJ zXS^?xpcIEgi;t4+rbQ}4X%&ll!faAdDaFP4gx~w&5$}C%Mm4D@7A>ZZ)Tf5mSI@Y5 z^OBmks8n*l7Ce3LV>VxwjJqo$9bLbrRx6GdPiVKl15@neIPvAnS2UF*1V?Pam<8M0 z5mN|;wxbUR>M}>~4*h}MVa@Yj>{(7vczE(YR`pD(if)vQ(i0fi_XVYB==_S?w&VNX z|2L!n{V>q?1A>BC)v)i^j51N!L_6-NO-T`FOoo=l>3t4|j@iQS-lu1{!y&H`gl7nF za(aYRQ*=m-!+^qoY>>uKl?9EpD5X#;e>+JDMhgn9GdMj4B9bsVLd>;FO-V{%kQh^t zMnQ_?=90(|0OvbOomtM2#NY-@k*L0*0--n zDbjBSERqNBozNUBu3tLNAIua_w7&hPw1O5QM@@FwHhHV%a!vXME8jYYCNfaeg z%-!s6cAs45RNQ&Lc?Dm*NAlfVv@YweP`lP%;s5(Rj{@6SJRxZs)3!BL*P=9NDG88R z1a)I5ilRpb3rE>(kTHm$Ww5g`bfU9DLcB{H-i6y8XlJ~~I+ zkWoItw;+9pP$_ACpX2=i6)V=&3Lyg4^BO5NlHMg15E2SQ*R-#p0~UoKj3m-Zq=-?z z?@!|;LP!*XKuer3n6{(oy8hv-Ggu=KD(aotDt^t2m*6eNI4q8)?FizOx~srg@?l0k z9x$B59NwFv<(Tq1AQC$iRe=lx>g_r6jYA2D6HQf=V8IlgXCHr#pLMLu7erx3-EFC_ z49V~xLH+D%!PV(gCWix-mnFad``^WfhP4&cl|cq6Wi3&$#tBE&6y&2ZH&6CB+TX{N zkC~2c5n91=yuOKoBM|H*OrVHy*OTyHA!zNEOi9mZobd zN=MiBI@C~v#6d(7>E4!MC4b*1uf1iy-qLgy6$cb`Mb~w`1l_g>EkO4>UJwev5g@^V z6ur!^Gp2|CSxFX6cwKTLN)lY#P?v`Jiwj1B0qgY@P19n$V=|er-g?fTEkI-_CperA z`QQHKzhby|$hMmE_{Gn$4sPDN#pBaUx@JXX3ifl$a<-vq710FdmnEP4aE3Dx$w<>R zEm~{J*$N%DXxW4AT4&ik8qipSeEqZO=mRzeRz-fuXHI06OfXh3VBYAY6tD}vY~REdflN_y(1B$A#`$=k44 zVlT;Q+mhOB(V@W5bJRL(;Pu^KMG@M)Mi~=AWU;y6vu=>Cquy@N zK`-lT&Fh4ml2lEDM-nLsVTchHr37IV(7FD_+;|1_@=`5GccBcfcf%@y1g4hQk{tw5G(?Tf$INR3*!9!+dqw=dh(hiil8$7}w8X zweCX@%1Lw-zJ48*XyqwP?9a{CT z-j2S7B~UbNh4X?g>=Cs@1<|yFsK(ZY(P%_tBzZc5NHg4di}|AC^5O{xJ7Z3tUvU57 zJvv`vRl(gi-l8^^VS31BQvfYZCAoL!J|fTr!I0K_j=nrbW}dx+l=Z6x|NLM4E}iQb z1XH{fh^WEYhD67F^MiLm^||oA8@}oHV`=)-+v~tj77G@e66<6iF0qEPtB?}HVMvtr zCxF?e;9{|0QyVth1ySH>+5!=W+`fN{wgn#~bQ{Co?E&NcF}7YaiX~cyjFOC0(U07<{zD8HQ=BF!#bDl&7=pdx^ z8sRnDvZihgK^)<{Mp{i6CUlMI1Eh6Jq7&-6>)qmEA0@6#KmIecBr+w6b8KYs%xUWt zi1Y6Q{Eu;N0qw$2Q+|pGwDojxAhQt8Uk`4C=qL4>VR}eJpPxi2lVL0iT)55kC zO+{zM$VgCi8-y!R?S>! zqYz5G&Z7&8vcx%y^Buw(I#c7Vp>vibiBV1v=oqC14yf7=Bm3Q>X*#TH$YV_qN7zQu zmK}B1QZ`#u(lDA%u-+1Az;rBYMV=3d)r6T5y!q94`PDBzW&d!We6Yjr@moyx-oiV> z=bt|&3_5CC(>hOKGs{Js_oQjgw|?gvNE6~i0ip-= zfA-mDJpx#Vcq_n%eUU>3;2i5sLFGMzQP%sTY)hy^6#Y2P3&V0%zW&1OV`GP4+7S!f{%apoYu~1%^VR%2;m5X=iJ?EGy+%G=vvW8>tQ?br4Bv%#sd(|(Q?A!b&R)Iv;tRTQ341qoSYKX| zq^6Gp4idJr0*@nt2w(W(1GXiqZ#*)4vD>{Y|QJ2 z7RfL<#7OX6!P(0zYG1Lc8fYxr*^Gmolxx#*y;Y>ynDwIO_Je(ncJ|oMCE>i~?%O+j z{_B^hRIqzz4{tVLIu@IXql0}^955Wj931bnvy&s8B!~hg(;;!B83qw)sK_&ga?n{% z(KIw|g+j0?w`lr@6{%zDszs>?=X$#a^7TKd?~moqIf7V22(b={d_dFmIGs4iL0W{@ z;2;o?r!h?>NrOFtEMs)I!}Ku68B3rhTwcH=am0fWhKlX=ieWn7Yae`*lRJkbX~Ug& zzrqjy=1;*7c=qyD|3%;x2gg&En~wT2Aym6GCSY=4kwL}X4{j1q49Y0p`^J6#{h$9C z0WEKTk#XDScJ13##xST+{Agqrm0wz*JOFjXfWo% zTe~cZg2ifsmXb7742LN@6Ul@7N1Pl^@V4XZ^pf34M&~_UC6SRLAC7tc={21l^4{0p zwDor*hgQRreictsOlAQC=kRb8Do9ls*|cC3^l{yum?ssiwiUkPu*C$rX^1Y9NakM z;QoNJ=)iO&!|1W{3~USPuwS1(q~t~>UpTPAxW zWbBw-{3C)TtILwhvvZz2dBORtW3?>NZOg6wgWkT^84{s+aOX|hHY7XVV|jW`ntQgZ z1yK~?ES%3DG1`9%({=CDY9Azn{OQ1?Q z&Mj>>V|HyZO5vIrF-7S%mX=CvZyi^I@x57lw6Lv27}Zmvo}nt|BBTf$##2BnW%eY*#k~Dxm2cLP%Wa z$b+cYqYxpjC(bl+r14VXoTq6GGEDIZmfMC-c$%&U{w+>Bv;$`|&R?t<4t5YKV{b=- ztDy7L%@$XCrsEOMPCw;jf0wFQ^Vvr~C6bW=p&M1eT7EfBXrf zOww)lsas7|I1Ccgz=uEn5#RgX@34FLCbRV=#v80Nbd5uVf*_FKTbiarxPTz+DJv>g zgd*V1z1z4}^b9W>P}UuFTQMAKTIVQRL(_FQ0qdgV^15NOYI_i&Rs>;*7Xg#tnBg>H zvO8qHxPl_U1EnK-2mpcd2@;Ex3TympG_glVF-_e& zzQQ1;X&M445kW?0EL~^WR*(+T9{$jJbeJOu8KpVSS>hl>3W2G5`>C{&JPCVjh zfN2dC_I_cZmE)$*LSi)m!W>BVPknhrNr z#I<5owFE=QMyzR;S6_TVUvF2)IOOF1E?w93A8OU|?DT@Jv)p`ekJ30y*U=R4=9^zd z$vJK~plIhT77LW{ob2s$`suH@aePQ16o=DYs_F{qWzW4{ZQ0!)AiEWzk?79gt1Ti* zFeJ>j4MG*{-@bvBG0A8|?OM)eOD<*A9 z!(mF6rKD+06h-*1C5bhyY5TIdb0kSfs3oE7DJLrGVRLQU_Nq7Iu+9<05yo25FrdNG zx*k~XrN9Yj+m21u5JXXr#<2z!IO0(B3qtS@Xj#`en%XjZ9I<%nG17DP>KfTvnx>&^ zEY)m@)Skmh$~ckyXMgws|LTAIUpc$DM!JaAa>L^MnuBo+7C!#uBL;CwDpPbA;ggi6 zg8k!+<+@_MT+nPB*)T%2Lze4;zxeaNem$b<6+2yP`Ode#fpnfYNJ+z<4(en-wh~ri ze2=FM{@%pl1GH9nT4rT~6q?pcI&0~wK8VxUhO^5vwws2=ca&?#8*knvV8F$z0_Px3 zJ$pBYRGTe7{o9Y&Y}UB$DJ}r3EUVRqvsV{A)KLhO*1a-F^sTT?I&>guq{l0b#iG1J z3WpU6>jemhKv7{)GN7#+Xa&X?5E|b>6os_LpmbXM{r~_V07*naR1i4lk=7xkCe#6W zqWdC;Xb6-b4FY7)>M1inqSj7#htHyliG9~-@Z$hw5Y^0IT)~a;|>Q8 zCj9&-A2G;d78fPkO+&F+<4`1FueoVVN1!8?g{3ha!%^1jO+-l5bU54hWu@o^=-w%C z5--K;rV+>}KxvII0_QD42}0HDSjxJ^wSp+g&_Xa8jj5{^*9q{FFo_9XM@*~E(K(Cv z6_+ob(-vz+`yoka@v^0=4WolYq!oPW&G-4izx^q{{>kS&{PG(l;USGn7)=hDjCZ)c zoRLQgk?c~GFqz(>RF*WW=-iBoj(ij|KP`Cc;V$EJ${+sGAMw#gALE>3I-c;2?>@w1 z34(w-_iq9cEqc6fZ9Q$RSrz@g+*-qSQ<0_-VHglcf_t|H9G^J0vx-rk^rRG_*gqWc z_a%oYmQ>pX-onLV#pU7xAA8bKzhN#3UI<kJ#T;Twh+YcXE^K(@%)^By!-` zZVR-FIkc# z^N`wDtnEm%5O6fFU$+Z4CbT(OJ^&{;y!j@s8)9tB&4>HQbinl17{VOWDIUJ@7GW+i zDBisLCU4xjMW`gI^~`4*R9v#07s%v@p&TO%jf}6kn!V!9_ipm1fBI)cBH=f`^#O7d z;-eN7g|t?4J$pr+Qjs86Z@r$7b*>pCK@aVRWc%m!QcI`*#?PCSYTR`2k&FSzpho%L^tq?lRk4vpU~! z`6^<6XYY$I==tn|K!uzf4arhXvF$iHI%ZQFo;|tb-FM$*lu4>}L6;`fu6H>ZZ!j(+ zAEbm{bNlWdAt8b_pM3m?a6DzxIdq&6Bn>+!yG*8cQMN-XLs4~vD&*?yoMN^nBkk## zkta+vN?Jbo#b>;_EHJ{d(E;IT%=2ffV3mzjL?V(pvM{StRgQ5{3a)UA*oUJEVs=%J5E5H~oW24>VAi zwnk}zHxL97LVC1x2p58N;2f=ScrTDDW<9S+WW?_H7$+pgw8Z%yxCZM5wcC;p2B^Uh zZLg57;ZOdL|C4gP!FMe``P-lJ>C?|~a)Qctd2xEqa&9>~*(DBj&j{}<$sk8ZF>k!{ zF0O773V!vIU-9DCFSu%!SXZN*zJEoN2uD6hxV&28 z!zr7pW478*H-frr`S53-bNcd%?WSSADkwU~-gLnGU;lt8*`u3|JaL@dJLcr} znDylas_i&?e93&#uw2XtM;et@l$)|o+r9oBQ9X1*c#CoZ>okJ?bzKO7HiHF6>Uiga-$aWgGTcGNBhD^=O{`;NVCY=Lbbre9P5`puVg(*Z zBg?^bm#ca8#TRtClTt=6(ZK*MTB@qz{OK8iPC1+$@be%2n$FMJ9cvaBNX5R6Ey zAlQChFS&iA<;knhaXz5D+A{K%va6`HXB?bhX6JnS zOAmPKU`kuB=tP8UOH9-9;`EH8-J9Hc_$F1|G6+M$P;&3>haBIUk_=PMpI_rlgph52 zr~K?Ov+E7T_I0(UeNje$=Pa8I!bBVj#xw>9CclT^MqM%`OpC@S6jsEF-Vl; zL}`XfGNkiJWqMl%p1LWp^gCJ8wIp$lZTbh8&NLW$QJMDwBO=O0$znF|^UT43Fc~qg z1D^l-j91SdQCA7S{K+NbqnJ&(A&7GBAMWy>|Ir^1v}+szM>{v!)N@{)zJyfp(c@3q zIf}S=S(0Z7VJe9ZJZTp2jqiP%*=mW?05#rezVRDhXFA#C{ogvm2}iwM;e^9`$smdP z-g6KjRY>P+0s-swiYUpDGGJM}WcNU@xSV5~KKtFZea`#k`8ko1IIk(|3hxBh=WF&3 z?{IN?MLM1^7=|Qcc=GH++U1I<>xk_h!~+I4XK!*BSI_ZYG0aCu6;U-M$_pZ?Q8Gk} z5ZgJLq9jnFcS{+I5ODm)4HDg9oBp#^N)bj0+p47NIy^1Swq_6|{g-kS;_wJ7+27rx zGj-pTN^+cU$&&#)J3IZ0x3NT8VNIWHNJUDT$FH*t8!l%TcnhC@@|Z=lCzWUYyUVw->x||JD~@(7*oSUs4wa8wBV`qQZct z>A3f$H%JGDr=NccQ9+W2AS_<=iq_M|m-x*B*=z~pfP<4;bVWuGjF{{m^XkdxJUwf9 zb-Ltx-}xuZ*BiW79F0@zt)n#ww{N{mC?djSpSRxn3Z1KH>J7UGhu97tzxXxV?KK1e z$|wff6Shw9c?jP~%CodUJQiRXhKhi9&)?Ca=u8NwC z4f*7>#EF2nzJ8B1-r@P#3)a_LvTT4NVRE#?a4_aqKYvDOCoC>XTy)4^{N^VmB7%_GG@QP;=wIMzxpjBIy?0Ki=88~3 zfa8Do@Bcdv_NI)}oP0m#&3iY9BgNtV7-!+*PkzD9H0E#q=5M(7G4eQgU?{O=O#PsfMZ*aarC{TeUO;cLu`}UZdaryKy z|LuSCW&Vr*@;f-^8Dud@BKqCgTL#gPB*{s<6tBsX_TI zh0)}bn6fNMwI)nP>?Ik;lN40KuRpxx*4>+|+ZD6&l*url+LXkj5m#rYlvP8iN6hAm zw{P5MoR4_9yryxQ*{0^xr=Nju2!epC*_zFEOS(6qC>KbX(p6h7KfPe{a?5@)pjmZT z5ipnvR@*tN?V31-EDf1P0|MbtIwa3?L=a&c4Mz1xHQ7@yrRq6jSrigR0@KmI>^hGR zLyQb@TA)>gty_E$BZTTJoHD_AMVJJ%^zik%tkJUPeD$`&z6NKk<)e>2>OTzIu)eNA zWN1A>1rcG~(YB6y;}K2GAeT%B8AFv}out*0tIJDf7fa$WWIn&1Z>(R#=lml3W04KjO)pt+rrS+ z8-!LYw-r@W;GH8Id*XD$;$p+W!GL@; ze)@=_Y5D4J+`}4$wIRj9>itSO1U}6EZ}qfU;__#xRKCTfci3l;ph+ z-a#piu^uJ+2)D3`G>Y&-(rH1GrFiRluekMS9TLYeaVjt($NB_gwiLERYQbXFV(Nyn zghnJ>Ts>x8E}5^ltge^DK4vtyiPn;24APfqeG}(G0{@S|_#S=fglZ<4Z`ZU=qNHK> z=mw7-pJE!va^`sX%phz>;YH6-3S*+g(UmniRz#`h`O|BP;&X~cP2Fy3lxDS^F`V2Z z+#fI=PN^G(4<0f&xQ84B6m7|Tw&7s^2EOhX1R7y#=FNs}yCRv4nCy(H3r9%FU}wVf z^EoG@DTg}&M@J)&nzQHUSZ}aRgljE3d58-H2n)_Y=ZRv0QUTs|*skfvFU}x>UJ#xp z0}gj5L^?w1kU%Q5S11=y7kx3ncP)YTJruAmi4+LJeiTA4LKB%HiZ#CL=d>#Fy(XqI z6!nT$wd5m@szX8*BScQD5=O&ays;Qn67L>ze$nBAeYEkEXV=_4o^t1nLyC6AMRiUb z)O6J~qiMn*+hZ{oEM^y+oFdAp%!;EyAp%aOf zAzr7^d_p!oVN;*ebsMCu z_|p6PSQ&v!X-i98mUONm5T3=W4M}!{Fg@7qYBT5Q@Bd5=q#{isuswOiN(e&Gfk4MmAD$5otwO4* zB8Wmv(_(5zVEd7blaeqDNs@7YKSQ%~qWZ+yD(ZI|*Ymx?V26710_iq9yz?bGD_QwH z>PT}ozhE_+v#AB4uGq8{D$kg&7g(oho04L);hnGC=k2e&$E}<9_~~E$i1l)gTc7jd zY)#b#5Gbtk$Rt2T5w?ps-o1y(O9UPJ`$Lqncxj2#0aj{k1NZM7@q54fo8(Ezn_s=x zd#<_-f%Uxmja#(V(XA6JB72r?iL0Y*U6G<@|p?_qq*V%rPjP1^zj;~d69pfqjQ zp##UdD5=Vp(PYe~>_=I75FvfY`c+AJtr#M?F%4MPn$^~D`tm95`eW|A^}F18?;%&S zCCT)N-}=UPY1f{J5$;-Z`S~vxs}nX|OXC~PPCw;n_ZT6EUwlDp8!(;Z_-zMWjxv(% z#SFY5%8tl(Cv>f3xm|I6wnWMlsS?W4vR-Xi%{{_)gy|MjwbVt)dbt2uki;4pg~%?z zxfrDlzUg@S;yL3%$Y+nP8IA|2)`K-%J*jAxpsgZK69Um6W%I}p$cFP5=iGX5giDSY z9_;Y`H{av<=78O?C(RT`$9vRGL6pU)0J7nLd>Ekdc-3INBMuUr=qVjqE7qF@oo(qF zgYX(jfX4K5$S^>5{a8aOffkCU=^I?FHH2Y^HvS30ZBgM)vI&DY=DRqjqm702Dau`KYhmTFhhqH62)L&aeQ-% zF^17-LY^fcE#v)N{;U7`UocC|iO&0Uwg2DGF$|D}qE2hcR1YP(etLDDpvs zQYqJ!!8<{k3u>{Y*;uZgJz+JUQ*A5m-nq~DW;1qQ*CB;I8--UZhe@OO44K^l;c zrX)cOII<*VvD(np8;)<@$7nH?0Nj&IPrgl!0Pw`=d zRSDDSl%w&4&3c8_n(6KkTes{E?-A>a(~A|$O^uM2ZnFWIalKe`dG>-@3Q$Y#K6uDZ zeu8fePk!+V=~Ko#DM1j>HZ>o-e}^#AOtRb9pkr@;hg)x)5CppSL3IVYhd222vnL$B zd5EbzH*VY_n?!Vkgt~99#c@oeBfM~I{eqp7Ax%{?+iba0RENF8E|`t{gRF`gI}mleyoM0y}nNZIEXobTv-Lz0K2 zQX!xvAS}lxhlHtSvs&O)&96TB zDIfmuXE-)Q*@naW6UH}&{Ng8n%bnf#u*HDudBI|1SepOfdj1bDXiv-j@dWErj9c=_ z<3}ho!+6Z{)pL@u#jb1i#<$p9zaq;TjBVK)rigf-;oh*#BB?pMI7grvXCt)h z`_0?BLj{ti>9}>g15%)*{D)FJQe(ZKlcq16ID^o=I`&Iny+^UCiGa4Q5z?Wh!U1WN z5=Id}{J}5Tx{}*>zl=lm^-a5E91nT&%a1u2PMBtby>Y<2+Oog9&%5t_4dQ~!=TGrl zhY+4=K7=?SPcy2mC66jDUw+8LFYT~doKm2veZ=+oj5Hr|K^8|GLX z#!5zc#Oajkm`9<^T2PbWOqIPnNuRdCm0x4q6BN;XnH}()7LLrfGU$mR zbkHDO#&F+J)|RU4Ng7@hoIUqAA_l`<(l}%}GKd0@g27};7$qnPNfZ$$lFkZr2Z|75`#YDj(7LwYX);Y))ucgycaAiTxqEk) zEbw%;B?>fJNQ4t8EwBcB>u@c2r^&K}Pk#7othFd52|`666iE^h#W~&@l=gh`i&r?) zVHX-nZ;D*6Dki~%JnTy$>#|~fT~Zfi&+4AW+_;@{bn^z31j9$I4^kP&0Cmy zOB%-**)keUP(sqRCFfVqsf(JE+c){GKX?xnw8UA=rYf*_{_3xPz`O6i$JJ#`QI>?m zF}wRa4D$hcc*G>nI5-fL^;NGNYBz*|V44g#+~1*T4BK@wG)tJ&XEEU&NF7Bf!v4wyz6d$;x&=3`dH zoNs^k>kQMFZCi8qBqyFK487d~XVI_o=f*QBEXNfJ|BpK)?CMT?lr zvpLRnC&t!m@49lME>~404H!au%}{i|ZNNZAN^QGRh=Pu|-&kln}dw^NSgU`$uHCrPPd1 zGDMJ4*ENU3lu@V%b?fRneU5K5}DAq-Q_FK0*zo$DiakrOlT~;{T z_GNh?S+{{OAH0lrWI@7kI%F>&B2k38 zCsPVEQpMQ1KnDsb43Qu5?sp!rtx9B*Bc-NVX}VP5q+~kTMbhznb;0gr7o6bg`Dc9c z{DO;%4Uf)B#(7N9ROHH0EK81W-J$FRP8Vz&Lxe(GMZM`TvSd6+_{EQY#7SP_guSXZd1ztP8rr5_`eU!7hU|!yAjY0_hzf zd$@&;7)*x9u%&gLBuNQ1gsPyZTjsM@9FLEfOmCsvjCOlYQ+8~<NjcKS##oqogwpbI%oTjSS z9mZI%$fJGYuw-{XW_eK)Cmo|0-o1UmX0^o#!8mjTqaj6ABE4k)-WxQVE8OxatHl=S zOCl|BC^~Bhr6v&*KQ+dvHcRyEV*@kha}NZL0cH;)tqmC@HXH0gO4yH zi04bL<_mJ|pdG;<{mDP)?u|pJGCu$OOa8^b`8^tIKyI~k`-1LR^X!XP^xTMWxI?vS z(N|06Sx()H_{Beb&bNR2UGCh!$#@*_;$ls*+MGn|(xplYj22vFW6&V9LD^&o%i2_1 z1&j|ulomA2lD9tEAzsG(;^)t4tCrApab1_XY8a0CbUPlN5KO02y1fW545*9^g1Jf- z+`QRRB}-aSVPaxvSWadLVPc4qRs0Iqtns{nTh|6$J9>@o-q$H}NuFjTs~Io8c*?c? z9&wzY*A9!zD|&;7^`*v>BbM`=C!hTs**3raKo?nxV|TEmg~lY!OX9MjHY^Ud1Hx{P zyeXlnaRNx)C&@#tC3GUsBdHgfeN`iaMR)R7(b;z*7?GNv>bN&e#js_7xcw zX;NX-4c*QbrG)KkBZ@p{9cL7opw%^|Yg1$b+uQV4olb|BlQmM+T%MnDxrm9Pja|`H zg0jwOw1KoOvZ^GhYI>arUDYT9M7v>Y1%8BSIn3t^D$T~Epqou%NH>gzd-#11qiJz0 zgD*b+1t#XEduueCN9#sXWjVPnSSDv&ytpFjcUi^>v=T(S0of@JQ*M~pmT$3KHrN9f z(Sj}u+{ok6qc5@hDRHtQFBOgoStpm6wqTm9SkETtDktzgR!K>Xf$h0?UYCo@GlXTM z4FRG?1%lQ9)6A%vmdDQ@vvWM4%3XSahmg&NlV)k|J=iCc8TVhifhlVWonYZ%wgy*= z89N6ye$VCZtt0Bf<^A9NXDs!4v$m*&f{eO0IlQrr8yZw*jOjbCuz?pmoKQr%!nG zLkRqURIB z(7+3AFciA2Ns^Sy=P8vHvsyG5cExDi#i(5@>0$?60Nlu?t!j{mEOLX;GP%)l_|`Y? z@zEQ7ZVh2~{{*20XQz)jd;SHLs41EnOG%zSd(1S;>5ax5TpMGG5K|h=morv*OIFqN zM+1h+B2JfRnUTgzR(XRV8XUQWVQaLtCa>2B!@@8Wo~3Xtn1BH;pONQZ%(h+ZJ)@(CD1o4|ZA2H{}i6-|Sb7u1JzKwp84FaEx*`Pa=&p zFiZm>TU_O$71V{MsSNVGKo=#CKYhmbtq!}_x2Ow~(??4zFWH203>6%tU5Cp_ojueWMn>QJRJM4B2IoNqfDb}Rf3!IM4XJ7o7y7nm3 zDRCTAWAos(*El@cWtzwIeZ|48J?1YLv~7cMP5geuY<@|9zlZB~$dj6t$a!?J_qxtN{>m5-~s_;#1=-c3gP`?!{7`fA3`aGNrI zNmIFau4J9BF&djP$w((L``0wx-ZoXOv3oAba)pX~+-R5OV)E+`v{73O`W`aq;(FfZ z@x>@P-i`>PKBs3T{ow%RMdW!-r8kc$l~JH9sM`umN#OUWij2CnvFtt09>demB!;(5 z+xR$jgB3{{(GYkp$yM?6pH z_%?Cgay2<8==WL0OALF{!Bt8zS*$kkPGjSHE}D`&EAZTnM_8B!-Egz_o?l(k7~r}# zz0MHRQcTY;*}v80&2PPq?*|BFZm>K}gK|AEB$ns!`t4(e!#;V@&=fUB37#pKFIKd= z#;`Pvw8%?%@52xH>YvVu`U8&doe*>!f=)}JO8lP9I-Vem0%2&%Izcu$dq?-kD#%jk zZf)ZSeX^>;w@q}m#83ve-+zNLFG-UQ^V-IZW|aDps58Xthg?n8L|c8jJ6&EaulP5A z{wE9~hbRh&bx!2@OwVFk6UK*!eERWEupL1wDkx2)aOrP#dHmH^%x5vjM>g3aqxCiM z<(ijQXIP%g?b{!0Qf6|%G;g@PTrt>@4970h%a}T!W6BnViBZP%O_#SnI^p!oC*1kk z5p`9edM&D%Aj>uTCwm-Tx1m&oflHN4v9#dc_91WG-rp#GY=_x=j*u0o6{}@TD-Cw` z2mJJ(9&g@)n+fYC=i{F~!Zb~^4P~A%xteqLZlB1rnO;4^>-M;D`xsILbn~$>xh~8CYhQe5$bmlcSRx zv_(adZam6uBT+&D7LF@1nhdQx=97fJ9dhf|E}#AAW1fHU6{pplb?ITYC6nimuq+4Z zNS0Sq+=0&`o>M0?j`nxRi#4-pLNZ^{q>5xcM@S!|h1Du1>U1$3LD8-;bWK~FQmoGz z^mgfoiZs?3<)#Yf`##-nhdhfBLeMxZoyY|Z%Csp;P2Ff{44Mjj+eaxAOPRP9RE@>% zK}0Q96xD)?hS0I7%MDXHFEga$Kr2|DF9`;c!1pjsiEg3DTP&q8go82+dX~?>{?q@0 z|NI~Rfxzh?RYX=Mltqi*>4H_UoE3BiA*u^@vcxiM(xl?iC(oF!Ce&p~5P7s|OIL(Q zVN+!Vq381BAN?c!?E`$rr7AVc)r7@to7r;4?yg{ae~-tfk7y03;)K8Wi~p6d=h5#3 zSe3!$%SZgtpL~Zr$vK-&F=WQ&t1B8ipwTvVk+E7i>l z2|-|Ds+Kyd2>K4CQBX8%*71a}=g{dzEYb-t&QAH^fBt&{H>ES|!Sa-<&{SncWDHqe z!0h=eI=;c#%NHoS!goO;3A~+Of1vyQA=)UZi`k}0BrQ6_KGUlysaCWtM4^Xn4BFPl z0EE`;1S6yqP?QOEQ&MPy>1B&G@VS~LG=4_fI-9JwDvA0zt!d&7`xwIF>S97`fMJ9@ zesYRIgQsggc;g-?eTPCDsJz4tZHC<*jUjLXg;F+NuR~|p!89dhT~L;5RO@3C;MkIe ziXw@z9gn)MxpDJ=8^;IOwoO*#1icQHWf67)UVrZnS_oE2Nf-_IZ~pvGDU%Gxu`rdv zPrm;p%Cab{hN_0Ltnpk2$`WC;qcnx18%1q??a`-dY89JUSy7`~vjYG_R` zY_tIagR|2!JhMa4by&|5m4SpMOcdl1$Gh2rFZ@Oc0jK>S}>7C8p`onlsyNTm16JpHP-7=BtFdi3vkRS=Jby z;1?g~oPL}z9EOa?L+0~2MP6fA0r4Ux&rAB-BZ^hZod@?>%rh!`1yZxM6;j6umTj_} zt(c}Z(l!Xglv@u^`1I$WVwwV}6lhJlSdmu=P1VqplCo$~(#8q|x{+i>x-qT<;Mp)+ zXH@wGS)SnelIdiLF4)NRRxhaCF6Z+MuP?EkkV;4}3P$@KrdLlIJOrWiXj7DVvtSA7BZCZWORP@HZ@}xW*Gb@;qU>y5Rh)FWEUV zNLo#n70?u{lXH?p(-?yEa*Auayn1<#BQ=L7$L#bJ)v7?JCQl!|~Z_yYb13_ZESupeBY%ta^CyBuk-Nr>nN{7ZEi!WD3gSL z`LDi1=vfFM2(1uZfIG~{n-y(o5OsZQOLFsMmww;D_jYmmJt|5H-H=rc%JNa3jV@b^ zrll+zEL&hnNtsCc{fM@BL9H|5*^IW$7(_OfHKZvTlGTE)XX808ZL_A+b=cY(AeBL0 z{3d5BV(K%CK-QFH%DkN5TMfOwPre4_Z2G}R;~mO{hb0Vj<1v}7HcV=5(h3_}Nxu6> zzs=0dPr6av}p1B4qL-6``aU=VKCSWaDxhErdUdl z#})VAxx;6V9+RxrtS3{h-96y?jWM?C^1bi>fI&Z|kp;t@5%0YBA-+%qu7e#o6lIF< zdPIT0sb2OZuG!LYMjP#DQSja0{T61a_>X`01HSWzZ}FG^^Z$;teub75f*=3=KjO)X z)wIM?9#*raysDVLSTY*!^SyugDc||S-{RiwYm`RAL4OO=ljM0poSkwoj99E|9LFPX zYG(5lpa1;lj1C8c_JFUw^A;D2Giur8#MqBP-JUrqoOxKsS%X*p8cn!Vb7T^DeAM-!{+y53NP2T#(5z4V~#U2M+Ew}FP^WES1h|pA2MZ)WE z-{Iob61N|cXDz0?q0yMF#4v55&H!P$R2lTV4ncPpLk!8Xg4`M~>cFyS$g4iX-2o^4 zl-ExbX0aeopW?U*K|^gSUQIJvJwxdB*B|J7mSg!nbZ*k3F@&O#EvDl$>PC1AV;7HPU>?_`KDC6oCDw&l^^?GVQaRSi9>L$te1 zQl_kn0w)MLI5=WE2&v18ESuv73M*>q?}kJ}hsIGPwZ)S!zQR)@(i9xGPt#`TCg-=l z`#X58#X8<-dORhe+U)GhIN|KsONv_3i9(vJM7SLqZQx2p$2T~F?euy1>@m~HIhD{v<81u zC3Ri#2$jXg5GR^XhPR3eeN{^G>yBr@MQUE(V7@-%V5-}Me_Ws6@UKU{{dQiB+EJZszyn{Yi}O$ z!AI{S(R9XR{`xQflD)kFUSDAkI(VIsG<(K8eapXlQQqLs>?h zEfM7$t85tbe}lGFE*9XgxLj!}?L!k%3n+{lB{CNAOX@Z!Y}btK3{zx$^5~aHWda6G zl~UCX4?lRo&wlU&%*f!2S3l(NPKRcFfMGyuyEvwYMA9D(FdRi-3p{h18(Te;4RR+U zA?Iv8XYXW(d6u(fZ(~$B>n!IgU2xbBXtJ0jzNBp|(zZZ(Ht{N9mBmy>g0Nu!+7>GC zXsn89HKAx5v?wUiT)%h1Y92G_SX5PxKM07+5>r*|geLv2$GlWXtEI|a9zQMZ7$F$-TR`X)Dd~{+Mfb4rrT#VGvU3ihuTB{uY1xfBk1hdmX<0M<4RH|Nd|3 z^i1x(zRmX7CrPgO`fuN3k|vzJdO;9L_U`PE6EL3^ESF~lZ5P`Lsinqp6^=95l=<5= z>1xfz%NGoL9;VP_x@Hp3**iJm%g0|Z+#M3HOR}UPTdzpcl6O9Q4cXef`Nr3|Tqc+% zq>W^_H=tB5pFKOLXftQ8x{bKTR-eN!ys5FHY%`#{d;>14-fbs{_TH738WO*q02JsvU_L1Pk!({s&>YMdjq7b zDAq0KPtG{Gwu5KcbjN-2Y>lHll#&?Apu6WXyI3<{$JmwTNGM!w5T_nhI>&0R$m12O zb;FlmOlYlw#x*E)h7tBy&Kt(#Atf>8`Zr*TwJM>p)^zNEwpEl#jx+^^w8`6=v*%~r zyMIFY0!-21hYs;7p%bXh+rGL+MUtH(pHUBlbBe8|%pWIr>Ij7 zj`y$~=m$F#W|ym16OlYmb6xbw{?v>cW$9P3(vE0P_&|=%uYGFdk@dC34IqcaIuUA&k3;HoL7@` zoT{a7O4=kQ2s$)|Lut6!%ArhiiX`RvqvtFy7kFj^A-KZk_Te6Z8e&VqY`%xcO#H6m zC%^b9T0n)Q(}mVEsaip@Fp=TL6#4gm{r4p67+dz(8lK<}dN|$)gp1A$8nb4;O7Z;= zlO@u&h&5ci{FI<~#QO3%_wSxyy9(@#)72}y$fSF7$nH2`?|2JoTL`U?R>R}3rbxTX zN8frE+qKxeeZqXUV419uJrmDY%t-m`zy526!vh>6p>bT4yN?PEdHvlTo<9GS@k1A{ zV`I8DH*bx3A{gTWIFENUk4UCpx}Oloe#FCH~efaoy7I zc4=LKiX8GX!>~1Zp}Br?K(%P8OGUC?vNP!Y2LI4ig4x|CEoU28d7~&Akfz3UQ+zid zP%yn*(u9J%ND-~vaJLk!;v96t`LoYirz^VK9bSIwFqxI8flE;=Fr>h01hxop+`&e; z9(e5T_4)hWj%Q(;29~$+Qh8p3G#i3Y zAxIcTTL|IvLK5>pc48OO)qwa_5B8%U7H}yW;RC+>pwK0r8*uy93A&YN?c*CZqz2LUh`SGtX&Pvh zAnMuFO~u~vfEy=AR9Q+TYF1|x%0h4GF1CkqH>I8Jz3Z$?3%hs7j&GsKNotSDY)PeU zgk_?I#!?akiJ@1tCDhAvdgJR*{(sK%|4&lP)Xb8KT4;Rvt1Pr#;CKywpy+i6^neE2SlizVrmCh!gVrsC}MoHH>+h9Qn;ftg@fDd9N4 zvLo)^=uwp|%CWf~XsTTCDqEp!hv6U~3?)%yvUh!tw#hNtn%$cRR7FM}CzvYXKm67I zjc{6$#fmrHdyTzo`-EY{#d*uS58o#0Mc9#pWy3nvbcPY@i<}_pl4VmCS1D8mgQFg< zkSwnjl)|9W22US-Ouy&hngYkS*xu@6v?zv`v;3)N8PnwF&&V0m{^L&4S9v`0VjB(kjL6hnzn;$5IkoSmg0D+`SNKM=W1_ zLD%+iOhI17h;@!M1ify86PZ*=%-shE{N?}h?{I>Ub&^om5*0|WCAR0X5;^FcReFvn z9g@`Hi@!f3(*`>yZ&FM{gx{yC9S(*eTkb9&{LTklzP#Y8c^=ykHr>V0p2k zXbQHkCxnBLCoitJcs1wxTU*4loMgVn^(>a>6_yq#T+#wmKVntEt3{1#d-&#*TGljL z&`L@7^#*N#>3SH_qEcOIV~x=bnJ*g7)89Z==U4`$7nFuaEfkO=8$ntu(QSbrD6(or zX1j#`CN?K2afFFoE*V4?hRpGuj5lr`Q_Te0Y>3N>#)DFr)Nw}t&K~npvB(Psk;juy ze#rK<+pM*L^g4{UM_evjM74q7uWAcZy0le6+FtUbAALodHZ*2|DHnwH5Pc4+jq$xM z9e>D5XN->|B4~)l7Dsz0>>u5ryK6JA*7$=l_wVhJSdx`Cux*1PDG4JBuQTR9{`((L z=NZ{*6JM+ijX-0Tn)z8v-Ag(8nvW6{!qYr^{)pNrI6FJz;P!R$JSX&A-udpkIAP1- z;SkTY_?!RZZ}7uD_ud>)(ICT!Vv!I95yRaZ6po@%FuG>Y-%_|%gYUOcK~okOtwC>a zgfc9IQdr6%uLSQte4jKa8IKNV3`HviQg}T5{1N-dN0_?9Ywv!*_y3>&gw_?V4aF?x z^>^Ol`B_Fm!{XusWt%8dus*vYWJOa7lDy{O{XNV&r;1amDkJQNXwfj4B`k^!o+p(y zr>8$eI7?t$U=UMLfBr zZPz@#D9G}2wuTwgs|4YAAU(W+k7AA#4g$e=yU$mTUNZ1fhMk+g{yY_p@ zMXL)8Dw4Wjb+N)R4YXMyY>8zzgaemG+7v}b=sP6K7z&5FGU@JX`lAM`Goq3HeMoiZQez1e6O14Jiqm;PDFszt(ChT5%M82UvORVwtAeKO zP*@4(R!&i`(Pn_S~T{JGAST@!lBAipgq$kR5_hF}r#} zciYE~Y%DM5op0<@n;J_B@+6^bHSc_Qh~Etm%H!zH7IhtS>+RbF0~b%V93CFByWOYf zIqVz__{rb>1T2Sjm9aDK@_YaCkBPH{lLxn0OjG7@%GH%13=zBiG0A43sEvWko|nQD}-f;pvM@+$N*b*^p0?v?ZP=gra5oV$D`($dfO= zWVjt*L}1z_JNprNF34-x9z{s6q^u@%0+YZ@xpyPr?rlY*W14J^Z79Of$MGVRXJOhJ znvK2Ds48rw2#thBw2XFol$lFx`dE%lV-B%=#YMcJwxHBGuIJ-NTNtvTXln9giY*jQ zy+D}(5*Jt4*quJY1nL44mmm;iS;E!Xf~GBL${bT0w6-E|TC(*DPi`zE!Zk3BlJ`D* z4L|D8>V~*^iDN3-X2J4uj^ApGR&(~^lp?!87$&qWnQm#@ilVIX$0l)J;CmLbE?A{g zR>c%-7;ZO2eG_FkM7=|{_eNB8!;>dZs2YnnTQeMQv2*7pwmqa9E_nT&H!!rI(lyI; zjwMo*CGe~WT^U$Lh1r_;ox!g^&_xxnztv&bRVW(T(ju>YDmJmsUe`m*kRY^~T`no( zmi?n!B#RWSO58Bu`O8O47a8+(i>r7=fBeG&bnat>Vu$oLL*Gs|( zgx4nsEiM-?(0PJkHzbRkf`Z7@yms$CmI;eEVV)=Cm4mJfbh*Y2K{Od1zri z`9REI$Kvp2h}H_*a7pThc|4~ZT9i$Sa<*u*nt%R>A8`BRI<{9~`_(4Fb>i|5-~R!- z$NSiwAqT@PZtiap$v$OalO&rHmlBe0binh8W?iLhT^o@b22yLrV;?u_Z{7-5DaUv2 z(;sXT_J%lZm%cAak~OZiLzA4M>&^ZsY@ctx|A2TN6O0eZ9hdL@=;y49Ifpl{Gae5& z=NAE;zUFIhk9hR+irs#PTPH)ty90z}vzV-S^Sw9lIwLAkF&vGNRgD+)P_~N^l{CU4 z>K!v%w=|}S*&h(cDbmP!{K@Ckw8ZI(LN+Xt3O{H#{q&Mf&I3Qxd$#G4qEZjijm=eoY7^Y9zR9OB6qRr_DK}&(>1q^rhxIDWgXGNi= z*fOP68RIb&#ga}(v97MTm^{W2DO(498WCf90Z8Dh(pBF(WPm&?VBtCvf%%%Twqh4GJEo?qeqil!=L%y!>I&rj*N zl73%OsfMe`?AIS?Lt30)8fbbnLShRCSqTE$L`y~PZk)VMRN{|3oJi6N2h*IA%;&6f z8_!o*UVwB0Xd}`ogr3A#6+`zP&!0EswZc+Ms8+O9i4z5kdXjttqCNY<^##j^!& z7_nN$_<@B^p0i#h^moR%gC34&AT66tr$@Y6qFjeUIHYAvGXIK;v!|H8&66iTqctm( zXVDgt#d$(yR($@+3sfgU1`?wyxqkg2p})bzn!e=8iv_iWy3yDM5Ej^-mbh4Bg$~0Y zAO$X_1?yC!wZ-X+D{ND8c=sAlzWNeWLn|$Yy)EXsPnxU{qM=!5+`4m*by0A5W1pg& z5OzI!UYDk+5oUp7InbUnTgAky7TsJjyLyge`INLcO7ZE(zhJglq0i<~g*psgj(rq7tibJE5o)f$yI?CcKld`Y4k0z*+r6H~T?o=Z~XT)y~{WbuTe zTq9J8ayFiAOdIIZ@jMKpB?=YFwa80@v(lufQ(XJ+>yf7hy{>`Ln#Ajh%hOXt8nBL27V(tR=_B@T-^6T}*xit%hMnUr zs(j9!2d|-=fWdf=R+!Y4OP)UgHAfdFy0Ly`-q@HuWV+E0)lI?P&Tm5fG%Y4^!E(OB zG!;!%LTjUIfn^$4ZiA;%EYqhca}*7qKmI4y>y)PPuuTKkZ!o<+Wj;f=Jz6}Tzf9?O z9G-qT#Tpn$HKeXGF0QV)SS~4Lm)h81cxG4Ugl>Z$nwX74uiwYEOtdgruVArGNb;64 zmAD=lW=o}AJa3F{HlY3M$3t%48`0@SNSWbvBb2oy6KhHxpllQA`h+_^gZ>y#DMBY; zHd~=gP`<<;_LwhgqJ9V2!Xiz`43E65kisReOQyO-ppdxGQXPev!8y9<9nn=MVjRpt%D^b9j{N3NV>j@{FN26$}^-R zFxqN!_ZJaV4R0JBptFkOoeoW{na*SG-@S%IOJEK0Ea(K1woDNM;#82P&&V$>X=F`R z)mTn|Z8fZSX^M!tOkT~P?O_Xtys0V59M1~yqL9LD(88fC zAYazBr9o$~jcEvUvc|C7O*=`ih&n!by(TX+wAMWP^e6PXA%{l;Mx8Cn7>vNCq9o5| zNF!pj6JqEX*RfcxrYxo@559hlI9XAYnpkY`LrGdwtCAMjJGq8cTPVX}ohNj+wy>>| z#(=D#4=ry zV&f1WZ*?%RSWOlrWlG&N7@{UyUNG9*rL#4}FeP;(h`gIfH(|YAQx_$=mP{uTs=B52 zO8ib2ONF?u{p%03mOac?a`VP6zHQLjEm7!GRTWvCQ`a?By+#-=whn08jJhrvg&u>T zM>nuYlbWCdwN+rKj8Y^-a!MFPBq}4p#B5eLc0y}pSi=FWFhB+bT_4lY)D>8wWi;xM z#jmjJjbk}BE2KXn=(#-k>2s1~O4}}}^K7$o878i|>2F6-1TvtJHZ&oIC6FpWG$zZY zp~@@h?NJyNwxO^LhisM6*d~G%E;&_FP#A)?F)3=rVx3@_lHr!d^dwey7u)yf4tDWe z7uteBzs9KN%#sBe1r;e;S6GgsGBTP-;)fnH3ST*C-PIE6v0 zD&n-D(;f1)4?jX0J)CZYUO%V8VX!+SZyWMyjcIR@nOij8A!(IiVB`0CIHAUIEgUPw zu2Xz(i1c^4dOoGC6-8nZ$2F)veD?iMu*NNUwc^=D!{u2?22GH!Z7^K49Ve5H_K8iJFcCJ)70G+DbP)S zd{^Cc85Bi}7HyEku`O8=@8odEF0@Yn*#ir!hU%zNVHPWwpcceO6D7k;0NTl3sOe@BiXxxuVFngd-nUdsMcd zYHD;aVtsoWN*@sZ5vKL1WrObobVlOzip6M7zIkACzef5VI-ZfG1>0?a z9J%cCjL`G(!gER^*`z6rdx9)_s>U##Xo@srwK&ByF4r$!vs|6v=?K&2NDfs=Vdx#& zK?02%#3bv2bi2We0_M}0AoOTk%Vw7%J&$_-9#L7E#v>eQMC@XNkntoW+ieL-my^{D zyq2jyVt)D+Z3oG^MYug*pPlpR?LWAp!}lt_e{*@b9C8HveZywGCz`ErJj-G}=EMCh znJw6scSLH$w=bVlNX5tG6G{u3%`Jcb`W6*RiZnTNsp*)G1wtugBrz1!-5Ji}f@*tD zSKJ|GLwGd7R|aJ*;cSefLP9mhbu^vokvgKz?|A?FpIp7ZVmetMq~`c&!fg41o6S3B z@g>PtF?ls3dO7Fv&5!){$2;m`OLbTC&8uhp^3%^;o<9TEr^@d*I}MqPV=h)l%w&%5 zlvq2W?xs|!W_0Qw%J*Hx>Dhwi^B=J46w%(YO>STsV3na0fTItE848SQIlG+GRs!&8 zh2|zRr1c&>iZL{_O-a)Bm}-wwB__#f9f8xwIDqR(JkO`=8`|E%c9N%8*VI);vA(CM zC9djuxXnKsXwmndU-ljh249ZV{|1^mxhCmZQIF>(Q(qTZQHh!?$|avHtvl(w$riQvF&8?{g^c~|E5;ql-8;` ztIn>ypZASaQjkP~$Ao*KgUJ7CAHqU^t+k*9V!t-uTt%eSV813mShI+) zeK;p6ZC5Zb1oZzb;IkV6Z(j$w-Nd!rR2?ncJdItQ$q$#}iNNjoOVp!>7 zDI}i$Oyg;}$2*k;ef>546NfhOA&;r+ew@S=Mp;HkYzdXu0O8*^77}^f&I)2fpKslt zp9okY+w`@&|9c)rd)ab>`M<|Lg`A-T>;CU$*qYn7|NB1r0K5O!MaDws{RiD2*}aBS zfA`4bsLQW2uKvM^p~Xm)9~%5h7VX=3{9Q{Xt>q|0EUI7B^$=Z-v(@w2*&Q53E~4Di zA3h5m#9H4%Q`edPXvt0s|7<6iKAl66f@Q-I5s z3`A^hQP#nzgwGR9o&K>JX)2|<;;7wsaZyUrPevKp$d^0z(Eq!U0D=Pv5qdT}8ezos zINH?+@njpUb|YktqR)ovm0u_vAS&=kF2=f3^Swl9@z>()QYU2J90lI+4DS7cA*C9X z-(@@;&9D+?`RUTm3wy}-Zie@1*ZEw_-``2s{c*4nMDoUsbr4z{M!EBIdd$fE4VX%V zHpd&NBJcWrBTVNN{S02bKACcI?VCXwLw{iS&FccJxn;;IaKu|s$qySg7 z?iTCrN;AJA*!wdODosc~4O@Uruhlp6NS_Dq2$Peo_wbA#zgD->O_9Lk;!A1($aex!Gbk}k zh*VpD%`MR71xYABXZ@HTrj1?*%YM(cqxrL*y#ZBl&55&5)sSeb!63Tz0Q(ISz6Q}7 zRD2z`EH+UE1t!RywSBZk94Q?kF9-W`OcRWf`p56D_PMR!72uSx1XEn~Z@f=2^`MRH zKD~_Q?yq5(a25C}fCNE~XY01Kz09$UpA#i@FMTvkz0Hk#w!E9068^(|DEx)y8fp6|bq{~Qd-=2mP<~$~PGh(_ zi?9mtZq?%f9NgPCh4^Wn>-zVPgpI0#W*KH}fz_jR%7iZL&)HPk5-GX9%27J~Pz2;E zKtp8x*w@3+PI|P*Du<2Ri~%nWMC0`7LPapFWra>Kjw4o=0H;)`bt44Nv14-W4vGxH zDp5mA^IboFx6X9Oq2zfB7*5NYpyzlZ?vY9031$fi(+!g17bw$~tn$DQP?uW4`*8JB z_*dzLYCu;ZRU}>;w*3UfT?EV;XM-HR=d|eAiH0dvNS?AM6&qQi*^Q94G zxB{kp)pyU5phzyV!uC&og zL(+W@u`P@n!RnvCDIxH;A$eL1 z<}p8)CYLwk@O_V{$=f$m22~SI%b^DxykLjAzRd(9Olcx{?>|M_3gqRQyM+D4oiZ{L*c^JlA4CLHd-K<{PB4fBDPyDkin-1`57~O%f$Im5Mq$;zfCR= zH4r0VtJG(r(Aq&-tx?`99Q11jB2O4hOBLe)$7OG86+H+Q;*@<{$GRJeUXB_9J12NQ zsh(cRS&Wv!@0^9`>P%RX5Fx`F-`bUH4GbgUvuX1TW&1`2%mPNODa~V7Yn3p*q_Z@! znb*nHg?zZSDQGwTk|L^@WD^0E5&k*dJOou~6Ri?H)jT9R8tL!)294h*AH;x8Pi3Az z@-Ai?f?5`w5mAgV0e1i_b4S!FUywR7bN5e~S0^74ZeFp@H+;Q7=o5JNL!Q3)O$cFo z`_T+unpYcqy!g^YLC@O-@DpxqrOK2Tb?vdOO~;^C*KF~SCj0Cxmh4f#7WucH!F7#?zdbXzO+Kv7A@xQ^T2c4m2id%fB9mH>gJqU1?Mg@T2VXlmu5xbpeC?Y;c8PnU4EEONPNR0 zCAlO3_6*FP%O1VA_*g-0 z1t#6TImnztyuQQM7%4Bk?dIC^|MXUO?aW8Rn>?(=>2OcEO>TjSF_E3tG5C{q4ReY0 z&B!tX7H8q2#d&sm6)I|VhFj6joUlpbD-0iZqy%6C-&cSi-;N&6{U@J=&E|bNm~X;5 zFv0Q$A-MLN64z{waV=cu8U?QOBULdq>%@0YNL`Z93?0MuEt8i z-qNu4A0?4@Ed&&(8cr+;{x+QfhE2nB;EcOko81ATU}oy}TJ0P9;CbrfZw{A*L%QWl zT{5(qPVd@xO}a+pB7&k+0wVf-wuWN%m%TNI%0)y}-*3g$-jKe!QcfU_Tj|5Jg zS|hKzx2*PTrvx-)9~4$2~~vZuK@VasL*QKJ~m*zQu@Rt@qAx-69Wu>s_E4;+z@l?|SR-rf1V}&2{bVjcoRTA>N?X>Yu9T1oX^jMsxF4=2G@iw-7=4SMvel)u!mlVAYNVWZ&?a?Z07N zoxf&IT6N^C)t=|8XV#a3`!v(^uyCA}`p$P*5GqQ^hbgDcV$qhA>y2^~7bzhYk|oBC z$U*lY6dm#ySxPqhwD2@e*B%x~N5fZ#WkMU4vM{u=IN0YbpqxBgB9vLK=OJU(R#MgDZh~9{b0R zUwtpLhQ4wrQ6fwkJ8>v%$XB9*3KZ61&26ZL3w4_c);Q!#ZhJf!X1>pDm~w|9tL$r1 zrKKL%VRuxP)?qbbB5KCrjNousa>f_UF+O(t#7_gv%1%Zs!ZJU{qYMLZ4QQxx=1JL> ziuYG0xjy(Auw4uf$gs-+tczDjhA?9-)t~PLtA>iOQey8$pM`}QiW9X#dFB+4S<6xc z<71{VL$sl{Kl{B0tDWRj#LfP7YSxT z|4R0JghUy{%{YTcl9u9DfJS9F*F&*_dtw>god7aW*!3afRzM@E{m=bExA`dyZM<=V zV(Fp`^Obt7h4u9d$iJ;Um3Cm`9d7&`faMc$y_X>6zK6wFnnOINMhbB{zHt2y{Qm$`QWvQ+1fK)HUC`jbD$oac6v|*OfcD}(v z_=?!mFNzI5SIlM3Q^Dbdk%iQ-XY_Z+qjPCP<+l_s=JQ&3X#`I@U0B+hP`I<%2;orz< zxa092LMkA^vx(R<%*(HFfn7n(!|_nx(x@sAdwjifOGDoMTki>XHb}-AVkOAUBTV{^ zSu2;qm%2h$JHe&H*s%2|ZjH#D*oMgRG1AgmaDy8P7&$m81v1WxYBzp%o+{NA0Jd-B zhRiO7wT{Cd_gneu`3XI`qu8*$k;B6w#$bXcy=bXEeVO;p1bSaTY0C9#{w*7Uv_^nP zxR+DO?P0Cvaj}VyukVx3v(l6={?FBrZ_aXVpj7*m{jiPmsfM`N3oy?)*zCIRRjt!1 zZlq$i(y};RJs67>$3S^Q&+j+L5nA?t8I9b#emg-m)s42_wa-3nOUuVdDEmt8$QZ-v zg3Wn_D?{TDR?16077@dX??W9~6=}Ccjk#AmT1`5o)l$xqD4suNs)H1Z18lR>Qr*7s zhw7q<6gd0@p*RR&6FDKATh_i$SgrlCH?|K?3~EsyPlCt2J=*@a+(P#tpwC1MImIMr)&}?W=&zS+Oty|NLoZfQl!Lg#wBI zUUM*^>dNmy&Q%_ioBy>N=CBdp;{r2M=8#LrisYOahgPTWKmpQLe|w@{tY2uc+TMAN z8iIL{giA&Est7bvO{?;iIEYCwLF%ChXzJ$~W^~CDPTW=HIg(A=jIl`Sd!dte;F>%K z;&Y|hNbdv9!ix<6fpHO)fp;-2{lj2F*K=nk7CDLwJDRgQMnxQ?%l!FoMYOrY?Fx%K z$HQT3e0ZMJaDi97DF!A-RAIS!B{qlaa&zZ<)L@W! zkEpz!(BzEd46;law7Ul!jz)_s|8!biKad&E8Cx_deNo&M@@p?m9PiZi#D%!uJ*MY1-8zwI4%W{zR4VSi?a3bO>g6yfx&GK8f$T)m)dJ1r5on zK@*~NEi1!*Oy?dk)lCGYAk&OBSL}po4TjbL|NgjuA(0{{(jF;EFMGb#w7P{My7ODdx(|cw+u~SB(91a=K;dG472DsWjBqKdVGw zLMiHPLaYhJf;mZR{F)Y3!$`l2RUtBY>0OS7$E%#bsiXHA?c%E?!$e)RYB2kEB!B z28eB8Eu+a&WifGz_jpL+?CXROgkt%q&Be2Jj4kLD@VZG-kh;sf`D~qsxBd^9<6`TC z@T(7frUf$VZ#|Zy>N7eCzhbm1zM<(_W3%lKP<<~OPKEqh<4ag4CiR?&dx&)%LlK92 zf<150rnR>9bfkjFjt*Q{@sw?j=NBun*09~KYBDI>3TAK~;kTihC{=b@L-S}d&spoD zrHalhH($yoea98^XUl#+?b7>*mBh!hsmZuAMV4UISfYjM98uzxrXXNMkg@$oy#@ZO z(Y(c^=4-4PV_ze9Hn(=BUQMEuR#%3Bw0j?V6A(zGOpVd>6VyBjtzXE{uWXTYgEImE z0Gc4>sA%)pnJ8m?xa}V*8}hH&HcjM@Kj)hfGjRkgH(-O#OxjaIM@XAa@6H{BOfhZyp_Y%@Y8F^u*#(A(LheKRy`EQW?-vyE5B1dq1He@c^7OXzt)r^n+cYlE41 zBgmfkc+k6&2=hs1~ccfQb;5K2HDADM1tE~(Jur6bdES_J} zQL)H_*+tIu=|Rj#>IIsgUy+%p`^ISGOjL0atd?y4xjq@p5=T2KDI~ZDw+Llfn!bF* zqt5TrdULzt$%NJA#+8!c7*}#87j9&4AS5(;6w7b3pa9uHj>%EJ^y3)*@c*z45qdh8 zuk4ufrEdbqGJlp{tfb{ym95#o42G0;W}q6%;lL1H%ZxTEVpzaeP=NLIE#M5`mAt%! zuO~+20uaLXEcmzrf`4YH8X;AyTLO>$C%E@=?D%ZlQ|A!yz8`X(<=Xe!fB z{=naPBHIby3b$Pf`N63OyYxscvWF9xPYfrfW2ig^WvR!C`rw#M#_7L){rMXA)YXbl!f zt<_w%50ws0o*I%?m|aBat4n&9hL-4x+PU=|H7LwevtR}gEMI-e@xeXL@F5s4A{sAs{ zwY&dGj9WY?9r~kTNc%EL&B0NtP4JrwP;1zYqt~m@*smNQX2C9T9YN5k>vws^hgc}s zFSY!>w?NiZS3d@{!X{*j_xijM?Ye)03^*^zH>24wUitUd`DbhIVH=OBif+sAQ*{`=Hgi(;B@lx%J5^o4)r+V-7fwIKPe|2&OTn|c|-OEdqfz=@11IHb6lhf|H(@2 z2A9FCh4YoX5zLf6lclT$t>II(E-Tjkb?Xia2k@2|=qkXtMdVD{5Fa{4L6Zwstm74< zuKuge>>lqbZqlmv2{uXY0SHc>LDtE(XT>_n|B9o_feIU~LRzY+#EmLadXX(=TEz~@ zBroSMMrFLvi56;ao^6y;y>@1O^IUm8&zk8V$C;TrnxlWfi9cOj)WEmP!*axR&Htm$ zQ<089QW=3oTVwWuGJ6(z+# zhp@K?zVI^?#yb1>^4!CkBD(YvmcDfHNl6^4M}@SvqfH*m+w(ksLv z>zx$t*cIZkb%C7g2bBDTbmrepyKT8K0H#*K808*?tgF?jh|~9&RbS!>R}WB#`X0Bw z2LFtVTSbG#A4?wVLr}gJQyNw00B`|B3su#gYBCS}TTP(IjMjPRV7NSHzG4)MZJMcJ zMWyrixsn=~HLNqrrBgR4!r9jvou`J4^L@1~r>;-Oc74(pJrd74w9F$fK94D)W+yY3 z_$#lgbD2Pp+!K1AInPHH)YUJ@vO~jm1*g(RIkD+~asU1@BjxZ>mD-x_DMd&Mq#rsan#HSyB0i z0a}htarp;W8kC))$BHccz4Qtg?9mxmB`ZN%N3A%vag3V&6QacM*`P!Wzl612 z)g#Ah!LPn=;1K$i{tK9Q6tN4e4N;@nR7_qz%_y|+Enj2>aqq{t2iJ|iIh|kIW{b$| zL+qu>7M1)s`Vg;#w){Q=W|lbnFn#pmjllwJ!Es~yi>Z!eO=D}hZmy9@Qd-l*h@8ac zKYJhTmM{wN(!9UF%xAvHeu0BFXS{OS(04UP)k@_8dp-+$n~Bu3;x)zyoWBnkx^;7n zV5iZ1h6i5mtsYH627xs*)Ph!Q}9Ni+c{Ix%#CMFJdb*`3P*{e&f+qe>WM#i2DZjrx#kTWo2waSpKxF2QFp<{Q66 zaaD{D!1Suf7RsCA*g*n`^sR+ZPwh}sP29Vw^=<8`f?uLqrxb@v?#CSn^Ia=IsKqz! zw&S-;UT&9(vO5rog*HYb#y81FKZR4fT3Q!UabEz1Nv5k_XxENR;XslGp?R3DVZqj; z>T8%`W4UKzYsyS8RB@euDL#5k4AlP4vyP99pguI~$^Hr!qr`=O=Kaqd#n*WO_;CG} zNa`5n1jZ97t53d?6(uAD%|2;M9yx$8i)T63$p5tgZe4Sg;M7n7pF zeSu^sb!^>&-*)@(@5}Yo{9l966q7xUYVvKI`NFiZ(1t(oIn@6m|IkcB@6k~}|7s(? zbba-F&u@F@IH|*KdFv8HYqJ@^4;d2rwtbv5Za&x>3+H~G!N?F7j}y}Z{dV-h1JWM- z!Y`e<#L{L@yEUx$X@}LQY1a}$Uo2*Ss#Q^$&*;ZFWD^P^hNuC8tZl3n*B4=3h>oZ! zw1M#6Uz8|(t}MO&nG3MUfJew%f}ob{j4-hKq9T?VEaSG-%9I+QO2S+9PA+WsT3-?f zbH>~B!R-#P=T2i0J1oURaB{1T13Lqk2EYnINlmF*GF6!Q%2!R7Yy3+kL6ZP(zMJ-o zsu&oIA$5Ki=Anrxa}6o#m$&}i-ydsCBP|whU1No+o0}(@B+K;QUVzn&;9l$<-$2Te z@L4lZe4+407e&GO4Z7jt5pv3u1%y%u4$Exb%$Sa|nk1Sr@4Fa%F6ECUPKQNcI+1VI zAwja-AH(jE8J+$QK^t33NH0rvx=%MB`anv!t}fPE`!PiJ>pi!UKf15jj60Ct z$xdEeLsszU&x;DbA?JlQDsq3os#kw&%p-OTva}>Ty~}GBh-G3DGbHE>tGJkub!WUy zpd=`5b>FONg^DFv`sv}SoCb{N->NSQ{+W|LUUF8(4!{%T?oPO^(k+;)rENrI3lSQ&NcED+N2foxIrNqrI@24 zEh;=}QVae30cvUyEmURIdd`v@hatRk*#2c|F#Yt$^ONN&%aDn@8@LBo z#NkvdgL2=yPPCFZtjg+CZuj6o0Y)s_KsOvXQ9q7<(TQ?h$k-XgVLEljeSh8udu=WN zyz|tnhO19kdFDQ+1l%@n;*cAKQTmU*O-+FBN?(Gg%e@?2@0f}e*s?B}F$ z81`2r<=JCNDoy|=A)<48Bw;O%{^S?-Z{KHGl@MAT07ne&RMD&bAI&eJy%u? zIv_vv><*mRH}8F?VW&<`2{6(Ahh-RejvqaH{m_pPGXuaG%yR#DtAQi-I=oI{?hc6c zyfnPJJN|XNk`n$XGsI`w>?s+7>h=1U<#@QGKKr^R-1PwlZI9a`MaN)^s38~g-$F`m z*S_6~lXl~aZc%y8p`SL!FWkS?iA4T$u9XMm7}&PAoCjA_aE* zl?j7kMb7faN>tmS;D z9^rJ6SkJ?h7^Z7wgJr>rC6t5y=cPy2B4AWOGDwmk;V5FCUQW4JGydSjy1M0~*k%H1 z%h;%uNc2(HG?EZ%>QyL{uFmY2XZ?0E_%is$1B*KR6c=!NEK9w`Rorc6Wjx zCqK%qN8_S~>dM#vrK%=Z-C(f9Ti4}HYxnTMq3zic+gE>M#y>YwGLbuFm0S|IsB`i# zzysHnKpMt+v=atH(erg-d;Mh00InntJ&N{86S!bpEX$C+*VzLXI-@uUEd%Qd9H?Jm?umcr8uEmsBRae0$~<_Ayf2udP}BD>&oYQ^=R&st zX=i_0lnb@g-8NqduyeW<1QN}VHHWN}(HfXqUdRMNL*mu(4;#vrEZTlItcl~AN2-+l zO#q_1oll*-2|yy};ZAt806oypn9#4SrK-BxraJ|6ftUZ40n?%8n%=+c6)r}9@3LDe zIXExNfBCGHI5Z#`Hf0(c$7YG*e>LzKau)Z zjz6+UEyxyrDISM|t^dLjNN?g4$-aNkv6i^D(r0IzHQpd5Ehyt0aqF3YVKsG!#;YoE zI96z%l-)~@aFZ*X(?~v{^Z&64(B_g=h-R;Dj@e};nGoy=6}Dj{$;oqV)B`4)=S*Y2 zc?LdZzn#~;b1J0C<`F4c;Y&_S@aG8ZdwEaQ%y0%A98|sS1h;s-UWnePODm@gI1kvh zoB8?dw~lX3s0P{kun zO?Wtr%XsX?+TH{tFIl8}c1Sc!1u&`o4N*e%hXyad{i&;q$82ZWam!IgVq1+)b4SbB z;h%${J88S*q=Gm(sM%F|# z7GLiV>=w}gKt^(bJ4`x8<>vW<)S`^J`YhcMxfOuF$vd`mkXCz^{HTIf=uEt31BYRY zdtYF~uXu=+JOTV(FQ=)(H1;JLH_c^N6);S@EY-dp2Q{>B5kUuFf%yhCphm^4(_@7!`6c= zO8ccTm^bygkbQp&hP-lsq;I00uvFPC`)*}x_5kbNL>K?9@D@}P{Lu>o!DduM z7GpXOnwF_-0sQ+@BTdQgO%6sIXY7k|-&R-X&?W43>3em-w=G~{OWRY%XdA-X7o`1% zwbd&=pSeU%QS*jYI%FYRLAk|2cII|bxTLw6YB114f}2NM7FkYlx#KV1?_I47Ra3D! z@7p-U!@~e%yS029C=E);ojW)=MPp!iB}2uzyB7(xX=V3kd_+&wa!Z4Bo3Upg4R?B8C2iOu>`g+)RFttoVAR5G1kUB5PC^S*%Kh z{Br|`y`@y9rmM4KzYfeQ2+yBka79SFeBD{upuXDG1fzk-5tMv}o*8nxn?f@#DohEP zog|1xPwS#_L|XBt@TvWrWpLW}Sc9<%6Mmaz%ung)!Vh0mGLiCVVxyBf_!7PxFu}7? z^2pABe5uTDLbFlwz**#lu!e7zR-?AvyDNBUxVhhZ1~)D5pxplD`|;!UAGzxRIo~pyWX^yy2Wk1Et1@_GYca0 z*yY`xxh`c+r*(Kca_Misdd*~QJ`n3$D?LX;q+oK^H0pNrcj*7sd*kDOKK= zAG6Wx0$HvuIxM&&o);ZnM5e_9s~5eY%JH@65;^u2hO=e>Yg(nMN+lCcm$_>-A>+g#?1F!HS~-31@`63-=(Q@j0ge0%^w58oE0pt#T1Nxbuh zxj@i!oLC(D`Ig^g^q}6?`3OrQkm6>m*yaBzh;o<{t*hCnP#YhDbGpElT{x9SOQikPX47$2u_`dfxFWO6PxfL~P81 zL;ALB8}hi7hH*86SLUhM=B>|>cb}~Kwn1|Q2%|w!V(x%HEGus(?|44^=O{$(>m%cu zX$lSZ+hh4$(6h@qb~iV?n0W)W^yUV=sT0!iE#^oX#X;I%Su+@=k9QF7})5?m1@ZRX?5%`CcCs}Hm<*t;KkVi78${E8oHaQY-ym3)?GHs7}N z+WZ-LBe~}_aNbKabRFU?knAEpQx6s2=fw59mmKO8DVKp)hrm=#SD0uZ^ITsm-7<+y zFwK}l?+?iTikl1h0-9#R&UZpT(JyG)vAb8?eToGi{WzpUdpp=vXF5WzPuqJ;I$)yE z;3}TPFJ99#Z)bBKGA#c3Fc8DbU1~*N* zo=?Z8hP$27zWnSR5+lr2X4#%T}JUmc_Wc@gyq@ zPmWf+^f3h&S!HjUIg+&rqD_d#AxarrD5G&f0X1ubK^YNdel(-lUpXU~FgLKrwaC&N z=to|Xv-(n(DZdnY`V;%AHiI(xzV9Ch^G{L8S}^gV9IFni<0+E@+xVznp2!|Qzy9Kv zX6^h>nck#@vY+%eIY${{zZYgN^&KjOST<5x~38SKyLD8IrH7Ma$fvilM`85EVNp-=~bRPkq*}u zGvSOyNQpJ|O;F;Qu1uq$!Yhf0IVi~`o{mXwj?pyI;GW6UiFMf6kmGGDgHJ@e7M%=y<&0E58>aiV#cGR!&{+?t*z=1}psh+)><;@g^vW!XlHTm(G|}?p*9)!|z?JtuM4J>zhIf3-N1nUg^GLJ6T}H$nz6^di{iX zTip_|C$f{F!lS5IT#@^zwVf~MHnvJs5$26u1mvCwAARvJel*p;^yxG_>gRjBe`pBY zB}zL5jJ-QC^bZcZqApZUi|kWk3%-k4Lw=L4`xB-Ffb;w$JW%bs#+Y{kR9vAJZ|?WM zI(bX``6JwGe()X#zHTK4-ZD-o-PJoNyS#nSy*`s9f0P8Ru7oqc1L#lpKF)~aKaK^O z>+V^DL+(xulic22q+!85d4@^4#qUCw3WPAtq_hpqJ=2;_>s33SYxsI6=Q+=pwFl)IOmW>nH^t`6Nv`(Y%GH$Z_FIUZ zW7B5`O=4TcsMFgGN4TEz14~=kV$u!M@6*$8>FMP&Qn<&{M(g-*n*-LjQw4~rBQ-e%IfKkHU$*eIN{)9HEdM-RU~oE z%l)YK!&jk(#;|HO=YFFmtb;GEE_JZ@Bra19@M`njQ4l3(#jI-Pq+8gjszOb_N-XjHWrBf}*h4=9;MxhRWvH%@ z0y>z~Jks7s9q=NSGSmI?3_8sGDZIr-cX zD~rrA(l#fZNFY$AHy98OBSEhm}a{W$7}*9B#m61 zY4okpBt^!pqU#v?drTngfyWBz>#{X!=xvQHlZX*c(Mwe9ThSxF7L$O4)+eUBX(t@t zh8*8yg%F2HJ|xOzTe*LdZ}C6+3gQU=J;v+ADUxJf<1e9&QmXSqwn%q+62=v^9pv%% zqpa2%j@joiZW9sjtE@~nNcEp&`axzd?@^3=;1~DuVi=^^{Vnk3HKb(=6X&(p-8*Y` zCOEdYL>5Ys`lj8N>D4AwsGD*gS>UKi;&;OtObDZZAH;3NJdA+QT1FP{p?jIW8!{(h zpW-|Ex*ziU8$r1psrU`(qkSH;mbw~ym$D`8YC|aGI?al1`or;J6CeS+QDK<4ku2zWp6ei(cD*-}rE|~`C7f`-jZAR#cn2@N?DQHYp zO9!JypFT9-#g9(LohgHQ4V>fT&74(^=;G5K>Bx;xXfp2dv83nC$#ah7--C6EWs(#b z??S4AKK+ZXq0r1$7WL5K2il9{CxiqAofATA+2$tMnomp=1YUQ%gh`Go zp^{O@+uY~g=kR4jAj_IT{k!g-nOIU;MrgMFE?sbDkuQEHF19tFLhma;+Z^8^+4;96 zCVONkL?NKqL{mxJML@u6qy!X&ed)KbRDgZ#At$ASx#;4ZxhY7h3>&0_3`%0 zDN(GBS{+~Y1zB$E8vCvu@K-;8k_jGv`i=z=BXFoeF0;5-F8N4@NjhzUqhRhAf_S1A zW!vfLK9Y_@bmbhXpcU~R{wx#{5U%qnL&0sJX49T6_qqvYtMEeOSX{KdHw5M#*?f3M zqOAY1cFVYPV^@>;9TV47gWjI0w#D1=6%EDl(uqG0wG7WYW7fcq?I`|Oj4bg>&yQss zGmj76V2Ye#kq^#Qh|l$(;b17??rxAvDVZM=Or|vMlJbCb`ohMKdgN@*lnDXL($U8^=C9N_N&d&YU^cHUEQhVdQ1*Bh5BpLYZdmh z>|ZUI@+;csXjP|MWmsMB%VH7eD4g<-yLMEipGM9FnVL1M!nz&Ve5u%CO^Z53AQ44Rw?^3o@q#ck z#9Cun$c(T{?U6E#bL0q-0{X`Y@h{Hujm|hJv51>+sF=iMHNG&0cJ%44 z4O)KsVA|2c!uviJ*gu`;cw3VF8q*g8v^2$wvKT#hxJbz6gVc_|1V-xxn@3$d(M(N$ z>I&772zX4Z%#c$<={j3V!cUKeoOwm?FiI4`=3101yH-F^67}Fg!4-Z9&Hj*hL zM=tX~_y`}ttb#pE*Af;CEG^=VOKCKY!K)Cm;>e7wQfna{+3)sIsabJOms>qv$G3&Y zITtuOG5oeh`nu*;RVNO{JM6n#6aa5Z7cjwx6aL5WA0{QA%2tAHlGUp!m*zyLaKD`IjA6l(ag=c^w-XUEc zRqa*t){qjkCyeK)o6IQvw4741cA{+pme+&zY$7ERR)sW_Sf|-bs6@RK)o4+sgHxq> z4!$-JknhYa-yf2*;+sc_;So%vpgA>_QKlLhB;t&FhG9Y0Zzd&#fAwQ^uJCgX9^Dyz=)Dr__SkX&XXsN%mBX$WiMJbIE6y764P9a z65#S*UOMDX1{iqqqr#FG>5;jU991lf!6D^YIuLZV-#7Oy^OPlbx(ERzt>P z*HZ2O1++j*zgN?oZOb%>k{r9}fG$-9iBz&J9v=@RiZafKlALDQq2`&GhT>=t;n{*O zT55PyT$74pvpY=4wPvp`PVSvSOqAq2vtGkC75~SZ+f+T9X364sk}^(G4#p9aB$w}g zz%&i|lbCkZp25r=%fvKA6WXqO(#t>QK*Ugpa-CC6YA z=hQsG26dyDrQ9P)>fD2uPkw++vUO5 z0jJKk84W}F{g9(k%;V0OqhUmpWITIinb(3V^mh+oa6tL=MMj5R7#uJ;cDQkPNPTsM zYNO1RD=XNR!8iWw2QWCm^;bE2zFk-mVk#9E$1!O&d_3D^FbGK#nJ%>JKEp7j<%^li zw`0x~WlFPb^I~m|gMP?&vW__03xL1YvVhQ95{AZcMlX=>vM|YrW|F-R;i_a*4&VlGR4MWm>ihOgU{GstGNC#0Vfxj;_Q@uFLJk=pDnrm}{PNFad@`^fb-LG*M^If$gBXMqrB`I@+I@I&VKPFSXe^;%{Phn`?zOU#7VC;>c%^y{R!UXP1NP9(xpxl zbg}Z&VR2llO>oPS9lv>5p!3~Bbm#EI**?vv&&9z?qao%k%R-r{V5!_k&qv zn0=H|jFSnIbd0GiJWG&Axz3sQ=5b7it-%(1ZhCssq;kjNrH4jrZXB& zlPHha4YpbE7Eve;!aWA@0N?UC3=a9AbDMA6zsYD4a-(v@b4#met@*t-zsqDC@~ba> zf>$5kr&X`;M_>Ie_x6r>`P?aXM~8fN^EvJuKjg)qKhJ;tJHJb0C+ytZg{qC^+E|v! zjkmV=t$*@sys`U`t%D;>)8x6U=lQ|6-{+N|ehPpuzwr)Xl(4W+=dfC0p%Ml!K2{;JEKD;X@F}w90grW!(!f>W5HXbY*(o{4WcY!m<$Nh6FzIMGdW*H zF3o-N{aIj+0r@KONnhhIDJE#DytsA<9nP^T%b|9z^U9q^K?xkK0qMLQ;YgOJnnC042~u4zzrY&=_z)hJA9Ro$5;bDCD$_vx zHJ6HK6QvowFyqC|3Jbo+@4dClelOtCN{uWR7HF8|)Eux4MWbeOZo#AMn7nqcPnb;g zzmm|iHdn^A4elR|=#C;b<|}k3DM6B>HC$b*pp@cXCzKAasb+ccwqwTP08w|DxSYLYk(PoRwr&;eE~WS8CmEJ0v7{>v zkE2n7SSl1rB0A43mmmQrGtnBB>mK7cBTgm8bg5aIQ3k?-^?I&e;agih3l+Dto;xxsvBxS4OS@@2{Fic3Yk4`xH=&}2)AN-bna91>Qh9S74 zsqw?MPht)~Y#MQ0>3p6(k6PS-oqKTqt~@S|QRQ-BFp5ree|e4`4pDP+Gfn5L>sdrM zs(J&KRt2Qq>&d7+&*i;ojapoivAN?22Xr(P1Js8B@2-2IADn{Fr_lO1Ms1!(wU^Ml z+cJWl#yn~*h3S+P8AYf@6XWSmq88R<%x>8-rgnVv-hEWL4$)ZP?RVdWQ4cH!wYCAr z9RcJ&_ae$t7|&iq`3|Z%hdOf(9E;8yw{VV*aeR#`m81(jnZWWIb63`B_YTMgF{U91 zh{Xk;+I$(iB-+S>Z@heX9+@5Y_9*qGQ_WR7yewri%{ShJK%H5@WTh zGZ{oaoM8B_WZJhEq1!P3BWa^gH8&JsM+Ex_w)R+QSNjSRR{ zkuYOXcEqeS$tJV>^0Y|G0f@2~jnE6y0;%H`n#?GR#G$Sv$9pP~~B@DQyv?{way7Y(Sn6+W?Yfk2NK#4#_gU8LnZ z{N%Z3SZP%V(ufPKC4w~Ky}J)_EsH^(GFK_ni+b#idNjQXKl#j6I#xtC45-#hgi*}K zYMbTt1@8B{%vH*K^VPShlsw*f?=Du^rCcxL*aqKw?+%A|_DM~s*2)}o``mi8$EU7d zq~^M~mc=-UxO?2iR2jSDF6~m2rdKb*0(>lG6-FVU4@}Yt<7A9dYBoN%4RO;?yON`H zj7C$kN|fyqph=4RRh=q!!9bOBCAsbmw?UXigjq<{sSxGDft8ddpO)Js$O3v%Pe%KB zj9;WwC0d~NzU7I_y>P}WRirPOHs|V>K31REuixtY*2C_Ev=~+H_a)WFcPu=|Bq%yk z#?&kXlwF%7gVQaKxsuENB;@_Q5f#s*KS{W-Se9tcP_%@Gp-A$aQIN9I^yp6Hm}(S` zC2@}>$7HSH()4YflPag66$#A(Lf;|{i8 zBGZa;*3DAi)dxiT591onml~iVdK;scVB&-*zgD*-i2xl z)AevYoBc2=d$|FfKCZmX6cf^xd*Qk_if+QnOGWz`x+mUm&(k!vra;Z8tt|1^B%Q1++OA@FR2-Q$4KD5hEWS*Uqv4UumfW)jml8-bTf0;=EJ zI~l!?giWcYMP3}s&uM~DxeT?2bl|SPGrLa~Bv{p=!<8gZsmiE6iP6DCUIS#To+KyZ z`8<~*saBI>wKWHhhkpMZ$zvZ3is!4$^j4TA+V|ysE-Z@1ad{0Lj!~5cxMk5sS~lb< zs=W@;L<-N>z6xh9p}+oR)TuL4q@Fnso{zr$0cv?2b{|2dCdVoaP`=Ol(<{XLebnYA zdh0IiY?JRDV7_n-nsYb{HQL7kyL%HhR%I3WckMt$uj z=gyv`-;1Qbp*5rL-NIRJ;5~V|paRs;_wT~}`>3D$WjNe}x(`d6DAN)HR$81N(?)p} zSU-oJj3ivZ_fH}=TP-=adwWo+pr>Q*g$23aw0mBwp%xZq*OWSY2DPv#3xF_~bt{d} zf06wE`5hq=eCDU%*88Z{v*cg@<5_1@O(_IZW0+~4Ae)ke?06tf{3*)mW4Miyae*X~ zPSeyt1CqP0)HHWILhBqpoOO;&1F|AI(Nqds3HByP3!|S>MaMKPP(Bu67S2YhAbdy9 zlJ3jiL_UXF3+K~PmSlhzUA7>d5NFbf9j7vOwGF$_juz}r6s}pBx!9+f<(;rwz~W`x zF9|sXcd)?zL|UR5OIDet+aSsUY{Myx8fo#q0#-_^9EAsxwZ8Q=o?X1mzj*r_T$-Q9 zGc7jj3%s)a41fLbP1>a@fBoPc8lFd(rgVY{mSOP8m#)z7jrf@-uJD()-p4Qu`n?gJ zWzjA-FfEf)>xi+AXfEEwiz*K)oTRnsjH#>!WvB|Ai*Q!33%{ zhGFo*_4~Bv8k{||!tQ9ur#3Ed<7k_k2S@xjpZq1>KD>cz*_^GP!Zls$PHlF4%60`y z*)*J{9PeaQxZnF=K*{pSbj~=L%u=GH`1C2;WjW^sM^?t-CShjcTRwB%9NXhgqzJ7tdV3(3zW~+Y}+msx0LrtB|$t*-bVaygulVn_U#;utH{^PXW z?*#ac#VAZ?-OK6EOlw@nr0Pkc%`~mZu?*5&bh@UYc+?L`a~VZnSgI76+l67zF=vd% za*>xFr8%8(&Qi@`e~_@=bg6stnqR+lOub~&9YusmhVNJ?CD^R0V{^Y3urr7WlAK{6 z9m$Gk6K6RkS8+TNiH7G0T)pfVEL9y`OYt|ij(L5nCkaAzk9x@#9CyKHZk8;G-1IHZ z&wH#?T#m;v71x>>t9;vJ7^N)uE;qVE;w6mh!rwFYm&af=` zCM>O?|L(7)nDIOr+fNnp)5j_UeYk&uL9#4CAQj;FeE$&TSi*p;*NfaTQ;NP?LyFVK zh0b(EqVX6OSS8OFH@WMfE?qD{$citx6 z>*4&^3sj>w=nrB(csStfQkhfFuCVjo9`%Da@Y_|6{_ZwL0eju=hcy4MZ!ic`##zpz z2Lmb{F!*%>_8xL5G28E=x6VeNYCfR6{LnfHGuE z|M` z9K&Xmj0v-lhTE8RB{ex=nu!a($RaOUCDJ^m6LtvF0NbhJnl7VcOsXXcG0$@;+KQy3 zaXOJqcrwyl0PU{nP%=yG6r)ww6c_olpqS>(0}SE;dBJ&a&q*7{DSh=Q{Q_y0XF_gkFJ<4{Od2eCXp_Pctc%~%{vw(Lx@32|jpda_S z-o3>uYcKM@z4>LHSzO|NzsERrKA+W7qiFyEiELE{{HVOm(fnvscdX=DTKbKON%Xb54u!qC6?PQ{?%)L$FG0lB`(gb z@OZS#N@an0zr};$BL>l!&DshJ{sI-d!g1VXt-Oh6Ntv=ucNAe5iZs_m zi9pv)L$OvVk)%0yjzWScBlR^)Et}g%k~rg7q79t#A4{&y@g&7D4SZV)zWItx!#6oy zFYyQO?33m>K`ahwQz>y(8w$IKV7zrG{9eHGe8adhHRXRz-UAV0%El?lKA!DxOW%x4Cum0NXa%T&uJ7;FvVcIXoQk z=@&Qo;r%Y>Hyc=%!DJHi@WCvk@3FUAr&jlQ>&-{J_=!z?$KtJreV*BDFphI}`Z0q^ z%rMGWt*1owjBXfnu2rF4vbi`f{)Zpz3@N!5K^)FvQPWIxomy+=8a|s%k1);Yjv~@5 zr&+S7I0kz~Zv3Y==ZN!+qhZJ}5c$XQuuR2M3pKXK6NXVr!l%|`pvXx34f;#wvp*J7pNb1?X5naoEPpL#Mm=`03v(GkZOws|tf4g$d# zSr+KRrQB-C*f|`FuCT~H*Mq){%!5FRHm#)?(0VpLXL0f5Hp38()?_5b!nDw=*P+up zc|3?SerigQoL@Qg}Fsk zttC0=GE0QJ-}V!}B*6z%F~KZm}52j#d>t>eD( zk}xw{^RRFXj~-#pH43CrpX|Nsn5Q?;JG-dGHs&yZ(Fo^>(|ETJF$?U$`0+9QLCkQJ z;2ca?U9YjWYS6utFvv3cgP5ga^{2Jws1tDcM>epoJ^>FOqUPrWxs+#8P&Vga?{NW- z4`I+nkNT*!^Wx-JO46$qHsC@i5uByciBmnxW+ot`9HHuU(bg7oB;{Bq#-Gth3dGg3 z=&c(krXt@5zly$jQx-6v_zCp=_o3QEf8)<)%vVfPx~$WYd!C=fe-`o%!*@>*VN-d> z$85{AEQZXP@y4977qdJiR|*5Oz!aI}g)yY!R*DRGF(!#?S?-r<$v-!hfoX`QQ>W6& z^pwIa#`4n`&NNR6vyd&N$tn}1A&y}e-A|iTr!!!=ZFw_@c$7x7zpJ8Hp6X3a zE#{|DGLlZ~G$99Ok8wd(7Y``gK3~53 zx4gV|2Foz%MIpmD=9e%12;aE>Lu}LJLTi;@y7nCRdL8CV4bHd5ynk@WT%*dZ?tO-F z#P7fM8fz=_Orn@pxx`?u#_evGQ>$%`j`|F$HkFdk&e~ErPD2lzTFnU?DV`wOYlI4qBA{VKJZ+Ww8Y}&2#trFdF zM@INrLd7nV<_U+vA&%*=R^H$+*vB9uLBqPqg7% zR9)ebUf&xt3KA)JZPEQzU6bx4Wv*J#T!SSZoy1T^QX9CRlHK}xIT z^Qdbxn8bLF$)Mnr9u7jzwU*edm$6J)Kr~7=m)kY&_X5UoMt3A9D$R0S+r+g6u~aWP z3?nJ@g+y>t;vG-K?cORoys^`nInvuzk3pR9+TCL+p3RT0&vCCertN!tNvE7zY zdvgvp&IwXzY;#AYH;_qu~1?EIHXawSzW7QmK@esnuJ@2I9pq& zl@&o=?QGACKC0hEk4LEHycE*!{Q#bLM)Kd4QS7^Pkk#TT^tD$|_pYO-=Txa#w^}tC zv!p0G9msMib{$8$o>QqqIEGPw)}2&8{?q9H^S8UUT*hcsI=q$&WE>5Q51f~i5`w~g|kr)3z+|4rVS+Qs+lagH~DRU#=I>5l2l z!1YNc@r;h?U@DVAJe(P#w3g0lUKEUG!6Tibcc$*=X;;iK94dC1Bu}W?HOf{QyWm-x zhAqe?6k#@Dl1}hVpZB}(Gv~E1Fu2=$$ZB`hu=xDxb$&(yB`QX+Ao;bh3;qd@c3BcIj>0tUcrem@4+$kR2-{VkgHdYq!OCG1s ztgy3v#GP)JvvVzuCKGOU#1T7)B6dezMsduUMw^;j=C$qHd}`ye7_gKWd*VF8QZ}yX zbGmw(qwtV?q6-bLbhjw~nU56GVVfl5kEP+rGL2c`;S>gr zFwXF7=`>EYbGBtbA{Z{MH5*OA4egEtCQ(Y1WK>)e&yr5*eASz!;8><2%`^)&ak`fs zlU^Vl&?}1--rXPZs2gIMii&GyIN9#U>cvp;%@R>kG?oX4NMvCYeu+U)j2nq`M) z)@!_ayUVpx4gU1?$9(Sj72bW+CnzE)+wCg*djk%44(aT6sL$64Mgjd!AIEj5Hmh`Z z4r#3{(EVT=+!97@m3-JEH=EeiDvM8?;qm*oNqv|3xU-98wOLxKaBwgt ziZY@orP~ci)0`y9SZi0Q`Zh;{kY>3e=E*E4D%M+`ZQwg5KYn_F-C@XIXjx3Sw#g() zj#cey001BWNklEk*2TbW(`e zHtO^l(Q6ilAhmG{EL$?;Jx{>zb8T2!fd_Y`Ls>4Ej!!%*$vXw2Nk6_X8q$eGW*WXL zMTuX;DrV`4Gdc{Udw1cIyzj=m6rIgQRAXMWik2gVr{kX-n^X!<9R(1MF_t#T@4YX# z9e0G^S#P19d`evRfBRRc)8`cMo;?DRgHC2p4@!=W6vLUDJ6M=r3CAwFlf3>GM!O(>a*z2no}ps)8e&UY(q5aTIXn;3py$8F^C6TY+T@- z&byRsk9QC65oIy$@*JN$cbcYGReo&aJW&?$*;7yP(&7t@(=q4j7kNB-!1FIX zPmoTy_UY$I@`RSxMDYP(8gZ_zwWJHVTDZbcIbzy4qEzLCtAm zn+`kU?Lx~d+Te!Mn9&EaJfm!vsJnHh@ttv&aJhL|bn(SzDhsP9PFrr11+Ps%?xE2< z7(Srp)G(DroC{~RQUK}=Wl*+DglULlI0c~IBK{B(?c*4)*(^Ik2q;GGQ%&b2N?C9C zL`lXtN-4S0eXQj+jf%@^&A~PmlQg5^S%gVOrr};EpyoTcjua)1WpFeIu`PqAPd6CH z0(3VG#ih0wf$kno@EwcOO^;JemyK$P4~~X{W~z&M@8#7N?|1r)f;hTA5tEl%jwR*AE7-V6a%u`L!$-YnzYG7X#pY91vSgCOB> z5^<|L=5U>bs2;yr=Ik9^-h<)r5e3nz~i^x1-DFdZJBTq z5(N>9r&hRhVS)DzgHOM7ir;u{h5zA8@AFSTcb2pD3hy5EdF#au)*3F?mg}6IFY~p# z2MnXrd~&tLAAGQfeQusN?i}$mFRpQ8cSI0pEH-?!);zIPreqsTlAP^9h-aGA9GeT{@$fl4}uXIj5T?Mo~tVL!9Jn%vZSB_Hix6{!qH=zj%3pIL$d4 z$->dKO^Ifm#H`JixwhQoPIpMnvH7c8hqNjVRo7%^ApF5GI+X zUb1Ih&m_(N-tUEf)ArHDr`9JO%BkBs&!zC3GCrr8M^(fi0+h;9;ME$US*(;LU1mH+ zojG&zm}z{XWl1N^63DwQvbXj7Z=aZj3_~=CQ6%I0JQuT2tpTN~78>4qSW&)m$hX(lsf#K$3|}Oa5fV`_79NdzK0`{+-w0 z#h*YeZlaUhaOr8$EtYEVXba|6$Y1{+=F6W(%`L&1r$jHgdQKehm8S4S7f(q?RT;2x ziF|GewX_LYhI!=$+RuI;ou-Wb_1764jamF>zkz<^b?me2=z~L;o8#O+`2yZ4|DU9|8_!W5Rr!kXA_M_Zwr>~%Id|#d~ z%j7!y;j0*)jkb4fEonSU zxsh&S4w|A+h#AI1!Za)jM1{dg#HXPY6{kYUDvRz^YkF~ihG;5#tzsWi!Zf68mGCT& zEYC=DNhk6OXLPP}TJ9Wq!3%9TP2o@K9M|-44G&dtB6FS3l8VO3h)2Um{KeMm{AX8x ziObC=c)RlsKY#Aibi-pz!^BjNI8|TaYjRs{3Sfo=h?aEXRk3$Z~DiVev@%Br0&k~Wb-Oo=iD9MX1TO7>*zYB zOF!<-7^-%mukm}&4CT(o@1|j5XicbdObjN;gjA=L ztujg}>P~}hbX1JZb6nHqAUMEOCQYwNPEMGGl&msoE(-|H_6V~8vsg$>&*?ZBQ?iRL zdBK|%H@!T^G*=pR=QLny^s%O@+0NJ@dJ6r1xUma87kvQ3ocd}ecwgGod$ius=m zMQ6XqKmFoWzJ061mGuUP!-%sBC4TjVWfpypOG`C=`!}AaUa~1UCg&C_{M-{7Lov%v z|COt2^d||eio<`uR3XhZdskPe`4;JwlLVr{Bw>FPvO5lGc+hkms z9LwT~#Tt8)koWgs6lJul9xdO(vkbJPpp1?l18Odg=eBh>ujOyj2- zO_-ChI>AKp(3dt*UP(sZu8e0@xh7^J+X0j~ye(S_Lan9nobf;kmSiesDu@ zMD=;NcU{<=S5BcanxRB#ZkU2#0_mzM1*Rj#VV+@Jeo5|==c2JZ z{~Y8QRlh`at_|f1>KA@RI*xv|$c)cL7GOCT<+}WzVM^g#sw3e0;Hl{yjXa|;1mmp+B{r)MFI-O1Lz;4@7$D*x$n!h z@XR{w@55+>_I*KV^$wudL0$V%xb+@9`y=Qt{hq{OKK)4{2R!)#{O~*CrVj#f#k=l_ zF4>z%(Hn+BOK7*zqtOZ1HBB*VW%AL-Q}dbR2`Uow0;OaY@b6Td%7uo~_)rXI zq7$Mlq-2*!jxhGq?Jq(IXjuD~p<4 z$4~~3MvsW|c*c`-ZOMf9EuSP$S@0KTozEl}2W7*p&kCqq=L`}tjk$))an_}5Ny<{w zos$u8ks_Yt344)+zJzl>vgMR6w`tPAzah2vgf8x9xhPoTA?_VX3yycVwM za^=O#oUNV5GfP-S?5BZH2i7a6QOdwl7D^eo2wlKZg%;EBa9kHdnV6Q~&z@>ND~onl zOjxprs29igm~k><&RbxR^r=`?GM&zfa@X|GI>#|R*2|lW+#x|aAU=M3{xl zdvlD6@wY;yzfPPJ)b8wTSj<7Q_s{Gw{mnY||eD`sWR#g@fcaH>#B}lED*wG9J3H>Nz5@oD6T{@E# zBbVscEZ3qv4gP(`?pY?qn{A(r-a&Yu(=p~`B0sYX9fYVjhI&gf*Kd6=L*E#lEjj3Z zNygA|3~`Lka&aL~f#Ahhc8XNeK`6K-tp)v5;GERPhUotu-jTu+U};GTnocvkBJl{}KkWL1uXFi20)r*3&c%CFf50BB~9;(trKe`23g1UH3_9Km@8|szi zHBI4%Vo9W>@rB=zq7tM~bbR?al}Jog;pT@CTPD)-NGK}#ql1#X&v?Vwi93aG!|m4vIKBRM~DjM=QoacZ?tPdzQ2@}*7G z>IKx|rpOtpO@Z{+>!^)0Qv4>d{0YXg$N^aZ6}(neuS-`p=*wbde;+;VdK$*b;-*%U z>-1x|f{vB4!s|0C4k|#KZ!)j?Ar3|#r$+V!9`tdRSc)aTFY~JK1BwpXcWBZFWar z=asdWW$dpL+TJ2{rv(M;R0>i9(=hnSwV#rBOSBY~h6e>PK0`PkEq4LiaH!gi+2h9P5KCF4xv*DV)2C|Ji}M-L zkNS+$2@R)ClEpKgs-aBkPK{KjRP7pz{t8Q_RTPR-RflfWp=6ikad|?nv)T1H)ewhi zSm?@JF`F3{qhyS2SYrH&`hw${qVBZFL*o47_n8f%LW`{whLUXUl4G!a9L@mq;y}-d zi!`56l+kn@wz?zk9*HhCNhMc(qbXzUah!9g6XHOyJeFx-83J$rf4O^;AWQE1&hPWj zJ@f6gS9f)zSF9vK5CjQoL{cI}kE|uMcszD^!r}1f;&3>8_7Oh$VjmoH^h7u&JmHZ% zlxHM)Mv_HR+zEi#fd+a(ch_F^>g`+ZnSURCS+A%AF%iBAiKqym@Ls<6@?}TbTt;cB@oedUA4QTSX_<w9xyFMDCiqhZVw9hV2am_Hx% zq@%p!6XgZhn{_stE)CyW>Qke+!Vgyi@no*cxSNh#3Eie?UH(kuR z;&2}E{z-^wC~BTXk{7gU4yIB(y%}($6X2N!n>CLc8#S)31{j9ox4bR7lZ1_i&1W|| z1XYX@$meSNk{U9NMN{1HZQ8ztV=Bf`Ny{}k8ix3e6pf4{(UmHt=+vEMio-A4J{f%G zIc1!pvP^=`ZCilhVj+&umviMZT=Z)X_{pWxa!1-9}%!fgYU7 zcs!b+&kj&8d>uXPVqAGrSW^(!ex6a@c@=&C1C$>~ooA~Jm!E(*LjT3TKz;KM&^s5oKB`j?P0wqJ$6!3@wtuBCInO}fQsD4)nU_L)D@~SAHthBJ_Ea|!9 z-Lx)}2b>GD)^amUXs%vViY5zrO~*p5UY2^!o43)8#zpPrXFdlz*Dyc(Rrwy%7+M?1 zt+ZK%)Ni0>1N8O{StJxW`ni|j>`)dio+r9t*IlxjT5D7i3qwDwnDlN}fM~NR=hgbU zNG`HZUX}fQ-AY}s$P!G$tit6@vO@aI?TS4+XPk_xz34oA{KL_m%JH5o*+-`e63;95 z@r9n!ksQWc*r>de{^#@PqqvX=ohXl%F*$}Zm}V2AJi;-ZrP-(`3w$deDdHu|x)E#= z=MkndNy}6!Ahl+iPO2XIfag}8WuDDRvIL_Ve;1UPDB>a_DFq0R(-CLU85{lv9k{(te`zVN$bWyVLtyByBC{L!=jl~hbRknj2K#`ZJBnVV_tspU0zEx+%UBfY4%Ich% zWmC}wV^ZjRc`W4rmrE`2G@VjvO_a~E4O^V{rI^xuEBFs;$o@WVN-5^cY(x{K6en@U zJj%GdQX}vrl4zb31g=G?wXj%$&HwS0p@#(wM$n}OQ$d&(%%YsthC`Z{#94`D z^U2^d2rxiy+({y%_Bg&6wJ#PIdb*;J5&OBjSZe_mVTdwC52^=eOJI5KpjR8~vQN_# zjb9wgzG^j8no>??7``vBy|IA`YUqP~SY3nunM5Tyjxb`Tg?jRNuv}ryvQ%1@+@K1) zp9(`;WT=%bbSNNC*IUAJHdjz?fU+FO68VY2~M!DICC z5&DUzDlKRtpTRIM-1g@TNS?|m<@gf$r1b@hY#Z`fmiec)09MPCAbfzV5D;qG0%(({ zdR!(TR9B`ekjGh$ycf%iK77+ce@D0Gg(07^_{Rbl(W#3~d?k+I0bnbqohgF`(r- z<8pA7uvl=k*k_tfv6NXg8J#a?3OvhZk<9_{EswzRmn>(^u8SVAIu4(<&3DDszEXDy z6EW|ENzP{5r|Fr@B1OCAkW{SVO5J585Fj9+MH41Drjl{*?l2)OG!56RSSVO;dL(&C z;Fzq}9l}gl##Uf+JPb*)f|a_<*(_zJ<1$O6qkSc?IGDtAe2aNfFpdhwvFHaMj26t2 zf<;=e5?ItKV6#6?2(yBwm-9r+Bg_llI}XV*wy56AJKYK0Ny0at-Qdq( zKjiRm!p4T^lka|bLY8Lq`wO0bZj&r8**l!@<69kG+G^uFCV8QWGjVax(wrw$K&fF7 z=V-+6bKWQai#eBZHF7Vjgn_Im(HM*u8MbAR<|PM{kcMN?E^U&mT#nO=QWGX(96OgD zoL7l@wn<*?w=Cs5|GVMsij}&%H!rhHKJrO=d~KG|tIO&05W77Ux81LA&ONscn`}mWrn@x5x{P zXov>2{*zbK^DhV!cAobM!X7ClH}&&OP9^O}YV#86%1t=gU1m3yvlzoM zQI{@DUgUXe(z$kXGLe01sj(~uV~nj$3ACSt7*{XL>jNAe$yj}DT>w%zzX*#D8WqEs zOAoneLC_H9EE98+p7v3$kDd$!=(s)h@=0F@{zL)mjBZq2GBO8g*2A9kLibIz@*w0l)oI^t}%;pS&f^@<~@#l%`3(e@gmb zANz^z3e0KPx+G!s?KO0FUl_pg8M=Qc?-?yjY>{7>fIuRP&UKDu#b}m!HDWI+U>#Lv zDqG$gx-wQ3avaa~snHx9SAJ*N7XT5x1mu5blz)E48`3bOTpzW5MWhawZ=q`KrCdSY zlM+xHPUOGiP{!wFAs{!N%f8YC)!C5qYi$FSgs4=sol8SpQ3&|VtK)IrqIKSCWtz~H z)*a*5e*b^`#H-`);r8+L?kns5x-gr+kn!ml4q2I#mXe`q8s@S)yJ0t|+YJ`^99?N7 z=h+;`aA-OW&O5!&0fC_mq9UT1643i;+E^ti`&vdEV4N6^L85XBu7ss$Ui+ebR&E@(fj_C~-001BWNklb*AYAyNYV6+p?G$r$dexM?`tVmHJiMZX4h98N>rNf_1*U{dsIlvl*;YvjaTK z=C$KHtOj*f-Bl*pn8&k+Bt=|xq0jlz!5yCHwDBC9g`8`LtSGcyy!VD#O$z*BPT^xHN(tg$J~q4vTz-QicHA^H!;1aZwa--UwCwgOUnI zLmAZV2BxxTIi01Z^_*?h3X&q`EIvh3&`)||D$*HQnKH?S7yuAK@4gsJvJrtKa@+!$7sTl5{ip(mtRC_w6LzsnVG`Ct$eX6e6Z@+W$%CFq$kdiu4VU$zzEcW{$TWyEBZPS}2e9#{=%W_aKOEqur zj#z{ltE&OiX-b}#G@3q1QZVX{*xp$I1&z8xsZ756pwH!w%l*-uQfp2YF>jvCaH`wo zgYlfSC~ytQTh$tR^F#o2S}+V#45e5k!ivV#Vqq3#WQC^gSxn*#-?TWdpPVH*X;ESu z1|JTltoknfxwIUe8>Na;GmRwwv(y)^_o9$Q0bQ|?3TOp3j%CoP03ljj=;Kf-P^VGG z;V7moHT&a;z?KC{R%p(qQe<#4iqXK+n@v8q)nv`HISUhxCMmNhLj!Rx@(8prs_S)! zahTz|7TXPnPGE67NzuUXJiGBruh&lopYQ(Q6;-*ue{sA{r-O2wCAeI=lhYJ+`zg_M ze)x_6M$bc~ktmfmw*W2Av#e!rJ83Gc=X?&c8LG$yLN%K*<*nD{F{6mmlLxrVy*1e!ts=-HVp zWVDuZvSQxV%8Hyj=X%&Ql|_{AV|?{@KUFs}fa7rgm83{3CiDD{7}V{$RAJ_E#cWEq zd9HKT{S7Q-aU33F8PWkR%qRGkkD&|}d5C3LfWkDSfySvu^kE)RQdV&}wTeL#uyf9` zHXP|wpQbZx!=hnJ?{}d~#_5>2NZ9b#B_Q6eGfale(iu_XLyy#a-7 z(3>yVpY=GJkHH9OxlLTt#Z)G?=`c+vpoGy=$T2Q-E^-FLAT3jRahGm%x(t8MbftAv z!Z?-{Q|g%>O{dLqcz|n2{K~`GLt0Lg_Xh8CskY5LpOcj-ZUr94>2R6ps+0jrSlDwZ zKwg>7)cGP-Nj9pmvpJbg=|(4XqZ3ZTV~NzV8hkjq!*+0qNjkz%2BTyMXufm!UHb7E zmui;?tU7hOiEp`BhQ%-$VOHl^uJdJ%XUmaAghpc-qDxIG_W08VKHol`y%OgouB8Z5 z8I!w?gof80lX+4wi*p>yq$o6Dn)9WdHc?jc?&%!QGVooKC@V0O;@X6i`Q<<-LpPc(gTx9266A==TyaYW6L{8M3CVG`vO8sfB&O3NrGD`jb! z<|Tu9$~>0erFqHOEa6UX%Dusywrf*!EIu4e*{b zx=DGGEr#m~fSJwYwHplqc(yGe?r|hPNhE+VoI+ud`>?(VwWhF= zh2%@>UKdVI!1u}i)gNPRtzg}H0_(~ay}x=3_h>UefTkI>zeQx%0L;Wn5lvWI*la^z6!(F!(-IORrK*ARA=KNv(z-J zzV;Hzg7V>e7*Bl>bSe7P&Zfu^%JSkEn-*k=yoOho<8PXB9J5qdOBCo_j!T|hXgiA> zorD6IZBOI~;~uKslJR>QqE@#B#3}YjXhgNfGGv@@D1)>}myt}a>9WW| z`f;BXw}WAs4B`RXwQa`9gqG97R3=A@W442Bwt`JO(_`J=BrDUU8AYM0@omODpK&nX z=QQkcrM`n{+#$|$KIk2>Ra@h|-aTI4{sMn`|9b!=MZxJ}!tKr_)`IpjAz;JbAkN<< z%rZ7=HU8%x{Tc0MjhCLd!V6a}^JhPPi(YR`lq6i;*`z2+rn3;G6sv13`tt=}ynKnh z$qCbB!L`<94yGr3>xp0E?&uz#=}Y@kDTc6abV|!Th`ZXMJ9cL?l&AD{e;JH5wTZ-+d;`aHJb;utQg?gnuY({LKZc}!kNM3!Y(_?Aaj z=9E;;DTOfgf#qKS;!n}m^h^eeoTg{uSe2lBm^`~t!!Zp4+oa`Pj9=aAvqY&lrQbT8 z(qCjex$d#on^UVfL}|ew%sCh(eDy|)@82De6(!SI!Ys_VwkgvXjb@(aOJj`dS~O}7 z-~0IiN-3`HwD{IHpXCQX{+Po@r{vQS{`v-nVNm8d$GcrtHdiPLkM)&+{xs&tALpz$ zJr+sMAAV+ovw4PXs>(PdF-m*WkoCZ!AEk_xX=Wp2P7hV#RY9ED|hbaA!Ed zHWcrjgmlM|u(}HYma7ei&8EvUNs~J(At#dr*ET8^)?lqEix-fw{WLB}@HiU2{Zf(=TSi2%rix3f&KdnFTmKK$Vhps`vJwEJ+@Bv5W%MYT>AyavE{k z4LN!+q#js2+M989zt3#9$Lf=tmAoMnws~V)0_?Rc1e9NwQFWeP74wrP`=DU)5OSM zqv6ysFvxVyARaJ?hXj_7V>(=_UB)#%7Wo`gnGDkb9d`}Ka46A?(;=tf356~>3wylZ zzsLS`%vW}v{ zhob?DIHA{{5UP?(jRs|4<9QDAS;(W^6D-T*tUIKCJmlcv2{)eFVH^vak`^hqJ68$w zh^VMqpe&C?wqQ{KyK_^OWmvq`dxtCa9cp%scL(oNvwfl>;_m1!ZMQ{KgeWmsIPU;9*D zv)_KN`^x2(!#K{_AA}^iIKj_Zq!KZmD5aJ$KVQ4C%6A_Qsk;`}Ry>ZzG2?}deFM*? zH%%xJU{Y$9O-Yk5W4q(C-S#*cMWA4(wr5sGMVQ3} zNv>H91VCv7cpXg>X+-iYt~LT3^TM$`j8fXZgKdhjWp}jT-Lokz&*b4C=HBUo-J>Zx z8+HEa%U8J4a+zfXFKxH^;?*|mZHFf|>LfxqVwnalUotx%^dkx_aYd*7knuPoj#3=Y z#&s>UVbWf0kSm+TNRnB~>4qnl-%itTxvOlc}_1%xHky7-VW$RF*nx& z7FmvKnj~c@KHMm$q+}4Mv|XENnv)a-JIxwlQg9l^)NPA2FS$ROvFZttkmjO2?MDe( z!w>gIcs88QGwQBEl$HGZ`+a`@=`9+LMK4M?S;UOvoUoAh@YeC1w-2VgeZS9(w^n&~ zZ$zuJ8C;~x6pWAwuhWMrPk=>5A8PEl)@V0?x? ze1N+49OeDDD{bpSKKo*fp7c=db@XD4P9jue1zqF<*vmqs2ZIw~IZX@YRXMKHeg$|_ z%H0ntw|gnMo`&^zT=dGa<@r~h5*a{u4?P=Ep6*JxzhR&UC-Oe#lPbX8+i)8J1xY=i;D02ebFb532f41K;x4^w%+zSpf}~hTR~rd`8Kbb$?^Y z*7}vhx@ottl!XSy$&go1U*)fMzt2yOUgz6)e@@Nu`TXWp*8LUc*__j`%hkpX!(>2F z7TjoFN1^!5>%Yo>`OH6NJ?Ib@5rr<p_4r6pKa7Ruwg;wdU6L2G2fs zo%PigvoOZ3dEi@M8BE4=`lBgFlPSH$g75FYL0V?Sc|u<1oQ7TQ4DWJhaF z8r@}_jCs2AB*SFLyZ!h0%GS%=A3s>iAX-kFq(~SfV#+#;yTnDrroV-$Orj#H5&@ONr$gK6FiWSDl%!?C$CHnjA^f9cj8cjyUkLlDOX_w5fLpDbjFJ&2i!Mit zBiIw_;WAu>XD=be0T4slHFO#0@*ek zDJ;-s#VAP*t)V3DrO;9=pph7`^G2jk+jcfh*dHexjbbr_mQu5Qg`|Mlk0r`N|RxnvO9@c3oQ0#3&u%G z)3q3eIiI`S;J^FIHLk5ledr=9cyE8qWRY^zo6~H%SeD6Rx**R>`lFB}$;tDQE7#Tt zS`9HkdNs+@Ub)O%OE17z$=t#^Ed`%}Zu!&fz#E$_mC&$|B84^O7~sC9q7M-3U0IW<2gi zeE;E?AMB3!)oV@qVZxi;F>AhLa*Aucpclmiwn1+i^Tnq(cz17v=a_u=!ycnp#`mSx z*rsBh7MO;ytR&5f61QT|CrLqBih=CBRNz7XldsoLWg4GI~`oTr+Xi*4TXWF7a%o4~FajvHcO#85ZUw~j)pw=%7xJnkneEx#= zQIF5iCy&M4bN>VM-Xn^)-p1Iugh~?uo=IGFi?=0=e(x@Nd?tpbvJ@w`X-O_;W!%w^ z9}xXNe@lAr03Ak{uFd3R%Km#@^4(+nx=YrZQp{rYS+um`pIf`Ja5MSQLPdCwE^t*Iyb{5<$(bQ?mn-B9#Dh!$c_q zQ<>E48g;u#VAV*=gmF5d)Fnxou*gGv%U?RMg&C__SP%`RZ~5%c_c4&Lde3y3q*HP& zVfJ;qPFkc@?dF(qGGUsEv$@a(aS@}@ta)q9vpHu`k9(tsMR$8U0_zC&C@G@T}QhWFSA z*2s0iroX`;?$dT#bi*_9GUrn55}xTZO{eVCuh5Ho)U7(Nbzh_7iK(g|4`_RBc4zy% zu=WM&b^}8hjMK5yW$K(^JYdaVBQG=JBId`(ud-cR=QKRUHCC#L<)iCx zT=$7{abCNYfkuMNx0?<-&48`IW0s}t4il2BWVlEOlbo7wQ)ntlhJd|AB4FbiPpx7a zidP>DmYwnKy2HUBB*{uHuLeB3Rb!UQf*?#w#<4i?eMi{PC@U$E49K+5Jm^K-??=)o z6l?Nz7??&gY(5=i{RZX;HF2h`74q z6F3H|fz7M?Gae0N*6Y&V)AlX;aYB?y6i}fx_qz*z@}v8VM9TX{{Qiv8}q-u7cdmtV5X$0+ckr2H18f@+ei2mSp^c$~3rz4A*G?l8l$E)f$_hx%b^H8ZvT28ZKIty0Z4vRb_(~{|#>zqX%66I0lp0}_~n?)W{vjR4P z4GLY56e)YNeZo9s7)_X`3$|+O)a*L8VPh(TqxlIN!8%v!S7^F59K&VB?I3>~#DVWw zK7mzRwkl1t33-`uvgqNO7QSuq*_|DlZjFZHi=K032L(8$!*O^*Ugi{4$Gc~_T&itX zTEXsk1*jWV^P-ES=GEnuK|Xp$sn9 zcGwQKIbIy`?8>vk{wjpMt+GzTBIKXF`R9CY<0=}>{``Qp(`LnOOB9omHmJMfk8n(z zgZVyrnR8U70c`jiJe)k@rHz+(cknJNZU?!=iRRK!26d-KRD|qJyVM+q)9{Q@JY}5B z*sg5?njam#%B}Ww8cv-b9=*zs4<54W`y9<(f^GjTGXPE*e28KZfM zZ5y-#hqZ>w@hIYnjXLXfo8yW}?adPMLSme9nT1`fw5Hqbh*uH&14Yf ztkrBvt%>u3FfV92HZ}JmsC*D71dc&mNY12Vo3vY=090Gzh(5E^X0;~IIh>?)rwKLB zqPNItdnO&36eZ)hWE7R;dBI|`VALC97zV}hL&`WL8c#{Ji7qvHmgCoa zk~o!?L8ppg%wo!Dfp&ZbkN4O=nsVvt8lEG@sKF#=dsV)dcMhi1J)5-D%u_K3l^SlZ z1YB*@IGn}2u+=0hOVYBWw@6v!!g9t%$shk`r-bG@)5{na)z8D5KGEN%E4lxZP=Ax%;37V7KYlIWwL zUgb_!xst;kM4{+20ft?a<3e)<9WMm*T)H7+YGpv98k-xY057EgEr6#iM0tJtIk@}; zs@aBiN7&23nSAE8Em*sB5fyZLDEiCZi8#=`Dt9uR38*p*Sj@4mUBX#!;5sI!XCb@0 zQ!E9E7KhmJFyh|vjP5XEFpNpkf|g@(Wj!D+OD=5$^rk8AeE$(Q|BJ6O>o3s92QZ(3 z=ZoR#+SBOs<8E0?!w|M3CLPlh^HpaP{5s`#|5S9c{bOmPdh`2Y_PTZ*-8(|R^Apr( zUPhnmHpe{y>}7%e>HjM%AISGN9?GKP_>m+Ly!drF#^=#cw{OF6NP0Y!v3XITZhcP9fwDx8&Mwju%2IT~ zhH;_uJda(nZ8@*b-SD5n?OZ7F~Y+U5?s)F)#dGpW99M=@k zUTEog7mcVi8s%EL)=g!IkqJf33Q!m{>^je{eIDNmsxk8^QJxTHF}-j|Ql#{vA#oA2 zKRcps*SXfbS_QM4OBPh4=~VTeVt@+84O%8F@~WZ{#pl@&xgaiBy z#G}1aXgCm9xSfDOZ_MFopFwZT*7q|yxoiXtt~akS&*r>-a(DTCorYap)1|0dj=Iq)o52>Y>G6Nw`!+>c@Nlxr zS=8fS-~S8ZJmzaxZ!yhg{ONzsK$<7dZjla(36c!Z%$4(G?z z?HWHh{R!W?`VG#aQ?Ar^7$ifE!y_Kg9+8v@@ATg$uxebcU83$deAwS-kw)C@ce&Bt z;e)|P94(Ic>gAWI+YLO^!!;d#W#)G>%7$h%hPm;r?hD zbS}@Aac7BCOP*I&o^O8TewPL#gJ$566q?Pp&wumM6`tRcxTWzTm2jIhXBuY2Ss}83 zqU3ZceczwIR3orWW@(0RnJm%*+b~%7Jxryj+cxu5RDuwSz=4+Z4 z%Y5fwwtceO-E~Cg+3CP^Di?w4ith5x`;{yF7siMwS5GQM8D*F)UjoFdkw0-H3|E#4z#VoWTnGaRsMZ?#__1VYE@r~y z?c7A4JQDNIbc~))P&YoabbqV$D`KiyOwfl9WS_A(tmz(!-t=%^SipW4eYlS@Ow`NY zlKRLZhcA3xK$zo6CFl4|M#@<#06bcN=Tn~bK`B1iolv5g6&K0>w^|;Cp~%vbQIxSa ziSZ4C98EeXd8QNa&e4>HY2p|Ly}x*km8Ui#O(|Y`4f9Jcp`LkOa#f20>J9YizBukz zx6lV4qqeR}qZ0_=&l0J<%rj`T!41g&#XraX{8v%G`djFa-xJ+x8e?ojQrOw!OOpa ze*abU(E;lDm*8;s;(P9F3bVZbu}B^E_euB9Fgyo6n`3ys$Q@R;!~oS?742|P6D@Ka z%lYOwlB{rE5qlo>WSTOL{}gV9l4{4msS{=k2^Cisj_DHR5qVhvDW3#EQF0 zH#%XGj*0RZ+q9@zH3_QMQok5jK1q>Ox;&#YjbvzqowBO%@-8HFxc@mu_8?=gmKY>XgQOjYPM8dy0!wqd=U|+8M8$MrDi&qG3`xR z-C1St=Z|5<#lFz_jx zF;BIhWf=E~iV(+?I@HUx9scQa{~6zY@E6=2boqm)zQS2J;9%OtHf&l>8<_Fo@GfB% z^KSQm!|nj3U^tz#S*!7A@|Y|2D*$*_fNcoy)RdL0U5X1zU6SVEk`)JG@IQ_9no`H8 zSZ#WY=Lx0O)Etxbz~R-$V`^`1PItuqAR z{r|Xoj~L0;^i1#hk3Vt3+w`t{)wO+HdqZ}!={ZBArZf^|hJ+vq5N07r5TM1?LJ+hN z1et{hkRysCiR4UkhQkp}ceB~%c3*GHS7lXt7a18o;&`LQAC-4z!$oU%6DVZeyosvH zh!b(X|NY+gc_kG>oAEnSvYB5mLsu0_IURTA)%);tK;Dq!K+e=S=uYvYgtcaYG|hNw z-r>=i&)LX7U)eu3@6hvN9<`_BOpVjLPQ}zI83tYwQ??DouSX)KI-%J%QaL1<1pq6>qQ)0qh#vr3|+SSK94#cr$hPveL9iv zF}piGOv_}td0SFbl34PgHG?c)LNhdsLW?j6i6;|jn{y`&9^6H1t>A9mlLVNBOT72` zLrRSbs;Y2!IN;(&mFo*7-q;#2bVHt6t+L(qS*%z*JC|p(>#|a|XuCemoXPQ2*2g{x zam^PEYB`OwzQ=OGX7Rek_jd+doG&sBQ>wPco4X?}H*@@GcSv^}@*B^zcztig$y<#M$^dlKL$F*QfycxVO{e zOV7-6G?3Pe4-O`XWx371f9i42ow9o{qTid~=0 zD)?!FfspI>X~@`*FjV^PIx~MD2n6+H@BBNs^DD^G|xShdrsd?Z}Bg z4I-&{nx-5Cayc0qvTdm}*6WC|OBT-5%qRjO2==;I^Rw{L+L~0wl1P45)S23+gHw=$ zOdLbCC6&>^8CW*i!;fHY8A>(Cmk^5=5Qaq-g^2nRAXDyH_gJzzPmg8AWxtQ8)!^tz zdO>#|BbxJaXmuR24_|{?OAb<|?5P(Z2hed}Lhqwc4!w46_BcpeLQYZG2?A6hyGtxZ z;lr~DB~_)WYv@AArV26&s!At{@Fyv%kZ&C2f#^-iQWQ&ACf z>*vaKc6Rh}Rp)dhAFDV5O(z?4wfuTaxMAcN;5SBurnrD1GqjpU$5L?5{>Z_k7M_kxqO{F zon!j`h#(H}V_C6xI6cJCtN3{{3glUXq7llGyhlHI5X=uHCBG@~<(sM?0SCH`xD;kF?=+xNyU z@9at6bQmQVx{76}=&EeL8M;t)G;+GaLN$jMCiqcu{+1Vp32k@Eg}DMzl2XbUaf<~9EE{u!F05T_~6EXa`GD2$}% zF_VwkY9mj78sbL@c}vI68MxB`%JVR6OU|~Uf@Y8&J|s1A#8zHz+(M7c9ir6cB^K^< zU#g^mEAK%`!i7th==VLAmP)vO%>Ba=ei(CbFrrbkC_4trWrGioCoGo@4u%2WxpT_T zKHVhEV56i_D_CfX;CK|WSTy-ZU%v>z-pJ#b`5Ye{PTB0ZjJ=3r&S2oh)N(qzohg2j za=BqK^kV+IU%tW4c*;`AU@32NH1>IB&Y|Z;v>cN&H=t@8c#%rkG&pgk3c5QAF=v&n z+np(&#j>}mL!_Tuw`d^6p*NC>+7)KH+f3gpw0Sr3OJCW7^{bPGUcI!j% zT$H>`bkHFj`$S=ip$JSxVVET3RRwpp8gY}9Aj?Ryj3k3N%ZM_FGiXOKL6}g@=~R}> zs88J>z5ftpu0^)}Si<~Y`GQNfQ&%vN0pPReyqP+Yy*#c$eq#|jU^1xtN zG6d$7q{=-R$e}$7$?krDsMcZFhnz!pbO7xm#NrCsdv8d*)6OnYXN+naD3*>|uOQYh zN_9Jzha`p0Asik2o3;+ymWQ4v1qDxnZqup!dK962{TrVs{}{m5X!BLst1j2(VH#32 zWO7+{QpqlDO;O=rV<~#EC#xW{XtoZW^^Ip4MWcYFS-6plm-vK9NR-ADi~=ArIW?;~ z8=$IKnp9c+B;a0elh^j|VCgDr#YLKSgQ`_!8oAh-MVe)_rybhv8B6&&ns$TB~@Pt~f<4iQ5v z%|urPRZ*I-#`2@Utj$iVJZ6HL>< zFf?+G&C{)Us&rc(F{pYpOyur!)3t#pT&J#0z7leoPo9#AzlsXh}+= zXtG>3**x=!;tVfJn0gVlqGUtry27QU5~eQG>8n*sax!&=(~%6SlpKT0%^VF!m&xpz zV(CXIcaEoQb$vGK7FX*I8>Kv}l^jAy-|9GsdC(p4us7jBN479^#{rdsiLR>*Mn2m+ zJq%ML1-^2n#-+MV-cVU9I$UcwRP!o*KjHS_n4P}Q(J&%Tq2}o5iXwaDO^pv9cj=CN z%4M5QdxSrpfIVwFM8LEUh5D?58hMYJ)ktS?B>&s6oW_sPG{&-FPQB2eXg|fyu46BR}`jkjAJO=Zcq8*N)0cT-RajGCF+(z zoMu?6#yE_rGVJOC=OVVZLOb3x)f=F~=h*HhNLYVAiNruyk3iDx@d5lr!j0gY&A8$g-i}rx%_$3IqRRwAxJk6sxCu6 z*$gbMn}}Rqrnfbn%pFO#zZeH3!*Dp(tXLCii zAdR}R|GnHmEUe2R#+%3iEJLo~kM`ux)ayXMFV(og0D^$=$(W%Z5oa(?Q+jcVBIN2N zo~7G0A;@bgsu1Xkz)LftER$=9B&C4D@^Al|3~l9e5?((TpnT(ZBtv#93jXMrKUUxkio*TtjavtmTUflJ;a4eWN*KY zxNwBv z@}Tomzxs)~kpbN6-+EOx;K-qI6pqR1vOhhD{TY(SCpS~62EhPT$goF}B@BZJhAP#3 zTeF!)Q*ydPPRlWhMubU-5CTn6saaJZJ4ZUTaxH=+U=mJb)n*!_DDZsi3JdurC8LNC z3Ol1+dO@F@W>YeXtQ40(NNBvJT9k|urX~XpC*BdmaL7m9TkMPuICXpc*@F+*8w~it z&AXhqQ`Tx#o}ODE%~D=jxWRgHjRj|soR(vEvWu?h)T|oUtJf%54u0a(%GI$oi=IE= zV0^-vH{f{EW2e`r=Hv*|6hBKD_9sk-E@>Fcq0*D#4pQWRIgP;sk=&IZ~X^Q-w zBqLB#{;Qw=dyGRD$53&jh(QqWU%dER>`x9D_#=)cefoYEQ&Xv0RqpjRna?*+gy2DM zi(|LVC>jx^5f6u(RL!bX#1M?5F-!Sn7MukZoCV%(e}tx}-0kl0)z!~oYZhmImqllh zqETScS?0(+hMTqv(_wQ`ZI z(KcZc@t}9g3v;Xd<>UAH-10R>!GxYaW)ej-Y9%rOpITf%6@r)Mo~M9_VC|g{pT5R`xPKVyCJOG|vDq3QD#*D}_^ddbvc^F_RhcmSf;`_NO@{LM~0w1j(FUe(jNMB#~~-D6LL8N-;aqC7!Rj%;6%v#*^|aT zMLj3AkfkzcOeP1>$d~s(RhRcc;H6hC6GREcf{CfCn5M?BJli5nGQuRI??xQ-JqD4i z9ldij;p&`2mcfHlmw}(K+Yc~wg&%AWs5v?<$7B#hoVg*Fst)r-lN-%E-`nisM+sY} z6MpgO1_>|-LRyZ=e8Hq*n%qB|^8V47)rv{WwkYOw242K8l7$S%Q;(h>p$S3RGAQQ^ za+=C=MP3V=J!zR33<6pWhdVocE-senjRU+WA&yhZWeeAhn42q*0WYqVxL9_`X)1Tm zCNun2#?T9?I0iwKpeTYQgUO7jVCk|VcIbwH;2WP>_{oOPzbY>Qx^=v0&?|f~q+6Ji~qSPvg#Z@>tlF)d=Kv6O|81;HYCq2|w z9Z@dB#x3@D3!k^gOBk#X(H9u{VnO+Ou~;(J!v9S?@#*MK_Z||4`4C^&qZ8+ z7Evr>T)%|6vM4b|gFfPwFUu8rz9eDwmLvV3ss`hMLCTogH{^)`nVx?C1c| zXpnU}psFO@0bzeicj3&ONfDEtKV}GD)n@Fh^M?ivg@0!j>sm6h#&ngaPQ91oM~5#JBFF&sQN$NrMPs zXozwZYI6vu2;&~v_U6arg(r2dQ6#SwP5ap2S*^;iN0A&pKY`uu?{(gJ6(F4TWXD;I zrCG#jOq|J(ohp=Bx;Q17VU)r|T3+1PJFm~oX*rpAH;ZVBMwo{ov5=~}M>gXJ)WU3~EU_jn*B$j8e%i&adO{=p%R}so=*ma1r7(emY8SSz^ zI-(zpNz#O`tUb+2sm!M~)|f9BFjbXD{Vuy~9T`XPUr&nL0<&^m8)fc!wc*s(IkxS(Z+^DZ} z;-2zedy`vdn-mR;XX{UqkW#TqsK6BdjQ{{307*naREomCcUHS!3u)H8f{RmTkRY(D!28K-OqJLEAiOCIY#Z_kx)DvdwbI zqCJUdl}t)G120U8Gr?dQankpgtK@K_l%l249)$!6*qZDu@4K>^vF2!aamMAkP0>=> zJPSA+g`A8d3Z_amCwY~Yrjj?MYCDc1Zk|lp>w37ef#k|+g`BN(ZKF;uCy`obL!V!L zVV)?-sM#N{iZhW>GIiW2=3d9;L3>J)X6*GPz2vCx(VGNR3l@9FBUDuesIm;s+Czfr z6jTF(sT?Yw6tF0=I0Y*&$ttmYzthS!@~tMzmzT+m9GPyjaA}n|%TQH?jaGrHa}Hm* zTw}BAVW@%|Er;ipi?pXPo5y4B?vJSCO*ZN_j-k>j7>t6HTf2R9UFY9=y2az3$70dM z(N%T_0gnLaKo`Gz9wkfR^}P{EnsM_%hl|T)l1vWR_uEtU#{pOC4zC~dX^$iR-DegU zM==%4Kv4uoDmep7Q7ITYjgm&AWMSHp|C$Ntj(s#$ zVS8_Yt}9F?A-)%)X)1ZgV7;DWxo87|yJu6PRI*zqemv`qmz#+sl?S0T%dibeDi};d zN{+#=Ju~-{4WH5f^Lwu5=<3Bn^YnEl#`lYMz_>l~K*!KC&KOVa1 z6^AT{QL825vk_{gC_RkEk?J=2l_p0-{t!ROciNJzqpwxG2}`X(E%}p-(pHlYRIWY(9X)1LC*dA$#Q;ld(KWJud>&H-Wl0sO!np*h*C)^ zp0gT9wNb@?ctDnA4E&fNlScAsnh~TK!#HKh)Db{QQ+aBoNRniDUQ8OqJlY@e+^3hZ zFU_I++%L=asE2nDpZWq~ZWU2$k^R%(hmA{8r7e^}WMun0a-i#V5LZ7X*{6p)h?l=a z_S$#kDKSmSItMaI{`z+jrVbyy3H25vF~L9m7pTKF?eOgmW@NmdW5;yDgs+T}S!SuY96zWB~7-z5S{p zB!4j_BTnPl02p)PcF5~F%o)Ue5=~~!I2r1U;rV3vR8S}yMaIz>N6(`QRd%flg%kIL zGp|RS#i&BTn639SGNzHl1hw5RkNUf)ib5;bplVhzRfBnFo~l`8F~7uWafw#0&Prh! zOS5R^TC5i~&=rkQG~~oRq962`L=*n<@rT^nKjd+z!)p)k^1t^RNv9{GsGdl4KC1v(E`sEl4xen$7j6)(OIhgToHT?H*eX4*2wEpW;HZ z&hI??3tX#R{~Dos_=(S>;bRJh!~gK+H(4qcdGq)Ku2eP%(t!W#hd*Fz)TL1} z83hweRp(Y`3q^^kSrvX^^%n?|07Es|96X?ER>|oOnxb-}a)a&h7H&L65ef&>J?d72 zws%b3YLR3yHLHfEs6=VNIGnOG>~Xi#<}coQkIPGQ6lZv|ykk+%<=Cjqak0EHvru&C z2Yr$(0R(<54~LTJ`NSud5vCEgmLp6+jG(%HlYfYS_ z>>Q0~R&yAd%BPkbZXS$@lk~hVJd9JuZiqJHXqFt4?$D>`m=tZ52kj|ETjS2bh=Y?c zgK0p{)^RMIC`kz-*(2|mDw7~)_sk_jaJ7|Vt!hy=b()TWp(rfoZR(CjHK%f=o@3sz zXyt6yD-N1a82d4M6PL$*kJCxSo$Vfvw|ktPxjf$Ovv)9H_h>|dV0)*>(^ncehQ`IJ zjj9L?Rbg-F^U>jygJFmpr5uj}MsCD3h`BPKr($b_DFji%*8UI>cwU5MX+%-V;&Pe8 z``ZYoFiW$~5Q=Fs6RE~v7vvyn7pShUqiQOntxbA|C-}V{FMRn~S`CL+F4cKyt;A~& z&bYo%pknDbro#X9r+3lv7I{l@NUtyC**^0ac@aG?p_VuJ@uLB%D)>r)B9k}ngHVY6_>U2**PvXL;jZlmWW8h3xBi;+=4)jAHtECnWN^u_NZUJPZ+r`3 z7f25_K{I9hQm!Bm1W7E1Qg?({x(M@2P^%I3r{r%e%7e(~zl?J2ihP`(utNJCXdjTB z9!q6&Fbl*zS+#4LJOm}ltZ8Ycnm-97eL_E;be#iuv5y=3v(KLNa?TRQ0E$phh3sPw z(}*NXu{3kGdR6gaR}KKGg&+H~+D*B}6DS0Uyp}D^n!(A7SenH&c3CSf@%hDF4Wu{TYcr@i?G9gJ*7V=e0L#N-B%_KzW$01BVk;7*%08Jrr zL+-r0N&9R7UW~4(=#I%#%_g5;x`r3~L`leh_WU=fm{q*QLkPh?`s^?AyYK!Dx}x)V zxXUzh`Q?kB#!yuj3r$`>dY3==@P{lH=h+_Z@Z$U`OZj=KRvAk(xz~R{uRCHAPPyMb z<2$>r5hMZs$ydL|!$0xjX(~fs!&m9ha*J@k|*!$ zpP-L0Oc=QGbri)Z{>=Z`p9J`REYs?WpywsHK}<0xeST3aAB%z`SKgYc5Jm}coUl|j zIT(iYCIP48kSIyfG=+5L9bKvA$XgnguF}lwgmK1N)#mFrYRs2Ro@o}jP|DM=Ei|Dp z3M20I#+*z8rcugP-{Z^=7=|HXoJz$ti8&et{P01SgYJ|@HAlVf$aHxWbKzoxm6Zy) zoX(d&y~=MsJJ0o|!)no?EWpgFT7em;-5_7vG!M>gY3hBFW4W9b{|wq<%giC{7!+q{FAUy`e7O^3N9upLCL ziP*S`hQyi`vd0e*PM+-MhbTY$n`G`#4zx>`$-e#1 zQNQx5at*KQ615ZupqVJOIkN7_$94$A0!2eqT5=6Pw*r$M@rSobh8~&gp`^jbK_SDC zwV8u1S?5HC+p>&wG(qGf^E4Yzq;;TFlF#jAB8Sl@fccq9s(kG?K2a(Pz=z%UUX79% zOErmRK=rCsAxuLAP`B$6&>oJ7(il~d%|y|x?S~mqUUD@(3`M78mKlaa6rnPgYjNtG z&4Ma2p>3!JdEFt-61skuG|Q-(Wo*sjnff!Rii(&8lcv!GFY)OGJvIjtXLPZAfx0Et z(I}0`vXs01J9L8{N$HWad z8;s=2J%MGOvmd`vuf;5j!22HRFfq~wkcK23MHeAqZcp~gNEJ2R&5rXMKTfd z!|gkqb_R4u6MD&*Nf@9i3JZlIW%EhsEyYW`bAY_5nzLppSv{K5Y-#bB*)>efBAKyg z6(P7%zW#}N&HgXne)MXRWRwdgUJx^#My$;j@Ir||T4@#tla$BpDN&M1l~9u$MK4T< zQ<*GQ6>$!mUu!r#Y)`Qajpr5%JUE#U1PQvXvRId(^s1xNDjKxMvo@ZBfvqciVYxQz zmd_9fMo~o1k9d6M^RPX|HZ-o)9qP8pe8DD+Q=%l}#|M1|e!|d;=#2w*_lJ~97OJXJ zDB2{63^x`WgX6O)<&w$%FyPMVgzcWsC`g(5F_&8ot)fAgzy~{hY6Xip%`i0uO;s5A zv!Ai<5TqGXFJf`Nz;G1MKAYnE5#iLG)h|bK?Vd!^<5{T5mOe$1Lujr2@V zn5#L|iWYlakM1<$?VSPd9t`;5gD$6T%)?WcqGRyz%wy~)Gz&TfQ{#iJE`E}+TFWt4 z&5<`$o^BSnf97K83h!+XXpaIKMT@>0@|Eii?j4LcJ{plPS}av<_689`Q`lIqqZ>`68;!-uwM@M6(iEMqU*#>7`K*P4E z*anWNQOfBwawa+o7b^}66@xb)_c%Kp)9X$MQb74w>f_%HP4E5Y2+#Prn^Cp(A zax(D9GO2DFn!?zNFf;{2R|%3Qtz_``f6}#k^5_5L)ijJzZJlHqkopn&g(Z@Xgt}|h z0_jAoXK}Dr6co&4@?xq^~WuU^*o|IYrsHfan|(btkB{j@qmu z90yjf$lA>A$;=$A%aBSmYpt0MB%Vjr$@*uJd;1mMcz3k zdvIH-jrF?ZP&Qhi2!h*>QL~J)rV>RdCt*CRLIXnx)@>6_2vXou*(Rr|Xc-htoyMg) z%3KR-O{r|U6R6h7UjM!v{`+T$MvLg5eG_Hafni^AT6@<;`?}{oP*K~GcFO*Q- z4w|W;F3mx|Ptxh5G-`-yO%D8uh9Hw3&wgKCL)GFrR97OPZM-S!;J!j zfP$W%DW@S7v&g~B777J6Dzc5p)HLSv75pUN za%CA!(P-rw%sX<$JBmgWj69B(Bg#TLZl9BBmz-weB|eAaQ<5y9kc0 zD(mQqO3xc|p|Zjs-F=;5;B)4USu9lez1P0Sw%3~t|1s~KZ1dlI_P4m-d&F{aj!WeY z{_ys<`SQw(Gb@?sj)6TRG;O76+39 zS;wjq});t2XU%z%+=7lk9x$nPnNC7m=nJOLd2{+4tO7$a6dl=?#4hL!;~% zjQxnkvc*o%=XB%~r5Vkl$x1QDB#MdCloQv-jbr>IM{9RlqD4F-!xsP@>qVaphti$JSXYTP#&9CSl5F*2}!V(*6faKb`XM<@C5+Sa1}!nWUK~v)vo%}gcyd3KI6qU z%Qj_OXBtS=eK-m!7fcXhR%`&vHEB`0I_I$8^JH$omln+oe)6~^yogx83=i%?6ie@BmXQoSxt1Dw=+!*R;v9G$>0pEi zT!d{CpZ2jXFCo@9;JMF8&&FgZu}4`dy`EVn2T&oT+SxyqU+t*HT2#A_uts%)QdO>BD^$1pVgH)s=`wZ zhs9=&dfuSXa;VgEEL^J7xKKm?%9rGTR;?qR|038qL~|MO?8~sSfmmDtLq}~j5SAsa z1yKZ>n?!&6Hz;#Wc=S*v-FrQ%q4`F z1$Wvfgl~U{y1E4KzXLlDVd@h8_-(ZHCB#c#CHt#?f_U-Ei0YhNf86^>uF@Ne@c52A zAUwD!o3J*nOWQyc$idSt$j8dCpj1R80qpNXsf1D~kscf&GzBrYC~X40p2T})8Og{+ zE!gL!2ja=9z0r^m{>}UH8VSR5AMPhn`Mllx=+z(zY1$2X{s2WN*qX^87?UCEGRNTr zMF`dktJqqOWA~VhOx74?DQ+B)Whp@t;^;ONvy7L>wYyYB1wj&0waZwlMKjmHja@o! z7dP@}J@Nrz8e(b^OBAOu2h&4(evhs{AWmb7W)4d;nR6Nx4B3uTw;Gg;5-ACmrgJ!H z^YE<8e4)TXp~TJh38OH;QZ;Vv9I)1?@rxI}%z`t|6aQezD01SqDVt?Zy)y>E5HAkc z9(1VMIlMSve{_Z)hx}mcF_-EM)+V&XkDpq57ERH3zImMo?jbkdeTX;qU^qj| zDMB9WO_ht+S7$j<2n~#LM&7 zc&>SoIj6~mxhm`B8db}Y3G!}-|NE`)vRtq5{>cuz;{yi1&-eE~;9|AO#mXWF;}g2x zfG;e)#Bq4afPxpj6QT~+zc&Re{3bdyidKSR@=ryukP zQlGlj!cr}4El0ty(X@oyokLcNMOLd7wg&?s;YR(!Z19v-k#QR1CxL9o5`t`YfJw51 zyzaaz0zN9POTq5a7%(JesQTmCF^b zRP(%dAX|5ALqk;rqe+OWDvU-U#iGed-Jv}S==5ENVMZ}$(C)chS}LO`g4KFXaz&>R zL6p!aSahcmUXmb`j5w2RJNHjLhJHfdi-=;0HnI$rYEEZ9Z_&tE%ol7NO(RGW{4`_p zXhf&u(yZmE7A@{S?lGK%_g9hJnG>mDW<7Wso2DE%GaK0Ve1OdE*H4p3FtrClz}2|BvsED z;}|oKJ->+II9LS-P1h*bO3W=(s5kO#%ooWrsONQldaX`1uVQKnudG+NJfG*rLY~#C z#f=L!E-n>WsMw?#jDwhOe(OFf%M}i~E<0x~{ejO1yF+ZpV!38B_G1)9@Zw65Ndh+y zMzl&cx9%Qsi5lVzcA%!S0ZUZI>^s*Qn$SMt;P=k7yMw3bux+D^x9woTIUMGNE3z zsa0);;{br7V@iNeoDwD}-I0&yMdTer(s_~$Q&)-8jD?cP^@hWThof@}Ln&tv#VNo3 z+)p@sCjaseUrmD;t?ZEW#w1>Z?r5YzL>ffs3k{SkCXG^*yoCsT(yblRX@D?PltP|l zFd>}=7_Ac8)eY$jJvboPKSM9sWa9~0oS=Q_3-I(SGi7rmeT&6UqgHTSsAd=RH^y}t{j9X{aN5< zOAc@SuJq_SdHHxPt)u+ZFQL5j3Zhy^R4RzpqWrnj1hIOF?63bNqR~J+^D^1nKZHVo z;QMc*zwjI-!$?yHID9^nhllOLx z?6q&n6@GI843q4^EyVL8_Wb|=AOJ~3K~(a(tWEvQ*U3g_WG6dh?pRtDvP?Epm^m3r ziaqcqh-y_1lne6`F$J>rv)7Xss_#oyY@;&kZBOL$qpI?d5&EQ$9wX9(xIaZHN%p7m zv%mR?x{(3g>D_!aNJDZnOi~6Is!XS+8RT?(mU;(6)tSZ<#^D$*mT7cd(a!@OHM>m9 zZenXT9q){BIHhP5@DiUSO<2q?VyhOX-YIRjL)RN(s2amy%xZCo45`dK=x_2~`!-P$ z$!>Cg#L0AkscLMLmbh4wgGt$}$eK^@n4R%1f3y1z(x zNEif2BrdSKSZto1oI2;5^F2BE!~bH)FNUk=l4S3x>YA?UuI|&f`=0xp_kEtZ*q0^1mEAfhhw|o$HJc;Cy)N^>~-jb zE>|y~rrqk}*dEWFUgh%aGIN<}qBx@C_NX~WZ1i?G7#(u2v&P#;HyH*4j>dIbP7gow zX*mPVSC8}Wo&9Nk`plCoWT%+T<~Unkrkt`!2)R1_IRE6GuX1^2nJd$e^X=^)u$-^* zr`K+9b!ipXgylkk>-&d1y|~J|dpr1kKp?~OODo*i+2dEQyuhzs`dNx*mjC8^|2rQ$ zc8Z7y2a3QcyjJIWh+P3DorNqK4Bb@kl=(4rlO1};Gmk+MYdP!z??RWig0cwt1^((&SmhxIXov5%!I zq%Dp9#2;EIr#QD*z|>^++BW@xN2OrV8G0m=#B3?WVo~6gj`|*67*WoMZuQIa8B|$9 zmf_~nnA-_^-=8k06;W-|r}!jt;oXh@R4>P!w(SD4P3 zJb$8qrfKy3kSL0=?U2Q(48QWR1#+e!0=%`^XJtOe&GnuL9L1q{9gHUR%Arr#J|gf# zWGhV+MR<HD^LeJSI!+MN9tZ4?Jl@^zv);0~b2Q?{ZXYj}v4fb0^)ZKCmz|c) zYBkMIoG$V5lZ%+T%5=eGshmPHG)h^MpFUmY58m1(pEg)7o7`_WOy^8KxYM9oN};3- z<|}D7c6+SM=D72)g+2DjWDH6LlUjYm%U9?5wHH=!;)H+k%{5Lg7TD{1R5L1HztLd6 zl;W}3G^Q$Z_i)I?#VlbW@#4uM4?8v=9u2759$7=dkYolvAgdxWAG>J1| zD-H&*dXlg;APFL(-jKwP(3hsgR4<7qIHL&`Ay+`U@GQx&hg6y-8MG&cf8{TG;lq$* zJVH9QDg?f z*=bTdH7#oCcSS%ZugH`%1sTXF3JD2!-`pjgRwg#i0l#64~TEPhxGVm(M;88!s3cJ_dBW}^(>b?H|d5l9F zZ^Bp&V$nVWV5mAHr%zf-iJ(Uub2P4r>7-&zlE>o6>X}K%L&l9@~ zJ;hY2!pI-9IA0|UBL;p?tlcF^cs&7fI;yJhgST&^sS4AT0v*={8W@UB-pFvabc(E& zC0Uoce;6*+QnHgr&v+RxbsgGOSZEf(ihwt+Iu`?)=!e(!uC#FuZkeT7z zn|DZSXc?kNNe>pJgUB&2N0?RW44QXMfnD=enGjs&Klv%7^(~t{=5g z6orj$i=R4w9y<_8`G5SKuko2nkFh_fGw?mefy4FvL*gXiLgg%VyMdvqyt?}?tA#nf z^59P?npvu;B9>~fG1%ln`GW9nM&cU(c=-}VqsY#1homa#2RS`QMoZ&_4x>Oo?!73S z@FxW)R+W^=ZA;nW91ZMKf({kvviVV zf@JzJ$B&(SdcXY}uZ$Z*%u0r^H%8V}WJ49K)*wW`d;uw!A=*7eN+M$0L)KNozAZj4 z2q6p!I%CvgMtJd3CgJ8DvZG*ND^c<3z5_c>8wn(xkv1k$sJrVeEMvy5$ zDh=H>$@T^edPw;K(#4M<6{dtpOJdP6zV`rjH$>aecnEuYBuwF1EnT|hc{UI<-ThIRvv zc1iX&krr3PBryyHCpAe(-hB-Yc42c}_#=0B#I#x0g>V}VNbcW8T3&(ehvNO&d8Erv zlYIB<$X8!L^;<~CRtdlPZImzlP3+(KBlLv|&YRasJ$V{DkJel3q)#uvU_kihI~f1< zKY(|CfV6S~`K8YZ=4vL5bm>`w|MfSJdrj~?q_Y=973jkUNN3KA$93_v@bO9#QcA4e zQ8Y1iE>y+J-%5#fXA;BFK8!}fYpjcAn%MD)M=r9iB4;P9Mv4NaA^e`6@GD`O!gK5d zs6Y2NKT=Z^fOqO|z0&oDn*+ z4g3+NY5)Q#U$>jcl1xs|ir|2jp=cKIqkx2jy4|8+W|5G1(A{7ZjMy6BjewTmv+^_OKefz7-PNn$n^*g+L$w!tI<>yb#zCKQB}1lMq%({rQ_mmWD3*~^84A;7 zthB}ST#2VIE%40oA}^jS(VM{R@6>Ewz1L!Gx5tImGLO$^xqmbyWvD#2lIP9M9++S?ws`UJ89s5c$an5_sN^&jX7iNN zDmV8B{H^DX@q2%MpL{vP&3jEget90-k9ctRkmD;A>V22%51Ra=UpUX7-8kana*h@l$^=)5G6F*W+Os6PE0 zPc8oSCZ8k;VVDq&Jy2wnj7c>1L|^;l<5IbbtSU&dM54$@mWgp9D}+HIhxc$FNmGbz z7dew6i6Uf6M^YrgY@D8fljo7ll$bQekw`#CfnaEwmRPNOju3OV-zRY$fiRLJ5h^)* zN%#eozw+Z4mOwPs4@hcSuZ!`PR$T|A?o}TXqxDhhrg^0EtCbas=ZI}?hUj~M+AR-Pxu=P zWu%j5q0=JX+D2L!BR&6;cuYG@u+k(C?&96s#{6_y2)cYEL}_gw`4@kU3Rx6I=JsKYR-;QQZBcLc$>lSQhBiBmHvPQE<5N?tb?UU80q4rg6!bi% zVq%95vZSy-KIEN)`y9(xm@&$nEFR-tXPuEhW@m7~Mz_ZIuHWO?$4>I%(goJLd$gSq zWy@lt+a(A>=4UF5at`G}7Fm`lmUAqW3bY-E)k0zN^W|wfU9oB(w^-E{7zYkVqapYA zj*x**EIo!3dPH$dMo)9HG|zN;#P@eL7kYK4P4B22~AZ|9EpZ$bDCP^w)bA~Y9r(~8e6qCql()GrZ3A$LJ zr&J3s@=+ym-4<9Og&+-7;q7*j4-tWDPchGpQz zMJfx^D5^p(XOc>342K@3sS!mnrHsK&$K%>gpQHAeT2BOi1|tv8i#X`mj9d}!>W+L~ z-|S<1A;%Z;XX-b73LNckeVfJQ$El={$a{z%v(SxqCF^gPn*kUYzE) z-`?jxeSVn_4u{MXQ#@=rgki|_dkw196dQ+qKKa-*tFt*Cn@iIig{ZQ`|M0a3tS%Pl z*a3@~6kmRGk0+Lk_+d=7n&Q`4J<_=h!gfYF2j+BJ|PWcERCV((SrG_HX~kPCmmw`K?!izD@SAC4!?aS|KG~;B^&!Ixhl3QHVU~ zka&T>AZh9(@FCXKL8C_!Mkt0R>J^Jc;=?-X>M^8KXOS*EBbblfx)4x}1F=3gOr-f$ zF}-reV!fL!2vHVJT52pyticPVN&O~*=OrtG%elKoa<~h%8gd~g#EdNC+&jcPK1I+N zpq4UXS{jBJ7f&HAFNulbu~nqw=LOHReI$f#t|UTF!;WY&nq3f}cf%Cx_4NmM-+zmE zzlQeAC1|xs9^4aa_?fv!EYslO4(;7OwVum#*`l~uz*sDySUQp{5jFeB84JlWVbmw7 z9f-+Yze95KI??t%vZWyzIubGDi((3V^BVEZn@Gbx^0Uu@=aSsHNpky^upOk+NYk^Z zi?bvL`y`tiBK`K>`$YHGNZx+~DGW&NeF*j#sZu5U`q!!aSAU28?|q%rQ|CyIY9yO$ zBBXWuCQ>Selr~X*{+E%@Jc0KweiP-fvq*slnH=n_BQGwHtUnNh096rTrA$Wr?p&Ls z-vm`h$`%9y${C4}SKtc4Z=?i?An;(^7is@tpSaPUBpGAEfrFAZkaZ1Alc?T8&IutJ zY#$*d5mG)U#OTmLKfCggtk=BOdjFMyKW08NP0t%rG7I#*p{T>Oij>SE3DEJnf}u!) zDk-=V_M$4QH0<`oE2^PL@}!xlPfpL0(KA%73U27KJ=mRev$vVg%#hYntmKa&NeSb? z!H+`bG6JHk$lygGWy@kVQzfIPChW%OQPTNgZ;czx`#fkj=r|7Zr2+%TB@AQs_Zply zK9B9V;OStgESK6Y}Ilcg$W%d0#!`xsA7Kf!crik90(l~oEx9%*71h?0Pd)w68$ z_K1_1p+Dxs`Vrs1eV1B)z-KN$&e3?p4|X1clyGTg6^R5{O1SxOhgPRgzt$&H$e^hT zkl-gVnyOM83|TA`NNGCtahr{99Z5>C1DDr#H`uAQ$QLrg#2-1FC@gTly~Fj!HXj`A zQX3C>dG$PPcgPR-H+gGk9WM#c6(?k+77N)TaS~H^8mNjw&d4#Hnr7$^ zxZSx$&+C8`lhyO2loU?n;Dq)Br4(UL1Z0?m47@Rhs*#Y8*3yiE5vF1xOA;NgLqdX~ z=!}9fF)>rA%0~{h^m`v1yfPg5oI75j-nJ>_P1;=t!%!&aEtV@OQR?SM_+czspA?xO zjOp}UvMHTb*Ck03bX`G`BxVaH`yHEwN}6g$<78Dlrgv%%mL}740!~ycbVU+A$55Og=z*%SJ^o1b9gWi)^1H9h-0cblaU+H9JusHKHY)K@r69izRN*< z#9nAr>#E%jT4HmO0oH*dS8yy<9M@o@N>nb@*BMK8X`!;PmK$a!y zJ(nm>Xtr%^Hzc1mh++|9>yCV~riQ60?9_)uNg`+pPQbwSIlENk^N&sc^(LQMIfHw* z2H7mJ7oyBf5%08-r&Of0NJ&$w5Y&4}s)CZ%NrHfA;G&kZkj;|#5wfKbxdFMX}a)Z6Pj-6(K;An55Swu}9!INad=SAa1S;0pWNkPhN$k<6<&q3crb@ zsKncM;nustzqz%Iq>G6cx{h@I0+|yhNNP3Aav8eaN9kvLA1PlFXs4+~F%gU-lH$aZ z8bu_v9RZZj6`(YWbWS0;dtIdF;~3+q$4RzD$UU z9hAqjX-rEwmsKP|Rnj%jBOw51kI~P75VtqA$frpZ`T@)sTD_9^54Ewb8GfhrmO6?q`Vq= zY-p%CkS#-0!Dh3Myt;%TNe~g+{-Z_(b#(#h_^JO_FB<<}Jq$(13w<)0@NK44i!c@_ zqm*h9CDEgLOj(jJ6l2na6p>ObELB{re$;q0WmOr6B51UdTV@!H9*KpNW|1TbQ|U5m z-7UPxXK&C!R}>UkrebBe(^}`l`XK|`LDN*8oj=W);z`P88BNx)RPi;gwXX5C^|u*# zF3s+cRNCaA+h?wjExMfntwxW>PAqb1`Z!gq#M#n0noffo%{#2-k8!*x zn%aIOcsov?_iGPmj>ohehmS8VbGE$7gU%MFqVj7Oe~PcI|A5b(c#eCWb>=fublm}E zYs|ANOFUjZ!A5tF*-VwbH>6?}`2Ox4Rtse`StXlG@eg19EuOw`lE!$KJ z#NWUA?{H+-2;+!b?Yms7t#f&05lc1s)Ui+SkKg+p&XlJoo$E0V+HI!OX%tx|Zy5M- z$lY3vl%{dIJj+6Qo*)ib%q+5)S;SIPq|`J{IL1^gQc8-Z)1c#a@nauFmI>nsMV86v z7I{679ST9JO3I{SQxSEqf8{8frAO7AAEhIo(TT!{LP{qLV=7sL?Y%y_s$l5~ZV(g1 zF`bb}!v82m?1wSar4*%%!A6{*>q1aHwveMa445fetd>n0qkz?tN!F05WK?7%0!!oV z?LM@=46y(JAOJ~3K~&zv&uM64YNsj^16$&tF~W62ibacOj+Z!IGRf;YIbFlj6~ZXy zU*4_p-g=ubj2Ml4@_B>pogS;pMb0ne*=mm2JsMCfnz(MrXyh~Kjj4Cj6c-DWER~F= zVuvA3+ox+s%w#pZFy!W;P2cgU=1kFC>qR`=>oQx(U|A}Uou6fEr%NegV3pDoGdi{( zVQMm(D%0sW96LUX>xMXE7g>=xe{P0u-(@)TND?@?Qsmj=Man6aGsPVDy93_b>@!!? zIq~!YV=qRLB@X%?TlFDp2YoD4#dSlLX0jYBS=0wU3*|J&&s2H+L6e_+Y>NAJo0P6h z#C*u(rz$+Pl;geK0p*OrXp(w2HHFow3}Zhco7MRrzrM!8LLS=<+1=@o$y#_p#AlzF zrZEh#bcMB+%e})PQ&VXwX^q9a$v=N}i_?n*ntg|qp)wfz)61}A27Jh_Ay zLMUM%*qNG!GCK!LCy??Lk^V-&=;QnE33N~pi0a3yPlBe4$=lKjN#h7p)c>%yNI1+cXNsf-Yfx;a^Y+axzWgk#5$h69qL0~n79c55Vli1DRoMZ)^5 zSUJ;eg3}RAKnDi|TZgEnG+HS`<+NzF1Dde+XfSGChrS{Im!cO)rxC#n;4*MXo4d z^MwjYJgM4~Wl%(gp_D1W{Be?NZ;K#Sl92cz(a;h8Tf-pkjF4@yjt5AZO_FHROcMkm z0JVDJFPWkru|tzpR9VH1Jp4GI?ucd@S&|utHfCs&)v|=KK-y@sCVZYrLJ$WSi4YiS ztUl^~|4{>t8@Z^HW*bv6nYN~=I}MITO`Oof4Lw#0Q$$IO9XPmAfE{?8E|=-0T`o*5 zF`t=1S9BUqlZshJmSo;M`XT$n8j2)QO{IBueic<#c<*qF^VM0tyM2p`(~CSgyU4NJ zEKR$^`$yZPGZu;@8l7t6CNrsNZuV|dH1Zsb>R75l!|pQj$NX@2mormUT27Da^?h2S zF>l{lCrJ{1_T@{=W{NyLa}h7{*c$Ay)jQ&PeVgrWk9Mm^zK})JR8B0;5X2FCg8>(& zrwJ+*WJ%&@S6`rNRq1*?;f0iSrqdNNT86xl=bPKFQ5y{?nkJ3$nC(uN&zyc7J9K$* z@nh@`_e8I`lJLh5UuSGx@|McL@o9_#X0p1-6sQVwIi3B!PrdIFgfU|;q?j=TV8#uxbcKN( zFjY?BhcPE-bEGsGKZ>b4E-6i6=*9fO%^J0yKtbg)29K|lar}t=lup*tcz3PEbkSmU zA$x=hE}ANHcfHNRT#n89knO!b z!=cOV54TC;grEPyWpXKv=T8(_Yq>P~E<3dWwjDAa`}8{l%#?|&$P~*Nf*@vVr^obk z2E$M(WDS1l$}F-Z(X@Rw`a@Eh!gS7{oK`Uund|#q4%>n&nl@ByH{|?cfzA4miwjvc zS}sRjn=F%AIk1f#r@oV?^)jxiv zzg8oi)fm?XNNym!oqi+&M3RJ*P7!VGLJZ2>6jBnCcma?gO;vI3?I0%!ilvJ{kFF!l z%)v*&Cpp-Koo%G4X_9US_V)?yZlIn!Bg9v+1lay@CLSyz%a%1(=dft z$>gEF56z~){KOH_#ty+@8}G0SNrJvID@1bOi?EVm3MOT}4ub*8(mYaiv66Y@=Ca!af zaQ7DEa_Cbzg8dfiXFrGgJAa7MYalJJK(~vuv`TXO2GVmsNwW0->BJduY@{n6Bl*Fr zVzT`BC8SiEWNRG`_K-pkX<-Rg&cMT4P$&yNXy8xkHzUFQlq66z5lAZJ;b0pj7U&)l zPzo7Hr%7xZiI~I^vb8*gx{xkHeQ z>9}1!sO_>@Z*e#rGM&xvcdmXBO;PB3BmVnu{Sgm`bykWc9<&=YZJVWho*<5y&1UJk zF3U?ZbjLR3T$(?5=WRCJ8ZWOr!`IedXSq;iceuwmbkSvv_5Kbg@=M%oY@#a)rDB%O zaLlhf@e=>b8{c8eZg6#WnWIsk#ax+hZrtV<&%DH~)+V1?dI~@Cd3OE+e|Yb8;w0gv zpfs%edl zwoA{A82d5JQNW3+MT~^)N7Onty^%-C)M#`aj%q{N9fzxDrY0$Jjp?jGN>$NineD-t zt+vB*B~8x>kPsoLTGu8BB8pi9Lsz+YEKiKY-TgkADpSmwOqEk4fT1g_R4gP(qLNne zLeXF(%d%K|9}PG<=rI`iNU}tyV-tlD>1>*r`7(y3GOz=Nehd<5s)8RSL~%?Q#w;Ey zO?pHm`rQ#p0=^&Mx}xQ&oHw~NpC_d%sEWkRBb(RPI_!5GdTzwg(C5SZP1Rb2eIT7W8NpC1@L9^8iVVp2iPBV5xa`_b9u0y$O@%p>FG{*ra z=W=}iev6EyvDfpc4?SdH=*MJDMc}W3nE9Cuei-rc6SI8%ojvR*;o?$}o*huk=v-TG z^Mxz3JgAL%`Fw?xu98pbytUTC)KxxxzDnBEdF@_8S# zI22Mc4cliF1mrX^Jk%87=Um8`I7!6NiwTni+xDsCO>!w6+Y1RIQ3ac|G`b@n#|_D( zbPP=)m(rNYX>4^oUOG|!>v2Bg?|=0bXX6NKDu?WcL~cOfhRA?gOo{r!Fd#Z?fGnY2 zcubJ(`+b7?06BC?hAy(IAR8*$b00^VnL|4NBvL9TJf5Bdy-9+5cN57OJ!&hG%!%mO z+!P7rfiPA}h9*3ex-Nk5sVvFnZKP~b2)1?&27Rz?f*-sCoi57ivY13h5lQV(B-$le zyxAimP+dn%bDw@uOvn~b3+CvZYa(4=I}o*=Q3$?|_izut)StkZllVK|gmx3z)baP*(5#F1cj_poR&joKgYckg5Yas*1FH z9O=p@3BLNrC|Zp4#52N1F>?$^#K%`pL$L};gf#349F;61owxwCT_{bFy!*OXNpTP6zqL zpZiF?kOACmfA~sm+@fL?@#BCX3h|@hkwDXA6-kn5+HE8WR`V;OZ6+Afb%%@thiI}E zHC2OS*#!*6pkh^VBZscrWfY9r>hH1M-QjNQka0LcD~tTnnU{HO|82hf z_G@@@#B?doQL{_U8&k3@cI$1f9$VtITld*MYO*+2WigjSl4T4<bBx$IxY#a?`xE^MI$9k0D7CPtKj@ zO7#+7x%L;t+L(_oJb@kBtmKYiC?=0pmzm4vsajQZMPuOi`Si*akl<|b3RE}KEV7ij#=bjJ@ z@XemfR>!414tQ)X!!xS|ez@LYbFWYBpo1hyJoUsZPb_5l%G(FLcm053IYo6U%V6N) zcoC_T&hAc^bE{>p->K0bdX&p4mS%ILGdhYY^Y6Z}Ldy;a6UbT`TSo&7UFG3U7dwck z<}EfFW1d_o@WVR|R_Agc%OuF`H%2VaWwE`8m(G-_W;9;A)nJ@RTv;vvYP% zjw8lFOsnfs%A4q#LcMFFsS0tNkhMfuEsO;o%+wSzrpiK2XT9a}v*)URJ@M&(`JcbS z$RTk8ys?L>t7s`5Z{%TAGD0|c9$|YxWP50<3sA2UHv2?F7w4dhJq}3Et{h_uoMAhp@E{u7mgPZPZd$OgFO` zg2Ohk7qI=|A(fL=0eU}v3XYu=f-98~6V&ZBA>w2S>D(ox=_*Pkhf>H8ZXeM5%Ac|S z?GGrw{4|WmgtZQmst}Dl)cI+W{t($v(LehcRLK(|t&3L$xLwzf6jgxWQ)!a5`%n|Y zJ-ok3bl5<-dPNBDW?h8320fD9J)~TQ_}~!59V0z)m1KV#(kZxe9eH+E2+VU&!S0%% z0<@0)Qa~Q40ln=K7iRA6q2_I}CD~YIC^=uJ78g@tmPoTIIO}vGHz%$hj ziTh)eN)e)nsNF}_RU}ywUf&=P1c74aQKhP6r9e}WpZTee)C(EFtNX9MG7g-{v{S4` z{5V7c@@7W#xl1x_r%RH+lvSbQ2|+mu>_@3lZdYCa&2oHMOUb#(!@zZ&N7)vr^)FCk5^8!oI8euSe38jRzZT@ z;V$nSK0uZvYU434oLnVRB=!biHI7;45$N^xc$!{LmN5BFJ{ zZ!!r3p7gr>VDn=p>5LyAZUOM%$v*3gZQ?A$Ff_(v2gA@gJm|2x*y2*P%4zPxmY>#a5mtrD$TiFdd5_>&*~E#Lp}K7aU)*XemK$NdpW zl9DDVbCojvnS*6&{NXFV3Rc1-4EfD#U!Y>@%t8-I%D7USr=VNBclwmQ-he^mad6h7 zJDT$Pm1pphkatfXQ!orpXJfX{dsGW5JA*!xB<6N|g%8iRxm;W3z3wK<=B$X(Qh_i%(W}`?71=aqn32CKx z>2vj-{jdLS>y0$ciJ}b8i!e)%Pvq#vk>1;Sf49#G7{_QAV}!;Ts$wP z*(~tVl?HK^lcX>WQqE>EPflm-^;`xMpV=&8F!0!UdXA#1I8KD?#aNa`sifokF@~YC z&@NE1b-uh&;YPDSnnReTT&@=Jl7xF_4x6V_3`0E67oM5ptn1+TF)vI@ikkRpkk3KymRb-A%XJlE<-sTDOOLcrdMpk5^Ag0PV~V0x~sQ!*56L*a|-wO>qphX4J)c_SG4 zR9;*s>5R#e483X-OnmI68l)N0+#GV~6P=9EFU^ykcF2LK>=lWIHxFK4CIwuhLNCjJX6)Sb5MiZ%86O-531WDJyFvK(y zgkQ8!6zHaVpAzhJ$m5jAi!f?7vL++7nn-Divc4>^LupE~bI5eJhrL`Q_k84Q*HBtD zG%crbV;=eLD`G_*c+fo+JWJJp^F#9UQ*jKs9i-3`BK_citkXqVUBdpQSE*lVf#Zl{ z)2gFhzlu`OA&yaAdO-;5VGn6x8L3_;-`RrQ9We!b^=n}0;@B68Qq=CB**LCdr#WLH+$d5FXh=iTvFkiVKcmPrQDL z0)sC3`58p6I6l*nSn(?=(&cL?^%By`x;O!sH!eEt=LMi%R)hdnRV2eA&tm8cu`D+m zkYyxi192NgMz&2+|0+oW&8RBEQV|A7m#!k;`oibxgACvwj(_-u6Z>4NuhH{|1WAac z>STFN%`B7U8D+gpltp-nPt`0ljb;}>u#{=^?hJ@taq^22w_lhLjA0BWElsdTo>6z4Hq1oNRLLPFXCL@ROLjWq~5| zsC&-t&I$kexBqkYr$>C$Ip*)TKID(?ev?5kL6a5!dgpECi&b&%q!H85!HHcy=^o-G zQ*y-Xmt-kvo^q>kg+@i^QnigHt32Pjg%i76uU*5|1WHSiq|XE>XO?QHJn&Tf6`1JBM$$Zp@91I-_YQyqzT--%n^aZ2Tx? ztyRE}GkSfG#kmqELysiQ84Ntu*Qx|TLb0f0=qj2bi%FFmvD29`c0yrwxTvI@YZa(B ziqe-mf^BQe)hvGN_8fIn$B7fpW+973i#W^acmZ*mGYeBRMW$Xc z3FDNPueYg{O>9lZ))n>#9!EVFT~oNeUgP=o8j~O;PBYRh=iuC7&&Cdp(`h*7W^^c_}K>$q;j?PnG^?KtSVLa#d|i4$6L71A{4 zgwV3!RPX|7JlG85gd~oF8U38aE-H1o~V;&w(c)B;lFjQWB zev#*HEl`=S;rKDj?INwYG7Ie@k|Lof64%#jTxu3@qKtOgKvfiu1|EZHfTBoz^;&}* z7`QP7OJh6>(RCGFSNZ1MW!~8yFqj1_)NLl7;I&3c#=*&yQGd#R`FqbX^b$@69`_F> zeB<^!XXAjfrSpSFU35)l;KUc$%$o9#Eb0;Ru;A|#}G5k2AVQZv{Os!;~sWNMI zi!_Hjiv{8|C(KjIn)aEntQZ=zBxY~mvs^EbW*MD~e{GNloR1=dW*Cme=lCdxRj-Go_kr|>j ziuCtKlvnG-yCmy)ameBLSWG=lQ-}sYdj2J( zxn(eH@^KGIH^{vyQmHPQjbfs~g=U;%84QRB4m-OH%`Qe@rC<`m%`PQ1E zZD%qR3Gaswgh$e{knDo+hLR)cI@zZWaNqirWauDCGJ`XR;V>X}B9xhjQMZu3{%b<) zdM?quCnAW{C?abz^7GFLA-20qGITh3dl$>?qtuGfXp!%2BNdBqyi49a6RY}7wL{VX z03ZNKL_t)^1cpN<|NBpf9&BO$@)t#*rdUKOmcaOq)S(jUi)Psv=6q)4|b5QJ}dm4o(t_ZR4PPozJt=JkoN~jjw5UVU;7p~W0IXC z@-QL)@LklGUWCpmvaXPQ@-gY&5z68``MrBc^Yh~VOJ%6m$^QOtpg%ymb_33igrKdr zMEARHigkMwiVF=@6;twYAI5#8N<*NoWK{^zN(Vpj6?X$Pu7zHj3tIRlbNVAlhC77Hwvy37sBzZ!R2Fya2 zhE@M8VVvff0Lr@q8dim_H)PIkeHJR(pY$2|J{d5JBIb%kUR}Jxe6fHggP$Zk?sU1) zZei&fMZ+LUQ@*@%i#fZEjLf;;MOQQ?;e>|SK$TT`evcpQ-DemCd~|TgZ`^!^wbBwL zy+D#DeAs!!C+8=Wbe(5ftMt7wi^UdAv(Dc17)?=m|MUo5QCKKe3DStJJ42HtbVcFa z<3sK}*(b{c7U|@Cz;rZ2Q57u9pj9pNpS(OL(q*neScwDy>3+4?6ex z@zExC7p}8AJ|@gE)+!aAYcKO}KYWkt^KEv=V-7|mYPQAiT>l0=|D4B%r$kZAPdg8} z)}ABJ6DqdF|M}<>9v+==ZNAMryL;3M8VA!MRnw+bsPQN7{3G4*l-ofxv=)Rde8pF$ER-$hd%9Qfo|W!_hXh8%Jlj!3+*C` zEHUv!hGIMonQs;dW5L)A!i09+X76Cg%3_7i&|{@pU=}3wr-Fy+x-q)05XTv{vPr#U zpeYJLoDxMT{l3Sg)hec~VVWv&oN{fk%tp;3Bj;!mpehm_CuE^$lI1zO!+?*s2l!D! zZ|L)-o9)lw^iG&^?_k8<;e=vQr(L!fxgpJxNkNzCPD7Aj=0y~3jdDS!Hwo|~fhf`x ziM^ujniD^-S*fTOb+?YhnD*BTs*0{VTIBu@G0U`n}ciZ1mWKHThcd^V*~ zxB2u*k77yZZ0NCAw<#J5fB((_juUZtrNYRK>CZx{w#L<#$+bp-NhE@8Nt$CCDnTTw zF(*OBQbk9T1$s$UWOP-gVd(77Lh1#Tp%*iCBQ#B+V5k&KmCnG!FjVSALtyn38AFxP zHHnv(tG}4|O#Y`oeZwEPC~1n62^53gE+KglvZ;%NxGa;$33-&DmQAE2AsM>ptrDpl zGB}x1U9O_H%1EngLTDHkbkC3!m3(VUOvF47hJ83a7GiHa7Gj}LK&n=eibVmWFBC;W zK5#`^Iu69-EO24-WAaCzAT6&U6^h7B!P?^VK>Xavfk@5|he)lq__;VD?{{HmQ+OO@ zNr2izAE`Mfg!FI#Cnw@Lh9SnaRb)9wDVmrXWO0h7$=L0Zz(`%YN&chn3*V^kk$Mq% zBw*{==^4@EJpcv|Pg(rVOW=CQ*RDaKD69cozZ}46fz0|n#BT^s#3Eo3`Jq1)}&^ZnME^Z@eEm# ziL)44Qs@Ug-Z}e_w~iliXKs~>X|P(aG7KghJLfDET09=?G7LPXQOGl`CBigj8u}d1 zdc1Y=geXl|Ew{Kcw?@w!vr-le(c{^Wt)aj^xpB<;d=oc{C{+rWnn1c}szRetp;j!g zR%!Cze)JPeLuVF-WO*(+(W8We(TIcd0mY)l+3A2k`1)&jNy2mObqbn|t!X^pe1;qK zD_p5AGheLn?Ty#j8a*X76n^{pmpGjExZgSFyVqalV0z9U-u@lFwf-8GuCYHkqUTMR zh5=V z&F*Nx@7{ck4^Q_P`vE`NyU(Kou@$;|>oO~~Du4WUKjPN<67N3Rp%KSEPg&iyW49AK#?k|eQOTH=0h3sqLA znN`N&m^hEA=w&g1%M(o1LX%ZS7ZX%B_E97mTNA#{oSgKcam!LoqBO=-4YE9Et+esE zde8pZ`^Rte`!2~vTG%u->Q$34&Ms2#3c4mh;3yJFmZ2#!BPV3OY2!sH$A<%~qDjHl zS*lyux&#{$Nt_VJDbumbXyoI25i6^8rW2p<{^~7IWL~~hyV!zBeED*PD{Y&(s>P+2%{Onf z`2M{PvMll9%{FeBFmXbD|0`>BW)c6zFJ0kw>ZlP z&yuOQBFHpXF9cgJv2+vzDiX^?J3u{6g z!p;-Xo^-HH^3DgywgH+dDlA)dxc#aK@pw~s_Xi^R-8m5{|H%Z&vdMiH_IHs?ll+6X zK~)6fGYo{cv{*t~SOD85d-McpG87^$%S2LMRY~7{AN31&Ir<;oq_k8)Ygb999t1wK zcb`yLsGyci($Nh4>I%vE2wBQdDg~tF71GV8$n$OReYkWLnhQ{@zg|c5&=*T^ehNoBkct&OkuL}aR)O4~itmp`B>gE`RfLMNK%^x>LTS|m&(-(E z1q~VU-Cy}!eUJgX+j-}WAPLYFjUb7bhCaHY(z0u0S%&&q)#gPD(go-}$r2P}rUYR`$ux1ph?-?`wLXs%2aJM%XItyM z)V@R8YEjT^&fE^8Xu{>nCA`GrcJmgKXn-V1>`(gCtsV zKH1;r@!1)koHGrD73QBm`>PCtF{WzJvMc=U&VA~Zi4%!NrKM7d#ZrlL&tvIfSGZQY z!p>x$s#zkGQpTP6tE^NiT(4c>M&mNa&M|-SXleiHIw=a80N;IFpcC(T8dvaN{`~uFM zvNi0Zt15r{@Du*Y?HBo<|M4AK%_^4{+syosSrqZflYMH{A`8tLP8>5=Ei)L;i1M6v zz05|n#@1PvT2UhhuGZF=FSMu_6>QC*q!+1~6*_JYQx)m-I1_~eyW>MvD+|oqZH{MW z-0NI(qfr*LC4k>iL98M#<8+zdIn#bHXS^Q6%PSHl>n57^lq7mkEM|T$0GroTc?PhN1G>v-8~F z9bj2H{k}&WCB#vTqAGZfhoUN^NlI(3Oru%E)D;?KlWT2@-9fcxkvT%d(#R#jmyNTGR?)yxRCdQ6y$fJ|(Gmfr zJO@RQktB(F(V%Q=%z}i1p`yqVuV4NJ#b@*vfBZ%;^e)EsDM^x{sS?Ke91=N7wS-hI zA=PT+;|X%PNYWjX2QkUWrGM&BU$0@lcvC>r7nU!$jf$9F&L(2Y83sZasH#{e+cvUg zkdMY9IFw~b*KY|xx}u1+Y!o0B%7XJ52ZE=0c1V7(OY)OiUMIsblfMI z_}B{-?BDzq)Yo4Js~{$iQAB!jE_&{DmDCBzf*8G7qvVX6A||6 zo``ed=_7C*0i3`0G19H)L^F~z1-l?7x9LT9{puAF7^}6#)LT}>MTlL7!!4Li$)+x9 zqYSD_=J?3Eg3_*Ecs)ZQSmzhWUH5Z|T6(+l(>DgejEZjK#XfPCQZWnEP0{qDUx3|B z)gZ|eR9VH1J%Ti1;Ey?)4QN^w)+O!qnA~pOqM+L3Wb92vbJ8?&__Md(;y?TPcliFp`-C!leeEUQ zIeo}qKKTGA9pEKCx*}G~_q%8GJ(rQ^Bg+|vs?zmbwua{%oOD@lH5dmzE9E9>p0PRT z^1;yoej4#lpM8~aFy+JJ6D(aLN>hfu&*fH=_l^$u_Di?QpJaYJz>$iCO_<&~@=4sj$uGCifr2B+|ZgS>!(G`_P{T;m6 zXM1$Y_jev~cj+=stIqMPL*1(Ic(6y129$K0=iArG@{GD!7b|p0p`aBp6_c)iPLKvT zv4^dipEYeMl0r!+tbop#+umL(cR zlWNhRS<>lGLtHN+&2y3@W9CMjosMbGm06xE5hW=_OCwHmS|tPTA_Xo<5~?CoD(F;7 zI;O3YrWs+F5{4{{Cw&e(4nKbL33|DJ>&6_PPMJg--VB0EjoH3n-BvFD@u()}x#oAnn-ZUVHGJHQ~GIB|h1k*P0T^~hNsMJd= zuT}+jGRrwUnR3*bfv)l5ia3D`sRfjGJpUhO>|? zgEY-}`PLjy569fts8cT)w95t$k0(?LI%m@uNs{P{eMWx5U>fq_qb@6RC2U>hcKBs6H;JQe*g<_#wdcuqwgtB0+OjbF ze!7pj)+9I@V7z>n{OEx6gP-9(I-&H^2I-q`BCqd>5YYM+VNJ*~^6e*>U${+v?<4f9 zD@b==gF*MRfL7k`AvM}iER!GX!u&i^xq=kv@ka-guFNrbc*?caGVWjfh{AVY z2T4MC;d$g5~U8Qe#mR1?0Ja>gO2*0ZPdfEk}#<&>12xuLu#XC?b?4%i{MQjs72f zX#D^6OOhm-mYBrJvO;#zm!0LAsNhp{WJw}QBhoBGk$w)6mzahQiX_pnDxcjxOd?8p zk;CaJXYPRR zD!bD?9`*M*bsT|iQxy&;6Z*p`yZfi`I*fyWYSG4vBC;&wbT;F`_94Ii(z6^+COq0Z z5d{~DOdKc35Bb5BduO7v+VklRr~K>QKai#wfAnkL zV6|N5gR>(PMd8M!HgT4+`Sh6i#U}mUm@mAr!H*BO*gEgg?~b^AeVxB~dY_Na_o$kt z=#w`}Y!A=qx-Ku?xWxaq^#OOUtniyyvAqgv+EM|<47xz5w4$1H5j^S}J`BYy3b+e|~3udZ#-^JX0AIyJMz z_pZOdG;}$0hPbhZsT!QSLmF0vQ82|%Lh4q9*H`W^U)bY+eewZumQm0&(mcZnBVJe# z0k=7O4okIgV~2*>z)~zA$4@*ma{M&FQVqfQl*DSiq8CZB7)!MY)9|zN+Kc`FZ{Ae@ zFMh>whHY!8s!WokL}5&^sFP(msw^hPMMHQg(=11lB$6aU*A-4qTx40MQZewO1YMQM za+oXWY;_!*AQnMO39>wAJPWB5^@~5PDfPM#^o|pe8aY)wME(RCsMpjpuP z>A_U=bx#ALC`Hv(_72AQenfYBk1u}fE|ZB6o|Ey6Jj-!ho8I}9*Y2)z+;!M|bc&)X zsG5pliR5&@HzQ3_)-E-;wZ6hp-zAC?I-Q8_agQX51Owa~^MjLB%Jni|fBh=qg)r3& zjdravscXO@I2M^DQE*~ll$bJp8M@*K8LCd6^d^+0wu}f zgpXl}#-O!pV%ilrA~bWcPL)(uh|$wS@ff2aims4#`=nE`Udv~W5ST}Ow7bufpLdZj zt)V}66S9=>{Rg-wV`49+@}*m}zWX}C&mN(-D<}mMNmC#UNIu=-=*=zM!vT{~z|rB9 z-Z12R6maP)SFtWH2%&S{f$^Ah7N8VNg6$JBKSs86j8~sWk|n&qf0tzBQGD$t(#8f- zy(U6Jo=CJyc?R3t;@_4fL{pl=;XZUb`1f|uuC773jO01w$A?IbhNvQ~*2pJgaXe)i zf`H>Ux2b*M2J%aC-*5xjONaJ(L?)p z`IQ@}x(s5j1WCf#WXkS&56w{7 zAB&{*b90LnHI0tzFjpvWqp`?Zc?DUL83cX2#G`6dktLZlPjM5Mt>GyR%VHD+sHTn| zLpVO><;#~gczoXF#mlSw@WCdpU%krJdYdzMLKwwd z-&jIYWn9ht~X&4I>cE_l!_KGRaW?Sn~y13 zGJYDdRBVyu8KYpr+sAtZNy6_x^F2#H*wKr zoq|@vRxL*12u)FO6OXc9`mFSz>-EtU?ZO`{W2+YZV8HFhozK;K_Fw&Q_l;sv_!cEe z5}w<@|JnEX!!RhUdrLp2olc03ZNKL_t&(Y>l$5 z(HRGv4LoL!Xf8WFoiQ5uD2mK<7EvtdthP!7QOa=Sv(zqfXT8Qs)j&dG=qF5qgsP>Y zD>7q0AxLtzP9`XdOq%9`IcumyQA%y0bumRv7!Mu3^UK$WB#CD))v-z@M`ts3Hctt? z5UXJE)z{X!ex=2m|M-Mjvy5SCXqw9A?vTChbNUZHX69#Pv#}T~7y@B<_va$=E)Stk7-?``zy9iXXMcz`WS{n=WNF5L6_IRbeXmJ z65EGk2GfAyM6gGLAYo~x&hhbtXRbEc+8J`~#vD%`pR=)6XQ^Fe;zSs>MZHl#RusnL z0N?dlxzuKPwa#=FvA5G>dsA4{WLd&bG8{jqchOpMB8;(w#*d zoJ|=FJYKprN0?^Z*{Gvv3jMK9lIQe2VRL8|HO4_q-;dB`AwuVi23rFkU6mQR5d}l# z%h#GrgOttV31wTuk5bCE#!Ag(r|a_1UR?ae*6#j)^Do~}YXwp_Bnnfkg7AJSwoV?W zC?yN2QYITsQ0CjDgDJ__BllwhH>S}r(OV^?W&^3&hSNjxqkSYr5tFAp7h*HbkR-(F zTb9NDd9Gk{zWka1wr8nWw@-({GwMyjDt$Hu6^%$o1Rp#?HWU$vGF0@1I?A;TB;O_O z&(K!dC@;JS`@3XMcS(;r=!*@^W&!)oRguo_oS|OdK+a;6FT6^0{|Td??b6*J5%>v} zib%~3W)U09B{W%Py4$B%(vYuTf#Fbe+&dxu_8H`0U1~CVaDrV?8T|EosH%)?YbZ*N zRIR}AG17~#BCW0qtWdFx^z0qzpOYP(kPRm&FT5bu(z{R5R_0(j6?L3*^FqjtMo3q# zlYjg(sMkq%_DQ-U`u9#){!hP4y7`p&{$p@vqV1}{a&mk(;OdoSqAca{-U-dQI_*M%t|O*M z(}}}mdixw2m4gLj_ddjbAv0_8e}ZG&!-rzzEyC4$kA{v>66qlqj_c%G<~oK1bA zI7QV|R88e{ze6r-Jo)sH)?x!)SE+sFz=2)y+jC|pl{rYol_6I&eAVB-; zixuW;Hjkh7DU@s+H)1jkY1AxKRVGR@Zm(AP*=CP+-RA7vq2F@|ynui5?c3bj?6Z3` zCP`8%6_ZBQWba^vX=)4x9;K4Wcot%sDy|!27#ar$Lt3o@mZi~d7D%(4=`^HTwTPmW zxw#TQdwY{G${6>?tX*9sNiwnwqA11lV;m=<-LUBnJi2|6;7_w0Rh0?jjKk9@nyyeT z8Z6Egd3rP<&vS-uj29-fsy3(R4u+v}XSu}t2U8A)K2DTVFDf)loxQ0m#BP`}mYSoMOCm3&Id-Z4K#)=o`7`0-PPJPNRZjkh+6z^=Hw@PR)KaYIlrl=%6 zI};-Ec%S^yr%0Abes)BHo#ud&Sz4r`LVI%C)O%=WuekvG48M z>2{czo*9xu&X62g9tM#TZBjNwKzgtM`^irR47A@3$dDn61_a8669mYTMTut6a2O`1 z?!FyvJ~`|hD`!9a&otj?fPi73_shA!xhL$}RcEjIzO{af<%1I{Z`~8etSp6KySNa? zLMp{^jbmg@McG`#*=>mlvbREQ)r9c0ZIC3?t)2*T{bcHz=j0bdWL+hjtVjk6^n14i z8DJsO>BU@>2;_?pIgRN*pRx7JpJDRgl-3tsWb}=Xa9+PHR_|APAF0`dARzwnBjh|0 zHyf%#`O!y6J3GQEU|psC6jp>B04mOip=3Z|(fA%FEh`c%D<0eq|f&37uQNsx-vu%lb} zX@n{(sIrP83;Ro&XPBzVELxBj8R->>e%)!)FssOt%rf?vhAy_I(KKxqamYN1cx`io zwW@=rD)?zalIH|bLP5#T?%!sww*5&%k|L|PsYq)#%-ScO(~l-k`J+bi zD6&k~vKaavuWWB{>3TG*3bRN|R{GNgIWV2BSk66O+T8*P9#6*rOcpMSrHAVVEaI5q zc)@@Cv!CNfj}Q5UH(uiF-~E7BUf9D=Q?fiqmL$5iOY~imE%c3yJ|4^6S7RyNLDO^jWq{d6Nn!Ph%>?8?AA?IeoB@V>~Gbn+8TK& z8kC|aCrxvTqU6@a$-56OP!t8HDumdLYb|E; zkfJELJe$$()>tik9({O9f9Mi;Ar;%C)3GT_c>PwFnyE5zV;+1wmYkn2#qq3Yq(#B|9}h{QgunHb+brXZ zN<~FgWu8434C%2OGa7kf$Wp-meiNrwA<7CS6Q5emq|p#J)01gPt5qQkg+DS$GV;8@ zbz_nwXEpZ-ynyYUHgQ&PafNnDlAP5lBv=K6ae+S?^Mx;s;OAU%o~D%?5c{pvW>o8ewY|KM8j@x<$)qVyHSVwD#y)b#z6fUsXjS zFH4d<=jm|F@$rB(%h_LR^ZLd%640~S!qguOS;R};A3o=3IpxvhjFx4J7NGet1K-E2 z7`(c*L0lGGYqU{xh5mE_NOW5@7Aqe^Q!!1QUw!*N%OazqYgBa|OBad$?_C_za%@Uf z#xitHFUK66^f^4~v+@FpAb}vmUj@`!RrdGRxqo|~DEA1nl$v4iWI9DwWGvG_Ruvql z!cM!%olck6cdzmG=Bwm{oUP_GOpAHsakst3jm9oV%S&G0*ymq=@E*?xBmVaNxA+fk ze3rdN1EhjmYdwDM?#ukRf6Vjol(ubAmL>IyiJK&x&KFp^PJg-LR;Nu`6x?6iB`;H6 zTHB^)JGe>2h3hh0tT>s@=~Ny1vn7kUi&-&HHI+C@$nzY}k9hCkl$Z9mcs87H)}P>c zA-%O0fgf?+pWp={M$4g5cX)IpNCw?*6F-WnRZK>cC6cCa&>zw3HfTFGRb9tT5<0fU z(UoUfQ)JHFC2O|BqsfGW`H&>f$;txD&}o_`mS&I^DeX#|v`Dd38%@?Q6oaD7StTyE zX0u9MUTob3N+#h9N3&35nXJf&@&rxRc%^;+Q+3V$<3E1(POWC*UkSysggh@XO_jQ> zQ#GcGP%CL=~ z$bvuwi1U;z&A~9St2W*B2AKqYB=P{GiH~Jz=(>t5OIWtS+M3PFx4NvaiK~*WSQOdQA8n@Rh&gT(3>s1~+91=wtzx>nJcv|= zhr((R2Qeon6M7pB;yB~!!*hH$q*}L0;uLS;QKUJAUZL8k(!ZD?DGK$b!)g^_SvqG& zBaDj4;BrBCqlIOQ5`nUWTFqcO4Un$>b_bCldCcb_lVwDfi2$3TNOZ2mXPTF6)O6-y zhONtJii|GH$V$PT~{b0!S&3&m?BQmxIo_D6+*5o$rb@>y+S&6G455sse@??|AteC!^fga zeYK*P%#a-m>UFHo-4mWrNfICLyecN9tC{FspN*l}L8`aJ8ot@R0+J`9l4^TU)vNll8z&=JH0i^(-Yxs%yYtrCn%0dGFox+XhIa{ zRI9>Eb7#9sk`yeKF{61ze;)CA{TOvHM*R=JM)~+7Fipzg2+6U@S0N}edOan7@*L%M z35UNg#L;Iz51xy(xg-3X^C@MTQvTov$ek9(=WbITJ}3Uxk0{d|W4{NIM49K1Whm{2 zXdK$zqx4+z_dYCDIOw1n_%*!Ulu zV!yJ>hklEl}~=Hh0;Tf%TC()ULfNScgNwJ76Eh}}=&qbS9jO?l<%)D=@vdSWKS{BcyGis)RyYg|W z7PBbg8&96`>h2cbIy<0l82s|Bw>ftQyt#fCS&}(io}ow*e|Yea+Z#Q8YUf4%;NX4! z*YAA?)6}We9W+_y{(4TUQbFs;v?>*Lsyzn&gvXadT6G6YRoPnW(XkvXO@wSVoG#zH zc+OzuG9Jz8bQ}0y$Yio)tyO0_S<+}a93A$#adV5Kqe~pSg6jwT_AmYvKR7!l3?gpt zZ!%taY}9L{Nyh2rm?AC6^MaSRH#n==JbZjYn5INw%u1G7%w56x1?CGE--xj*2AkC? z8&35q$R^_^2{)P@J{)vs1b1 zZm*~n!YstmY!>l?MY1F>3zqRpc={wocyX`J=}*%m%L-~0jj=4DC^D)le^Rfhs|rb$ zGj(I!FlE2zpsT`jxm?Dd2+)eIU}*}bCNsTC8(+=?#tt66sE+n zNK(Ia)oe3#Q|3X+;;K5aQ!}aP3L7<@5{v*JNzGiaYD0M;j6E0 za5N2h<609{lK9}<1>op%$;)?pY_%+Y|2rov=N@*|!nQ?V>6I5c=(@uGZUfuY=+q2O zMjoqWNTX??sxmjPw@Qdh#DHhQoX` zXMLy3y>1FV>p}!-HBG@V1mpAI@j0HCkR~bf zSxyoqgkega;mMnB>KHQOb`8OO7T1X<9H@MO1W^>Xp|t%l_)?^{9?U%>m|9LKCi2#y!*2E+=O<;IQxtPIh2Az&r z+h6nv4@N}G2y3@ZIC5$3HSsSNRJIz(tp?J)SCG~>g=cg=1J`B#M?ZpJ}&O zU83mL>F?7a@-qdD6@a|>LL@JXLCPSG|y$ff~NguJ~$`0N5zl^H*u(CQi# zVM;dhDDxb>S0}!hp*SY)gJYz;KsGg`G`)KL6F5C3A5M@Pb+MYyGH5nM>i+7vFqsHp z+GrqMza!2kRS{NkhJ32B}oNnoiax}tHoIHztnIJ!-kg)CwhMV6_k24CF#EUK)L z78zj{GK&`+FE7Z798*?VV3cQotwO|c8|8%=3se5m_;lim#oN0 z@|6Ah7M)5HH+32NGsc0-*z;*w7H$-Ca52R9MBr!t+6JqoPp{YH;(W~JW`~w(^11CB zG);?T95V1-!Yt+651!zKF<}s+>l%-ronh)4y>^4LEb;vaWC_zS(64-}qy=6WasTEX zj;`}`Hl(6yETV|vctO7}fbtI?AM+2s^s|hD6`R#6L6-4v9{iAmN0zjX79ys@{>{q22jwYn@~kAwM)v-y(UW`jTd=qZI>Fb)EAL!+XJ zzbA*|DcRL*`UmHy{Imb_4;ai>Jb7}8rm7qqT{507X*a7pJ-Xm)pTE!hPmZ~MW0S*! zOExyzT=XZrbniNsu1o)70)XvQP*sJ6AJDGZOlK=>%jD7H6J$#xPEtHCBuz7%s*Sty z(KMAu&(A3G0!fxou7WLjQE<9iaypox8=822k&kmV6*W~ALsdC47f%V0p7XM|adtyORnpO)D`k|4@s-srydsk&zW zmmgld^UC!WhZie49qSXk4#3`em5yWZqmPH!woc8`DS^>6pi&Vl(%<~dChK*Bq7)0T zv7d213kc&JRg+260!b2qn)xykB`Okp@otZoHf^eg!oy)mR+NNsjwA^i*?OZwqoQ)L zOqhEK%PT0oX{xMNF~h-%BuXfYlHNv>*=T`Nb2vM=q_f^+qvvpQqmE^WHT%jJ;^@JH zGr}mRxZ;;i&j(Nx7*z*N*T{UA3KF{EaW);e6!LYEJ!L~KN{K`6wPL*rh zb+*?W+$iDn(#7`^Y)9wgM?*?gVLA(`*2K0pO$){opCm2F@`Az8<2(QQkD1P5qSL2P zmV`-3G94i~byjC*+=< zA!@~Bd~i&znk;4>d6tvLDUvL)oGg(fiN*OPX(1siGPy7&ZF*Ieynu$KQPC9AyhM^q`mU()d^Qjw{&X6$3R2=Y z$FeknFk_=-5vQU`^{<+I{=e31Dy5Yuc3VQbD~j463J*J2_}6AL(20LkxW+<;(M!BqiIqsLs?%kTmt4uVgo_?-Oc9aA+pbNfPkW(kvEMb)ryv*N5DDX3%APY!~l#xHhPeTsoGp;o{v@0gtwHm;cU{$%lw#&NR zp+tx;L(!Q<3x>gh>y2%$HMU8Llpu>3`7_Sl2`_c`_;_^54<0<_wHv!UJ-TFLtHW%% z;-kmMcz(oiJmc1lZGQdbH&GQB`%6?==E-cr(~~|YXG6Ajdc3~B&B*mQJnoaGIhv~A z1rfTcP^;NEmdVNsaDBl%+}i4rq$&GbJxo=?P*pze50Pb=Ac&xZzx(#*+28JP=`DCX z81d2JIZ;`#*>131ZEzV3n1wFqs}%=}OG@C?wSB6(jhlLW>+B&9Cl~zlKl%oRDsy*z zjeBbwd^j5L=Kc=jAYkJ9Bw0q73dxzI8Kc>f)6tADh`D`dmpsX7x2iZ*i|SQyDhOjV zRpq-MKE*V2j!y?{ZnQZ%8PIN2X|?Mt=AKx=dm+9b5ri?@UC~o-*F<_)Q&oz*AdVAU zKg6mS=!V9iKV>+clV%yi$%2ZZ<9QMFxe+hMQO$`@c8iXoK%(QSQc?ECcJC5 zgQ6;=dCtjl$eq?MRn1|QtS}UVy568;b|@(*%7P1TfTdNCCFyGF>7vLA%h;o4*qDkz zT4dbsy!olRX8+Yk!*^Pa!NK{GcC$iJiq3Y^RIx0b;VRk-UOoj_4$LADTPCOm6_wsGN^42zU zKf#MK(yZX*e9802m#h{(dpFkD+N!fyM9fakAxlxK4bmhxPNQK`wRFxG5k*ll zTSoM+xT-&WuSZ@;1ZlyO^CgpI$Tz<65EPyDb%$QtW;piQ+^pfcF<~e~R+fpajpxO< z%aHlh!(I9~n_EOH7qz{C-e{m`Dyrp>=Q*f4laD_nk7I)A46D;7m`u>>O}c9h;wU2y zW4zIXyp$=5f^M%$mK8!I$`WZQqpB)JQ4q}+pr};r3V|00GC-bD76neLiNExbRfW)t zFe^Gm0luHGa$^n;Mo5ZsHObbfm@1uyiK;6oip+2xP;*Qg6_xWvf-FPLROwj;HB)6C zW;{7xqG<|EN5>0OR;vhIR|$fYcHKmgWh7bRH{aa)Yu0Q2tN;0((hrEI9-6H~QIdx# ziUfMMMmqJ7@|@-u?|w41Ed79TI0RimDoYU#DTLRKAndVH+S43gP={#hS zWXu*ZYLHNoQpzw!uINa$8pYBjy_jL#-4{My#}O&_=~Q&e?_Cp&+4KslHNF%#A(kbA zY_bB?2Dl5<!Qu7QbGQOzw@bjBLn!0%fEQ1pkNWLL|tJT zvWz2aO~=tKCcy$lmbu%$fhwz{ManX9MO~tz5@r#)tdo^FS()*}{xeRN3zl)r;e1Ar zr7Yu^q3<(xJ^VbQqRI5^7G+tmh+T%klrW2sfu>pG(i^kwtRqV@=kAa-yUDlCo-tjx zOlK?322-xz*d&P)mP;T1Doww)*`v4K;``5^akJOq)!uEM%r5x&=$z%!r`4+Axd9(M zJ0%Qbf+)tZO?vG*HK&5>M|3-Nk|evrmBX)n<#WO|BFlXK`gM+%b7o=4dexynos%RP z>zf@uy1c+Lbsk*|m`;|=mL3-uV}9nP+g!R!N;2Nsc#+L&ogZGFuv@Q_78#>p0hC;L zf_vKN)QPi<2TzV!>()8!k9lchlOG?R;CUh2y%t-w8c$9xahE=xA0Z*Qr$;9P`lBh0 zszXr}9G(rB4Hu}UiXzK+L5LTG>~40EWtliiXtipXronu+VsCGq(Re|{GEh|o)zp|w z1%J8TsA3ozYwImu+uP=BEc(@xBxAPl2*Q|n9*8ON6=$`~3n9)GnQqM?$}&cyIWO!B ze3Ygryx863XfY$qGVXOY*{U{?q@2gIV@AOUFAY#+nYf5CRfDQlLz6Y8(G*J)+)2@N z1SJJ=meMe*pLmsD>%8%)x@P~U@1MQnMH#bshOA^Z~4H0ZEneEJ^5A&J`N@>g!AW0HV&F17nh@tb-si0O2C%9h3ojV(h7a_K( zajoYd$r9&%myNEC7v+RWMv@h*{DgMh#BeOqG^c;DV1K8{(`O@Y?zeeYG)>8}OmIzyLkL~Wc855O$%bd-i!qdv7?xb2%Z%P8X)Gp))n*ObF&SP= z*xFkojB*T11br;qWVsB{4ISOoF)fqsTAgOwVX=tFqL^^85_ZNSgV+PpAxVo*j%Su; zlt?&^_@1-zlAZl7nkEPZ8&`p&Aj)V|4YItXX6p=>5ohy=RhZDQg?P;^iF(x_%?d12*{VFT$>w zL{HB#@4p~Cd;smX;BTghn0%Tx49~=Gm*-&Hq^ASYv5UUZK&@4Tu()|s2+PnHemzMN zA)KNVjYxS8optej-6hmplutf}>6G|#j;hMEf96HPk56zv7AE?*D0t<~O^l5OvSXp# zyMuJ&1p!2iUfOw7bVgzxz%0&llJmHT3m5 z-VdLXW(Dplp?9+_pz>*sce%u}G)z-vaJuAV7KqSDQS$I8)q?zTgwk!I_zAfmiIjh(0-KxS=I2xRi1UOz&e0SNFA)t#1J9#l zIfC6;7ATU;)A6D+{yM?8h{KMb<9sc3hzRZ91`QPB_{191^@X~-N zOQ`BPSyAxT<__--E@;&pc4}?@*}Gq7GFj4URk19C_aBPqon;xrjQ zuix6^`Dns+t3i_IeDC5IMUp7X5=~Jt6rGyk@LKmS<8X?j+dQA2@Ivc4vLuqXQ662j zZ)uFfDcwpNL)C;&SypHmbt~FM8YZVFbB>?6Y+qZWC`5Bovu?89s1PJM zUX)>K3O9N-ej={dC@tvK3|3Lj=`6(572bP1!uJybFQ6<-UU}m>AO83V(>8JH4lBRL z3$NY4w#6i^+L=;DZnN{I7h8=_+D0^4Zv^lIJC}(VQ&JX!Tmu8x?{eVKJJ~Tx&y~vbDcX z5NB+(ZPL8pcYf!O`K`bAbNtE|b~&3x6eXyN#L3u0lE8~H_BU&stD<&PmSFbuF@Nd> zwAWg+*BU&3(#K!=P~>dh*e1`#aT}eD1c$uZBDg#QRYz)XQl<%bb65^RGoVr<4r7P| zQ3GC~F*kCk;%!|RDfM!CaMs;_e zo&7Eck1tSlm9i*_7Au^(L$g`o>~z8YjWzOISTUy4km)o;Rb>%?v~_eK+Rzum@{A4XJ?e2+HeOZcH&58wev3kb$gt$;OID9PpexVQjOCe0680YRb-VdHJ z>3i6=#@U%imKSW^>O!sB03ropU;S*j3=in z?%ix+|Ki)IH?L8S$9Vtp-_!lC{|lrtr~KwOkgN)&yM*&o(TiTMBHg)1`i;L}^20;y zjXK_+y~oDw4yvglD>8WyQ)UI1=Pq$lFdul-DhenP)^>|z=5uhkB#v{&S;j@2v2W_6 zWyvBF?FCg$WjPBeOE3%tr7Y08b!6K_?KT7e{`w8dr%%8%NuQmd-oA;{sw3}TL%*?2 zc6tFtN#@6l7cqHJGRrayNv22&YO*j*ckZmAZ?=U`Hwci@1gX_Ru2seAT@&FU3`0yl z8%^>*|1-+-3*>t*A#L9h&0B+W(U8Qk6@|GmS1_l_dTXtD?wm54reU6HBk7EvYu^Q+ir-EJ`oW@xg)roD-!RS5GCC^=l7 z;-w*vCL{XO1*ex|OjD<~)}-e+qUlIcc)7QYtyc)sh_p!QSfW1j(jU?Hr=+=ngg==c zp~@PF}OG%bJ?GwYbuA&E_m~eJAC!U7rE71<6u7I-@f}k|L8aVK4BK| zFCKq~s-be}O*vdlcr+QZS*`NwrznNhLy;81ETmWI5@sP;nPaL3HNA==$z(;!z1AzAs%!Qi{lU|B zd_SextS}n76a~ntN?w#WRRhn9DTK>N)V?xcC~_T=%|Ly=4OpXqrz+! z68bUT(qnzQ&15iVHg(B=l6H?g;-tj$VqW>;E1aJ%sn<<*H>>zz%GueHR;Pwt6&R;+ zf5!N7ie54B&riAgh1YoDS_@rM7|jDt&X)X_zx_6kE?0bXyui>Eq9o^h;xiigtaoj0 ztkwAXw++uJ4fNAjuM;A0aC;(R2)of;*a!WF=)$;?y0&IEB>|oR$bm z&j+-wT_X$7FX*6wW4VxfH>Gf<54+Z>wv54q)9cqmV>ph39 z%?9V^f;5o^0VDzF705G^)spdGf#KL_x`w7})H=;ie5#5fQ>z)&s|MqVkE$xPT9r>c zto!RVe)wUZ(~BjUrtmjk>;NTWKV!Iz*l$KR2*KC>%16h%f z)0q6Uk9z+;*|)z>whYK79%{p)|L!^U>s^eU7PY+=+c!Hr`|&09)I}{~P*set{S6ph zQeK?H#s-pEL27rAoGMbDBE9wo>F@sm;o*q(Z~qd-WuGEUF!#F1x`NhgpxQdQ8_~PF zPNQMaz0sjeGt{Py>KITIG%E_HWAO*ZkR=pJqN=EvvW%DKXb85UR6=LFhODWi<0V?d z5}eT6FHpKGkvw-C5i(O0QGr?HU{+8%4f4w&x}j1x6^g9j!cR~o2(yCSu8pQC)OH#I zp=28n$K-R5>|%)0s-ZNi6pIzbbb;LKAay#FAAf|jyCc}4CkLRE;^szC07+czQ6M_+ zr&IFDoO~G|1s>`fuThT1=y$I}7?M3XLe`Z}CFk@1I{3feQ5A)jS)=dG=vfV-EJl-M zT9q2IBoXBaQI^uPn;^ltJL1jWeZ15~mSkqp3@-`z_W5&?D^Fk$#5h%pq9}>-oVPZ& zcysdxS&?(*jyPOQP!)+zMNBppv5Tb|fP|O$yxe<%kw4{hwIIobnA~l*`0>L7%Cf|^ zOis>*)T%Z&u5Yo{Z7}l#-aR_z=6a8&S!1uh&ZRfu?#3GLKR;o)6qC2_ef*q*qf2y6 z#nd&%;{})fDc<3fGRWAxvq^8i$J%;}dd(q<5@sup;mYH+?LGed@e|yY05j{l%A?08 zY;ASf-R`lw(P8`AI^X{D_X!N}%Y?3N^XspCfzwr=)76-3jW$)?V#DdM?$jCiOTN5+ zpMUc0KO_iZ{AbsIlT3FCw($Cubu zi%!*H;`t0_3mnVjPN&NsK7YiQuHR%F2mIjlfJ9nQ)hkqW`-(R!>Ry9P6cAi`L&7X( z7R~w0+8YeRA=}OtQ64jmW=Ke%x`w0w_TN2zN0MN@=WuZ`$1pXjRUsDYb(3z(B8qcX z%Ya%#OgIO#fUn-`aWIQ$*(xJ9W$q^&pRdUC0^bb@+<<1MitCD0{JraKc6tsAKVi5G znXO{tykNayk`)3rUaN?P8d;Xu?^yH~5!qF3WS*Bej?R;h&aoRcio772j4@grs_Sd4 zZ`KLJjPrrZ-bR(WrBkhFOjZ%Lt#SN(NS@_1S~kar6Bd&t?X?C`l(3w-q~kvM_yUTI z>h;@Hx@$PC28yaMo4CYbOq7&#+7^!=53d4CBE3DnoUpau?X@QI;iN`}w;(JD%e$JlfqV zvZ7F_=+x>J=2MrA>)Ys-g<1Q5xO=l7OVTsF?-%Ush3<3f^;;}wD>PkWI-KG+ywA-=CohM%H5<#)Sg%vAE|+MU!p^40$4|!` z?$tq-I6Gf5%1WXF99_XNRjNuND=UJyWFF<54Oe7Y!FUn#58m12u*(dmk24 z@zrb!w9fPA&(v=)M`47mQAuwal37>ZOnH&RN)F~G@$zV`(oTXnV@gh z+1PH7e)a-niH!%F0Gxez!D^Ke6(wy=W%~v|J)0%?brbiS_eC00tA%>&4%O8;0A-vZ z+d8tL(cbYr(;1;p>;eVd1y4mdu6*w(Hi#l1jBQC57sLY%NXrbl5Mvxe)j3(5 z^QGPq$MZA7EE3v4S?1+<%BRB_%V15n+u-bCM5E!+>of?0H67c=s@2#%dY#kdm{l6{ z$zVX=_xbSZioN|!Bndt}xxjWzj%r&}RmJm{mn=pL&=tI+Hd$UUnFp9g!r}fV?;h@Q zx>(S%ZQk8D;KS=>Q!V8jfyp zSl?uw$8_u_k0vjf$1&g9eT^Sqe2Q-9+~4VQxf(H@ENQlU$_lP7Mnnxyz_Pd6oSh7K zae4(|#=GBmgXv@`#@09NPRrDVA*kW7zFvy1q@E&oEmTDz4PrJn#ktlk1Iscn42`bi zU@9uEuJgu5m#i$=bUh}~ngEc2Q5e#&EZ#ocWu0XdWy#aCYc9PB^{plV)5VIKYolo@ zJ9|Am!{Fq4jH1Zw?ev((F{&(M89LuOIONYBJ!TRK_xxxb@Snc+6<*HIIcn_iY<5DN zCw#sC4q2I@$|~zDWSvJhAqX;#CPwUvq~NGFm*Evjp0VZD{=d7i{yiP>Iz~5jHXAk% zO;K#vw#In8MpIn4-Qn*Bq836dm<>+68&G~(m9pwkx8i@L3o=p}|KQp%#ZK$QhTXSzyo43*Pq^!Z3w zmL-B9VZDk_brngLi04Zr$H#B_gv$_3lj*dCk@b2OF$ofeqY%$Cm`)>lTTRlm;PPUD z>)UuWn{}8FE<-WFG+ngLCfO<^xE^5C8+5nY?7rUP>PkS;zk0jPj~)*2e4AAe5wByK z+fCT+kfsGc|94L?EQ93g4D1@W_8a6yg=+|izGrGAu7Q5TD}H#fpeQTez1`u1=VP|E z>ojU6!$nMy7qohH^1NhlF{ZuI6j1iv4lf^{lTQaw7PmUp40-!c~AVEI5L~U*W;MQHTG-G44j_(Vof4y$fZQHEY8M_-c<7G@y2+i|) zo#A;pyZi0WecVx$^D0iUH#aDXg2BZEP1n#(oz7MV!%&$`g=Av)peqX5R2b0iz0u?4 zs~Im&=EQN%I?1`cTW8gA=r?VqtAx=q=AHc}VOn5nDp^^I_tnwSRT1a;(C_Yv9Pq6@!R<^UQCQZRVyEEMsebYUq`gBVuO`Ov{aul6 z15_`bBgryll%g3b^YaCgB(yTB5>wxxkn0pAtPEG8u;K z{==_RJb8t_-C_0f=M-sB1`z5&V&E#H^iv<&K&@%AN~c@YLqXI1uu0nhT%|* zq^nAF8F%|g_ueG=7k?xQ!m48Yixc9wpqyM`+bX815=A-vzJqS-L>Dv6u8(Z$P?S_@ z!NI;q^nA`F%TXl>OP0~(ifLA0NHSZtfw$AZ*b;?3mIbDXF z)*jW1$4G~FM3(#BAs8mrN54SxOzyQ^CW{2mROxgqiZn;|9HhNHs;5uI#>Fv25>d;e zSga_P5jvp1{f1zfu2zCodj1M&{|H6{sNcBYgSp_xCJ|D-N&fH&k|I+qBY}2`B9yn^ zq*|{@uNN4*P4V7-K@UxqF%$zulCV_^RaQRN;bmn`kR(`|CK8Y|m&5utSL3)oF~+EpFeu~3*O$? zqUY2^m(%Z)6oRe#$#6)`u~;rvXqw7kFvYb^W{VZGSwOw!@+Uw32+Pp9|N1_=wHkR@ z@_MJkPhXrc9xs^Am;A$Te~q6G=iJ%b+WY82gx=o@arK)n8HIJewI6k@J z!ykOcZ~cR>aWa|l`-kt6l`lwdUT2y*5BeLtoXu{W^EpYDbGX0BZ@=>fah~&5cZZ}% z`QGs_X;~JJCllUiw|P9dW**1%9EUKA@C}orPK$4Bzs?{2^`D}u3Tcw@!LxI+qF}mM z;X4+FDUy(G@ApMg(ba@jOB7jERZ)~BzH1XkG3zh}PZwVjl;eoBX5hDd>UEcm%@$45 z#L_gDNrIs$%#)a!VK9$lHeHXp;o%!Dx0?#T9Gvo?+h-6is2K(a^$tI~JV8-p`rQ^m z7-48CvMe(XLfV}=_q$ylPbN2DZ@ycutQZjPppcrc!iqlktr$j6O9w(C57CR)*iaud?DD&m#I^! zm{B(FqDY0e-wt+ts}^2MqP;9^^5nwITj0ZB|10RVR{R z^+n?mw2?ntNv2$0i8_a5zP{eKcmwVjlMakr4an_k{_d&lIM?TLZJWcBF~wThi`VsX zhtUq4dl_k$oJKyhOWLwrbl$s?r~34_$augaRmR7aV^=!*u}YGDW)hBgL1kIicj1o) z)W}6>MDz`|cIV>_+Pr3!R3e`FQo-f`-D>4rDU}Qk$DMmQ;rJ2lAWXd!;)8NTF z%I4@SJa~q1O?UNYu_4B(%1wyu4NRXr#gD}ln>5vVrt|asJooxmT3W?4idQVgu4xr$ zP_nv1=jFtk$(fp?#lA8deDLMLq5p6{bw873)-2MB(~yW+!s+?q4CgH8$WeQO$HN;k zGbXw%%55^Ux9M9AU2ahqWBD3=)M?mb((P=|1j*oQT*?CPcF%Z^J+n0^>Wpmwgn=os z=@9Ee*j%z>&Y#qNAoy?1H?)3{`Th^N{gljmO`M+S2`;lspRVD`ko!5qzz0nUqx4Op z*XwKjW46I|CXQCWax6LKKD9QR-gey)2bAHalKhzHq+%5{97e(J%EQ+8vIuf6K;Ktt z))_9EZ_knKoz$z{KC6iwZ9mvjoRD5#xQG+ zK558^ns$!!z2a-U=cRELs(q%V$4d;*CHNDqn_Ck~ z42IV~h^e|l=vQ3-6JU1HBX|Te>0C>l5MYnPjL!9F}1*b%{LB z6fw#GV>NwYy19;Js#>U1W=|e*T&P$u_{Jj_~V-6)DoF3{G zzisJ<^P~qv*VUDfy-`j<;AwnPe!=PAYNJ^{mHtM*jxRANMag{pt2iRYNk?Dhb?i$~ z(X4dpPK$}d>G`F-VtcOO5i>#Kx|SJ~w$JtX1h*$_^V~e#f~HEFBurx1b3B!8+l6C4G z^za|HMMHHf2~lVTdSF_YQ_KjZ%*=I~tT2)L$hXc|CYr_$;YC%P2M|+Q+k^dbx|Ypptohg=bL~A)r?x zfpaZM=68f-{xzS;o(y`+Qodgva(VQo0fnanAV>>O(OmLP9i0PqE}r3o<=}2-*$!;g z*W^Ys3DOY#(6L=#(e-8O@RwFug{?RzU^7Uf8$EfOHOVN;FM=d@{^B2aX(d7GYArR2 z=KgL8EsM;4!GrdVY)bEd2FVuveKupLgwmstF3fputyk&m1+#n#XaFzLuCJ)V{VL~a zxy!G}lVp2Ixk)&gX3v3`*3f_R0vsi2n8!WI*9k84>Vbc=;8{~E4c8kXfd$A~miN!% z)tcfg_0(L{@BXkC+BJmSJgU4b_4)pDw zQB9n`o8`f{eOSu^WeWWOl{A@@>EbGsvMDtPC+Ou{3<=Vk*wh~tyUa#}8NqwEvry(9 zrc}RI$o$SY|ImM2`LF5YhObtfz&VlJ_JTt<`)iVo$FP3MKa*Y~v{Olu%O~B9oRKeL zyC2U_0)EqT|HPI#Ht~W<3CEOt!XotelFnM_uU}+&bG>AqVSB4Kp>^ZS|1CzLGLz2hDd*O{X4B7_BLP7uaJ) z$HNZ~^CJz+{{TrSlgyX4Nx=g7sm!@u-5C&3Rh8v}t$)4x1-#HeklXu?pv1j^4?C?K zh|uuwk&EBdo$mkLWRIw+E&SP)`XU2|-s9?qgUxjdQSmC+;BB4Mk_r4$L)mVO`i^*jx{Mr-<-7rg*# zbl~kVYsoz6A|!e(%{;sA^UCIdXp(Q++%}l%*j^es2mgU7oCI;L(h#Et0Tvb^JhB07frMITvN(aZK=1)z{Cxcl--SEaDpcdo;L!y`Pef z?r%1qHgH}PWZ~r3OnK4KpvJ_IQy$2`qfG@%t3hL@R3-vjB#iJjC}WpYmD0jY51|wr zt_~@(@p1DaQ9uuNdAIy~*fi6l8G>ScC?4R5RTO*to#WRel>rTs?FAMmk~wvY6_BR2 zplt8l0lC1XY*c&5y73+L=xqDlD6bi4hp|aCh^Fx!BGWhWM{FpPW#Ym!!>v1Y2zv?H zt3731X@-e^9;mtM&yZ?~T?zl;37$kDOtGyZ{AE=Y*TOd?H)gWs=(hhHiAGzP71AU{ z;PMaQ6~pC7S*xO+BwG%9Kb;cE*7>kL^+z~6-x#654QgUDTvLkfXz9J??(}4RbwvEx!NK)lGlw=-Xp6C~c41mvwUeE-H3TA;>BFX`;^7574OV^o0C^v-xv+r|I3QJq^=4TDvy|tw>NC zRuQNl_}bJusmUD#jC17MTFY{6_XYG_jc3`n^{)f@5}(_3>L(ZhHT_b}VSWXvS(SKCbul=s_W-i4siVH77h69EzqLh*1Y2+z2q`?%4z-px> z2AheX{I8Wgmm~}J{*WW=Vnd4uRyBU7QM?X{G_L38u)B~dEw&ViIS!(~Ib^fS(jaG@ zujIy1Zre(LgU_Eibd6kvX$}M2f%Yv+sx>{XrJ51*6w-d|{{3+F_2hN2Peq(p=x-b& zEnT}M9Hc)a`u;6sng*EscSI?a!d%1!W;FWTj5iP(4&l}VYaqSot2fs)_-U%F-rZwUBLj``)va_ARFc2ziZis`7wmH4r7WdM$a2e`#(bbKjKd%kB##v(w zVbI~6uPG!hM;1~#(lZH5D7MCw+KW=}6M&#H7^%{|$VzIQ@p-vZqqK|1dYKbMP2aZ} zBL@yBFop=@kr;XITmvJJUhzARc!MCavA469v3g9*vaGoIQZjpg!=-&&-bggF{@QQk zzVF;L^psoA3gnlqx#Jo(rQ9`Gkss9I$WPd49Wc3D;?ttU{vG1?xBrM7-s|GHyv^J$ zpCae3ZcHJkH*DsVsServGW$p=UqeW)v%YBOJdc1^=ZW=a{!cBfqx^=Lccg2~HhET5 z=-7%MjsdjbsSh^wFVJYqsRP$9G#>Pc*NzaTA415Ck+B+Ma}H9w>=X)4A_du5r5_g; zSVJO(p?TGWO1UI`xU@@bK7Vg=jpE0>(o@e~)lMFB93!Id_TI4eZ7dK(&ehO2XRfeXM6Dp$+YFSDVg?`obP zCHZu?;YhcZvf~Uu=C-T=Day8br}oIl)!XuJysM_sL&lAjsrR@lZ=I2sOvHP);h>cp zRBT0q_G)1DhXQ(40EZp6_`ie4w_`~mg*<-@=hu<*BqT^eo7QLoSBS)3O`T+u*U$5;wgzwUKVPu8m$Di(S*7>c<_A!QK zju3iBS+dngRI+97$TNtnCOL)rJ0t}-EF8oMhyq5MKOK<6#ku{N@3o+)gI&oMysQY$ zxgH>5pn}WSvy+LNOIt~X*a}#IFv}98<>7aFvFLO1ia=elX7&nJaPOU}Ggeb4m9uU$ zXBiO=Qo^sXc08xemG1iLa$Pm*;u_cZ^QtOL7#v9)C090v6+GY~)BK-a_x>fY_Gp@p znLqn^BsN?UFGkTmjH#kBPShLC$Z8zi@PCX^rYW1&m(Dny-Ah2bD^$a-q4 zC+dm4a4N@0Hs6a`x6#e{@BkNQl0NE-)?W8);z;Us^*8xjrEWhC%`(rXI9G=hv@(*c zk@$S_RjB8du%0846B-6P#N@Aq@8xrYn8%e9U){qkzk53!b}h5UdK4?hFE|K4fu>Zv z>f0{aTdGl*o2etf*3rRA=+olYifOD&*&@d#or1q@a{fHy?dR13K#kpbeiU1F#JWkP z-g}4jN}5X}H63O+Vq<;tCJ$rFr&MbD?9XVutE_de^`-nRv) z!#toEbz=d8Pt$ZjV9{0I0o#hSWBuE20>buyR+^v!^H@)vKS26j#`>>iCUFMM zD)Zqb3IwV!WY-I$lljx`XBy|FLx)FbF9%@coylAIK#!i`ge~djW`=>)Bf$yM4Vr_!R_+&5+ zS5JRUk4B#Nms4Z)>eA91HyFC~&Axw{UE-brhkB@7gnE548MQ_I$7%8s=fG9V%vRcB z+B@z)>AFdToN`h1O`NU2Gi3j?cb>u3naW@MdI1#};|G;<~F8AG(_Aj4YE$R1uof`uJMv4x0=V~!0*Sf9B zi0k~xKdM-j@lt$%$NfVEt7(> zh{Ej#T@ZJMT{Kwf&)kBgRi7_CDF_z|FXR;LKjVxnt{W9J9J3a9K5$CMWeW)c1c0UL zvzXj@!pgKqaB@st@WXvWSAO$zl;B)r3Ax zqPp?|udlCJY8Z@)n}ODuWr&$z)Pv_=juRP_ZS1){L6R%E8B#)!6ay-%z>BP~Sj5S< z6O3UNks^X;%)1&o!pPFSdV1!JD0X8TXF$B95WU_RqpjW0(&&mDuTaR>2_Bq%T%O9l z$f;E@6;lOXzTLRX>u>u6tL?A?%%jI|DO4`v78K7XRc-D=T|ke zq5b17>3iyJ9Sg|&b(!t|R4>JhJB#f^V&bygB%zvG`qrsNE>Axsu`w3?K>v3%#C5Yg z@jpcb$hW-e0FAcPuUOKcs^+L0tAX43kX7hD&97y$nmssj>NK8~heP?XO#TTtFLcK5_RPQX;N;3CNvz%Ht0n)_rSDEn zinAmLaNKAA2D0)(G}g!)7jF&()=X`Rjd*L()QYp3*6|dE)&wwL6wyJQ- zWql5O+76;Oo>*99OZ?6T6UAqndjaVwG!}}P3YA|nuQz*P!#dYPzP^e`sP2Q2aY}}W zm|yJ(p!YRhB&KNyyWK}Fq8Nz@YR4OsfF>IOu1E5^(nx=?PJoc;?MK=H^H1f)(t+nc zFml?KTCm;=FhmygNIbDTz&`(@g}qp0Y!R-FA0l%aOs+>tc$QcxU}&|$+TfTD)%a~d z(_8odFc*KCmLuUhD1e5^iAERBPam(^YxwaM|{w8>cva9%|kfmU`x8b|;%W1^Y~!A@{#YHFZvS z5)-g;k4<#S0e6*)c zS<%H3O9&;Q=^jkBca5=}fBX{k(laa}gF|H7g34GnLnDuYMLd5ea&}Kqoulx#TfFCu zup)FqPW_E~-Tk!(jt;k>f`v%JKv))Yty(2%FGL0<4)rRM6orrpUIKra2hTQ(XqPmMzyx+Y@20tG>OK}7eOnV~>mtORixxb)ObC4xt z$`*mcW5*sRx8qpiy0@u%U290Ht$pEVGb)H1kxO1E*%Uo1<#LwZ}0yV=#_2uTchKVx&b51M* zMz^#7^8!4Yzkc?K2ZXIr5_6lra{ZRa^1qVv^N#i24*>^3NbN8^jA_pyF{Qwit;`U5 z%11;G^n8-Jq;x})>i4dQQCSQ#=TBrz*FYnN>wa%WJhFIns(P}-R5;^E z7eyu@5mQr-><|-4B=o|nzX?V}Dh1V# znm2r}eg(4YlX!Q<7kre{P6vyANAhI8!ElneBbUQ->Zq4$Os}RAqL>)i^;B!Vskyz7Fjt-1D9BM%||nI=&oKliW^8GrP#QbBliXJ57mV1 zeM#G-V()pLEMLzc76S+fTY1@g$P-KANZQzd%yu79IyN(aGl-?$XUf&k{)(P* zQ7whFjvzfVjC_bg77moJ-+o%~J~i@4nQtIP@q$R8ung`0w>VzsNxrDnl3#@zO13!L zJad^H#c8LVY{lx9>v8`l9#b`rpHR#ZJtt7P`*<^wJ^K^&&~+?m&<;W`-$OoUVR#^j^rD@Ft$Oe_G$Gc$K`0()4GtylE>H?P6)kBmYWS3M?(mH=iz#q|`WUKjR5o zT}8}y$8_R;Y`3&RT8RWy&&kyDwYV3JD}HhNI+=mnK8GjsWj0`yF|k0`a4Wk82R1a< znf}W5V7e~@LFCJW#D2$CpqUWAKPC~6<%s?`(HjjA$ok}IOJ=ak)Rj#W-`eYJ5H)0eQl&KMN;Pt-d-xFROr#twi7qN7JXp$F2) zvyk!bvJ&N7JN`8LRhG5R?h>j%rDFO4JkI)VJSD_9M26PQC~qi^8pE8r&1$75K>M`R zEf!r7U&{t0DcKoNMSh#F6woP2ZpRuEK9&mOctNvbi2mukpd0xvH+>o$p*ofscwIQE zvhXv!C+4cPlT<;1l}yWiV`8^ZtuZq+K!X+YpVs{MaKs73t>@&NcH)55HNG ztxoMeOgoz$Hl`q9J5IQLWma)V9{}24veE>S3*RN46FE-FYpu1OqBuUk{6fWguH@hE zGA$y;*k6|cE_kJ55~c4npFN(8;u}0AHKN=p^B-YSdiM(%Q#z35_i_2eHt5pGe#JN8 z*8lC*31=+0NMFKc3{{R)_7(Zmvgr}X07Uw=g2R^x;HU~N< z`qlc~YrpsgVE6OE$!wS!pF?xPD-D7@C>WDUXOwX)67=`*^4b077>rfG_H|dZ?N~nZzs0YEYJ@>&zA2^kgeyBm>EV$ zmmhY;Gd{T=eWA$ld1X08ysu5!OOZI~*$k3qC~TBGHwH4H%Q1$x#!8Quu%?Rfunw_R zvpSCrT)nvBU%PQk(m;$HDT=@N8qvt=sX@6*^Ip|`W;ZTiQ#{Duan(uZc)Oluo~{O# zE$1Sed-ItfR;=XR^Ttk093XMiV-rKa;j;}D?rVj;H`B&Am4>}CPc6w=^N|V(pSCRw z-X%!3(thY+j8S`{^fu%&f5%^it(gD*F++y^>fSfqCPj)gxRN1A&hPPunw@q-h7xXb zx+VU-9n8Ba$MO1B5H$7^4d6>4C2b3i5*vHX*z>B@b!=#$T|Zv;yFe`H%-Sa@W9F-t z*ZsjzlAmzS8DPU|@^%3Z#7f8~G*>8ObMVZ=Qm@YktSno$+E(f(Q@^T7#)?MQeV$lr zGYN^i_l_!~e8M}bP>v2oRZ0fAsg&uh|M7eiQZh0#pB#Aj4%V?A?8{@{l#R=+qf-1rPNc;m7A3B3&AT%^U;Oxhow z1BB{o(WI+YqStHtuU^rOMOj+KR8V2rz0=N+407*#IJbGdWz*#w?`-?$@2gw(knJHu z{64I1Dc`JeZ6t*4GO&EE4Rv=ZZch-FNkKv|`7EHW$s6#Eq<2 z7u$kupSaYR7ziDEuG)%fk*hZGYbBucwmmr!?Lf$BhNUNzUGd4RUo@A4B{Y_IA6(D6 zcu3)s69uWJ>A47R@_)5q6;o5LoXNc=si18+31S)hK2SG*8dDsO4!ygB9saq@R-wS} zNd^t_;}dAY{UoGTd%9WejE}!mvxqDaqDv?FbClOPQRXKz2~BoL*!|4OWiz2d8oc-5 zACIS=4b2$GkF|%3o86U5vt7K5>Qr)8N{^!X8+cJ62dS{ac5S{gkWUEWt|K6arnGcv zmY7T_)rYp0ykHY=<(l#&_<;uQ--ho?4sw|Psv)u>a8C&wZwt34s&O@c_K)=gO?>T& z{pr7arf4!NXnv-p-k>j2-w%`pFwzAePF1q@d2Ckd#W@m-0rU**9SUs*>*tnzfs*Vo zFWAC3{g7)jQZ-}pzFtYa^$J(7+RO=B<_8KFK~tQw@&y0S5j9EwiY>dYKG{F)hZCkTY z@}w~|-R?ZGhK>x#4z?SGoM9BVb|qQYDzIk=OgxD+jg5G5d(v*24E{9G1!@+p+s226 zV?rNxsu`@XA7&U|Z=USNS8-hbT?{gmU7csT?P~uU; z13|=giL)**_h}rR5rL<4PLx;T$F_&Y3_Qy~u`;_hk7PaNiyx zetPd&22kJUZcm?lgi46XVVq7Ltjzz&s=pyq=g}D+-G;RBLOCdO7lp=eyg<;tUv?>c zv!J9gb;pFA-Vbs0takdOIGiJqF#+Q!T_6ox%nV8S6Y-s6G?~@bfd&C`FEV*m?&eQ@ z`fmw`{fO~wZysxGeCHe=v{FJtXeuaEb7R>|gj$7e??Nt- z!!?fyn+#iPFUJF__E8d2*wJCVHC2q7T zwkBHYo9c(kBKzJNRB-$jefi!r5Em1weD#s_GTr{aqnP#N~fDeo+lQvC}Iq^bE|xFUQdV zqLP&OsS0iR|DEHN)vz!!#MbQFM@%oi3BFu3Dd)xen)LLwKOc_<@Y)YSzE0(h>E-+B zjbmsO6&r@x_$b&ttJu)Y>-*BJ#r4WhLcu@>E|l;V!(~Czuk|&!T2`YJv7Q^w~-`Lju3yA*Zx&+jx*Zo~e0#Ni|d+6hd$>tYo74rYsN zfZ4^xSGnxHajprlykA!Kq^6%aAdnmg9`^x=P$2amQ)OkuKyTU|=jHjtd`R;xI4CL<#k|9#xtu;%~xOUfD~uIc7{G*AaVXD`RKmltZW(`d z=($+>A(t;--O#ZA{oM)jsN7pL9}!ufUJIhxJJ%OfGT=XN)7m7QR2V`O_s~fg(N}@s!k4p71`RW_~3wVlOML& zyG$uuniuIO>letp^XI%pgp;1DA ziubsb(vsW#A0t0nwxzj&&t-fRO7H)R-BbhHh=oZ{RkC*Pd*rsc2rXPRpLlG=Wq~UJ zprqL7e9hyU(QPrOD4*AoX7x&0z~owp&fVQ7>Vk_cA0}2{HO+DEFH*_D9_>L97tNt; zm+XoYw1<)r^%TiT3lT{zw_ zfuokHg$7kjOfFp6yfN`*%rR#zi^fh}AX@=TM!spA7>l~KrcNKH_`QJf_@Uplmq$(& zX!u=TA`C$mcze(5w>0kbyj_C__l2SHjBlgL-0ZP(gqOxzHkXq6nSBcX&b;KkcjD?! zd%(Ck=>`X8*llj(^632D%n6XrAAAb3Y-B-DHpbeChrt3CsI-Qrx-)Y_2Se{B{--JP zyImptFEWSz#dyBlVp*zk=@npX#>unr6zi4`f|PHk?7BB%w@z46l6Zv`k&)B8Of5Xf z!35u1AHS1Mq73NCg(jJSLYcgV)n3(i3Ho9J!(>oHUd@2qQ3J=eLro{0CKc&!`Z@sEMun}a}xdl!S&UYC}B@M6K7X_JdJ#T>$#A) z%X`kPuYF4nCCzM8E^Nhbscjq^#e+49AGfj7-@@Ovt8ffO@`G(Tg_EQ^P+)t<_s|)# z;g11Bj59G^9YuITxr{69ue)UC8Dnh6`Q;W~m&VAx+ym)FH;a+Np*@ewcovS7K>BQ` zuu`;XQ?eF;(oAn~?Ym?eD*D)h83HO3(uaSno0btGd&Gf%AMZPY62Dl5-*~)^U84#N;>fylm*3qviU9{j&uj8e8kNbg#FaP&T3$}XU)|!`(c*b6;2z3Sp_l7kk zxf$hD4pAd*KC8UA|2I^2d%n!++`nmBMuhyfURDbzLvZ*{N7>n&|6p+HU&xZl2Bvs` zA^JAeO8Q|Bc(u%SBx1o+r*!HEGh}S3*6PNd1%<(BjAd@=hsd%Ccd;Qq}q5pm`4PisUbV~8;J~? z{g5JLn(D-{hp3syrn%qRI;s;+MIwhxM>|GeI+cvTeIq;^5+!c)zbrj0KI{&%x3N4m zB8Lrx{Oyi5kum|8;~21jt%2bv3tE0{H;z0V|HdflMmDb9UbmN3T^lp?8Mht*;!!8d zo{=ajx3@PP7qp$1Smf9q93nT%VzDcJ7t3t6$EB0{rVxprF2*4;fU;v7-@MX*GTdq@za9j66;ev-#~Q8GIUW8DswOVz8brIf4U9K@S;vA$NXt*>CCG47+>G&D_d!r@Dg~j&lmJBAn5kf*vJfNn^h`Y(0S47 z%Q5ckqq`{!k~r$J!g9y3Ty~SLt&U3~HGOwbv#kITmD2!Vp1BPzWtg>f3BY?uqn3OdZ*lI)zCE2P7USW&H!u!nfwWWWt^<%4rKz1 ztHO8cQA3%cKWli7!{8%_!BLeqnYuNy8P=Yyym8rMt{aGS;iKi<)hs}^v#`h0(-S&Y zUT9QFo5RwBu1u8YM4CwFuj|vmmt5Uiw(jkc?h*%W_;kb~`^rB(XrEjgEFQiy7?zq= zf2%oD=fk1@?L+CnH>jf>f1cp&AUz1^2Zk|Z->{s4eS~O>0goSDHyXEHC?K-{&ENKM znRqvhk@@bbtSRwtE?Xj$yVLIbx{Mr&>!zBXp<^R)WHZ!QW6t1j zCm>od*<~QBB{ZK)WxD?1)Z%5Vi-5|A`J-4<%#viDhg8Bi0rq8-55MX^4xUtVdLca! z@L5)%x^wuY{9F7V^T=YwjoLEBo|mU}s(D-ZiQhjOX%obi{=Sci0)>3#O?H2ph|ZQpM#MWEE_&si)q=WxQ1!!}|aQ5rY! z9;yF3U7vx9LL-E7&@)+?)~+sT7!cdHaXg8L!b4fwr^R}r_TMP5aed))~PT8B}4Vq z8~1=gqbzQtS&ghb|HJxFUv>5fzb(e#X&0+TQfHFE9GUn}zjV#1-*!&_KkdO2D*N`E z20=0NmdsHyx<;M#BZVN@YHWd=0eI&3h4+x4($(56o~(KuB%#p^DAuXA-6?b1+xup4~yAo3zpjyCo5Xv<)5ba%1fzEBb0qomEV~NRD*_-Zh#avis-$q6dC%)awbzw&e z=R9$I1-UGPqz4(YMxwu@=GX5o57%sI26@ambt4M7@g*4Uyq_0`O4O=3()Ww#!9DkGk!&)#r)6C?FBf>M(H2PM+usChTYL6>BO{L&1*r}^#ars5ta3K|y1h3` zI0Q|C&vJuTENEE`N3bc+b9Uo9ttOhlW`+v~fY{@wO?)NbA|*!g^)Bos9PZ&K{^^SJ24aRM2w3CH{f;RacFJbsRx0FI&SRuV_8_cCB-rQ))J2;h zVeM^mFOfcrzjcmL0HuzH?LNcP!$(2&QDp%Gi1-R*sg=A2t1Tw7h^m2rNLIjk8*C8R z5D>mC-e4Fv6vxTf;ggBs(Bo42z%1Qf>~*!tH>~WI$==%O9EW zijb^Tw_KI%%8e33{pd*Lece2#@EDbYWdx7bRF9wVA~#AG5XPRHKE8`jP348Ee>TDk z8?*jw<}GX^Y_JqtPB*3HcfX*bQm^^YV9%)x+815*-+_8Im5$V172F}`8`C)eXkk;|VhbAGWQsCVqqmIi%yA6TxgtAxuoQQ`2t(wwrh~| z>iPYnMhjx+xBmmdhMW<+zA3ppsjaD_i)*bBm)h6N2%XQiB!^8E4v>!VitMzW_GMY` z3!X9cOpu>q%zkG#qrOg8AbkmPO21FSTWeI3@BRv8ujpT=y}l`UT@gm5r!zsQpqQ_4 zw#SOF(ButjNDbP%rtuq(0LdJBVU@YtFe22RA@=8r^;wmOu?8TJ&ZOxh7O$t~A`M&- zC$>_Q=5WMUekioMCi(AQ=og_xGYN9yf5t@CLZGSAM01p?H4r#`Q!N#rALqEM*ukq@ zwxL-7EVmr!s?9WC`uq$OLitLS#CVj`I*V`y8EjYjMW@ZsHNe)Y*6z*X#CYe^So4c9 zoZJ*vN@_E7I}#aO^*4u|SF~8ryxT$SRp0kUJ%>a|V*kQ?%KP41C$W1jzgnH?3L36- z`yTcB6(~RA&&rWz1oiz-o8V0$vE4#H3U|$vj`o+G%Y{DlTRPIQ;FHS_aR%sL zUfJ3|IvewNi6)TMqC8WMmn^4IB!$sELw~ILu*qcCbW;T`RE!|07=XTS2Z#R`_z$aB zK#^A`ZL0bi4L^jJ0e7OhjI)G@Xs|}7+$X8mf#bcvSEE97RPEChQD%^CU7j)N68^41tGO)j{o>V*$dLVB8q5o8xlW6TD8ih z3Ty9X7}qB4xsN%I=4p9wFF{;ZV_M=(|5EsAYct*lphym{|4 zfPSn{pVdoit^T2g;~Z?zEL0g=?_2=Oz(iX#>h%f6P|b_*={SI8fh@!t_UCkq8#}&F zd&cW{o=lCmEMJ8K6u~c6E={VMqWC_ok|Ex`--z^hn|6@$&ChI;7OL{cVm6Us>m)K+ zuHG00D)tQ^p44`Fku1Y}b@k9!%WGsQRjOF>#amT`?_dAWqyBM7`^_Qs>wqI^zFO3; zUtnKf%vhO;Yx1`|nv8SAo~Y<hIn98 z$5CCEk22S><7P5&j(f7ctExHXb*#T6T9IfG)~{%gj2hY(4b@BeylidTfU9VrbkT$P_3yRh2N23j({E&T<+Na&#oWSA6}-kR6Iv^9 zl6=qWzTctE$P1gNa2oQQ<@`rUlu658y$d@P~(k z2Y+4Xw=6x}4UMqty|g6`@$Kqg_Z#-j`+$W;yGqt&JCg$am$9}dUD#6N$C4pKXSt`2 zjik1a{#jiYQZo1_w7m+^VlKXsqwIg(1{r;V1J9=3f~d2(0FO5Xd01kvh$3!k=mi_g z$omDS)OqkXeyzsJWJtW7msERAl(lVnlM!lDkS#%TuNC!b4=>TGfAwFWdyG{YJT#BAm7$FHD+J)mW3a?3_`$w8o)*iNr1!lUMzQVn%sNu-pNFdrXS; zI?scOew%gPl>lGLoK}jr)+^P+MH6PktzA$pi}yJgkU=9rLs#5@k}hCCh_WE54r<6y z$lpqXDy3wC^b$Pw--zO;CpsjPo6Ap)lgro0WWh_VVA>*D!XPMY2GSJ%9QXb2h5e%c z^8&!ttn}h_$iCr=J%8^ll_yqfXF!u=!uy%-xn4%LA)edH;TK)w_?OFd@t}VSHz2cb zrW;Fa8gm1&;oCd9t=~#Axf3r9O8ua)9=8>MNoXj$X`Zby`+J_|`Rh;XGy{>bHVzOV zF%UH{Kzh6Tn(T{K$bDwPbSn0{Md-gPn>wQ&?{urt_AOJ>+k>(CwD-WMZg|MMxk!*DH#s;Ni zo8rBjX@Ow6%&>wkC_SpYN8}45Y0!PB!ozBAhmX%^{WSs%VXI z$<{s%^25VsNu&N>-^E>$42{RkXQ6}nMVcZ6l^Et0nBUd$*Y!ib(d5g^aDHw04|YCv z!xs^ehpLAu(rrb#)xhk2UefGzMi{Doc7IerY*^#>Z^7o_tHtTUwmrkytip{WZxe^! zBQF@ejo76R5NKwQ3HU|Vk^@RxWVB1%d#5JN1^Yr#(|vwj!71c|>){n(IP zpO?0@KAR@iWa0`&ukPoE`8RWi8%;fHM|1%eXX5F{>$A$Gw2Fxe^|^2U#5F3_Q8@RG z#Iq%&EXaajlyB+2+l&5+?&szj5j9Zb*wh1!Z1HY~KE0Z&@BcT(k`c zN^!P)RxWM#m~z{cO7URSscnS>KFjd|Qq&^WC6$P;E-(YJG$J`etIN4bDYW=JMQ#Pe z=(j#I4ir??J|E^~uhuLU1o6H=aG7O0I(MJ3@+`fq7L0ARw8Ry?H8Bi~EqMB;$zKkb zL)w8p*{%bwfUN>dBxo@9g=+>>xDeg6N zVaivh`R1U^tKCr3Ll4)Gq`0{kr;z?Sg45#gW-OzRn5|Kw#Osr%m(&X)>goW5I*HF^ z$J0RZYXFgo?}@!~vK7FMWsAPrT6~T~t%ms=2^P4Bg}C?LpCs#0z9B~CI?7cQGyG*pHF1bm~UTrATZW=QiRi678%!0^K5qA*3rs1+(aw$Y>7Rm zs!u46aJL`s^v?*Lmwva3I1kCESZV25Z-|9MzhzEwG9Il!Q^+t}vYJ|SGuG+VN|kA7 zlKQ;GUpDF0ik0E{^Rk-f21R9cij?310r77>ELf;?F7d z>kaNNeRRLJ&ly=W?j2#qImk8H@C~CCDI2A}=zn&ku04){tage(P?gb}61@*K?$_=S z;P>U|;dwJ!rHqz#(m~VIN^IDanhpWciWD=x;NQQm4D-j1=Uy(Jq;=FkIjt((oVRW2 z#zKHoS*fo#h3x15>ya0RrFj?l^L{V-93a$5$5c$M)Kf)8-0y~LN^1~< z2h+?Nc`T{=tZS*~(fXXn5A;i8=Rz($Rf@uL-i##GF>$)kcFZfWd6gxb%U}UVlW6Ff1wVYCfV;0ys<6MCrDX*2K`MMBY zRN=5^8t15=28~&C+x4VJqvbPLfrPU4vR}Ud)yUtsQ9f&?iH#*4s>Q4nN=RBN3^fvZ zj`ywI+|;1~k{*czONl;34#D50#eRs1Q&QYe7>HF4DO1Sb9PWSKZbtNnVz)>M|@`8uGkSn=m`nL$CpxZV`X6^ESYiE_L|D2x=La?OErewID zmj*MY8N48Q#_pMcOL^t^5kkZKMZcJRMRsNFQS_+&!D zaN=~(O9{3YwlwGj;+n&}M_#$=*SLu3x~nw=h}ZA9pd)TAtGxdv8B`ubH2)d5tF@3& zbE`7Ev}WERCtPVzWOzP}JQ!Z@V!wllPn6S|0X|G((!VCwxNq7xn$+x2l3a+CBCE%b z7+KQ4kT4+X z-(A>*^i;VAQ!^PO`?qdLQ96G=nx?f_)s1|)6Z4Z z@RfBQI&5dJQrAS9KFUd2SMZ2w@S6TnAz!6_8=_c0#As11?aL>^v}`*5f?!+1FZs;0 zp4N`QBFB9YN=bo50>tj=A#B6BHuG*#ao>?DGC>MrCOsp#!)qPnuX%ACu6hqda9#y_ zCVV$YoBCn&_Fs@rMmX-i*jv<~%v0%V1r^0li{<;X)V%*C*+$z0`fKn%3E_&YC8R8u zx~QQ6MP_zuN~eZqZT(o?7c$zh@!@0#LKSbVtBwkX_;ph}I?R&iC}`^XQu~C)4Ajl< zsO&;j(spwG1xmtW4W>LxHBr2*&NYFZr|A1FESds7W*fWyF$-Sm@NJ-h=hK2fI)|Rv zpIB3g$3$=+@FJ#M3pud0^EwdaPWNw%91E7NjJ^k3%Mg5;sa3Gy*o}^M+h>vucg#*p z*>&TsHtH}xbCFc^)+j2n?6?$LrhQS2XjlVGM+z>lV2m~aPEU|-AIae!UJy(pJ>dI3>#ERPwxgq5U z!WkY-o7E$Mc*CsnuDrS){{Kx10@8_y3Ff-eeD_l`C=~Vnd(q$oz^6cZH6x7|Bit>O z0IVrQW$af>nT&oc-qyK_n?b=Ei?RlD5tGZky&~c9M8HpfAg2WGI~>DDWevA#2HQl)N-V zRXa6co#Gf1ce7eJ-jAle7)3 zBRu+8$83BIj`V&qgZ>NO+=d$0u@1vM#QPk6>>gi48R5!1I00u?Th(ZUBap{q>N=Ip zt}Nr#Bw3mjr4%>iu~|$U1+Q*8Wp9vU18ON%cBCPeuEE+n=1^nZY1|C%sY%e8u|nmg z>rqDJ+Y}UGe88YXmAvjN78lCWk}2o%TGA-$I>q$flCKJ3OiH)Z@_n-)S{V!8{K_wy z=$H~*8k&U=$KQKY7iPJMUv&jNe)Bag+E(@?Y_Z$9@9K!)Gg;^TaIUytYk!o{2+nvq z>wGGq<|(L59#+u5+NXp?deIae#k$Nn5n*?2wWuu9UikglhHcw%zEA!X#>~%I7bey1gBy;#?*>^=IrBM< z#%EL6%31Qlc+$GIFSEfFPub zyN%8LVDkc2{`iIHzVAc!2g>(DC&52YACt*4iH6JVXcQu4yZzfN#ZBsr?p#Qv6_}@S z9YJ2zB5%pve|`wKE^gJ>=HQ%q+qCi@yWXfZy(HBxt&eI?+Uk=s-Pyv9cED8^UrS+4 z93i#5{ebi7`g*kAiWnn~bw}t0RB)(J_E%;)$$_g1s>c7|JJBc)OTFo9#T4*pr1rd@pphWN+!`r=Dx-fgGOvH8Gli`v0=1ADEE8)`&Jv-5H!-?fLQjnhRGyp8K zD#xTLRvg>cnPqOU1D2oi-U|BA`oij0j(gl8-aku4lB%gw4;G+9Be3>mpe9FTM*+$z zHm1zgiqCMKI&RWPjSX6+ZLmAbBunyiiMUF_D07wJ5{ zm$liPg(4!3fR!UtY`^>ymj(4DSZAaQ`pQ%H0%%p?e1>e{lTaYTv%}l5lFY>XDL*9= ztL~g{$rtSa%Qpimr>G}yW`pDR&49?^pQrZdU_^4uGlRLe6-DtGSoe9}J~0fc0XtVR z>s!U%EyZ}biHg*(d$c><1)9x0J!<83^)-0h2E9)^(jjrSi)l+FkmA38i-Ul1#$b6u z5j*EQh7YyNu7!?(+tFr0{Etn08N%Gra6>BP&rcg-i*{l@Pl9IS2;n8#p=^_2pivsS)70Yjk z*PEIdSXP9J1qair(RXWcXx~og;`YJp3t3 zHM4IGw8l10CfNBsNC+o}bWXQFuaE#F)WA9QftVA#y%xcp$f?IHc3xCs6h(ZF77#{u z8**l!nKgh8=vRZ=)(D|7$Ch1Na&<|&df(?wYNaLmI>m?N2V_0>@@A$p zR6}~X2yZDF(iYf&@D5YRCB?aA0ZmyB@wYGmqGgGe=)(B9cj|;t_S8rQvfKNqxe~{r zzglE|bHx`#T91b`HDktH^v69qO_M@quf|V+U=CIf4gA!*rW2-f*x5p0$6v)rYa=G- zk%6H}`2LWQqR5zw`#o+>-iOgf7jyUV#SD*!F~Xv9rBvpkGJKM`7TH=IOJ_lK!jN-KvdJ0%zt=&A* ztTWk+pU!Iu`^T8Q!XCHX{bE@`O_T6bA0RpKkDjI`Yz^;JbFkO1wzXK>S81Eg0kdMq z1r|Uh5g-QXSggHdEC>JUd8vGVR@G@6#Mb|kdamDD0(g!-ZLi)#D-Og4+POW!XMlis zFIP%X6XG{cQmF>|{r<1dufljvb%%1bl>O-8U zy%5+gmkF3&kGmBP?`OMQAQu=ayjl8@NKqj3cz2iaerjd&Ww+OM1D+R=dQqgZ z$0CJ`ENw~XS^zi_=RM9;S>C5PP!&3{C+>_>_*`G|gbn%Beq9!h+sHZGhUFF$K)^+p zA0wZs!3tFX-jKcFE*+TQ_`a6mccj8nY-ZBvH};gKl5Ft+xc5me5p3y7<`q8_aP2V` zK%6!q%sA#5(e{qPQi)(CW>i^k8w9r4A_o%Lgha5b`*5b0NAF}O*O#AaU?^s&#KY?= z7xosWeS7xr2^DplTCxDsM+tpBW|4<}T$BTRGhE7ewim40>0ATG^hb6*y1kwwo%yJl zlJ!FDyxOu&^&6GHxca=Sqt6mc3z9eY`a&x8hQ+EuGp_dRDWvI1reT#``s(a7ve1>x|7hx4;W!^7u+4v7SLolpV&PS?N>$hsm zs$D*T&J^y8&Mrf&SoeQ7=(|!aOzKJqU)+V?1O&th?iTyAw0yUrxfH!FmFa(cxO)3a zCG3Hk32Wzp5nfbe6ek=3`G$i@3I^*<{;jt0_9gPnv%L^ZFGK)c6~j6DPx-|vgd*Ti zUa$8-OdiBvI&VgDnvgda@l-fqYpKhLut&anV|RR=ee-;Fl?4}Xtrgm8zu7Hzo~-_& zVUbC}$L-Zn)M*Opjf`}`-Kcb3sW%g7t?H>U^L|sCuAm7sL8zws7DF=DGB z&_OKF1(j?5JQ0W_Ur2@!j}a0_p8V-wtvd?6;anITs2PaT7f1=Uj?4fx`Fj;()ay<_kJ4= zowlhw5h!-~RuodId#YW;hBVdx646deLJ+S&9um&*wt`<@RWZ|-dW61$pBSj85Nj>n z86ifi=UCzdxOwb}K~ejZK7Qi$65OHq#e3`-km?Q5Ud67T$A9}qa5a~CKL=~IOBuIl z4mc2y5XchLjLxR{%9@j02fS5!=9Zcz-ja25Xd<=FFPjn?#4;QPU80lTtrqYw!W0{z zL08O(bf(sMqOGW7Ww!-0a5#IOlt*Q;q2RIu>t|l^TUj|WoxpSNW_^!ZhOOE+Dz#9( z5i;(Y?a=r-ztu0u0iLi!G40FfpW2{R0Re)@W@DRYUh-kA3N;&I)V~+DHu5_)tL#rN zh7z`1)JslkyAe(I@z* z|F$WIEzEUBb6Vf8W48oV&hgQ;)kPpHBCVq58hAB7-~3V*5X4)RmKXVFvau%@`~8tG z{++f*;#kwwyRhNWQ#{lGh2|9R!#2T7nFku60Oje^zbdIjMWX`}npi9~P3ZF$HRFq* zbg#J$G5XxMN`UlS;)WOMB6kuJul@$o-WGIhE~4H(r{sLL;T9 zKY&OkT)3f8T4W0cal`g+NzWT>Jem%$2U-|v7MYq{W8Mze_+UIVY?&XW;(AWxa^(I#taa67T;Z1T)?2d}=sq%o`cmG!8C25IkTmV;^zS{DBwwYS7zC zcoL%|C)DCqCM*6b9jzQl_lDp@>F4%U`qr$7jaYD(WT&svPPaq-GIW6L`GcJ9tBDU8 zf&r>}27*cX&3cn% zse9q?yg#8J&nifYfsm`=Mz*rIlV$cR2X}ptT$&o8FC$)7`KNu-pyV0r0hMxSy`PGn zz92+X$b^0g6V5ImvFh>9WeACwL^IP=OkvXUqt?BAynfkseURzWK+$o_czD@D6M<6KH5-YCYb_OgukcyKw9+k9BU~yeIH7Rq2~R<;-HC~$X0??CgizGB z6T2Sotp2*WKc|{rrp+$Z+ebMQm@GK0BG0^1QUO4G2yv9PUEQ}nz3B+*pecA zyB~9IR!jhAIStJm z>D!BR9vrR!g%5VN5G_+%!JoePu{UjLxK#!IU8OFkibYS@aTqygy{DW8QEc4d zb7*Z_aapjVC`Wjm96yUd4vhTEIT9xP{ySsDVH#3%Dkiof3)07t2TIz3Z`Gj{j`1z^lQ}51v*zxrGpi2 zhxyGwuBD~+Dv3?RV!diV)qYxkn)%w1i6-k;F%yNhrxgCtuxM~=+%dYxbJ=VeQa5Su z@2y4c?t7|aNEF`S{sK#ft{{1afF?yZU`28#Apgk*9$iB>zOdhP*jh#wZ4L+r81onI1#X58T)>WBXnP8r$k2z839G*!pBYVnL z>0d>42&24|+J&>7xC@XpLWtd<-6m1-ZsQsE`JENkdvIudeK=Wt+6?9Pgr zxSyQHH*idFeiN-VXH&mw)4cEjB-GxZUUjr)gc%bQqM=u!5}U;o)!7m}(&Ls{#OjB< z&Wbro_1nXa8I=Yzvk2rJpY?Q=n!4}|s&x&c*@Bd&VnwUZg62Igobq6s%%$k@hJX|z zJ?kag0WaeihpAq18iU3B|7QWpoCGx$cmfbguyg>jze7=PjCtT1T{Ku$KGiWIEVke^YWb%&^e#hm)Ui?1)R6oXExe?F)p@eb zdcSl~g|${;K)>0Hnc-3`-H$~(#o-hewIHmpQu_TH6Xf$(j;!)u{On>!lrFOqt#EDF z_v;%~m}N9B)%mWzX(QEqq*yJdr{|H)5~ZRp1By@)bZ)t6eLS02%&`kia4rw_`t#S~ z-XqCgqzK>~F$cO9h6&Z@GIl;5tM>W1GeanRtKL24?Ff>&r}%sp=TJPh$JgP04mX_^ zP`l)AtmFK4jHouB(qLh|N;G=7<0-p;vC%GH(uIGCr>Op!=i}DEs$ za>O;VG`E|SIQUL_E-WnWDLBEk;!tWo?$H+nw0f7{eRp~s3cCrqxRi>P5nnq8uCPP{ z%y|`sD8hr<^{p>S8xAGlC^tvRhao;P_t}dRKVYTtmPgD&0Y@@7wLul755}N)_Yx0m zb`GfK>?9h`Qfb|mHv67#!{3D7CI`vCgodxlJfS}u9sbZX)SfXf_A$`o_LZsjeLFXX z3C+vDyXc->`CVwd_KVF1JP4CCesq))m-G;^-x{cgaxi@w0=#UEK zCd$GM9FTFIzvZPUyStvv%zU4>O(Th<-_{P(P8fOkVJXcFKHR+2#=zHPAXp_)wzhqv za;2RjeXSBX<+u2pymar$_eU5Hp62YlcOWZFVR;l}aEf2&F>1QBl0#p$(5V;K z493I~kDD#H<oEEo)6vEbK1^b%?(_SdpQG!PoR$>IzAc%XAZUoD+I0AH~EeEy*b>K<~*} za9Ult-R*r$@c6Cckp0e!$Pt&8@UmXvz96Y!uY`#@tnE)mnVxLyBIlI*N}Jc;`0dGT z@iTON~g!Zuv;P@`Hj5|qQ{D- z(=nCF94%DexKQ`o?Zfp%tEv$@q9Rs)Z6M*e?KbK#-8b#q?b?0qriJ=Jk&9hCHT*_Q ziZbP^*i<$K1Z=fSS^6%ByrrM#agF2g&y}>L=pjCW;^`*rp29N?4WA4Hz`UkWxb|$Q zo}^{0O$wQ8f@Ej((|o(M@uVTEv|fJ>Cj?p~k0raOsLNZrKX9${({nNu@e{igF8~1x z)&pq0hT{(!1NHpODr8ew8<6H}N>t1s^UoWx9N%79`A=JkQ955^zJ$$D*K6(We(DV^ z5eY`Ni~8Jd!60@Y-k%I#Ra2Jva!u3zixFu>GhW`8hZ1){yl!9@rq8x@#k->ivz+J0 z`Y@q?(Yo|X-SAs^bc>rxJk&BfZV?PdR4Ojv{B&u7{D6Y109fJn*#gyY+va1>vk>is zlM@5J16IZn4&iKK)Q4{e@bYpnr!~Dy>f14nBHlh;VodaGgyXm%1!{8jiaPI<66h&t?+ z09y3-A|`3DE+-ym7aW#Akn`@(s5xT&&794dP8&`yIuFnsCAM8ypU03w}P>-8s zT>ARb{?Vy->BTe?j&d*HwBm)HFfpx|H|Bi3>Ph)ItYz& zQ`JEnear}4r@e6}YeTPgBIGj@zj@40in{Ct*SmZEo`||pPc>p@wlXK&#_%-v?z}rX zAk$TC-OvG%95lK|nZ8{Pw@dEBf)`pXvK047ztNJ2w9+Eq-VEsTp*(v`r3bS}pQtLA zLZF(5x+bONRNQv-jLL%C|4buzV;vVLpYC7EbINbEOOYvN491@zs~_F|emi)6uS(cw zSY=gHu-GpMiISfGBFUu6n;-GXQtI_uv|(PyJM)V2GXGd9c zo&|G^L80_HhY+@v)hk(DhYr~ZL^D;pM0Kb3kFzdcU70}66=z<2{!c>+|E;!=Y8lA% zOE?u9i&M!IuM$l>_ghLh;8afevnAPGrIy!38ZhK+<*I{;uT=wfv*KbFR%F`fGQ;i=k`tPxCh$rEsgc|0wv zDDEdDAGh;3iIRY_KD%@w1R+|f_HxxUz>B>k^R=yf4?ieaW}sHTyX>bR$wj-c@hVAw z?J2oxN}pH;^Xa?`%VHLeI&V#;`=14#E{oWI6MOAbxwXsdcVZ(m>DMj@)c^sa?62#0 zevIh6#1TMHLT;TKj!#OU`lUbxyTJ|yx@kTATG0&TVRbW!L0!e@6T({#lw+gr{`b3C zYi07_xq94_Tyq^mK~uAY$soj#yLnEXs@`x53paKl#qwv<4y)?u2Km*7=D7neUy0(A zdC3*3=N^+zo;54HpBcDGIm&4`+Ho0_in(i<0MuOcGO1M#zfAVTZ$*c^As5d7><^mM z$xB%qMn`OAbu%Q2bsi}~{g@hNp2X7=CT6WjD)pfD_Pi)^X z#f1(q#wwWGf5|j8*S1QR)nB*Z=JUk`f&M4)74*N^2NF}wZCQUipVnVLZk5WckDvR` zFW6)cu)^A$Q-`ZTM0$L{`UgEIUw$V!V`aTpqVQ`Yxv~7MUH(AsK>fvRYcz*)9fpys z+CD-qRp|b=a)vFypNE!PW@BzFK&=`z&C|$Rlu8fQez*XuONxP<`la8l&vkj&Rol$J z@0ySz?NUGtmXBer*Bt#5wxuB7l$1`01S&^WvMU+aI57V0n{miP(6^gP?RhfR!3g5)Hon@8g)FuC1iH%{2dC zPFzsRUeohx15gjD>SVCisT8;{VV|}`E8j1ZQ2Xb7vU(+QdEutn%4IZLUe1RT)!NFH ztvPH<28`Lb9*lwDnje+? z^bap`c1FUmZGYZ~E3>siEM8FoJX;?KP&E}qe3*dg;p!`aG=@4broPpG2sWI{pz8|! z+W~y!w_#|Y5J3T1S%vYYHTzj21>oc*!PwaC5Y^5V22o>?HvV!9PtUsjN>9uNN9xY~ zaPWkYtVnk%!I+SvERuIe7-4@G2of1Jq)tb53`B6@3^vF8`)F?hG3kyMB#%vkMZM;| zeG{cp(FZn*3*+qv51Yl4T1d_G1Pk}d6>6qlir_|q6^ZR4v+;jO5C?*m!;c8TB!P1V z1BI)NMt5v?@-c5!R=-Epd3$#Fg6v2#dlg5@cg%5&hb&ZubtQc9`-e^eSM4js?NwVf=b`?Lfzc+Z6X{;|9 z*KETcNT2L2lAmrl&JHMm5^AeVSoGzeS3eFcLwwW(@%&H!J@;-r&w44Q3aTsp7E5l! z3xrH`cuBs@sjBH?UF6N;`UP~op^hj+I)1~()e)}##(w-{Pv`Bo<^3;E@vM(R(|lcw zaybcaLWp8S*rAm&7diA#vY&?|^q<8OM(wxSETzo=#o1~9yirk}<}XSv75g;4?V={N z(k2B|*idIEm94oqFFp%8pW3(PMth>P_3m|cY$U^!+g`5?U6l<32Vo0~O+H?=jJVz3 zffK!ld$Q-2nAz^i$L)pWjVE~D1nxinKB|ulTK?F_vnC>zcl7LoyEfVwfS~?b-vORd$(7gTM;duupOiQxRetOBiOTb@r??Yu_8>(!-*Kcirh1C4!g% zd12Y!ybS<_hA3xHogC%jU|-wM?c(53r(KnJTcu{My%YR6Bi0${Jrqd7OTiOxvky(u zPO5fE-3SUYT^$t*^G21elKv6a_^G3lC~38#%d|_L)e_Al`$O%;-xr0SPrd7v%?3Gs zbuiL8Q%=5J(+<0*KN!h4SQ4`^U!4%dZGd?Ah!(J_X~-8(`8xifK1Qg=sz1(j-f$3u z?ZnC4!26g3{Pb+i*+|yfa3+*&c=iDW@XJIaCJq__QFtxq0?@gc=^iRC$9^}!*fq*d z=uhc`D|RW|6N2e2 zEB!HfVM6>&#!wXY|iVt{<4>w-JXN`PIcT5pbWT z-Z3^TC8WwvB$hhXdbF#{MYEs?fzJcU!3D&3bwIe8nE5FD#ukNr*8*q7FJDnmZ zXSZo(L5bMwpHm$^$TNY%{TYo$yW*~2lCc?a4Yv_fjwu#W}TGkX>tmYZ{8U60`HxqFCuzwt!>OJ|tYK)H? zm8O_}c2ddn7AMG^alSJ}F1SU~u2ka?gXov8RdNf_(iPRxzp@^6_$Nt{{@08g_xXGj zi2CagJ56gjkNGB#c53y+)4ye4EX+5mXfV=KD<|EhC`T5>q@hl&S8T&puYm!6Zm36L z%mU{u94<0x|GoBK$e5)i@TWnet@mvo{^`3-IpKgrhSy;{u)HVEN@UZpK>PlzmQ&AG zE~1>Z7A>31nZ;0GT@=^~hF+Y~(wLMUP@cT^Toowu8&QTa?GNne%7TUNQ)L2^lC;Eo zzy9QaG8BK~mm0es{qeN?$6NAoHsON^>oVzAy5a_xE`1<*Oc&2*N8Y`Qh8*j|I{vuU zg>GdX$3So>?Sv)#FFWs&DSW(?4O<6vcFwmezW+`;N@=X2@0Cof3J;ls%+2Aly;C_h z>1+5F)TyP!RJm+bpY6Hv+}fWvbaLc`p`Lxq`7%AnOOm1UcKq?p;C}xWIc3n^4;)E# zhzaQTiBUpCf}tn0l(k+zDx1?@H?721{==NgPf?y-XLfg3j;Hxw`={FztnP5fG#e@M zwazbVEtEIY12m$&q1^@UXX`U?c=S7Dl!bw<2#0W}794bc5fifs?t9nJm#M2}Jm-&8 z%9{f!s55v1r^t-x%6`_cCw%$E}!!6xrdQ zKc#dZ`Y6)rbVoxrr-Kqf&^)?m52Uwb*;s#f7ZN+f3 z3})%1BW$ss*GevylP{2?1?3KI+?HZQRCH636UfF6&J-;=EbkoG_KLWN4w?fO#zo7I zzk=1>b%lU{!RruvGY`v?VijzNSpkQ*yNJjjtarTO#*+8vl&_s^td+wBrfWG(u_G(H zENQKV!uvMY-8Sh?`3$B!>V)}iF`6l2#yKXN_LZ}#yEo0)&ow|_%h(Z1$*7_5idGEW zEXzZ3X%xSx6zyr(-Bt4?IyVnX@aY!CT`~8&H+W4U5(Jn`1HH$sI4xX0ni0PJYh?fz zu?P&Y{8lt!PbkkY>r$gBYpCLmo|cE<-dL@2eFA9ufHQ43>sosR!PFkye94C2tfq0! zhKdCz$kja04B+2?@4@p0*O}f%>dKjC++WMwqN&0hq-Z~w-Xt5&BV^&*KpkSlw(H^L zOU`Yo#6*lKXL8DAq(`%isFY;`v97K^CG_j*pA~7}DS*^w5#pO@wR?ZPq0FQjeG;S5 zuP!Y*zcJ$!m*4-}4gL7X<;~K8{Vr4q<>A-QKw{`!mJJ7vj7+$Ce11tmK)u)iqOTcM z7^~&4Xb=m{s*a6CZJIG-|H_w~b2N2_x)0h$kqodaC10^)IE4!E6FV9$H_9ekxGE17rz zmlgdGD!0eDX~&(LY_PVs>(hW;wl&x~fmWF!0Dk_bEb7F*Rp$ye!UAYmn_7&ZxL=VU z(n%U@y!2vyd-XW}Y+~D;?%1#D>2@{fNZW z(@l8dWcE2(eqrITfcL zRU0ieVZs8wjApRe$n;E;JYGCJlTv3Ma+a1LB+}N?Gdh8Ne3T#Xi_jh;68YOgN~x_V z`@xn;kudO=C~5i^1dE_g{1@_|aPm)MJI@uO>0t;RB*QSOhBuj$th?8GA$)`r`(jKQ zKOhy(g4SdE{C%pSLrCWKx*WMqtw!)kZ3)yHR!89rD{kPLZiot#X-hUNL}*BB#wTA!zE)9`**f zd&D&sfok(xw7y>XZ?jKm@uxh64{L;x3*NERdoQVy4ZWsTxt1ptv{r_gz83~I@YP4I zwriUETlckFp^-prM-A_rv!$n#trLgPf0=^$PdRo{r9*ma=A5rnZYW$+d_fBJ#6l== zLLtX|19Tm}iu_t`cYc`YMfCcklxk!G!+fl0*+SO#ku!YDl$e6GylhNTl+<~c_r-kf zNOBwLh&5(cwD?fppxNW2nEf+xB`WQ!!Grr{@;XOKAFy(II!zXrMvRaJ{5+8AH z_u1FOW~+C?PnQDU=S-k&3L=6N=9|Wq_sK)c;Rosjdjf|)PD4`4#}}Oi4jWZ_B10Sd ze46QT3Gt*Q1MOFIZ%J8UDjvzqx*yk^bY>a!raqMQ)6cVOKV65Eb=8cR;eU+SS&$6& zS4qiy5!wqpiUc`yY%#`u#9BWK1p*Z9FT1J#^%?FoAr=45=-0DCNP4Vd5YNJnQwJy- zMZAw`l3v~8YwD@O5*o>D&Wbi0I|Jf64iphi9xkcp=Mso`TwrRq7V~D;$JE>`kpf4e zDNi$Fn{z#jE&;Db=yT}<`snPOtQ zgcJLj8gId>5ZGYfVlXMeLog=N_~+s z7VP&1fZBR3bznDo^eDbjlq=@;R?Go2P3)-sQ@l}ao#HUYuVo*O)X=Y897V9(~<;npxJp@5jxjX0fs;4N0wCHjhS z)DXvsO72teYfLUxfooOF70I~7vFU=meTC_b+&#@A1i1!lq4j0EVw6kue~x@m3@TW9 z69rA0*on7ztp*)tXLjwtLtQl?Lfir z-Xen1neZ9xt%(p1v##KbuV^_HBztpY4iU`0IePXOAlU1klmjf9x8s!=&yA>QunhFd z^4Sbcrl;hG&rQ_A28#At(C~b@jH*NP?HXhod@A#U6;5wq?4zgo%hq)DDLxqOQw;ep z%eY>HQ>rn!D}4J!2d~?;m2%om31)Pxb5UT+m-Z~fufjGcCi{^YSAAX%{AbP&_~xk zXG3Z0vnc*#gfNL>>uPwP@n=JshL12#pv=ifz1W!P;*Lf0Gq1i71L6M939Kn-JyLAZ z53A=nD8;D5jNe~Ufx-v;a7fV}c4@Qg<1ia<7W#$rr-M5yxl0%$`S|xYAU31@mguU^ z7e`U!(9m;n6rx#DS-eA;$R)Wb7j^u&;l8}}HQ7}Ks&VzxCb*+;YIb6gbg^Ubg42$w zHk$-&J|T4!e?m9l5y(EPMmUwzPH?*-N?I`Oo3cXJC0wv@8~()*WW?>rJxZ_XsLyBM z@=*{de3g9Sh--xc7qI-}<=U8YOHAEUo;SjBP z3F2~s{u?bvHlKw!{qd|C=(Cg8odbkI;Iy2C+u)FontCF;(Msl_6?c1J(psj|t>6g2 z1a-d~iCTdDOfupG(tGRHu1hSyk=0myiMQWVY4&8x|)bm&~3+DMQAXEwCPTj%=T0grCIhM)&u*#Br*(g#^XW^^?Pgt+}0o z%m$do{O}HqL}fc4vv-0o-qGo#eT_BXBN^lv7t%nz)fCWyNZU09=&9HK$eD~d`H$;&r(2mS(c41RG-d1)Yt)7aW;KuIaF+_qGs{tGpN$!gd z&}xad(m8I_E(5M^``*_DlVLHVkZAux;Wt$~iIgf}+tKNpJLD`RhMy^h_VtD1Rd@ z-&e@hzXC9W7{%>~#YN-H0G-JWO&V#aN1uVp)j! z%Pf6k*u#z}-J>)`a%6XL*@YH+Hesn-Iyh5Nqo5R&r286 zvF=(yKwWAPW2>svx=IRTG%20pQ|#LoUkfDVKQu}pBS1kCiUtpTIbm&^WcD1=t*f%` zR2mTpBcsjktg9`*JDbTKViHd}&`mO~iw~@+;Rpr12d!Fh%R&<7WOUiWErT#0@`mo-Ea5DMOR~U&0~tyLAq5}Nn1gx)|5Nc#|sIPx$&L~WPz)}9R#Hs=={@Lz_iSAOP2XnCKt;-Uh= zZ7K%y7=^_mp8eWUd3d%p7OE5=QhIxKBhv!q;LXR5{&%cZ`A)I$6uqmcf&s5m3%l?c zSEmWi!_(Xb)kl>~Atqa(?ytmB1@&8A@uWB6QiM^&2q447Qh60J{tRdz*JZhrUoPg* zCY2pTi=u|u2?{Sh)|I#~ZGwjQ6Fq%$TabWCbFMDHlbfICS?KMW4WO0R0TmVfInS2J zQ0?}ZhKTNa30d&vyT5AWiw2Tz1aL%AId;&?5GGY?-rZy-3b6VAsy)FssLbn%|Fp)? z!9}bb6W=;C=-Iy25!PaVa}Q^K9TQ|Kr<Gb#D0wyh+3DUyZwm-QozEGzg?Ns5 z(fko74JEfR!R#^5-squ!NPOwoCmdU7^LM7o+`CQ2vem|X%O*2I`3{(5;xiXuH&)Xr zR2n`5K=RA|_0;MB5C$XiFnQwjhvqQp?vg&5*nnE>&Upr$Ls+Jr>Uas`PPC-%5U>gu^B)bC>IDsda z#b=9ZH4&U6TKjAcw6olvdx!D9TAYSYXxq7o97exQCF!mS4*rpj)$EE1=ONF_mbQkk znpefv!vg3|rVXF>X;2U^{>{sjQ|m2e0B8 z8hTuqF=ZfOq}HZDcS)6-dcbgl3(kN=7Chx4L}HiU;^zOf!Ps!X^*y62=!EWhGGq(r z;PRRD`RB!Hv|l^ za1B<#c`HtFz$I@tNmSX?jJ7=!k!q$dDP%fvj1)<{_Enj`b_m8+IoVK@iYXZXUFyNwiZ*sj zBpQ4PN)jX|R(!}1zsUH^l-~_?-d+7`?Xu6n@~EY16xmDsUg^ZQC`bN@S92n^?q5`e zs3z9qdZTS;aJ1*V>?E-cXyW>O?M~2B!#k9P!5jACQi19<02Tj2T=$=KTL~LSxhr(h z8{<8${4=JHI1cSt1#`tXgs?{M{mS<>zGY6fCZ!id7ct7~QpTjG%h5LsT@9d>yqCXM z{dAe)G!6J&;_ko4Gi?lxU(1el=@R4le)a{gWs+pq+Lf{G)<&{_VvZL_0msI1kOtV= zJfjVdu)Cb4-03oq6b1ejln)Kt=pUOfC7RNwaA5b_c;!3Cu}rndnHv6yB|#1}Qyt6) z5v)x~@&9*|#>9pt%(kVLpzdSV?7n6CuM7m#D~m0~3hmxa zSK#h--l?Z4U+G>27A08zAY8OGD;*M`42!r}A?g~${1m&&t`46u&RX0zbDq5t+^KU? zGaZqAROVBA`#y5~k^*q+EKjSzehDY>>8C?re=Anow?(RW#Kb9pkx~HY|7bd^xTyPX ziz^a>AV^6gJah?2r*w`qGQiN?jkI)kHxfe+9g+f)L)QR9DBX=Tod0`qZn&mCd-iYb zwZ5w^U~*?B*iT!b_h2qcD+zB)5Cg{ey@b{wC;B#Q&rBxq{cq=yRf+s`IDG@B$)*79 zbpz9)gQ+Y`ijV;qSfE$HXD*x@W~)X>uku!w&RMa0&7y7rFQo8n=jbX#jyhKoCwnd} zSaeD@g`KuIvHy&b5g;KsPeU=^{J5>MNu04htT56d6$&$wmLtx(kC z>gX{E%)qjr8a*@ffL^!*@NefhbL-KGn&Co{`V2R*KHm@ZqBC3S-+Q3MY*s!Y?$70u zv}A8%45OXfjiaqTj1e9dR=t+xQTer^a97wAAwEK2Wi#s$PpA0pbW=Vfq&aAF5*x=m zobH0O)vs10r}@=E-A!JWkPnf&0cN>fA|kObhB)38fX{=r8GpkR-k*sUf4*%f6Wt$9k<-} z4E1T6z13a!4fO&gq~3r5ojYfOnpzlmh4aHhK5#g>g6l4$X9t!VOZEU6e|_qa!^_|Y6aIihjQ^)ad?=cP zx>FM&m(mM0T}~VsBsl47$et(Ti0}1+-%mo*<9g|%$Z->e)TyvMBN9Ti@|8P2Yy$%0 z%Q;_}0~Imi`1fcOR8iM15IRs1n4>?k(f(a@W3;PeT6rJIqg(vu0qf->pUvPqa8Z~9 zui+2hji8gO1ozy{6S2}^Rx>36C^UHd*p+3r?zJ|=U(~;}DAP_|mOXfCXx$qhaErRn z7$M0V=eg{){{D{B> z5R3}y(|aT&gQ5;k>qPfHeDX$QSU&d2h{}j62P5HdiYhHaOX8u$DMkHYg}9b^8NSA{a69dIL3NDcS^HNhPVWDsVotxeH_$+ zD_!|qsqAxUwn+FNgB5@MY+;FJ(W8{GK$%5P*5-F;T# zoZ$E=yxaKniOO5;b4~c{k)-E~K2c*yZuW($1S;{82Y5b>J<6tvSmDz;sXJJLVuo%_ z`~u~BJ_b`#6z#AZHm;Vs#7oGO{76dIqMT%vmt2$Jxvc)3D`1Tjf0(+jT1VB;AQgPu zzy#z~Dxk(xgPQIDET;91RGbJdNKGCN;Aj@s4xF92pa@4msA7kImNcom{D~5`#NMbz ztu%9Ub4E1X32S|x=G*J3^$=nAVjN~a8M;g8{`JZrvph=d&KtP!`nr5HKLxk zT1e~?(|Z10RYLkJK1O(wBUnWy%o$Yy?UhE%dUrYVD9dXX0XL)6AnhV|`)0M#)dG0! z*7^DtJ+P2kF-j~Pc#`I;goZU%U!3pM?1@n&*&~?#dnq>9Km_cd;=5diw<+MBo}TY6 zgVSVfBSLuDgN_vc@=WV=Fd9X}J&?v-m!xibI?W1cTXfD*g-moZJ{qvS?q5?Ow!YbNF^5zNnN!oEgbEVr zykXnlJ2+I$)U*rWP7CL)Fw_I&p7(FHUSL>Se0{Bo0AT4{6dn=1A?8V{{A2B(j{>fC z0tSKb#cH&mofi;?OI%rRZ5jk|(zBTu^#r>9g1E_PZ&9?%Er)r&kQ6%?t@`c9^_KJ- z1MJ77W2UD2e?eO-caVe8;k>~WS^XNoCGhvuxOZcHnGq6^&U>i*lIEWZa4vxCUV1 z@mE5|?PIN8?wA!}+g^mpth1d2*fSrpV$d>D=-&O%E;jPY$oo%r>EMjRsEeIMRe`up z*_>na^Qw`hY|?MrO8h0C^*U~h7C9{~65x2GX~(G1#wdqc`9em^gPWU6=JV9)^IuD+ z8_kSZU0Pk(;^?p@#Oxai8*DOut%yyrLO}9LHzl$Rr+Nc_AHQLZ5mNm*sZKPz%%N8Q zP0Lnoo}+v(>dLGPohJOlgbWHuZB|6Yp#g*?27JYG{c_KM>kXXo`A8l4^qRdwq4HH5 zSeE=1`F3yGnkCg|nd-|Hns`$m{i2y_m@2|5(B;w>k*=YMY|4O&D>8N_l3YzqP{YTR z7CPgS;K4hhmIBBhGBkX>-S=Ch1_;w_-Aj+L;4~QbDRvd5MnFTvH}Bc)$^#q)gEPi> zpNEGdS!uWyukpjmpNsa)2?Lc{nTn|Cv$AB0#aa1@_W(q^V$wmQ+lzIfWRWBaW$Q2V z;)POgcL2TY-q)`w8}#4uUgQmo2YrP1#&(!~1+yiv2d{es-Wo-$FP0TSTCRNqxtF)T zd*|uIM5B$xEmdFOUp(P$Jq|MYyxMG*%OzTV`q&K&%%Bg9aY{l^*;0GeOZEc}(+n`ark|Ne6kDQaVYk@F}N+C8ZpuU>vlGooHC;5RL5vwXX?&vGMkbXfvQyhr zYh}NpJi?$b==@xA>kl|9tjLz)TK@}0HYZ!c z=U8sOD`Da;dv3#>*Rz=}tKW~<2v~xO&DB%zCq6O12{b2n6DHnB3?Ef|OMSH$aF4oA zHa07PsP$OVjDB&uPP8=4Y?Wog3{fHV2x`JgeUDO&Eb0=I^F8tLeK34dd06j$5*>fK zUz76xCs?IzW0r5OI7p5z@Tq5eaGTW${e23yb?yR40HZ9wsh zG8pr=UlXmcA+6HOv`~wH$I&-0{Mt)}8p`W%?z_7Ek}cHz3k6{UnT`uMsA#22l+%z`FD1q05DCQd0ZkURj6 z@JmbR&O(ahY(l|FAZzSTB z%!%=Nx7Z{R?s;8p>vMA{oQh{is$7TYi*){xU89OAKgZeNx#RnYm+0TzzY)rs`r$N?_E__bVl8N4t#p5DQy)m=FRp=q{`2Ma6UI|R_p|tg;p0g_ zzIf+D5Yj5{$DXvgqydp#L&AySV^E`_wVu5+JGew|owmf>J3_Y}X>&H!BetPNU9(lc zA{`)=HDG_P4=33%02euN5|W%V1m5dHFX59W4G(54H4&0@ag7ZluVM-yQ&)u zm8YCm~W2MmL=9gcQ)LhSc`@m>jaF>gc$>DW=@N*Z*T2U=ir zrt4M3YxS7f0y&RGFA+PRv}cH*<)5-06p~Qj)0jayD=T4a(*+1uE^K#`MuXB;Sid)^ z%cWDyf$pU@2htwch%Yh3qW7|TK7)R3Ukr>|lF=FW2Fsbg1*E6Ew*W!q%D1nQvF6m9 zMX^fx(BGH$z=ne8c2YjZt43a7{M5ifZ zL#vHMpUA2?v4al}-)zTf$|w#Si4^FtYxc!ERCGJy8lSMsghZ$}5kmqZ8v;-b^kOf0 zDS2{fS;?9;taU&LDdL~p3P>2rc(c;=>37|E?15KbzQ`3Tgjr{jKm&JtP_r{Cqv<#5 z;!}8MtmTos*6j>4_OdytAwTym1DX_Wf*D<(qMy$gf%nKY*Yk?_P0We7;rW^QkWl%z zCSXygpQ+u<7hiKCs352>U|WO+6_)>Es~{WX{&rdrezepm#15pyw3rpXAGfu#zejlP z{S&bPyZUrmbj+;ZnMl;ekx<6IM$lyUr|lT(b7l80kJI{}-==_yO$t}VkEgD&qaL?x6cOJyh#K{cCKk497}gQ(O+W)@=>UX-=j3^ z<#@(Bzj%u~1*G+nty}kg`%IGL@pD25+f$K!#Ew2J+~5XV(yEFm1)AL~q0AIFoY-?%I$(J# zNC!)NK+X5BGixzT=Aa#s!j8pVJ-!&e;Ppw9P(%EdT)!ti;2dbcPEwD3 z>T5Og@1l`cdOJ$&OiL0gGJlX$U!mpHRCa>aon@}N>@dW~ti`-X;Wh;@Yg03VA^mQA z8yZWZ3$TKr@{`6~Ers&{-+1x6GkWtr3jyo#N*sx|V|f^S8u0>#45Df)4@9Qyfw00T>avCd}l968kZ+xMR9wZy^N4MOL+Ph8ESxW>6p zjl;#RuMiIn>YzT7l(q--(I}MjEC~rUJ6x=eV?N*Xm%iwDJpG=P6?lN(q^AQ4xLLR! zu85+XFwKP0nGb*CS>LItA;A{XX^Z3K&Q93EFWO4np$E3$#l^kzn&&0{lY@C49I9L@ zCoj<*;Wh7U1;VqvEB5z01Qm)hcR*6NeaqQPIK0g4*=@No__eu38J!HcM>aEjR5Z9! z<)g8YlzyONZ?opzxNtpNwPu(F!>s$7X2HxXk?P|c(chIwUbCS0mi(yJS$M$y6dJOh3OJe@ot51TxkK;e?w zsOIwOC1zToB?kh~p2>@$>u|gO%q36t$@@5U*qXnwha>gOHHFqV6p~{OkZ5b)PF~_t z9TNZ^yI5iWyx$K;81ZMy;lKa~)DVGL_c7}on#`eZ0XI|u9v2$=Gmi(t5l>|A*XEg7 zUg{8*{F>w~tTM3#&VKX__KMm|njps(Q&N3>=Ay-(;n#y)dv13B{-uW1&ehkFjqQHh zY*;l@e6^pUZ(v7qd^5}YE&SDbYXKXYwXPa5eR6|s7{-5M52+ZtZDAWE`>58-|1B`& zbal#QrTO0Sn0R=|*e=NNu?J{@)h0gnoYl$RN2seRnon1{$8s;Mz5+GOl(YfRjnQvK zpUtLUsH~`l7164F=8Y$p>-fQ8ukunI-iZO7TSu3c@%4Ip^ioC}uPS9mG*)A7e5c%k z*77;xVOz3VZl>p7imYgC0rG)(o6C$V)Lt@^RZ2_ukK59wbH%it$omx@1=A9OIh zG7i^Sk0Un@PW@3T$ow-=)$N-1EB_16)veAxDhT3_Z)SllhZ=``eN+Yh<^8@{=g=Kp z-4ZdpnbSTQ==eD}uFEQWJ>bqstKvFxg@3)$BItGS{fhgyr>_ttZ@;MM9@i-)u|$}8 zV}_lkz~jc_Tcqac7{;q7w^Z(9p@?o1bz|S__O(Z)la%L8YX7eXjpdfEJZq(K8vBas z_5^Oo;v6)c4Y8#?sYVBtEf00pNg+ekoQZckhzwzfmS?8<2$LBJRsvhPRcYzzK2er^ z-|+BbnfTo%h3g-U@OL%c*Fh_uawK_Dw|D3le}9-PyUjg2{L?ie(VQVV+ey!OByKqP zE>gXVOF$Mm1z!{ z;l&YxeqpnDYZo2e(L2q%6c$%yY(>hZgeDu^X2D8VUd3!%W)n&COS;cduc}3GB@HO+ zy96a;l#23IQVdQ`g-iD?N8+QJm0%AVNFx}_EJCY z27R1KvZwdTs@NfRA1j@SK!Qgv6o$Y#7c;787i-(}JL0}!7n}4efx-TFc-~S(vfVjS zVEpGB0I-KYW}4F+Ebrn5FCJ0qfXPv9Ew3^VhJNr7?eoC)#tkQI0Y2d3I7J9TH1FeJ zQWVT-|IT@R?_A{xE?cO7+$w(3f4IanPx$M1z*WqAxAu7boE`8pKkE7UW zZN%=v(S7Z$J(ck;dbUV`{q1G0SSs7kIH=}Wggde9@)v}1P=Z>^*yIJ^j;%>&)oos? zAy(+cD0-K#480U)j}xYZ8i(K|ef?NNdV&M4Lit}g{Yk(E4b=K{-(vi!c8~$?#Fi}i z+T)&5kvU^@esqUiH?MEYEN(~OQiz?;cyzdj!+(u&n41ErZh5QL+a4cJ1m7e3qi425 zUbVsDlFeERmM=LY;$(QJm~p0w({4lLWG7wM-w%dSm~ErzzSeM!=*V%I=QPCOEB66$hVw#` z$*Z|*wJZ}b!wO6V?s?l^`VpwK%!Qz_Jv4_yZ7=nxqItH5$502GTi;rC@QWBHhcC52HZ&LnAv0(st4Nr`R6;Zc%V0K=tAm5{Qq766`eI0v!NpmY^XOz{C3gO z_xW6~RIVs&YgJ~JsNtK;p!0420jpN(Pb}+ODlcs#U95;}Z+q=%_8r70z;x!)_L~#? z?Z0qo;}PKL@NJTwowcyusC3Q*AMLPFH^+Y4_hg+k{clRJ2Q{*m(>=NL;JrMv*QB82 zY*I_xiGOw6;@Y#@zm=6Z8;<>N#MU%SEDCtryFyj`qz|ui_|{yS|60-7HPEwAUj@Xj>OChd`4(&apHj}+ z9gQ>4le2kYJ7tHea$aZ@gR%%-;)Vn#g6Vzth>sJ_;Zkf9^hngkc$LWz zfZ|(m3EeO&8~o4JB0jj!yQ|06=Q_rLtOOg#?ZCftV}FRwTy`j*+NC~Bl*Y_E;aaw? zGz+OJM7Sz6;J;LUkC`u;n@k+!fE?h~dcJQsV3(XdJh>?j{j+xe@5#`+!~bdlqL_eR zJ;M;-AA9!qeyG0Js(nab%T{})iMu*PkGCGeF^Bue_Mvsj=&12si))hjgGN%onQPRZ zcI+xYxqwh%oGH-*Y?q-3_fx-QZMfNF)9oQ`fg_pKulkAzX%HP< z7mTY}nH&7y%eBej5<2`O4FoOWdfrNvO@ElIX!DMYVFZEILPiCwf4iWsB zQpGPQY)TD5?0VQW!$VFNLslU1XG5k<^5wnQnS{Hr$ksL)eHE==?J!o#T^pE~N3h5 zjYh1eJQeggE&NzHKh>w7J#qKV^FPP3-DG`1nr^h4f+RGnc9I_yQ;$`YVOuY*N2P?ER#sC0?+?B0r&$(k_XKdoUh;? zqZnQWE>4YbyE+;+tbg8=Z`&cgw2beA3^^DmJnno=EyJJxkaxrNIyKB71gTsnm(>5+ zC@@#nlprBPS;cs6qS;?tUUol@C)BIEr@P~*&$IQ$6yH8Ium@l1#tt=F!VI(q5lp&OzGte>HKiU(fT*J0%^bRogU)BX>zwg4}g zrkp}g@?iB(`$`Mp8Tra;14S+wOMHjaVl?H>*Ncw z2I6+t9BBLV;ga1ppT z?;qyyoGscUh@4xdSAm8!=8o=+eBM{UuADnVpHq*HBF--^uI*uoUzXzJP7#gN?BSo! ze?+*9bg4J{4%gjDw`L+?^~G&qRmgH7c%+0W8tbH}Whig0%y*z(+7;3`MWxJ`K-4NM zwp}3QUsu3^_JlD=B1&Do_SN`Y;zc&jTtDgx7tseI{7k|Kft~ZcpvMgkgTbD|ZyDXU z2m7GzF6g)`&=A$}`JgfJ;DzXzGx9Ah`-1SH%dIz(Vu<0EfnK-dTb@Fa=GbD9Y%XS+ zd1#5XUC1VR9x|lgb{QyBg35j(#$TIsc8j%EdpDd_7}ix@RP+K`Z7cr)kJnzxortl1 zV1`!=mwQAvk<*%)RDj`QdL&9y>TfQ0pqqUGz00ybQZdXgoUXhKo}~bu;!2t6vL_)_ zkG+<`vEuy5iceF=lgmy|~tk;Oui! zZp6Tyi&rbfunx)@J+(n=Z8sk)tiT()cWvnm4QWb9;azAmvBQ7{I$E{1jc+8zKD7tD z=VJv1T>{k1P~XX~Yip7FuSu@@951|a(`whnkKmJsJ)gM@&Lxsh&Jj0rCFGlTwJgRf z>df?A`BT3}fUY0B^MjOOX5e}6*%qO$ickaA)pI+V-@7oAdn!dM9Wx0O$B(A1;d zeyMqE@=C{&6aXb!G@G;_w{03qU_XYG&a3{cdyngtVq}EH?Fc^PwyarXTk2Qwy=GRB zkx8*=6iv6!_`ouJ{3X7=YGGyXZ2gc7S%0d>f&2iF0No(}DRPSpLerAe!(HC7=33|! zp0t#y8L59UB@v2xX`dm_mg}8aLD`fLb=&bOxMEH9<;MxsMjxZLE`8?jdUIxN1;~Gy zU%mpzuiD5-@>tW-mELQSwCwNxU#+PxDhjit_kZfYDm^H#>wu0LSbbKfnNFH6V^#{Z zCILK5H9HM0-F8j_{J-(=)J4gZ?uw^jv7fQ zaGdX{D$N%%YO?A&hc_~4ryaIkVx%T8-CoMlbnOc188ul&>3 z8SdLDGm^!rOcHyS15qY9yi#aD$xPLOjcv@l8n1y0G=sp}*kOy>$kPy=9^U$c&Ek~YR-t_p zeQkloGv8z)b^ryPaO8t$W_LSba~mC0{a2OzEu_RvN6eO@A1?F*wV4xiXTA_R7R;55 zt2cFRrK0$GY_xXU?y+j1oktz!*;l)f7ysr=ZSbo_ntOdJU4}UeQPvCmmpM`HuHinQ zN9>if@$GFX?mdf5)e(=WXV3UAQzzf=t1I;SRjJ2UFk%h<*=E}|@7%D()}wGmzDY_| z8-}%8qkN{1nf4m%#dIK6?F;t)E7quzs4^4hIIiW=7~0XluQLbsf4T)9pJ6T@p$YE$ z)Qa0_5C+ky#p>O+i{bA!+n+0*8_inmB9~#Gh%oa~X04RJGMC;{I%s1)PkF{YQ*-BQ zmFSGs|F&w+SRu9;EFlJMBwC^5L`(jhXK#OpVLR0Ed+8{tGmBGv?L&RigUxMN$&$kl zCZ?MAHkQs1tvavvAG(bCVtOvMYrR&&t)=Z5)Ln9-`D%s+ER=gzs98{#56K}ndm%h5 zufJlpnI;YjdeMA4a8BDXZYZ}m zrm~=rF{sg`CzImv5giQ(ttnxsimqE+xtZrh8blkcBIe(vB1y}br4<-p8Ot7_>n^)t&-{nrjk?SCv-^;N1T zfwmRbii$!j#O7eN$S8r~TF4tkg|y9%t_;pY_XX5&_ql*=p$i|H5SryezU3{JpZiJ6l?9JAkm~W;f|FjXunNB+t#)YUZ zJ+^CxcopbW%b4y@;!why7hot!2XA^oLoUtzJlPpt=7j?Xa6EW38D*&g#qVM@MWN1; zIeXwYQq)KJ7FRgO5KUTbc&~`k*HFRUcZ~+l!mvYdE?~|JPAC)%WXAwP9l&46j1bP z%rulAyYi)FmWfiOP6cHY{T*!DRhbpFv$@`;L}WoKI;o* zpk=lj@@?3UZZC%w)e{wBW>r7SaTeEI>W=bJRBzGnJw7cpNWC^g0Z6fHu`3dmgd$tY zf@b6=l?vVW8o@pfG2+%x53i8c#FD~Br|NP90C*~f6^9dBLM0V+6CC_GAMr&7jk-Vp zuty4^2@F30pU$Tdzvs%H9m=vQ+qu0bBkD}84AJ;D!l5hTu}Q5KQcu)7P>~!O01#o3&4`NZ8tfTa+@D$?MSc1f#n78bLd5_iK3>U2l^aMQP?U-Ra zc6t&bz5I%@QhHSd)2NyMQ}7q-TebgmcjS30lKe5?=bvFXPART1VW>?5xMQ^zY)L_V zYX+84!>UkJpXZHKO)to3FN7^}fzYAjuLe!Dwe3O+tlCyoD3U+RuU^^tLKsuAL~@0Q zBNG6XQdL1a_4i!re+I9np$gVo3Vd2Jw6=Lr`kHzaQ1I6S!j;L_eJCrFI+pZ?`WTIF zxt*QFrQ!A-dVD`qbh2bw=+Vgn@h+9G)ZT)UcNAokQp_?xw}9LR*LxJQ>yv&vdr_O+ z?-+92o-bx)Bch`Cz4K7Q<0=P^q1^tYU9o zrZg38j0U-<;;25i;7$>rJrHe4y8lL(tc7W^rj*&HnfK>+>ipd&gVz@xfUmLZq1L0@ z%yFi*zMW7kbt0>e#oRDT3Z~2<@7U&m0*Ze!FM(KU+|<7Tt9D@)Zo4Mh*Ih#B>yGsP%d$N+_l1V&IiRI0<i0RA~w6r&! zp$6@afn}IA{Jv)!JHR*OLH5}xYIR2bV5oE@ekLX5|qmIv*BVpEGl zyOE}ih>hJc_!vk&@9RQyk4xsCdtwY9`|}PHL8Qyg?sv!M?RKj$39imU-H*FDBA*o% zYO!>dITF;@PmVN*>1iX0^sIhH-KGTjHWjd7^*0}hseZTGktU6a(tH$;C;F6WN9a`F z$$xzx%&zm++CSaPONKj#m^~*fbM4eIv4M9%qo>$o&tG$V^G+JtulUl}b z3|`YZNR|v;ZMWx*!f1j$^@!Ha^2B-!_B&HnHLGZ8rx=$RG#Dr4iWeYcqd9Iy?Fs;2XT2W1}rlRPYp{ODKZEKdrdFXYmyl;lD zmR2F~olU(Sjd`|h9p`TYBi1g)n-W8N-0Z6o5Z13OI>m_IO9Sd0D7_ruCZ{Bl4&cNP^`Z8$IJO)hXE}L7$Q|1lAcO?l>EHe)wk}lBC7^}z1HA(1JcE?1g z=sx^Y;|2jyE+J~ht9%n;qb5j{*RS<^6=tYjzdw|DP8O|M8;N@2_P)<^lJd>7-XP0{ z+C1RH5)Y7oq*%#?TdlyNbWui5o+CD+ZAbm1-H7WSF5ZiH)%~cjT@~I_)nXY7;EDxT zr&8^2GeBqR<|4no65yAtbp&5RlIxAn#?L9#5F}(B8-k-zSZkA!WCd+(^p%PUJVL4( zGi9nV)(p07(75tIn04$uB(|`UEDi{7SDAsaD%vb`%chp}Jq?R>Od|IL9)@&n+<^^-SKU3W738aGaVYDJMe~h|iYHUq2 zS)9B$&wt)-hV2ec;3>Eg-|rJG$vsEieGv+%rZ{SYF5f3dn&?fy-l=_oXzvElbpAPL zM3s@J!7^h9?!R#>JuSMUNoXgyYclgm`h*#65{P3b($&+JFRO#RAgG!fbzGt=ZdV60SBm!`j&n#fPm6f}O9tc51~Ded9GV?-p*>*)}` z;h^xu+sLL7*QarSau-<;=vN>KERbq}Yfsg+nBWA6!$GFcl0rN__4&F6@kt@@6xnb2ThHMALRRd zNR0v)rvh$ia!MYVil+b!+L;&2^Vw@Zc|K%~55Xo<`5N1iwJ@AkcGrF=88pgjL~`Fq zrWq3m%P!6-595TW9=M7059z{|p6H}!c%bQ@3aefo;mKgnuf5LuoKlRe0CRB94a8Jk^9;zK}QZFG*Iw!>N zxJlp7raB=`!QydsC3veMHt759`}KUrg}BeymHX(N`|rKLiI&whEh6L4Umn;T>6j%BJP-e9Y?^t=Pyk`?hn%P|%yd*DXOcn)}IUkqQ?S-uIa@$YCSliLcXukRX&SdR# zFr=`hEV*LKl_Ug_Nn-6Z&%w_c!~AWK{(g>*C+KIjU&sTrq@6}w) z$_f?W$hjAP2G$Qjp@n`PoHo(!VVbJFZyY^*3=>L0_M^$~(+Ry4=utP)R1nVJJVdt| zN`Y7{&Z7A8*6{lpu!AH+G!Y}CPsjZ~E`KvZ@UcNV8~NfspLz|= z_C=Qn_eIN%c~?Hu)KdK`U(c~mDL5b-4F9hUk{?_I5%P~NWCGsnJj38o{)Zaz2O6-} zSpmXy*5+>(p9--Gmpg%8%Yrk8PTO$v>#5s2%EkjGMn$Fdj>04G!_kb`7Xsqvi2(mT zVGM|}h9%KfN5|s15n{&$+O}x^P%qJ_)Q-y7&msS`f_>**&O z-VP98veIt4#w>_f(qLsb>kXCnT(L|7SD{|fAXnf<>PfUv!_ zOYO%ActM)IB+7V}2QBT%WI1W8BJm;D7BVyYZK;vSidT6qgV1qxGmtDz*RpadS@C7^ zSFDsk8?|Y-s}={0m3l&_YOJfQjyMylqcjx%wyCO8le=|_DD1?F6a7-;OPa~Y@lLNH z(qosq@t1P(|GXZ(K@k4Xmt*mFCRFF=i!tK`!E7!S6($d>?K;geT{wI3cO*v~{)1n= zioB}kSN5lm+JFw~oC3mD*l>UJ0Y8_kXIQoHMG})1)Vd>ZCA@$<;t2m8nm`{-vuT5; zNbePdldTunwA0y2S)VQ^44r+**9FkE=t-|d#5x!L2%y8vokY$7M}_$e`?D7O>$a~p zlF)Ux5(}itre1@=Z(H_5H>@>YZWbK(x7`Z#-nVn{kH{)xfN1}2>+kLkpbOc|pgvC) zI6uFERSx`!Q~3GXc}9KWbp2x;!scjlo;oL!H+Y&N-#A1B7c!op6|d10;{64Os7HoOv2D~9|M%kR~PE4^Maxp zTY39g1CgdPU8adisBMsaxa$!2s02B3{-?qlo)7p*qDUh(tgb1S*C8XH$KL(Mr@E(- zl!rN*tRhbe7a7_tU2n2+nJr%eC0b!VVow-yiZi5xLyJLeWt?IxQ~%!nSdsXIZ3F7F z`j}uX(X!)vm3YSQrce=+wr8@>kmfMStrvBx{C+pq|G2C{j$X-EZ?6UfahJ^(SvKv& z0^G@4E|CdAOp2I=A)c#31GDbyY^8H90IFyvS#-R{0<~EoFI@+;IsUiKgp>auVW*nt zg0t6F5bzytG0?%Ip#JKnJo~`>fYDaOabRBXt1t!o zp3(vyYl3gdjBR(ACRO)^sEn0-fZI<0xcSH1-({MmD`_w)0>b^axx)reOD|8-0zfpP zlnQ=s|EoK1qo1p}-v*U{wQYXQRt?kzf6{Z9OWA!pyC2olw8T-OSB_9cgj7Z(&-ejw zKj8gOfuw~i-32$>$ely>wLxlHBH|itTWjB*xhRpQWHp%sT#||+6MxfHCWf`^k_cby z><~1GI`>y)NFmh=-t`mOW`&t&wnDuh=nPa9hs)+n7EYY5&b961#=e9ouxBE(mH%~LjvEw;m&INwEl_JqHHZ@EFK`@8>dH)_k0`1W&%2*Th zrv?}>ix3uOJoTg$(qMG`fZVhXLwi^H%2Jk1Ai=%ng(IQSdCV;I2K#}QwMFxHW;c2L zBC3pZz)Sn?Nh$~wWSv6TwLto*PVAp~!-0vrm#{E>erWbyLdHiBL3JB$hEa z{c}d8pkA9}eQ}|;0)%qv$k#CBjkk59#U!9jshU;-dYTW-HsYO6K zi_#AkPIS}X7C$~GAxh?~6WNHP2!~A3wr$E6#%Zk=hT>4%JrAK)JVkLe18bgDW!9{p znM0!t+DyexUhF}N^6WB(+6(R~R6lsSRvx#A@)k~P@Q-`JCB`|(=DF2quIklmrqr0J zihrQg4{Ps%rM5C!mb&&kJoV?$41vGkW;AoOKl%5TRjR+bBO=Y1iXjOCu(9*QAbaBS z;~O3e508@Xj%2l9h=gOjeXF&B>8CV=TT^-4ID?u75d=|7nQij#y)Tac#%ar3>w~{u zi^hUaj01RR5$#`3mrG@OP;m0Q+i$0;izP1% zm7t#saj%`Z{h!1*cx)Z$kQq^Jqi5tFoHH&VFP)_E6=kF6U6!@cu}5|TVfpeI{6(K9 z@NAAr>l>exNeNnM@c=S2s%58lHl)TlzERPn7Aj58W(eDu=E|$uh5hI?Vb;R(L?xIoNLZk)KeZXYqolFAvncGr6}QB8uAzsSM_`(*G;NEJ)^^ z(zH4C`SCR_21m_BkRQB*I{&?AOi2|c3mP^EXIYlK;^m6P!{+{ypOY_qGW&%WPGDO{ zv;~S4IbfeDOX2^lfr1GAkPJwa6K`s(=o0ZZ>!As}KQ+0O@?dM(@n+Qn^KmeW?JTIy z6v%*uzq`bNKr7aM@4;}n6C6)xo40-S$;bYB#S|W+KR(+h>;(zjRlu8%25g>DSl9tBLU4KP&g`Ne zOlf4@>t#iM%BoZXy28C;m~Fh*1pIaa&kovB+IqD(oHJ|LHR^>-wW{h8sgCq_MD|5d zellHWoEOrthJG7tu&s5LFpFQ9vS+d@KXULP_#xpcak40LCIn80$V*`d97O|SoyFLG}W?a7c# zuY%*ijuPhZKl?9#Go%)>Hi%2M`Tu0*-1UhMw? zB0=50mgnwV;>)XDlM%Ywo0qCw0H)D0=B{!9yj?6*7i{l^qM7WPnLt3It*Ejb<)~dJ z{NTycol$81#S7-wbAJAlb6&q)@u;mV&-0qa-BOs+-b9R2dAtwW_j~(o?%3bD#DDMv z%W;^`HatG+@%hU+=jSW_pFjB-<)u=^2>HU#e-Qm+!s<+U(QKy!Obqcu#YIKvR8|6#&1XSrjf^btt&jR zEo|gpN4AJVoOblzJsuXdXiSSnM)Mj-jKOP1`cv20O$h5osz80q=Blh{fK^o3w$#G_2MIuV1YxE*3O5H=q=@>)$7`PhpfHB- z91rBRMgiXUe~>1G0)bliY11I(p2QNv>|=}@z)s+dptQg!1E-x(Q_O;&*cYy z{TW43;wZ&B&pA4tu-%9=eL3H7cemv5a730B+}*8k97UcN{3n0#n?$b5D#`w`1cg4++o zfHq$|p&R;MjB{cJ>-j$J*6! z?m%h>KwHBfU5t|5eqRglt!IfmHmi4WF=`a-U#o77PJv>5DGf`TIAyuq;y4aX)1Z`1 zR+QM5EuhsjBw5b+^*!_XnlF}D97GWV&m)Qg@}iUoJIBWI#FT~8#;rP<|yN}#_M`2Yx$J87AfT!QUKBgq_o z^X8iIbU?2!jWW~ekh{AT-~Q+cqj8@{qapwH2hVVA7f*TQbwQy^GM!@@jk0WdZuED5 z0R25Lwr%6Piaf80Oz$HXh?f^V9py?(E#H%qECg~0?&BO~~H%i!@7fnE z+_Lr~?{p;qs{@N5peR|&&$`}^#BC)S#>VWyE6DeGEI9(ROArN^JeLBV#)u~K%V0Aa3mC16795{Y#4)3T5&zA9_FdlIZn-+Ul^oCQ z{XVR|+h)Jj-)0+mKN=(ZtJBkNW>98CqXBjpvAkQ-8%B6-zVcu^Ad54eyno2_aLD0d z#3x@nVVhNymB#lKMWM-xnjmn55RANcfA-(?%c`h%cm1yKP~WYvKK>XxaB-)78q-iO z#Yvn!mpn!CT<)?z`Gn@?mhx(aE^CHk38w$%Z#}?dC3>+2-$%!CS6kk!@lHnAt?RUD z8r;aIC^Xw`N%7<7;=H#koI!v|3ySL%$44PL&aoWHAHBLt$a76$4E?@KmTAUgkL$8x z>baCnLmXGUy^c8=2js?Z6&GBW6$7O>X*<8WddovsfapzGv#JetYm9L$i^2%gIC2!a zX;@U6(n#0)qSl;vibbpK^jlVx_WQ8?!Lh)#pr`gf=SG;ts%c1#{OiW>%UWXq(*jI` ze6n*~BmhHOvwnzYM%i?;O<2p9||KdNEeR;d)?S0DGENuaDL(+!y zcl$GMwYDIj`fX9sS2o|B_L$cayY$P??g<`_u^c5#Y~QE2l;C1_(xX`{F-b=Dr+-89 z_DqaZj*E5t06Y)t_!ym*=(H45+*fchjhGYCIwN#^7R7=m{l`RZK;M%)?d#;0sXt|% z$4r9>y3t&0Z}^SlV`iI}<#J0^)dapv(=`0{cRnVGGm5ez@;tIM$M;?C@7FvyJzy}1 zsA~-kgn>t0Yl^Do&pv<2rYPtIK0)A-COPxjileFMNIl=B$V-;%Ey}X69UI?wS*&B} za$jc*`w`?d+a%+9wxHh&s7f*TRB?{e_wmN9ZZWF`#7zTX<`%htAlWf{O{ZfE_^Qkf z9Cjuq`tF{oRMy@V@7mz1z2!}+7zQeX2 z)RXMZ^gd?L58IcsaFk-3q?pFw_X1%_w<*0S;Afw`=IwgT=kqzQF7G%v9C3UwCJKBG zj>a?{ldD^qKwgU(ON*r7_Fl&C|Ls5iXAHeQm-kEVmm4mw?*(vo+Xs8VTy+g{PmkPzx&=0+qQ^&2dx`!ml;nF`z#h2Uwbqr z&TEQF^W^b}c$<@MQ!x)&Km&*0`VE%%8|L$bvaF?NJn~u3*PNVA=#At&V6?%HWS`o$ z&1cVNWLd>v5a75DMOtuowV;16A>L;Ak+7&$DRstp5mrxb;vH8)+U+(fC|<|p%N4HQ z-k4+?8DaM)`|M8J5rFCUTIYJccV!#h2CX*&I(w5nJJ|uhst~94j^UFwqa7RC#w+bW zCH!iPQl}&BUZaaK+C7IaKif(`tslwbc3tx=YuY}ixxXZwP6(o)HAYqu|_f820J>2nhAMexw$aE$9s{_~DC8Lu={`>#>-{PZb z#Kpy$db6gycmcg}dwk~maQ?b%B?M{@X!96`M}$v56o4EKNv|&%Oa@rCMUj_`Mj>@o zlWY?l*I~7iIHynl_Ka7r=3LJcvQqQ#ut%@w68a8W8>&kGfBGuk2|is&r=u=?>^RNtp8HFq}&mzN3gUCioYjb&Rj zNs0CAz z-{zd2_V9fr^^~5%^K5>4x#86JxG!Yf8-|KO;PB~eOJLjFR22t~gKyjP0*BkGCO4wp zEZcEaH)=m}6}`3x-5`u12-xh#?Wq=)v#)G)(_q?vzGdy$)9&v>yA5k^;Lx>++Mgq3 z(^K|tG(S`lW-sG=kpwg}Eo&+xdaE7l+Xx$~n});~Y^0$n2o!g-4A)hx^O}+G;yO0I zZxh(EuGdLHW(==?@Rp|19DU;fI(5d7fnye&$bC36MOtW6YY$k0@mW6e64E;XAlLPYPs|!AL zW4OguaxG(3 zV+_;75#z}~M(8I~in3xl9^!c}wq>KWAqstNKD#2A_Smdq@N5FlCG>rk=L@;ez1^ZB zk1+5E10TID1RPaH0GwkBI1C+$H0nm_9cZcy%vw>rYs+X}{~G|c8{c#sC|%B?ku)H>;FMUl^r7|KI67bpq!8R;@2U0r#*p29wD*&Rj59lv31n&32V=`T7Pg@SuV9y5Me=p=^sm z&ttyHi6WOIDGA(nr&GMsaAY|Ow88uS?=rQ1jPvvXtd{7kL@&3Ld4=yOvQOU-{?Tut zU%bW|3~6p}=>7iJ31@RmR-rG~WLZtWCrnCz=z(Pk>uFmOSlznlPNxtAxCedghbQRE8wqlKd(Y@wr(FEi8L#gXjzW*BHe7ECj$D^j zU9;7ip`!?Vhab(?(otGgm`3tFo2KE5O~$6ylntab%xlfpL$B3-Hh5NpYc(9Xign9E zTI}PM7M0#f!tN`L+rHUD$EIvq%%NkmstqG$V*pxXk}#g&Sz^SQIySKu#udx92h2Qj=9$CVYW3s)V7?femE-J3d3eOTv>!#MsD$VzY5p@H<_n-eZ>A(1MqHjE6 z{bGjKjvD*Q-f3A))3B-aPG$h2f9+Wohpqrl-84L!hP+**{Pe|&r-u;_J~`y<(_1ES ziG3lA&GLFqbg{;DY)o0>9`x}~PsJqH>(N{+;O-9RWPkvf?68_-(xt4 za6N~lC`n?`I8~Jd{a01ZFMj!k_nw@H+kKNT9QN9v`92r7b0*Uv<3QMeX%uobU*Y*K zn{~{Srzd>&i#Kd$8~O)*j4{O9jQ;x*@}dPu6A52VmkB6~`aXro#rNcV(v7L5y00BC zPg|feZ}p&+k*}*_KPC?y0acr_+j#<}K!B#xvLcNE-`S7tt@Z&;%YxQT3m$7RLnW0k zo?Vc82U#`Ivs(}M{=TgA-h8=igVJvK?ke74$a^K*%tI{oewv^M;+fA@R*k3atl4#JQ; zFX@E=TieY2oWXX1d-52g4U`$`;Rj+aYU7Cf$fv$t?RA`f)PB|-s`;G&Go$5qP18m!Z3W~7 zefc^#Y&*{Deb{;jWIKJQuJ&Lw5Dx>{RzO!5#nc7Fw>g%^3V_6(uXd&j(G$$AF^ z0mzMk{(+3MZD;@cu7L^U=X6D}Xj#yBE#NfhwZPPq?~^vWv@U7pSFGYSuPh5M@c8;C zM{FoKf4kuL8(%}$ABilYU79oo*W>8vDOzj(qkr@<|J@&dzSH&YBn4rcQwl9;E#&jz zczX~W4E9=CUBU1GbWL&f7L>#AlTVmm+)$)8RZ&r{mS9;FNr2ndrOO{J-~8IunW>GjsUezU={JX}wczqtnsg7*$-Y8Sm0!F3oqSe~NMhT-Ee^(tkx z%yAbf{ZWAT@e}CvuqP9^xj_vgnxaJY13v%1UvQsROkCNl>s8KuRq@#OFbzERWoQ53 za>Yg)o&_G2X&5M*lX1Y`+-_Lb2G4>MSG8J7LGP>DP;?(OWmyG=pZ?~5`89v~zE?-mR0x+LGK4H5}xxBq6^gTS!6<0ZMcr?bc zAl_z#p*VHBi`?=NwLkeBuPr_U}u~r(?@VJN?q@!oE>RSt9-D zbftbfrnhWa2iR#Uwbs<_n3_V9`31GsIF6zh25t5!Y~mD0DaxYa)6ZV>?QcGl_v2)O z>pFb){7hW1p~riVj`0JJ@nk^Yxr~E=U!Gm@>78VB&Vku{jn-zL2;jB*u`;s%+V^K? zpxTr)0}nM&f#YzW ztuQn^9-N>XjcE*)W#g-NYsh{bm#&fKgQJLFUTv8~Et z!uozqS(I#7TY7^Y4<8O_8aOaHqzH=prZi z;!|PQCJ!MOplLY{&F!20=y!4|Mwnd|=6bKI)RmaoI!3h9D#BjF`Q;INRmk7fg)n-Z z;~nAy#FaUloot2fw32UM>vNzd+i{bq}9 z1mGmKVOvz>#&F;|+>{lUWz9DupHxfp(AW{6bFXVY4g-F8v*xZcydOB+wd{vzEe!{b zBGC=s>G>qapqstpd*Uc=N@+hj4xH8n-t2a6XFTed%g)J-NUeyJjL|pR?AS~Y5E-`` zs}6v!YH3db_S(sIn-!v!>?<3`l4vNAqY21ufZIxRt*L2`3etj%YXApq0@vE9Ft0iIJeu?vqZ$c8&7z3A=kY!{quJNB9kbHWO8Ti!jwbxm-}`NTa(BhR^ZDX-#^I>X%d;EeIOFzy zh3hyJc?k`~7b^j4T?5dvpol#5DwhCw&!*NIRt5dj5jVfQ7SK5Ig}qEGIjP5$=sxor zo({xyZdy}MZT9t$+KA4wH1gP>b-Vj}{hVxI`*Ycj^}CULWq#EO-+@bz3uoj&)>aUA zPgv!*!RYKtSyxrVz5>0utzWh5mX8s|U$t1vc6|-%{ zqKyf>U8elbM~D3I`5pbfINQ^_mZqV&plP72HPdNCl9af<%WAfgO2_dDy3!Q0Th!

?XT8#c3GLQ{~E95HJo;G(wMy=s?$z>*@V<-J3(IW z_O-Bz-S0cCXO-hb5p|N|^!wDwx;6eCK$(%u<|G$y@lQ@M+R!_kU|AON`5BANoJG~@ z#yh=rIN-@|e4VdSqhpFffR-`ok99~_EYpks5tY|QFdg)vG~qW|=tfR?((MjM=iK6<_qdf)RPN#KFhac-_Q_@3hQ@sKZGZ_wIs zbDOe`D=cMGE)rDVM}_ics@5fSdA>pGhUvs7`rg;tH(EoMVULHHncQI{Y0YHp3z5;j zKYeBM$oJ^kVi@{vFJPlJD=olks1&+^Zww;d7R8Qn3oM&sPwwS*4jcHXE%; zbvNcVd>D9K7WEELc4O|kHRRY9OkIgW>X^~Mwit9E6o_?0tPRJm!n0uP$m2Tz+d0Ye zmLct4Lo}%n*fzc;u6xgtD5Sy|mbLzp;YfgL7n5WmRi9RS;ncd38d3`!WicN692^An zdTwj1GHBg!ei8HX)tahqh$4qi4tgBA4uNg8z_Z~${G(_5;XnQaQ))i{m%kt}hBsMG zYJ|Bp$ohMB*As6st7;y3PMe)-ON^CiSho#M0Jmw$+eM1!+054kpS@W#yU)0rWthCC zUZpsLfZjobGYn};P4oG4sotzAVeN}jZff$1BCGi-E}n8}Xi%1or#u{6;o1({GUn^k zkEP+LF4>kTeYYoVNbTbbUGmZ40qeDxjwYi4<3W$J%RA~?b30qIT*s6}MVjQeuEKLg z_tmvoT-`0GYt679@w;DpMp_pnWhI^Ny^x#x6|U>B+DMC1U2CjX?`RzaF!sfykZY{> z1_C^bmW~|znA&jk?1=d7s%-!C#{`D6mY0hl1Ax#UGOSwt$e3#LvPo9_jA1{B#Utax$dA=lT z9q$0SF3}y3_zErkP;~c>5_fPvaF`5y?l%SB``WQIixrxtX*d{%%+@)!ZBgrnEUS3% zU_iW%Ddsbrqem!5QO_=+NYQua(ya~{V^FOr7Ykg^#j>ro0yCv|FyXu3eN0hl)@!Li z?e~3_3o$cQn>9odo{r-Qa2Xu#UEpp22T%9G?u`*MknKoA&+1Md(=nJ`O=iamu5NZr z;BL&_1xB2Cz4jCK zpsmXt-8ty(UC!n%@VmQ}6G5*pJsH%`PD)Gg^6luL1QNp=1?$=lb&clYeN z?t^|C1(osMAAFC=drwKW8Grc~p9`}*JKKZlF3+>oaRRdL(?`NKyMC)%btLapx%>Tc z^Ab~w&b4{_b0~7D2aPkTqS_hAdTq(b)zyYKmm74`u*u~7)-+?MX{$01g&6l~g~L zZGGmUtH|2XanfoQyAgTaz{jE68Al0hi@vgU*CF3VZ~b8dtI&D(BwWr1!Qibg6kFN%t~X*h6|gwVI|qi5L^=-s&8w=7a) zNNP<}!6bC3YQty}vYe+Bg{I#NP|D))Fd)x0jPRkhY`BRD>#EQ^w4)8D)EyJ_&{#g-5(tzanpQ6sO^cKY#HWU27(j z0Y)3PamLfrBVK=T3AI6u0@j;^rfDcjiPBN60dKvI=|usfe#B%t;H1|htty7T&%pCA zO+y~~6h%eod(5sEL}TeSM_GhppR6dTwmIJEfbwDkM`2t0*bw+0`8;7(E~FmvE`#H6 z@8Sjlf_dv8_gX+0IAXSuog!Z?OW4t_!yWcx^N!Kn#WA#_W@z2-?c>`KI)M^k*_oO~ zo;+{&*sjJiP`mn13N7F@sUX(Ez_!{+VPD%ZH*(Bap+l1zjBluQO)m=2TA0P6tSRdn z&vWU8fi#D;+Y|;KaguYt+|Y}}^c8p>-}vUUR`2bzT5c)JiXiZK{i8SCs7BVWGQ#49 zO5O*%l{i@JBdrPz6JNg1HU4p*VxB;y@rD7{Z*H;rE>Ayr$ZWo5G8vL&IfGuv+2su1 za~Kc%Jp163uOA-rpnpK%$hvxVcQd63oUh*4J@gy~p-WL4)@e!Inl6_~K~~lh-mMM2 z(B*fYjrr&Q*DFp=`t&0g%d$9syPzs6#_v5POEQXW43iTXhquSNG#N>(UT-L%!5Bk4 zm(K6r=_95`V~R@CG!R8Do@b+!i*DnY?5K}Pw%EM^W^uDO<+#28w{QrH3jsW3x(75x zLUEr9*t$O#0NCj>i)3#m>QDEqrQ-?U4Ep=r&ED`=HH+Q2yJI&yPz)_dwPd}b@jhU^ zi!Orw^HjO4Qy1&hfxRwcv)jI8DS$Yh@3S|nHoC~Nk^EgF;MVF5Y3dq( zGNDK^NH^G{1B`07U$w#e-8Odsxn*&^$wXoUEm+=fs7jIIR2MJgaozr?@>WJv?wQ^^ zmG#-)@1vJSC;NQWE=fSS0#4J7=ypH;Es8h>Z-`E|XxFD$=1?T$2M;+sJ>=x1PvAR* zp4`}2NPL6c)58$YQv|>9 z0nKWK<+{79Pl|%_W=(#*!ZZ@`Gs`Q!ecb1F9*-#+Lt(@P-hrQGtw~M8v%n*1>m4mD zF3XCcV{_VGAiXw=^GS>Hk3B_TOWTkDBw;NRV;DL%Q^!U(a8uU8P_{tJvEa5H;df>s z&yum3=pUQi|Jkr>MS^bnCaj>as209$?V14#)3kAg(*2&dT1wlpxGe>&t+ipRHL=#@ z#_Sl+vNa}omc`I_xJ(MR+mhK$Oq%{GBiQS?c&^Q0;NiJ8(`mqH=rJ6+IIhjG&G=i+ zQ<_o}Z!2EB-thDD4fmB8vJM=DXIY$jj%0Eh(=x)cEnO}tNZn}B$|VXT`>?0PjbAo~ zM}42VfnU5@<2n{uR+A((n{~$WImV0 z8pm?TbwS_j;aCo~rO=J$Ho2G2o)=;2k&kH%j-!~(*WArl7rm;lZ;L(!8L_q$#M(O1ZgBYp68A;}Ln1w+y8vU@~+Fj{4AmJ&+5JbJAm1 zUFq8L9FZdjm}Tvq<(}H>H#@Lbw%_Mn+>zQFfNX1@@!5^YyZ-n3-(ciAw|X~f@7T|x zWmr34S?YacQ(Cvi9=)&N?0V;OE$pW+W~0%d$NXl=CQgZyoGi=H+TbXgz;_w+BZj?@ zqv;6GaX6d|IX)OM=tVe=LMa=iY*wq7vaDFGV$Lq^`1BWV+CX{)Ks&a8e;Y{7 zX_?SYjxY^iQ%W75X+$eJ@UTLMGA(%TlSe39arXHoO4+Qp3Cgm#yv`Cg z#VV8PMBi5&k3x)T7>**QCzAD9mo?Otu#DkQ`pK(;s;p>MGfY`v+VqyHs0fAwoZ*PZ zG#nrI$a9g@C}m5$VWC;vZzzirlg40KnEOkD)2G;z;}%@COnNl6tD&z{tXpF%WGA_49LsZX~+{G-z8TYUbk6<#{ zjXIrapQfzIbIsi><6!7BFDmZqibvCMm&qxWPKNYmgB3Wq;|SY#r47lpu}&WB^7ZQT z8?v9jp}Lc?{Pk^$@7R2J)MLIXczc_);p$?pNsYm?Z9?1Tz>!uUug#^bnugG}ICK^F zwS>3dlr^>mv#KUFonzc$=-6!xQ$w$fK1#LO#W0OpM|<5gcoulJ%{L;Cp`*x+k?5qB zx$Lq$H(Cr&z)mmP1<`}lc=o@H zg=t_g^auh)f8erNmpG1vihSJTp#=6;733NE@`mbuLw>m=jw`(2tI2#uPQYz;CnI;u z!M1D)T~HfM==elVNZ|Om_Ls)x;xt%S! zxm}1h({0Dmaa)P$STOYDqS@&UJGQa!kk4Z96y_!c1NC(*tYgPYy0$QMSuKDxboP-! zAU}7H2l)^_jO4XCcY8Ndui6oRY4*?4v929B?H1481GX;5v&#*&+poEn=k7-T)t9z0 zboOER4f0sqrfxNVG!1!CN|Q}hlhtx1SAX(g*n_Vu)-cq zvH{n}ay{}Srz$GKen@ZF!w>vjF6H4Q#I`N^eUI7gn)5ez=vqrqe7403d-$jClh5Z8 zsbpFEo_1Xchzy4Uo|J;Y!Jb_N(HAanS!1q3PwHupP?XK&a8$0b>Au#`ge+me*&qrLH| zNMyfu!SS8@zXRL05{W~nQSBrUMq@>N8Q<#)ee=4V{CMK9S1zPm?5Iz%Tu|mE@j7OD zG-5FDDT*53QB>NnPD-+@V!all+Pju_9?hnxaE>Q1ouXGU^(I5FMV#!PPO#p458HFF z4<_hMj*fGhB8N1kS;&V=Z&U7HFYtZE<3~N>SQ>YJ>)}W|N_j=qG%RY(*?paB-EFmHe_{yX$(Veh_V!C>uav>mt0=oGamFf7!O&k zVsI=@KYBo=HN`Te$u+C_hHa8jYeQXYl(MmGi}fnz`Na)?dvh*MW~Fdlhq~5yzAMa^ zqj+#MA1!uMR!9|Ejo+^c+7z**UvdbE-1$ZlM`t@d$1L$B2; zwg*WEHajMA;>-8_)+A&a0k~ausAKQrll<1rzSBT9djnF_?DIWs_N-}lrp>ji@0azU z9Vo3^vs6;SMZDLXcKc*q;PibqaRQD_xk!oA49l{ZuebD~fagDX&Gl@7)|xCUa9zm? z?e|0aQ9xc)^!g!pZT4oOLBRugLOJZcK(fHrrH;Fj>qKH&WPLq-54J9 zrZ~3EG#vds9YueCOHtH3IqdOp9B{ozd3n8I85dXNs7+ z@hBh)9I~v&7(;q}2|-UXJJSu=3isr(G!7OiG!4z-M)Dv*nvSvptu;knaDKkx`Yzdx z-@VvV_4@*te{euVfnmWktHz751fEqU1rp>f?eo(H%^BAG2Y2(IzZV4t#>YYqxUU8J4gJN08&5!!-r#nZ$E>6AD!gbp$E&Q1kHc^5%@lK=<)FP-^U#Wt)9f;qvJlSwTyag1h^fz z4nd$;t_n<1p|?3!;GhN}{_lSW>oJ~?1-hpD^*q7z}~(s7!@vqyl%9=R7=| z@a=DXKoI)Wb&cn{JbLeh*&=G(L=tb6M zVyYec*15#R(9_j*{`>#{AOJ~3K~#>2(^~$&8`*c7#jIvmnK^ISnQbM%>oP4nrmxd# z>PEg#>U|i!%|6q!%f)OEws2du?5Qmv%~$(TylM88m9Vea>=;kS#vV$TGnIj!i)~vp z%VHNFmE|RyIKfeh)jEdIp~-4icWcr#XSP^V*J45PBX4<=agl|gMObyzGjuj6m>~f7X*%vvMd(a`tRzn`3GByLi52v$mJ^I zZl2;fHfdfn>Uo6!FL!VDD_fT5cYXG}V;;_Y=X-OiD!a3?2X}dpk!8si0?Q0S780^7 z@z5Y7gai*ryiooJkPrg<0r~-W0m&9LAf&Re!RmIm-Bn#xT~%3Gm6>l-M3A>drgS*APVzIor-0MI)y$-!WkFULd#5?y#TwZQ@_Qi}K4CoHJ z0!o^iAW3P?p9wn_L@++Ha+PkIo9TIC{E1SUtJmzq*$0OLh&DD>sW)jI=?)~t-8R<9 znPIx4*34tH09(f@I-r`ZT2SXg-1j4P%b3=MjG>*8NY(8&(|*gQ22ty@H|~P6kbTg0 zgd8Pp@V(nF$0WJ{e8+<7roCSf%C@3dw%r**Rkh}<%g&u+`*^-bz7ok+rxUW=RxB1d%UwlLHbjwR*DjaETVMNc1)o9RntKioh>nJYL&<5Y zE>{%Ku0bixQa%uLUg1Rn=He30&!q};wW68tFpVNQ7_eBDs76!Oit#9+wt(p*iRkwu zUatyf+nOwEc=>!S0r&6S$D1BtUcZ1m$BRSK$46icvlmjYIUGa;o=4<+Op}mV-3VJ* z*W`9weH4b|T9aup-h>`JD{4wDEk?2DaW9UTH;P%U7}|ECtI-_1}p|0`X`#Mw=X1Bvs z5{%yMgk-C?zcK!#F2)#q&!->t8N@w0QA$=9TxSd3?5^-VpIx2pox`CYvM5*F6muHg zaDO;ul@}0zY8>dd@B{$cu{Ea>H=cJGQtgmfPTM2cD)gBv#3OK8T!Nr;!M|BEru76%1mW7 zhrN)&wBJT7rNOO8CDUp#k8JExZcRR(x9>LhlTg;ziv$>YUdxuo7BE&eHVImW(yiaI zlO4OB)M`l`una7F8~ZKW3O2NzRvu8<`#J{06FsWl-ExfPjYLhk)g%FBRby&RRn~M; z7aL=zELyW%Z~5eBFKFt9em5mAOMd>@OJ2N^78X+|2IIZ}T5A}RNGKzH@Pi0^@JC6@ z06Vb1so3v zcPR3bqG@<<@{mb7WLxLdswVIP261<9jQc7ryH;7mefqTiS0yV76)l z;(Nne&hnm&!_&U3&jG`O`|_B*5ht_Gb{nMcy3bW@$JBjcH(j{8AIR@fDqwJLOfu{% zH`Bh1=Uvl}F;=gtZC>ZF9lblPaTwoXN^KW>UA7FT>yHm2*;m!HI#GAbxex*ZqT?16 zc5LYT`bsiVfuJ{lY(;tX2DPxDuseeBiLAp#Mn%b&t4Te-je~Lkyvkc+m}`Vup2OrW zXhr_=spNS!mArR?i+>5D!e$P`p!RO_wj3}D*PnEj{HX^ z%zBMpZHOM75lly{etsz~>V8b8Bcqwnliu+#^m)F>xvCou`VrSR1;bH-7l-6O{0y^R z$qWAY81L|q_4l81@yRul(>}@30D$ozrrQmmbgr_DX=U>~myH(FmNi_-&n@HVBbrekF&Ev`ip29MjbYJf z7EQA!fwVD_mu(EQreR~pGX{|tJYD5`KsuWje0sHGqcm^U1!)oz+All@%0sJ9)kyWI zw$_0`5O5TQaxrD3H7c;L1ILcaIgn$TH;RK{!nSNkd`~J;J$QW3CGe!4^I)11_#TU! zocYIZXjU1198&-A6U=vi2k-Hd{l!sq(3cSX=&Pq61JD>=ZY2wM5Dh4rlDsKVM$wPD z{Kn_s;fvL4v{BTmA@F?y&*yx5O)r*8&cE>R5oePT=jSu3x@J1+(@7HBPS%AqAj?bY zi!GFj@vzUu^@2DI(Mt1^XRle81+~^3b-Rqxl+QnV&9fJmoE}XW+L(_1uuB|;63>&~ zGW=)*c|*0x1!UGX+UF{h@i^EQEo|1A047&?S=zC7;K7+SA8nlh$Rp{*w%c6HK00qC zQYiFV1~Re^?#f0WrGbFU#4@KYWZm;@RFZ0IGd&N_v4?K#;c`18%b*(M=i7_ZpgP9I zGN1eH+w-DVb}X)qjOc57&Q=xMtiX?aXf*L4WwF>W8uaK7I;=MtZ?0yTTC-eiiQ|ZF zDpG^ZI%{>DgGlzh(HP6}MxBH>iUf3K)(90^xq^os)ys#LF$QjO&W@(6=4Uw{7}aer_o-x0R4YhG-Lf{3r; z^1~M^lrc;P2}&E*>yn~qFvjrfzxjfnJe{%38I(sRgNX&Hvi+AYmK3FI@A$YcHK(tysfvo;*%?t1Nj_*0 z;DX8wdVe)@V}-yQ%6nAl^Ca-5B3$9A&?f7PvVU(cRyfh@4*3#TmK3x%;_l z&*iynA6o4z2(X^NX@4IcTQ>3(x?`HnS^%d_4G1R3!aApYkySYT={^KMZ`bRzvaT}J z<&B21IQHFnio0^&iVew~N3HYUt}8w~L02V&3DIyw*pnu#ix(HHms@(n9-sW=4gdJN zuedYq5{6=AEGk8|y~W`E0n1yzf#XM~)Uz%4J|@el=R4`qR+<3rKoP&7n^0eG*ljA< zZ0y=ROru#XClPh8P#8cpLSt}kSF$Nn=7llNg z$1nFgOu~@Zy4Y)DSSzX3Jc|Q9$ttPb1bTr)7mY$0eGhJF7-J7cVXy~?j#D!)Mn!zQ_tP zrP*1HtB(Nq<0z!#3p@O(Y+0Pt8onN-5wqI4^BWA3E>LL0o2ue&9P#OVM`H{f-{-U& z^K>iY_II8PnG8g)^6J8t7~Gd|-f+?*x_1Nz2QoH#{~h9oCp3#4MX9J4*8pZ`Oov= zH=Zz^4k_yztqt4Nj4lI3#Ccb|#g)Au}{zPhB_NjN>4 zFrE$=414&#FFL>3)`pcg?Ra-nEe%eb*lqS0=O>PF}XAL zbVBQ1mk+|Svai8T2-@JKf!uFn+0(8yAdRgC)ah;J_RIRVk;!Q_yHP8`)&}E7_nn|M zB{`O~V}Y$l3tE-g=Vb01n6zp2rphv_g%Tj@>MngxCR3FihnI@L7oBRAS5PUI&*y9} z*NjJfk~kK5L9LjdFSz*Pvenx*T8_aOId&uql377r)#70HfW{D=4J0$QP;Kw~K?;?o zS>|*fPB{Pk0zU}}r& z7jxoRNTD|`Zt#7dD2^B(j9L((HF|NyzH8hWh00wUE#%^tJim2sJBPUE%i|o7oV}Fw zI<~N>+gwivS~u3%)Emp=ohivNnf)pIE_nC)&`Ln51DQ@=YQx^?j$608(_q$RYhnWS zwVlw8xSe^*Im{i?xzG5t+bg!M+2`QCtQ*?#{(h{lTOim}ax9D2kS&QvjmigT+V0w@8&9nVJ#m9Fb7b(@~_z=b? z7;Pj!wyx;e&u?Q4r+25EoelW>VnY%JBsK{o-{t#4gFk3_JN+{pVyXtTrn*`a9rRmw zyD=p9r%c{Cq>f=^|)A;>>ABs z60ubBWq4WDye=!&tBR`DB!B5!kR;&y1cMa66VZMD6um3)6RG|C{934S7hIkx&1n?z zB#n7f)m&5!^TxIl0V}0gsfO!XaU4aK81Xm=eLB{;?jtcj&NaVm)V>b$IEr{v)%c#r zs!@1I;CnytWVCLzg@GL{2e5a3S6W!cLK{|%XdEkJ*xI~LANI{exfalMQ@6R8+JaHp zrZA>%-Ofd?4K|Ekeiv{n>+T041<17~*M^PK+|-IpYgUcg>s_}>aiP9j} zwc&SPEO}Mci~=8pA=eroZ(lzuMk(2+H&wkq=iNZENnckrk>@c80s?!S&x)F^@7t&) zaph~PkL_FISg8$VrFn1IVYh4e!Os`0wl&YMGbY2B&9>&|i#hln&1{RBE$tV657ujn zPhV4>FG=En@#C+i;V20bvbsQNMcx#g^bW0i*r1H&-N^~>jPI~0C8F#wJtXjb{`Aqi zD5F>uYeGNd;ph&FB4@kF*laS^n@oUPrCF@En8pwublF_3Aq^aTu7#{Cio%+G)S3yPbq)tm;csjF6dP`N*MS2;w!Bn(Vb!YHI(=JME1AU)ElT}Lm% zKS-?^Nw$^k3P~uK7igndtaqG#?F_9ApZw$*^ZA6T+LBRvs!MM&DUgg z%{UpbuC~mI6^mj`90c4O9RGj+2KxVbIT$4SpKlf!hr?9re?y-*47hjF=bc9r7Q2c; zC*oHgjq!jFKfJ?oQ!<}zNRp6~Nr$3n$hMh0Ke=tJi92Lhm#q=SvXssI8k&;T^@2{X z!?%9v9%U(G)BdI*fjEdA5T*r9!XDomNj@Dy!qJ;>sL#ug!Me=bm8cT z^wBZVK_B1uNZ!By)|dXD)TJNw3A}(LNZ8dG2k8`LMD*~lJpSwad%y5&e021uiTser z4;jRLwpGqa=a^UPOSY9qh7*# zxg|*={>h6M_@2l4c7yNxj3)!SNsMX~uU}nr`DO;|8aknjsjbZ&sxE9yX_6L@PQ`yY7nST~AyW+Z4?UN_3m zE&J)#sVtisi38m%N;+xG?|%OixliQdO%mC5Dd&`x8w2V#_te#Bf`IT^qc$b+L6>H2 z&!aZN5LZe}VE|c!o)@xT(^Ssirjq*)VsxWvlp-ri0i}V*>G71K(+S-)VY@3Z#&CW) z$(P*gpK{VYpci+De4i(y2Y-~e#vjXNoCf&5M{J+ZyVDL~=+o_n{Fnd6 zhy2~Y@lF2Kk4~8MV&c%}(IlZ(nukYy&d)b!CCzm6ZAo2gj_(}GxIOJjtkHh-Y#Fic zsErx&1K6#I;)s9t{nvz{PnJm-{p4s&T}#Z;;%Xs4vdU$>sur-L6=rqQj+J9;K58mB zdLY24+{retp4kBPyfx@pnF?UX;Y~a42Do`4|2v&$+z}?!n6{(5$_4o5>ox$sF56>v ztfZ3#ICp$q?qiJhdQmr`_PlmveVg69J$6s~t#jO%7W{gi9JAA4x+W+Gl>MO9qFP2c zj6#0+J3ni;=L}p9xVrOL<*mWVv6}AOx$M!&9Scb9@$D9JKL^O`qSewm{ijxK0DqOk z*2Xn$7m%-skM9s4-yt0j<+iF|JzrBS*Z7uXD{95TAmMb{m1e{!5rEBN$$ zU%tR?wrBnMOT5rW?Mk?O1H(hSP8VI)_?-yS4&k_qcXo$YueVH(`>3r%FL8Q`$#ObF zY0NoFV`g>3+-eI~r9>_*8pT-}vuMP?@`E2=p>`$SU^h~$!3q+U}3?PI%6 zk&PKnqQJ6&(qL3rcCflNq7M+@>YVSfWkmzz-&UFZcz+TKh)rw+RHoZNeqi6$^yB$X zSWnpJi*^HHU4>yb`@Z?ouG^W3oQ~6hYh`t{y&zy~S?<@RG)av^pYy8WQ7Rt}^QPf6 z3MC3gDQ=pYOe=O;b9B_xT5YA-?ZX&v#;eD{{%HeewjO zG^gLZL;i!$-ulM)lez?cfI*{-rcw>Bwr?=TaFcELZ1pK|&@wIkxJ&HE9CXG^(g`ou zbM6feSyx+>);t-HDawjLzr$vm6HU4_HyK>#c#-t1`<@S(^o!Ta9BR!Eek|v9lBRUR zh=cKf)pE;fo3YCZUY=jmpY&i7!?wn(DtQ5G1SCxp8RG^XN{a!exY!8rv7nJ*+`7(< zW$l(#o9Vf$+i~(yM{ajx{X`g2e-I0s>jKkV#L(RytV-guzGWLN2+f4)qaU^4&>3)U zGqC#;9POD$(xA=qRCdJej7yI34E#1GDzISFE!JQ~t=QLFI_+m=|F_$I`u%4Z=ic|^ zH9_PHNcFw;c!zQOcw<^XoA`U3ZM7}sxJPjdwil%^os$F_P5;hF0P~xj+|~!M*Y>T_~D!Haw@ZWe5^f;f&iJ{U0_i9T`I@1d0D^Vmt2V?JGe z@z3|o^2cDQ?G&tPBxCu)p>?D zmlIgEl|Xv3^(2TQKDZ!gAXF_kD=``pO2?>vo(CGQx+}EEFXzICbqq zE+F0Ic2>EJxI04uUO^=5_B`2FkpErmP-oc2A~|5{>OGwd;C5V*1D~GNdb=^b8_h#| z9|!ntZ~Gn`?hQ#{%bwj4)G2T@H-Lr9uBE%#X%I(^QGo8^`$#qCRyS>@Ay8y z^h;;NAAJq8-GDJ<|MU~)uh$gMZ`f{Xj(RcOL}GaoH?q~nR$_)I1Qg|3b5%E@Q#9gm zKaC@sp(#M|APjhzMpQ;jM(=iF3TqZB?ASW?J=PXDx;)Ol1+V(n7tbUN_J*McNyNNq zEI?&nEg5+dfbYiRl@W7}?>Q&D5_U2W5PIvYhn4|u`rNtBfsQ>U&z=(>0lujU)9644hGF8U`dbzG|ZseVdb7*$aWl z^XUcBU=(8 z!1wu$&%Z;ZN?z~Ypp9XgOes{sS@)DiH}ql&BUf6JgfVCRBM$mK{J`h#smK(PlRl&Y zW>aH~L9Gf1J#k@20-k>5qYwD{@e#8;#~8yWKYzi^&64dVLn+O8*rTdN?@@b z#;<7hy2t8r+m6a-MLX7au}iM!+%4M3eyyuET;9-vNY@_b%tGF+(SBnDSh`WWyA9em z{>Dzw&oy0~VVj@j0tZ#(TB{n6eSe@vHgC#0@5+ft#mVUR`)`w2nd^Pm6YFIeX_ zKfjg>iMykiMN#qR9}TIM;o$T@dfppFFO3)t68eLbFboODQvr0niGYgLW!q=&^q=Vf zhKIcK%YTZKlRjBqV+>rro{?=bspRxMyz~~pa-&}d{04_Dn^|lH&}`@JXxIV2-LeII zX}{HOj!xRiL6uoHF_iVWj8HdfcH?6QmeN5xj*dI+F~(il2M4$}H?rNv>K?010ByOG z_2ui@rZBny03ZNKL_t(9n}*y7dbgCvMTr18=jeBgqXUzk*PesY)^ZwSwX62Aj(O}& z+DcAmbh^#{g4C2c{iA$CQnRJV8XTip7dE{9O41LKo*lU- z_@|F$J;NjLJn~(R-YlUv64Te}lKSR?GAr3F*QA3U_usigRf-AjYL+qWC(L#=dERh# z(EUSS`)>!IO-*&VfkgWM=UQT z{zhGiXxKYFC4EoAzCZX=NA7z-+}Xwudy-%IqO9lyKI1T?^WhU%uR$q_?|w|S%1L6M zo0}Z14PoT-=_Y5{C_c?gaxEkGJ8?v9LFP{DeIDm9^m&-XbbO!Gm+VW|{*GOb=pw} z7;P()%4->qyY?a{4RG7Z8yVYn1*Aq%DD1M^ZqG^(Y7OTWEYuoRE0`vDlLWo4C@wd$ z{z?&yQo=Bx-|bM>4M`Gn`u-V#?@JsL@Yxq{`0n>U5wlw-h@LjCj z0=nG~2b7(Lb~_g%nK1&moutSQpel&cg#On)Y8l-ipjdBs_4J&osL)Ci#{rwXW|dWp zMhTz2SpK1}`?r1r&wl-XmSg?BPw0O0G08XIm+ZvA6Eg=u(@1c4(t)chOi{r61}_fL zmPM;?HkjEBMr$}ert|(Cu3oR145hJV8iw>E>Hl_`!mee=*1!2N6b1P|`d$1uWN>$k zF>w4~gfY^pb0>~Ci9?>GF&_=OJWdiK3koM;$W5(CJ#k)pcq|&ZatS?;S5?hUYhG81 zbt5^Kxi(x@(g-vTMGu+!9;3i#qs)H%Tw6Bux^CDiF%8wmpfHSrfXEZ(Z`L%dm7-(a z^B~}|f2&s0wGuhEd~CtyMoGS9rdn6Ke8;qCKBSB+v425gjKWGhAGe_@`Dk?-73bEz#| zG!5f0B=kJ)B_Wv-Fzue7(rEj)m|-BY1J8q3%bZzWGh3Hzwl#UKIOxZmop!nV&V=Km z4wJ)$OO4>;{IFQ`H!^1J!zCMGK9tH4r0=v(qUXu++-6Nd*5eFK?#jK< zEfWdsD=%Xo264MT&LC9Tk-KlN7Ava*&6>TgwUf5`SL4RBHV#ozx4+ik_~{rsA*Kbi7p-#ere`J`#c^`_z~FL-*B5&AxzFyKdT zwp?U6y)Yz6LbTTSzQ=M?aBZ`TkB)jA-#w%_f7OnBN2ii2X^a4r-NLrlD4svPLMhFU zzyFLli5X2t)Md@ly%T~kKq)28^}!)b&Iph0K;O0oxpD6DT-N89P{*)_F}(hnb$Q!N z%pj7VZ-Y(;#)8lWx!du0+LzxQ=yIA+)kqtU(QWLJ(c&17J93-L7QNj}blYg;w4wX3 zc-x2W_7z&~sEaCcQBQ8v?N}EF%-nt&)0&jrINR+%eA$^_mvRpK2kd*=(|#*aZ~(lr z7tx&|`)tuF7fFO;MjiXPmm_5DF*yL9^k9803~|0`t4+0PHL;v}MJG^?y)oz*-(9g?OYY5Ml>*x=jW{`MdE$K;cL`0eCd9}*5b znAMu*)ivd_E4qL2BmAD6?CN_z!3zU|uYZ94=}$4&H+V+}#P8mxt8?5XeV_gy338(SryHt;-4)=02??0J-?o#-j#Zw45I z0h!fu#(vAt`j*-C@R&7&BHWe z(I~pM8y-)Nr{nu{{D7X73G{-1qfvrUa_*L8gJ}$lRmFOiOEJ#rfN0vspN^m`A?e$)?_NkWM-69g#I#qCm_@Nf?ngCA+#{Q&l8sOtvd1d`+*DQa1`+)WY@+ zVydF%>tB1soqIlZ+3GJxbIm=V4rSxw(&MPgqcS7*MED8Zk4!}A+ zsf#vBf>vK@XaSfTuPf66LI?0%jFQ1V#u}d7$Q^qh-;=)?~DzMMVwzdxaz^=z`^SCR2 zi~SY^Z)&_=NNB4)t8D?k$MNxm+L!0QEGo1yY<3y5`G&kG84r65hFwPeF59Z2Xetgm zT?TQFNjf5{3x4(F&wi!evtN|@+uwLJq2G(y<~1*78K1vd^XJ|_!r;*u%}-vfxqr~* z;W*`YpD(%C)Vz1p<=wk|mfDxMO&k*X9^0KTbnA7Aj#BEXv23Ri(@;~|(f0uAlB0JX zGCds7?M8I^U3&eL-L9a>3bJj6@B4&th?-yS!H$0Ya~Ur?V6(k}JMY78EzD@rv+on@ zdiOl`)!2@ObAT@h+uv2wI?Rn~$Jbz4)=dkk-Ak~f7;mh&|*U9er?Wo+S z7BugfSg!?$QQAgVIWtmiGguwC4Xw`CwKNTmU^kagdrX@s5JY0U>JH?&^?d=S-GLly zv4bE)S0(w?1x*9S^BEnE7>`r3Ovdf_a5zlqcO!~g^S8cr{||h>zLojRe*YQXa0HzW z#j|Uovnkuz4sSe0y}p3!YjjZ)olU{_@rQlN^CisZct?n$NO3PIRJEok6j!sHaTM4# zB1PBg7Bf2{{>6TWotDwkRv8k@h$_<_{4n%6iDdll+c7rS@3UL?bD+*KkGG9IYs*k> zwNz?$eP6(|z3()Xka|}oT3Ha;v8_m3rT5IDHnPsp^Y(%Bvs#haFIE@c?)uSPg{G#B zSAy0x?_!sFft+J8ReAfryQS-U`*xz_mJ8l3+8AawyDRoQIW{BURXh{Yn$)u~P<>yF zMZO2KMlr7?=>NlBj5adTABNH|zfqcxvx-@xc~dn!D;r)Ejr6~J9xK&Q7{k{ejtG5^ z-L4@BJO=%UX(wVbN;o-4d2qkaoevICtDJhaL0w#f)-WF9-Mt6hF6F1MFt-J|U!mps z`VB{&BMh4J?KNk;BYywt6~lPQ)o#Y??FGtcx?xJA8`2==VtYf;6da@nd~Ny;u^;Ul zkfxmxtFmMe$NLfK{j($b-IQ)8!S6~4a@tAw#y1}G&Vy5iNy4w*xyxa{$99+V=FJT^ zi#5g=Hrt%pY(;n66Ts;h!$26yc$mU*hh~w}R90Kn72ToA>lW1YA~@}|ZgZ!-v<~k* zW2lU17M-ETy`1}z9aAd-Q@$t6pKDKAR^otnwUVyk$i*W$hkj#0sRMqu!{b-hweQCI zZgF7M{p>zy8moJCGScwYy4)481Gu$n@8dM4ozMbR{}vN!gz+q$=GETr9PVi#>q-N> z(1VT`Gxu!nO)jJTJ3ZOwTFH6J>^fiXC9ldT! z5crHnefqr)qd||u$&jzTC+QQb<(8X;L@SNclv34fsvWO4m;Z0x4u9;IA3UA$&9fd! z6!84bn!{nre4cY}9J9%5zWZ#&F0bjw0ePcH;($+HELc@FA03VP#Ybbp&}XwL=_Vm@ z9I{yCoSgKf@hFN3`a`1ONZM+;BLOMhA@@K0I#1p?U^q;;cRC=B1JUmT6WEuRH76P?uc%4J!^qol(cMR7`Ix(bYMr!b!$#??BpI8-U6ad6Y09w zZ<~nrpi;?g+j-k+l&{+{JhaB8+YwEUadj-I=gGL*v7@&^Wf-@i@s3%n%N8iReR217 z`!zgnjYE!Mb!MWZ*RJ2Oxz5m3Z1!madw}b5MV)NIF`s+pShwfTH5qxHJYU_hocFqv zdQLZb&sGB1onHY5DCe;=}p)oa_gyIP=E8%)uV z{nn3QyTLoXL(og{q5yh5%*6#99tsl`_zaGEG>xX)4T)nH_hWcfR$N@>6kpsx7>cQB zxukqCqcco-_wkT}CkGrIc4&-YVF8inc^pO|AN4xiOCqa5l$N7aqj- zzJSlf_qeDUdUhXrK|nX~Nj+gT6=Hnq2XahKBH)-+sWa8LBm$x@Rlr#sqKx5L(byO% z+26#1U6%roS;;}6<#qA#vlW|0Q8t=5_E{`Tk|ZEa0~#fcQMH!%mT=T1IFbt^wAJWD z5y_LYeaHJ(ZP`>iKA!)ScSr9L`XQkova4%0^@e}>@n29Scj=m@0YF^3+KDU53wJe@vRTB#~9V=R>mf3VVOO3tK zv!dmJqu`KJJNQ5)dA4`o7=A20Zf=7Ip(ef zr}MHMySqrK(3g>UW2Da1ojZF`K;B4ADG11PY_dBaw=+uvPngrKtoy|m=VCAeq99;C zTcfpR*zZ!7HCk&nYsryKI|=&L?yJ#rLH^ zp|bjUfdB9>KIVFvb9J>Nu%G$!O-WHG{=46PMWGZQp7u!NkR%DXf7oNYt+;!4NLecC zs-|b##Oks}XIlXv`37dMxO#oVXP;gJa55Mb3hZ?_k=M5vYd&jH)-!5B?1J?U8}it zIvt}|w&L z?a14W_Kj&7SqJFDSb$>OZQ0K#wMHk)9nvk3+&ymu^3%EERXodQ682eLvv6UWc+)6q^EqK*sg9 zjc2>adH!O{$G`oOk6*31tZQa#PE`OVluj{qz8Vj zG?UQZ1H#xBRzwcSKEHB0lyN^$7%k)Wx}j^0VOymb1mb27J^7%#svD^jwZPYhJ(Igq znxiNn_Sggc#>jb|hCYXptmjqPkZH}mB<3`VxU6gDjog;!ie4`y%No|Jil))5H{u8m z2dPAIU5LJss)Dk>>-MS7XOhD36G%$@4Waw__yBwH(8e(4murvbn`PB-SAf* z{3VXNV+OH+y1Xf=l;ZvAL$32{I$?)dzM$4MKc7D%4HL96TyM5?ItgJIFdp}5l;-Zq z0sU@@mj(x`T0CB_(*MZs0J zCaViBwljSHt9QW|MFF2YU+{N-^9BFS-})88z$c0V{?DJyS>`o={g=-;I_lDkeInl% zj8``N;-e`qw;2YwxZ0BE4d4HK#*=#^v^LCcwj$>W0^&4=x+3fkq0@(?OL+Q-s;n?t zbo5~;?^mM@>zf7Te9qf zx;4TCp*1meTL9_8=N)i$PJ36+>A;kWX-WsJ9m&watzW00a9rCpQXrd7n;u8l~-VyFh-+Xih))+Ltw(!DjQE@U~w4|6zHnA~ZVa)2uSWaToLV{(FL7`wvL}hhJy= z-OotA_gnD#wR{jwr%;tGn>3%JHW|UmORAz~^r!DiSp9g6DGKR^_dK@GXY}q(@Kezz zq-lk}fh6&Hc+zL|t@nhrn$M|TUePRt`aV7BkmrhUQ!!N`old};P06}ZltyBfwn|vM zM@b~c*dSo1754grH&sn95I|XI!zl3aymtJZDFJ{kb2IcLlznKUg*v`RrX4sHFt<^f zzPtEAk3G(PZXYlh_e_ z?91P^XZBm)SF!g;hC7Mdtbkq-IA3nR;VT{ys-U$PIJZ7}O z7FzJy7^y1l2mT(QE*r5ub$!u%x)vtawzO7q{F#zM|icnBE_Q(v&}aPB^_GcyJen716JJi2CtQ-}=V*le+Yx z4!b&MoDBE}ufD^-_T*m&{yxvv=X|#Mj77PUhO8iAS8s(C(VA7cVOQsbUdXcC@r}dB zWOYI42h8&o*{&c-V`j58XJ-d^o{f0vr0ntn-}iWM@05Ed2NX@iRavrJY{-j>Za3Wn zhvjBRkS6kBl^2*rNe!*@x*HLm^kn4Tjl{SU`T{cNrGTx_lZ#OoD(|W}4Q&LFbI@lN zWV+FLVzV;iu#HOUgsmgp)n+=Qj_0-d#>nb5T}u$OjHh=Cs2T6eMjtLlNZze4@ML?P5OT|Kgu;6M?6a5cF*?u)*0t{p6SU6!%y!)8 z7IZr)Lu>(M64()c039E6)y78krRhjlYR^)aH#-}CpU@w4*k%Py)zD-j6YwpoJBmVH zUCbDCQw|PB42C_)g~n;*Kc=A%In5aQ8zh8IP{X&f*P1!RSujM25hf+VSe z)P{Zc`bDJ}h62ts0yGyEV6Gd@X>83!_HQ5{%=0{aBSH2{r9>-<7ZeJ;@?XJjwIy+NPq^mnNn{8*b``LL1KFkVzPDUP(3QNgQxf>piGnH=4B) zt!Y2-_BvX30niTuCSgG0Np)xFL0~+-C`x*PkB5hkTx8VR;Aw-|)*Kw94EhmX9Fjk~ zCO#gbvI_O_Q{t~Zf_|T1@Q3G+{YhL(RdJKAnB^-Tj?VaBp8W=Y?a^Q3+2$#=uKDi8 zk4eLXPLQH>Loe#`V0cK`)O6DhFE+23qyx&P=4v;`_dM2B&S2Q%`f4F7{IJ0pDGXT9D@ zkbPiTJ*Tf+mIAQ4ku>!9o&c*%3ozW9b}U!~0YT1a1UB|a37E3Quq+8L3cWiX>#zdLa1OiO_sv3p*i*%1@~03ZNK zL_t)`vO1HJGbDu`;M?P|AUg0!Mjgt$Y60}te(AaM>A<+Lno!4#M!t;dH`Ykzd!mUA z{PqK*Y~)MG1>(oDFM4jJ6y30mhRS5S+vf|pJq__YA->g;0c3f}sNW?F1F745b3% zNOqGVyV(+(YRj?)3$O)P?E!{125iBAS6&-l+6#MO7+x6$Y`}mG+Y45u~)v6#2J@UY3akC&wBI>%PH|nujZY;x@bz^2fl&NI4f%&B! z`G#H9W!rS@U>Lub17Z*^Sg$2=H-HLoN;}w4LXUHFO}iHs5E_b9I`#zuz6FyWf{tH$rzI@w-9rRRLbqjq)9{>YnSsDcJD$tYdebo8DEQ z8oy&?U6MfCKx@b6Uf8u1`H`Hb@h!P2aL4XUQEmIOltCL|gWYqNSMqN(kedUShiZH{ z`xy4_$oD~P*FBPPeAA+1Njr&>i0ktkf-t}jd_Mi?lHM@k=%~l2_v-8Qm2-@?s0fdT zm|jR*H*7w5LHob|k8pgO_WR$J2N^{>o6?>>2hSronNZC(s3fL3yP@}MZ&R;w!uK9g ze)^doZnhNmN+a+!%~b`Y@HR8(~<0Kph^98k?uf`b8puNjOZ_8;s~mNMpB zRW-NbfS#62%&W5EXZxEuahR$h~eQmPlEhYE-A9xT-6fEa%QVGBdr+P581gr4qtVncXzn=LeCn-x`2L{Lz>uddVsub36+!% z+*B2T7NB}jR(zV}oZ9~QgGofM=V7#xEZV~X{rB#oL!Y*&2wppeG==pV_1^ohdg=et zF4JtmBpTprL)*6e`08W6cllk0!H^H@+%OpSNTQJ8 zu*YOFV7ZYgN3qK3k9wd)AGo?+v3N1FAk&U-m!;LAG}5rs^94|5wfwvVn;j+>gNALa zkr3^&corOnM&gHz68+*X%jq5d~Z7#C9S2yu8s%uZGTPP*tlU3PiXs=S5=PRnqHRU>I(2t3ufTF7K zeUI^Ez|qMbaV*Tq!@I}a8;R5XcK`F&?OxX{<8ed~c;tD-cYb=oKYVe6uQk8>@f>3` z#wb3zPWjH0C5OXE!o24hVPLqNXMF4Z6VjsMH{LsDI?d?ye8%GhKk%vMQ=&mnFi}~_ zxLg}nmp6ExM-&;#vLVka(oMl=B4Ox$;1k6W>$5YtNyye6ICQ$v`IRtwE=SXuaFpsm zi(~g32yALG(>S-g8$8@-ZnCJc3Q~ZMAny#?DbG}WB6nwpvm>WSA_sMr2B%1Um+AU)G+s_S$po>NaPy=`@_~c`jSjJ=YzZ1IS8sW~}wJbD}$gl4~h) zwWThI-m$e#(%>pItD@6_`k^q%F3-~)pF6JpUZ*#8j`+lutn~N0eXT1w-_bzU=K%cT z0&bpL050{aDhz3goFEMFe2>YY+{^$Ro{Z`DL(;Tjuiv%l{iBvwf=~ZoKyk4kxHZO1 zhBQ@;dh2cQ1Ja*8mkcYKlfGGH(SQePaX!A;8fsfmSb7UasoSA+C^d zcA_=0R@{{J)`9LT33Pv&R}uoR1U#mVfVHCS%taEe-frWPHg&rNz_tByPW!BBsqLs= z7*J@CcBB^Bh6}iNqkU;%(pzA;%Z9t->Y|)v>>nuUs6PsPv}J3nR&qxZ?buYsSy`ch z>q=bjMJplyzEV3NSy@s_ap3E%&K2PG*td~Oat!A-hDj0ygaMTlfrh$;`(eQCAYkA3 zcqfk+h>+7 z3B7>UHeC&aA(4rBx)7&(+crE|JVT?|kM`J$#u%lk+nPnb<|@4=t#bCGeL~}tR|Sh) zg6Ef;j5rR+3NeZt?T-mOkK=UR5cqGp8R2q1ggz^=e4wN~z)2@$!-;L$-+QuyH zjKh5+Kx=LH!7+?YE80fKU^;M{H(g{>W@C*qJMOP`z^-FBWW3SsSJ`wRv~2#r4t>WI zx}|MjHYWYz7~dI?vK@9c^4L2Zb8@iPx$LV(#^`~Oud0#Jno{zwZ#s=DbRcv$;65@t z3<{Dm;P$U-gxz$YT3L|37I0dZHS9;|k^H^9+XKmQO*~X&xS1`PO;^NWh|!wabV;5S z+&-MpA0$*wLt2*9ZOyz`{?lCyzXZ#;7qDCw1cBl5e9m&2vmg5$_d`BCUt)|xYsL2- z&oEkXZ!hA(L5wkqvT9f?b1s)Tn@!36aY(NhkYzQ~n>BSMBV^C_D6Awz`2lE+jv|Jm znCH(Wg`%k&jAxkLEcxP>9#Gdc^NTCI;RHYMC7Q>vgF!4TV}H`QwZmi^O%$Env28_G zbLf~xZMs@c7ncM!;>UK*$HOk8(sh_`n~#iuFX%w47l?z~nVCQUu^)C!D_G;vrUQ}= z%sB&2n8>!;wi}H*gVDAQv+dYXr|WdUavMC~bjRjcRcB~&+j8!8rR3Pdq>D`gIYvLS z4)z_;{)>`;ZGNZMjpTO?MQ)!52c0fUv3AHJuK$H$-__LcjZc>a-xwYYxBt4$5ePKyo0%z;N=; zG2VV39r>7pG2Wzyj(l|JvHF9LSU#V#T$KdAW@+_Bv#JtfPF3+?nlrZ@?@#lJ>#E{; zUh*`r_~UiP#u|dMMi|9qU2{_j=y^Tzx^^IYf+7pzKFzA_35&G0K(b*~*V{lLOSVonZeW((S%fB4D^&sL`xWvJVRwH;s0@+Dc7lh-+(_80^Szk2Hq>s3k^_2`jcJ*gTt4E;CzC zSyElD1vD)R7N1_*v2W9Xu0_#}h9{u_OaL}P$-W1E6deOP%h~p>JI!X*cJ-W&^>iku z!?_?5C$XZEIS+42C1Ci=7sdCg7OmqG8)z-&mG* zE*j5meyEF@T9sXYyr+d_zSzK`pjj4Rw6JdupIcTtj04ghhoS)$%WXS?3k+zOheH)I?Sr{jQr)`{)*J+hXiz zZxs8~RZX_ZID0W8UCDUW3p}c_LU}f~a&aMm?)n)luRE48T?*)1UXeZhWSa@P9mhM+ zQ)a@hIUuE!jC*qnR%d4de!NiFx6Qm8i$}eVb#zsmZv5>99q4mm?=GIn=}29brW@0T ziL5VMb$U+YSvf$}v7_#Lr|Wb~qSI6E2Glzi^cNXOw|@@6@7Gyn|zgV-(DxRb{8ifJoRYOn9 zh&E7~BVTGShn^-e!bUnU<;Ld&8@J@f&Q05H9pzag=9!|E8qA?5WACPIw>{=H5Nf^6 z&O8b{Hg&_SmKdUGRa@sgTjsQT3Y3?N<*QMxYv!Ixxn+Upo-gLC`=Q5CAT0D%RkN-ei7IR)D>b(O zz6JWm*tVv68|&1zEp^jURt-&F;vMt}?o2RAfbxB)YxLfj?D6OCgA8CllID?{ETw8{ z4wErIy!?QE5b-yj{$KR{9;2{_Z#-`Gj<{G~GYQA6>>FIwR2;+;R%ON{9OG#Lrq32L zM&mw%Ud*TGS16^3LZ7m%tnNA!eX~}4{K*T}s}y6j0E)n4JnA#-CtTjlDf5!~sclGe z`a@5l5)VBN1^j5mHrLEmJGuxWPj^A;4rKa9fRc%jxzLWM8(Uci6Tfxut2Xu2XkWOK#-h7MI`Yz+-Dc zvRk*WIXs$hd@$kG(H?OWaOY&7b!y{~a%Y0Dz%#R;)3KQ@?^El}Ip5l2bH8)vskUtI zz-na!yT7p~Y^GMQC_BbAt0aWpf#_Bo?ea!gZ5h+5l3w$=Zdffh#EG$0DaU?9tz!Fq>|++pBF&@p8UFYlZI{F3y)^X-N?JD5X$Z z5ym0Gpig#rL0uHI%V`IYK!D2VNXEKRUx1Bk7YdWk_3g&-yX{oFRgc>1fT7bqIyTX1 zML_`3@}?UTJH4oL!MhQ=@jFds)PFhd$bnK|+brb3F<53W?@Ug+;L)+4yKZ;qfcL^K zOVo|Oo$SC5Uk06Z34;Sv+{4>HmMqqR?P7PVsqsbMSy!DQ2)fa~YguX=VJg?tP7g3sc|AJb;JfIrW}|K`_8zxOkA9MGgC>M#B_;a~Vygx%Dd@^VQ#zu5}O zjaI0y|0a_^_a|sC&oD_K&iG!BdX-82rq&cMZfL8TIQBR=?%_{*)Qgnh_8#G_F{U38 zJiNu>uim4rYOX$;b9J5J`-VZ}aW4$;l;TbpY&Cwe3rnr$J~wJdq!{B zImd7&mJu#2W7yb>!hy@Gl~H+ZnNkp@FVO--Yx{U-G}_9)T3M%ONAE+U36!|X4}7!j zvTs_6O$xOp(wayq4m_Vbw|gAyN4)-P_j&a0As1Om4K{;R(g3QKZ53wUuHR{7>$bH_ zvK)y!E~nFUnpP*#dtTIJ)@U^J1Oz8qZ_iJprBP~D)y!>e=d`N0sVbi51qb$T>(+f! zR-DgrX0w9p=L@JCOl05ql0-DefWJR@<%RLfy8P(sV~o-~UoO!~^DBq%@_cnopgoqw zny(-KI=^}M*YUMS-PUZ%jJ(bX>>HDBe7=7CHNLq28bwnO7@wgX>EyYvg}r{vYPmrv zMI1*QAMY_3_9%*y@npbcZ$KP}+&kLm(Suv8S1Fe_bFODg`n`z3Fky0M0>0ts-ocjb zYgZ-BRSI>BnuKigDV?jkY|sa>fR?gBA16CbZQHUF+EKi##&qpOMnPKR9V9mI(w;D* zI>s_Gb_8z6Ee)F zwP);Y$LPr@;m(~yj&JSrn_qg1Z@l{k*VBb$c5W=tEF0VX-gN6@XB$;3sRC&w`|q@; zZvPzH>}vt}S82zfI;ImWh^EubT2@<)f^C=l;>C>q(V)}e7BzKRvbb81`q3o3uN8C@5VT_ZMUCgZUMUeycr#H@cKgz?;P@tKlugT z`<2%^5bVI8V@(|>4|^T>^{lCDD@Cw6O{W8OS)a~~q_pTropwCzb$U@3u)iC6pDsiK zQI`_gw7eE=sLK&`Zu#{TRx>uM4J)hn_dJa;n!z9-Nj%1*=#{Vif1=@N^~0y4;T(-9 ze&-+1WEE{$Q?D}k;dkJTcSXy&TvDxbnm_&#@tem0_`?V;o|As}CltT?UFu~9p}6GQ zQto!W{Q>^r0PRaq?rNS>TrKgBhEUh!r!!_hdBNuUACrD`jv2+ov0>2n@r>d+l^4y> zNT+zuzG1eo9jmYEhCR=ScCc<(*Ugq0tlCb0Shd2O-U8J zJf+w)4IaY!rA@=o)68uk`m}0L2-BB0Ei-Fu(pDE)H0@T~*u^!;&)s`@)(G?I+pkc$ z(0E~P9YgBmSq>}*_UDOZW`~}UYD|>PEH#Whj|1OlWQ=H5ji&D#4!-&t(J01$=XDlm zOUkx0Ke_F=ecZMrS;p1vmpdkRPC@qNrs~X9fmR#^W;=q9wBkix*|EIh%{b)HH_WP< z1K;EIC?s#BOI~8Hgn7Lxt8IcnVl;hi=y@8?o{MU_q0UOo-4obs;N}MQ_c4Q4Ul_lv zOVhS|_w?tS^m>fL0e|bW-v?lpuUQupymvgu4f4zxLUx-%SAZ3p5U=-kz8I>6?> z%np<5?*cZ}={9|1U4o_q+%8kBvTa1iiJnZr9x8LN={XM>Y|5v!&Y$&VR){olr z=0Id#%kgGa$JBbdtJ!q>smdZ3)2kfQHY9+G-Uz4?@?7X%f*@p#|QYv@JDB7tji6li_rNTEltz%^y!@bAmV6} z@W1}f6SA!0;$qFkEah~baj)OQH=1QyvRGvN!Q&ZwNof8Cx z`v-k7|5Y`f?=cvJjQ4spO@kl!OfRNvHYNM}0_NwlH8&SiKK$t!%jpuO6n@~NJP+-8 zk`d~A=%i1Z*}yD{!=c=;}f3zMCAqOj9RI>6_0ID@2P3f+j^MLBI2-AKDCy3w>_ zM(eV3k8k6Ps&0($SUi`v>2#G&kLjY2g1EbWUGAl0QI+mMYun0m{jiIOiiaI|8=nYx zbL~c><4!8j--9sWOYhy{&Ycn8{^B9C*-pp%w#}%N{debNGv}p-CU;Ek_>CvW#=7O7I!Jd58Gnk-YKEW|WspyirWO%F(@$_Jbc;l-^RFO(}{RJsF`NJrFy7 z64L(8-zNEY{!K9zr3EVKQ~&&9%6ZCQFQGi2p?sg{;Q?M8uv`^*g9z2@f!6qYJ%$et zNEaE4dCrp`U*h|kG^?l^si%CJ7krlIe3}(3>xQxwO{Z3hfiYVEx~SxLd%omUD&VuM zn0! z?X21^QpmBDV^0{;-KeJ8Y8soi-G;_%>_o7Y+)WvG%NW0JZ0@JkSYp5LIe@8UygfA1 zm41*&J*BS{?|l0aI`r|z3B?aTBu&M=?rJ{4%Es)zI*{q40}Jcif61$0O;U-~dghJn zb6|mLVq`qOsm1(tQA&XPys8P6$Q+s$@}}WY6rzB8VZi;+XJjQ417jF@@^{`e%{E`G zDjU*8M)7<~_4JJLat=`hr>EP@*w5SY-r*ze4-a^4v~P8rHT@tWt17hCJYGH~@p=T> z=VE9*_Ifb;Ej-aeg@^i9<>ov7|i3^4W~?YAs{#h0BYqphcLn$aJIg zvJoKZ7{Wy%fYs${CcgaN=`Zsd@`i8_v8~l~?s;cGax7#^*U|&s-O?`tOt&qkEp=}3 z-3Fq%=@?F@k96CBms!u2ZY1v{0noYF6CX7UFrklc$Dv;66Zjr`;{n4_56>9B_0@Mc zPA2Tf37^cKvPyIEP2TA=l^rp-dQF!rT3Ib;UUwCzZXaD`Y3y}(obJo%SKSBo$QLtM z(Xc#Upj^~a)lke*!jl2`n&7a9IZ7mNH1RN@j~)al6z!(MST?F@S~h9UY_{U#7Z ziP1{&w|;WTzx&O5B3UbHlF;z%>5RIrNd^hmw!Nr7lBrL=Nr_{hUgR?xMZ`(OU_79% zYMQ!Xv)a%b_GlY1BH?-DFCNoOFC>WF^^m((pCIbMkTdycBY?AQ1;G3wYZ)Z+v#8&V z=c8U%D;W*Caj+XHJLcPgux&tm_;SvsbAj&~dqB41j8RU*=|GkPdvb!*WT)YD zaZC=ZJGR!j=AEetx_x(}{A45=(9Mi(C8vAr^c=l^OV-`r>tq!1P~xrPVaI?bBEK-6 zp(-oVb;@j(k)|cXVaRfo6Gg8~@_aS;q-|*%YZ_7tD{iJ4aqRKny(7}JmMl>FnmYD95~De=x% z;J|dj^)lhFWc-l-%bf2w3i$&ODT8&Bz#ro?&bZd$CWX z1?2WZLl}9)vB&L6jQ7qPq#vD0RF=`axXH*YTkKr%h5ZcL)a|w#epgreivj%&a3_@3 zsZG-gIJEnjH!VY>IkMHERoiYE>Z)zIt|}s>w^gWDRk@9wSmsN7001BWNklKW}lxcp=*N?xpjn^uglB%unv_Wgl`FhGcpR=Egc{se!b#}wo@7?9Me)S!c zQrw%2S+7zGtM@#Z47s|R^M{{4WtL_XMa9L%l-Y7E8pK-%k_T!HNJblB$$B14f-e52 z@8KOJ@;+}(KFRHoIN+O>APFTJXb@mxpKYJI1D=aQ*gB=4=aJuRI#6X43~hd;8|yo_ z_CLzut<}qV&X;=D+b+iwI=8!9cE@h6uf1+N_O!J?Rqw1@t8VOXnNqDZVIVcZf$!6{ zEqkK@p4KE$$gQJ2zH$2v=Ea)J%^FV|uCHbSik-WD7gW0KD%D8_oUzC;${;@*2J(9s zYvs&Sbt~u5WrQwE*bD85AKJ4GdMD66pKd@ain3xn>RUNOO&Iui#z?bO>~Sy|vOgZM z-efdQLlg=S7$gyaF>I=mtIg-{nyu=F`7$Gl46C%wBbilU}%TJkh!bU5Mk z*)<=2a>HVgQT@ZY4Vi~HaygLJp@w(>( zu^6KqW4POw?!c-8mkyMjz&wn_AmxRG{XSkK%}0$T%QowbBnc>rn)SM5y)It)+JE)feZ9ed z=MAFY_!St9h~K;=nTeI4>3X`L{pe?K_jSta72$qgqHL^FRC|W_FZ^kmKmGy4G3w## zwC86~RZvxgZ{3IWntD@E%{JTUrpY8EygkA60*W)~j#o+%4kNt1K3P^Vo#*6*xSbbu zy=5*hY<$b}yyC1ZDO<_ZOtfKT9q^&jTi1J_#duQ#VU5tyxno`J$#q$p5@*ErO(nA$MPnahlswM$te0))fOpfnUtFBY$Wy}721*Q7 zfi)4ibs44T*#PIPsHxkQ{Yco9^}3`iYmSa3Qxzkw*79;mVnl=KbhJ*d**9IQQDQU` zPr&!Y)7wa>NGk?LLitBV0{1)HL5v}Q}X*erO zF4KZ(RdZEVe6r5yM;^VNPgzRoK-09m`L)|jXF1P*eg!~vBia}9@IK+)y;oiszpP8y zRD9*=ZQeh43!@Ca@$s}r?8)8wlf`pBUVO}Pa*M3W8AlPH%$`v-HBH-4))iknd7BTX zk1@)y7wvJnx+E|jvn=C{+ee(OR%oqRuTr$u6lKL=kPyY8#Of_KXe}Y)`v)VEB%&xv zW(#S_sorD>=>Owd>4D zyVs1Ty1dO6$ZFcTjZ+Ft$5JXg8h2VtqdQP(-_y2?WosG4ZG;mY!|50mMF%XQTQ78@ zcQ@j9(MUizh%7!-TfknFC1K!`<^_3Kk(VWVdjpJ3xA2YO>EeVHd0kfQ&*~pov&EWenz9%583dm{=CiCDzWn+DzxAbCXsx(9 zpVKrgVd#;B9%s`HfB)%}`=bP<;O@N%d0ugRkYMcJ?Js}hE}vd*@IB4D#|fLfVmua! z%faD*#UjV|4Ru{_D-kCLL*iI&XcjjTx1^0`Fd0yll>pVtbE-^?i0$mM%g!{OfW3Sp zU`{CkM7^=NqifrebM>s#2s$>=v302(r}xI)sNM^@F|r%A7dGJD0kqwEN;f_ZdtD@w zWBr`Fe(Ml7-S>{Abec-&3`UMEb!|Ql96Pg)V;0>FrXO}8?I46*X$?uq5YrpbWHNr9 z98MTSax>}snin@4s;cS?QZDb*8N1R&r&SH&&IF|G`Ek0_Dzt*Yz{JD8>uq#xh@TsH>X8`?qPzlH%qHtu?b*isxyL zj(Q9R{|q^wv@O*KAEVxSm*NLMqn@t`zw#FKD#v^M9_i1|sGps}YD)Crkm#+u)ax7u z1Ic^3SkQj(6VzL8K^#;6&hOAXc?#pP^tERhlqJRKOmv?6eR0Un3Lby|IrUoNIg&}j z8-MYAqWk+)vo(8r5%=%(84P@z_uO*e`Me!Re7PU9=Xsn29-&gK>zb3mCTY<7+2hCiWtJ|MWXt zZf@xL3BEBb@|?)?xW1Z`ra8TSOcICO+$?zVSOTe)Qta&w_~uvNMr+M-x#9R=!rhYt z2K{6ko8%<{(aC`DWFSoB*k*SYHS9%l{hzL7tb4i^K(iN0%+Ipuw28SLA@^n6%YFn^ ziyHX0SG@yv?AbTOx|Q{Ast!y#Q;!=bcf|)jW(J|ES0gpaE3n@OWm|QzuC|W zG}CFuda>s8#f;@LXWR?;YB@VPwoSiNC@BaEv`RZ#!lF;L? z|KObYy1?@co~OyO3Z)dMpIy+@4RJ3f2m`LqXPiF20oVqGzw!26jMWE+aY%G@f)~eK zzj!>vJG>3!BWb(Yt!3;@Z2Z!dfT-E20Jq+x(`mZ#cH78v`+EXjU6o{*bZ+X6O~V)* zbO1122;g!?8pmw9wjyV)fvyg7H(F@hV5B?8y74WL%exV^(?L3*>SO_qG2P6zm6&n@ z<*_R6p^`p$Hv3dTy^;J;Kk(@fW2Uwu_1@8d<8e&VPbBNpMJVld(L3{yV{%Hqx`uK(~U)ojE0#fIzajLoK^XXAiU>snveofcCm#k6Yp$)@0{ ztO*oMJc(aA@Xhw%&x@KpPsZ_pZ86fcEzGMLtrXAmavOzoVS$zc>-JU*Z9U|s5zXdJ zRc~26=l~*g05q}y&i%36?;P`)TaBq!idc7TOYXTYHVOm`4vc1K%+`h8Hv)j`x{(Q4 zD(?Tbg=JCEkEF&lNj#BJcphz0QJl|FfyZPVzLebwE-tCvR$&5Lt!ve`JkKkNR?c$+ zZ0d%>5+|`;m!}jbfww)@S=Df1jYDUp=uF3+n2p5PB;R{Vv8fxfMjk(_>utclukkv+Ml{OB_<2LI8WS6>;wq)T3xL|(|*=A7GuBX0L) z6mz@3Ptg>-d-#xLvF2=Z%D?y4U!iHGaqA|V^ILcS6!(S){M&E;83z7;0GUac6LLa6-*Z^7OM^GO~!E8 zV{|g6Dl4*0PQFNKSEUVKM}X1AW@}s_v1TI6YWkiBX(h2t&dd{Ajbn?{Z?-M%qUcz? zvJs%!w!-c?K;(kr8@h3I-O6~_x!&6y*b|x#Snh&OH^TqLW%nJpZeG6o)b`HO)=?VY z(C^2D_D0L|3{BIrScztDon}O#PZ;#}+d0}n0B74uE~i!kFx@dZ2YcJXksa}g2wT`@UyBr?Xyp08wo5*(GgsiK0n3NhS!EC|8y6_FTt|TDk9(T zqZcbClZY?>iAVGYF;V1^l{Me`+FgpW;lt}C|H(HWptZP)PcK&d$A9VpUw!A8zxwCC zKrb*nzg{z674#x$ONwKUATUg?S4@s3c)sNF`k{{(czoq6_ZSXC4vxoYqxtNU3#OMc zUC7rPvW>)bg(r6ij_*R-P^~v`{X!T{r*+KNlK-hq*ESUHMDzrKfYQ;SfX-dO)V5tU zp=KQntC3uCv@}L9wHUd8ddHwTqmg4p9hh^S@eXj7S;u-p2SA-s zXKUc8wqthFAA&FG0!k^^EG_ez5e$cfqY>H&o``&Dl$x$`;=nLI7!eK!JK)f|;5MQAIk`3B`1T%~b-~R|N}5-E;m+ulul-k#-RlN|fcohR7>!u`>`Zbx z%MzYFqkMKjTQwBF`yDucihApdD9_Mr3fkZMyXY^y5Bo>Z)Rd1;32yIEJw0drljqRu z(ae{4gNWdG1WFOy8dFZ!M4_QLo6*)SjU6NP2R{9yKG&BiSyq!~6-nZ;C~H1hXUyxG z>q^>$7In={S(DiYqc>xp*Q0=mXUN-jtC_s1YEFxiqrhz2eG+Ss8G8ca5~C@aW*fsa zubORq5P(9M&Y@=*dYa4v#>B=P6_%}QT46LDYgx4da-G>|cX4iYt$4|m-?Kn>7s!Ih z102g4X)zN8N^kq>r&Y}&uUOUshz~+v7}~%v9*2y-av$%tTX23(^xi{hpSoIcag%XX zN=2yyj#<<7&+qw$n^Md|T6L)bE}OHk%%{s!?VHY|uUi1;n^RM*EwI9yuQ8h`N{MH{^ad% zaJMh#W|6Nr=^rr9m;CJdg2W41rWvDgpYdcsRn;6HPFO4?OYixmFe#axEF^Krc-&{U zT(e1Y(yXADL@Z`2=4Ue*>n;lcaGR<#`@}}V-jCwW-JRB3hkALrhCv`Q9XDDo8-m!r z={lCNZfzt`ZKIM@SBvR@U(fHrmvfUV>3_qa-@JR09+U6x#I z7F=J=`S|e*G5)yYbTLsz3m|pTQJxln*tQ)DS~XqXXXtgo{K}16?70bcj8=Q0u*i-P zEgQH@iS~K|HkEyR;=w_*ja_10LMjOgd*dN-81mrmF=bKm^G}|$DN5dX;~sCF95D!b zJR05q=X90)%d^a88JW!><<{qZ?f-SVwB#>BBl zSvLHwPp16k_mB9qj}8coBF!sq?I)B~!)K4L2?CGJrsUvgh-Xc-d;5LX^EFM~@Z{-? z)vBN@<)+CCJd#1e{K{rd+T7&)>XPE}R6yqHy33htYGDE6VaISfzz3a<^6HtmzMWnY z1l;tk^vQvxw(UmyWiIP>EL;%N1;+cbFJVsrmNVhF&iLKR%H0gmBJIGa18Qw+SiHxY0f z59K-O0UXjSJC1iPS%fje!+o+%#?vQPG)>F#$$-%);$Rf>`oXKC z(OwBYgKvBV>Kd~*BLCh`NN$h8_o+YpgeEV^pHHb*8Npxr^Kf$scOTGJHBC{GfApMo zHWQKRXoCO6hY&^7X+c}nsKF3@_cl#g)0P$0&6;|Z6C4eR5BsdIH?&nvIonWg3g)w% zXCGd3ev`5+YHHwOo>R6hCxK6*HOpFR7-OwDwqy6Yl}gK{4I+2CLWA1YXeL_oI1`Xt zSl~FVYC^4@4~P60!swh=_Ls@Y1x90&up0r5B1ups3s?MpJX zT@#VUX*$`~e`?F}^(+vLl(^Z4Mw+6os?xSDwXBsCg= zX)S;h*fs|#F}F~4qwivx%7{3%;Kqf~C%&wACE7CM8+6a_oavEeO^aIUHl5JgML>aE zcnSfpy9}qhXm{C6&jLNi9J>ARwQMW)1bp^==n2cIl%iV8D65x9ANt~QA!db}j5I6o zjAp&b7!7;8wSUBe(QP(m#yA|Jm0}b|Ji2$x{kz9#Wk>Bs$-cON`duTHbMQNNzGHRM zx;qE!vSXL)RL0X(*=v=hNLGt;j}D?Jddv)zt14}{AKgTu}5Au3}Tyr6A<;PEF{L$%(LG1Hz)Z^FQJRlA{7ONcN83u{Z(NT{yEk&}i zlt!e(+xr~f-lMMDtw}iBWGtsk=2vr+l|6YuAQhcX&*`+9O)bEyzb`<|=?EQYgifOf zor`;RF8{A`0ZG}ab8v%zC})gu5l1eg(;0x=YuD9qF0VS)(1BQ`WIvVa*gojMn9I;~ zqxCXlTd`^UPD>f}<;xkU{78&f`*+27lP)El!)shi{(1UhqnI`A?|V z{K1c0WH5WuKcC zF3N@$n0OKvzpiTxa9LJdmST=N@qI$A>DfxttEytvG(0cFbaYyjT$ZBcy{;;rt#i(^ zf=`zzAAUM#_R~|;PEU4waZdI9AHDLz_+?!_xPHv4NKq*M+{15ir+>t{Nb$9y=f|A% zC%m`+7Ju{U-{m5`AT$xN=Q9ciWOd1=O!@A`cligW{||#;z<#{Px|E>rx~&<6A>$~* zH-;eaNb`cr%Nb20X%A&lv084}Y;t_h(6%inhZAle?Q!?yfc?>ca1aR&N_=5Bi$<8U zt5mdtMI&D~nRTZ(^4PSJ$4x>3iH?;^ybc65796$+@Npw#-)x!BIxi(7)IHBN5V^bl zw(Z>MyJK^uI>Sz5pX07|2kKfnO{W`cyV12}n9vFxdl=6^Dw@3VW&?qt$V&3UMnaVm z8)gm?s!~jJ_irB(MgdLR^5OIe?;O0ri`50oJm++^U zoxAS-q7gvq#`R4r%&>F2&#lI+tOblavy!VFz0Rc0)TIfy5c{Hmixf5$#pRmna!q}c zLe)}VY@lqYW+|Ih%KT!^`Pnt+=TnT)7_FE@F=bQo-Sa>C=XII_HK!;f38W|*ioC>lh9C+so+0TcOl}=9+#BKr z9%?WVou41U!E3VPo4K%$PGjksf!0$2Nl{M#Qn6G2=!e!s6LtVFTXg`(3oP5|b%4<^ zl5HbE5ISR!%YEI|tHeJ_wJQU;A@}{er z%r_K^#a1eyl#;k2JJ$Amxz0o1@b`Xn#y1}A@%(1Pbe3^B&ln6sjFIfl@b1G7B)aqf zmk6+Hm;!4U+Sz~CW$%LH-R~Szs&seU4%FwHF0RT2@H>Xo$tbq*SxZ^(?7Rc)*&2$J z=IS}?#hS{#-unH3vTpgE52vqu?Y|Oydf)h}n1|AgcDbPb>^aqZgYJbiH#1Bekp7L| zqsb~U5vY-Xqww?mKHfuU!kh+H+~ z&=Uj9ldNRVH>_*PvE1`K6cVdcw=GJE@x=kGm3>@bSv{9uc~R6{mYp7SU$L+wUXEcd6+=)Wod+!L}*HrUV+Kmnl zV7=zzM=xG^Vf?Z#zj5bRm_$SJx*)G}KAJt{Y<i`kzHX_|(*X}Fm$xtcA=H#t>Z(OgJ>G<{Ei%%0VCh8Fy|KK5Zi)3lui zG_$6bv6zQU5^OU$b!gjvK*s5gwR64bWh33>&N$;~VK`mPk<0va4tNK`G~GyDD*>}^ zai$}sIuPt~HXY+xw=f9s2N8q<%Il^9PZ-a^tr4UZQ4&(SmZ8Lx$5k>CFRL1@HNAd} zuMI_A@_7D?hogH0#_(u-zz63S0NlTQ#M9>&m_gWqU(( zrn2YGvbl-31@}^_Yo$ic7SeK%=ts26Sl}}89P6iPe(TDau)L|s&zvplFqW*-o-esfbHdQ0u4=Sa>?Iz{yynI}|AQ9`Ub{2o-n|if{gCA{r>^BDMk&Q| zx}-PkQP-mVACDu3qnLD+QWX_Z5>ey@8B2)!001BWNklEFV3l^SG0?pP7mp{ zl+FmFErZxpRy$}}$RZOU8V$OTb){`w)3^hPPL~M6Vrs856oG)h#YGp9WIP$yyKU`; zs4FGUciPN+-MQ4={zDhDHTGlphUbzg+mc%_a?RKY%jFAC4f5N3tlALk@>C!&&aueS7cP&%Wg0|NqzNQJ^tk zDX=&PXxzS4)m3MyQ}sRH-*=&D8k+fy0nGa8{lKGYTJpT+4?e!-XYUWm^NRhgkei!? zx+uVp$)7#x%ttow(}M21b)VKeWx=I24Oy_Q+zzPQoYJu0fm16@h=zLXZnv*UQG+f0 zci}+qgDUU#dtG(UZ9%Z>;~hM}3p|RfAdX#jMrxfpgMEc1k z6a{J!6Tbcc5r(>QQwZ9+(Yc>W(oUzed12l&t!^_)bPXR*pA!5R{|(D`Px-14ewIXPLeT$Ma|x?(!ZSv5L3>B^W@8nkZH zwj9Mu;+ZPRk*UkH=9ZD8V}LZHruCAp5PIU*v^Yk~87aA`svJ3z>$3h-Px{zZ8>Z70 zrlqKDH@|CLrv`o2DIORA=NQMLZ3%LO4yezYE`G@7WqM{E6rEvqS?hgc-Rn1H#j37( zoaF4fu5QgUUA}=71diIUl+Pdah$fLfHj4#LKj7K7KZLqw>y1N%t0;<^gRPJ#(m9&8 znF-iLMOp2s5_-Kovpx1ZJ2m6@w9%t?UkDbJt_hWB#`>eIAe4fA*WI)}Y6}mlhsz>^4vkp?oLSCwgme_{KGB%o}0~}EZKf} z=QB@?pVnobFL*RRWtuH0>XOI_*on3X9iOVHD4UXXnb7kh+P399xj-Um+6E~Vj#Mm) z6|Pjwi#dPmwZF*^FP`xCfARwWj{76Zrr~C>ray?O>V{;UA*Il@n`v&qX3On-#rf5g zysS98yd}#^+OmPP(%>X^Hq4vq`k-Gj^lc7R%W}5D83fdILsjU}e-HDXfxICS4ksM#O$b8W?S8O7A*(7v z$0w;$4*Q?KvHQc@jCUU1aCMV#yDphbB6i0S+k=3cn}pR$gU8e~`F-znMd&-kJs+h6 zkt;cy=M-g4Rk!@tfAvj1c{1k@{{FW~i;D49h*FaIJjD-vs!|s@IF2NWT=HB4FhBIE z>zc)Mfe=CiqPtGS0Sqbzuos$(VXez7dB-9GD-w^^ZW+ilCbo}zlbHW>Yb|B?=KPS=S9$Wxc5jy(ud$ z%Zkd3v2E_DD+CpK+^!JZ79~m3Fi?t{n@kr0_zsLlx)30%p)66azQp?7Q_89#H&Gon zNWMWEi99Jb4tFWKNT|w;)YGQj7@nH8Wn$d#QfRrsKYo$$};=XtF}bECFqj;C=B6pLt^Z zv@Soo{+QF{5=T1p+?b@wsN06?bV}LO>_!vby}IOlb%P@vnzlv=LFDKUil@tGd^CH? zRxn`Xk9hm$do;j7zfajzjKiUR-+C^d=c1$_iUZO#r^rj1rlBlrs;c6Z7mwN7)>qQo zTP9fA);YRTkItt#Bo*~6(_{C`)WrRWu3EEdwL?9xad&%AwWz*Nvou+q(_FXaM4k>c zAKn3sY1KKr?=}wkO22;5XpN)5>P5P-ee7uFFLXM?l4Voxj;kg5F@d9hS3>{aGOD1p zlex|&)e&++Gr3ae*H~9ng*M-?){gL^ELpA-{eMStGh0&E4X*3Z_aa=W$f}A(vEu&V zkoRxSNY)w4#hP9}A`1L&9j#u|N)d!%Z(9R88#EJIn4i4X>n{vz94M{pwBW&aDAI!Z zM(cSk+uU0Bf8-!{!wrL7&QkCtgX1lI5#dR_kJlwxnp0L4m$x&rqU7}Kn!0Yt%Zi;i z<~o^izPjPL;lZEv>GCgp`J)f7dGzqcM3kX3IhEvcma{Je_lOwZ?N5>!N14 zF4)`a;W&yve7xY~dd*hP=k>ja-}yi{kr5AxdPI>P$c*}{s-dbH z>Z)e%brCtcR(#@q=J4S18qiag6%%~uF1XquLtam39c<93zvg?n3{`QHCb z@Yxgr0){HxCf4IuJLw<`is47DX*7iU$iir(N+!R&5Hc(pCAS! zdN1s7^z~Q4b;;j*1iQPa@etuScn2fuq`>n`*f}s?6k3q)D1z8yG70GST($-tNv*+` z5IUE0*L605@D>=Yo0e7GZa~wPY0x?LT`tQKB?R-jV&piKtqqiKyO<>eLq~4vI;{rN zGfc>`)*a)?T}H5N%_v`w{XHqjTb&g;ubU0Y5E&UjZC-b6%utciKusH;8UyAUQlnqJ zt@OD5vecT>S=DfBfN|4mDL`Vhn$pl1)4HN=;hyKQsB4~kbC;VZGt~YL<+~pux5os5 zf~Fz=!*?jslF`s-JPwdjFmN5RreV)8y@?6dmqG(&t4ozakkneYs)Pp4w!z5iWj(r&P=7wa`inQ^*4Ln63M=R|J6QGb`MU_jM0Ov0gILMx`3 zW;@zeCpoxMk=F(9-+n~ogxntt`Q_tR>3cELY{9+3fN>P!I*RR`5mi+a1fDh_l@)nb z;F?&MF!UJp^@myDn|#i@J>iklnR)I8uP2t>Kx;hH3U)&6bPpX3;6g_Ov$p;J#vJwB zPO~ZK^oO8d|8DlDT`b75j`n4#B>;Kdk`kP~=vkch|I^&p4 z2$<$Hvs^RTS-sJ_W_i(>mwFBiJY26ccGY!FmKU6!UDGrTvFp;%GS8RngrC1+2;X<8 zii$k1xL#zGWzE@**3TW^8?m+c|r*Kk!HY)Qjg!S78&1vwq`4I*x8Bs zD}U|hainCiF6j4t;@HD=6+skG6&1-kqiI@-q9)HPqJD(uIryPZ)Q|83UuS&gI@578 z2DbpHGPm7zpj$1cZ8P%1&K@M zqVBapKgJq#f}U}Z2ij>59jLNSZp$JTX?MGAG_p*il^Seb*ZgbT-&I~fXdL0IDbjI> z_jbYcxcA}#i`xa`amdN(f`dtfkb=|Olpj2ql4TWJlRl2CWfV%;D5L(T6B;R*#EVk#e4k)#MU+bNX)g$Y^QYgdfm2C^y(00M1*36J)D_4yMR%P4bNP#Q$oJtC+A4!PwK4C7R@5MLU2*mEKRIY-dcyeU~M#|o`9=T zhqgyb(38r9(>IijP6e>N=@ayOvOn>0cE=zk?b!|W#VyizaRZlNyGOau!LgUq499F^ z(dzZHU-!`+Hn&E9A7zHMw0j_FT0${Vd;P0i?j;wsingR+0y=;kWj@?`5#r7bg)}t~I%%&_M~o@llWAz~lTTWzh2&zPO9{m0v?19U|M3_U0D#ul?Kq z*=L>|KZQ%|i*NkW(QCXmd6AwQGtFldb;(hGm$I&Kl|$qT(z@Wdzem}W%<~m}FJf6F zjDrE5a(Ohr-XuoA@h7iOUuQ2P2IN4W-HP}yK7g=6vt6oVDD=e zcN~W#>x^}pvsfmmP=g5-xY|VI$u0uPj(i)C`w^|Do#Mii8o*evlh>V#+-7?QN}J~} z+EDX6*uS-moF_jGb_JcL5i~gSlrbu4)^5{>ZpYV_8HBEx$VNC>4NhjxgsRo!b!EoQ z7SL5@C6v(j2RhbB_zq20ZJx6?>5&&D)hwfsErIXhMLs{Xw}-1-k}~BcofEk}fulI+ z^_b^5d0lgIa!K9l=9+q081OB+C@2d&TeCl`*3=rXs-`m^Wpx)zRW=&j=S>$cRTH0+iMMuM zCvaV6`GT+Re(iI0&ibDG#;<+lh+q1`HoF6#vvo;P*5r9j7`hBXm%%WgX5@2CIj( z+g9alT7dGk{yXTjqoCQ_JlOzKuh%DCr?9wTRR{*-0a7XYeUGwfSu6|kx}_I+NF~@F zM_gU&=C}Ojs$+b)!z9}(&muAFXaIYa8)yGg-)}?pEmL||q7d{yeH@et!nXiDTk7Lx z!|es#erp@TgCnZUfNn2offEmZz)Ae99#(8jn|5tw#`M3UK+@l?>@ljIi>C%+ugAaAX(euya-`Drc=O574 z4UQuzzWXlicmELatG_{cdQCM=bO5bVRJTin=jc|3bwL<92v?zcKGJnqUaeU@x#jFU z;dYTz)D5Ra$-J)lBr8}oI_Gmy*V0?3B?Duk13jp=LYu~heI6c;7W(v z)Mz$M!*ZG6dJc}Gm~88C;l(0hwMuzC;O-y1ikZFPVf9KRmx+nytyIih+kcM_XCHB~zNY6zf3_#fpM&L{^ELCVB6Jk5Z}-_A z1pFtz@iKq=-}+fzIU3?9$?4gW<4MfLEaeA3xn{A*dHp~)yW5$FEX!$G zP4|xM#fIbCDpSiCZ;nl?|E(+_HRq<)vs%ro1?P6(dttYaYQ@LEF-P_d9TTj`-LA z9r*Aa^8fy~$xo-mzoa!?O3ExVxq@$hQ@{8y)K@j*F-}?1 zBziV#FiiVbnqc&`)9ff;R z5Fy!foejwIg*LdfX3Tr+dps)&W9ZbQdru0Ay5+j8+4Gbhg}0y9J=!s|XGYIGsc;Yo z^!<_24((~xY=Yx!*ko3245?`2)Uq~a9y1!O(Z3EH&D{1?$M!k`hK}TEUTuQfwZ>IP zOg#uZ%C_a{EM?1aI4eq~vz+qXGsgEuTKb@F5T3(}Z`L@&2;n(kfO*}txLXmIpUm0w zT#CHd$PR#w(;qZQKJxWweo-}~Rm0Gc42_gvRks@uTD9PtX{POTU)4H#>Ckgo)H+MG zYT?$@aN6#AFmg2keMfPc6&(2)j|x46lsG#hI6Z~oP+#SGf$m9`D@zm}Rl#>qlSbD!t^JkKe{ur@T6OfuR>O%a?e{qiQNf{*aI7 zk8z~LQ;MBv%sgN6!<%;i7zPnaN{$BunzrSpu9<8Pna@__SwT}bVwSFM=8T6u zu4hK(U^S4wM0ko;phxUNz`zA8yU=u6#mF_)nFi#44M`xq>fSY zq<*Tj(u`fAKbJP9noYxx23SG}Tt`vIK2=cZ#w7~^^Sj{Dj4*6$(%o@;VZfaox!6<0 zHGtN3yO&Mp=3g2X!&6Y!TF08#NE6U}c{8IIhh*0)vR=r^(@S=CMvQ`hq|DflxB10; zT4FK|hg9YZtEy^_CS%@x?-BRz@ALHRs&n{bw%;1NgwSJl+XJ7NFE$&5Uo{#$2I|w> zWi?Jx=xqy~P2m4#|2RVLe@AE#ZW!pTL63{8HNlZiO6bJ_NtzQ!0sFgShNGU2iy91g zx;W#Yw}Y=fyDR#qarxGdFL4~nr0+9~J)T~!_#eJg^M!*RfAdR6eD89`Kl#oRK02M_ zd5X~};L)R727y8%nDl+#`RIoAx?p!VCJtRruh;zJhf|ak_`aev0MqvsXJ-|o$$(^? z(Y7tumvh>7fbT12RYg-bIF3WLS|FpIz8K0@T0dx+Gs_s-tVkP$WI>Asb9RjF-_aEU zYB-@@7&a9;0A*WvY(}UMok_@oQPBT-p(e#_;Js}GvN@JvzXOG~g~_`UdT!ZFKkmla zZQYIT?Q5iqPFi5&m#jg_>P?#(cYB|@s#(ofgmFkdKPOX?i?b>F#}me5T_7+R_>A7V zhwmxvrEsLy%GV9|p4;KQ?|r2AOH-S5jyk=q4T*2t4urR@VML7tp(;ASdAAzWI@O^| zAFw~5A6FQVZb7!KLv?-pI3&M0fvp3mYof`RWR)PKAdEuBlRmDiP)hRfDq(jRFtDHX zf5P&aV|V%9x4t0<`VCS%JVV_-q@B-M|KC5tJ^g^<`|lFmpWuDv4K2QX@ddm|jMzIs zeEm1!?LQ)W{|V(HC46oNK}&HyN4bKgsPO;Nufk#u7Z(r&&g0 zD6)#_Ea!TaqgsJ%q3=2jq$E(1p44OWywy(kqG|D^phP>sh0si*6544!a&$9JY%)DH zyQassW!o}PidEC#nlUqU6!F?Ha=sZc*J#JKp56&!W2A{4iEl>znq+9rC|dt3!L%xA zKjbX z)Mt5<&^sE!(Gem|sAp@uU->F>IionAGx)+jPF=IUS~KjsOc%w*Sfzvp&aM!f^{&x6 zSepkbga(XRtB=9XM*k^Un`4l-+MMK>h9>>|jWLwzXsnT=o$pl(GoyobjKrd78FS)*g<-;RePiK!e^Y1c=>COfTxO{<)_g<%NYc7*pUfkNF zl?@+V->|(iV!2o|yPS9O0Sgv^O@o9T^<&nh?`f8^Z8y4HXAo#`+;=sQw7@fVHM?nB zlRR^*Y@<`&bg~L1VO6nSrO@}NE)yCW8mSwx`f-HkxfFTHz3nX~VZ>HAq-<*Tq8(lt zzV^8~XaA?S&%SXq(K@|{=S!3lT-_#o`wt)U-K#YpT&%fwG~|s3Ta7=O_r4`XG_|qCGN)vS2u3qxU^PVXveUAtU-xqm^d57WBc2c)3Kg*1T5snOw%R{ ztshJlrUj|#j7^r&%S|q*WhjeOkG&mF154M#2||SH(bk47t&46w?`lb_!qiq8AX}Mn zv)|Le&4SuZd{Luc%K|ssn3S(OX4MTeaRwkHGK{o7ay7&0^=Xt2=%4J3nNL@^p3B}& zjOQwfvgR+my2I%_W3kG4?*105v|&D56T}f&T6Fc7meI5fC3GWq>(;Mw4L)hv^tXdv zKMOh?w=*+Y*1B!)jPGT4!O*r{ohLwDQ7`9uAI>i}$puZ-5XK=2VV;7)p!(={yho2>oudsI))$^X&s z(SGxHsLpPv7a1QtT#%pKQuxj0h5!H{07*naR4p^=RZhLiDX*54-})!o@qX_f)HTjl z%+ue0gu63{uG-H<~H6?M9i&!?f){i>lE;*8sVdF<9v_yVyAEb=@Xhl{JxJV#kgmF-E9$ z-EiQ!NCekqg(oC^rI=204a}cj!tE{jlPiK>|3!ZEU;VFo`=2dn(voVG6Ac5R$Ys>? zj66Yps%Eq@z&bEM-2T4p>dMh(bDuD6RJCa_((4{6X*8dLZPzhL0eaj%R2pPUV8?aX zaTU9+W1_UQ^r38Ztd#(KN7CXGs_B|G%^*!#{opap+n>L{YJg{}EB50Z zzA$8d&oh4b@PuWN zl2-*~Q=p@`7UKqQk4}_N&?^I=6uTH zV$SVsNwUt2xv3?&S!p0SH^u_v2zL+rok7U90$H6QXy?0S@QkKYNu&QvwWe?buAp;m zH?4jyfd)j@NCOmQMd*9%?@#bN7uRtRks0Az&}Q|V)~sXopEicbItjrr5?1eMzBB^W zf$YE-t?YI<(gg17QFWb{O!l`x3g+__N=Y2gAvNLsSJNdwxjo}#dBM-_zrla^hyQ@0 zE;(7uxmZuRT(23$A-?0_`KHauj`%^ZXI^&(Av?)vjOMkdJ5UTT@ThL=7hyFc&^%*it@Z>()U?s6;H0UFXDTTXH3^Q|H}_9_`Baf z<=Hf0vB-J$=$!M56N_Om}W&e`7254J*pN=iEZg@NTwdV?Sdd}Rm^~^3h zmeWQh`LSj~?bsLCL>@`CF+f#C!Ek$sGZ^a8|J@2n+hlY%eyD9f4TfzuJ#?(0)qC3K z5JErR)>T61${+0-ZEH!jTo4WWAOz{{RHqk6L6+zs{3Iz!^NQ=+gtwj_^LPIDcUdlT zPEO`rTqk5{POl$Q7A3>&VF!9`F#P88Ch6AS>SjZeBx2XkE_Y30ZQC)Rb=lQs+EKfG zj7?{XTJA86MTxm zhus6(x4(=3OJ9c32~*DO5hAa@I1JXhkllB#JLI}W}Sq)p3?>(F;J)msCu z6!ewCH@ZfEhgrdSp__7A1D2E!Toe_nx}i3vAJ9e@PY7mJWk9XK6MDQI7{EBKYW7^k zKy^CB9aov87QrjqF}{=pfx>kpuB(V#wEHXphg^tJ|wvN1blMkAUVFlsX} z?RTIJsCR^pkLsBSsi_%JgZ`U|>(Bx(_5)ne^~Qg4xhBhMRu8WsP4QnmB>A0hnMTh`8ctU>iJw;CR{Fa4m_8tZ8!C#cI0k#ork`on~mDmgz4*;E5`usylFVeD=n$3 zYZIHO^{-i@e+I^olr@?WRYGU6maUFkS~m@K3tNsNX?dSr!RpUD9(yVlUG73qe}tI;Yk57!7({Ue8!A5?0Fu&-ZjK zq*;1fu?Ab24pH}92hTN~?V+Pb>Ym)h^^|8zJtl9=o89J3UL^YVmM*M(T|v*)?)RqM zjOv3y_-V$mXMm&yf_LJWzWAk=8TDhL&?kxm;y9oehlKu}mL6sPz59u2yUan~Z(~<% zJd|Z%?P7sxXugo`nA)(Qp6hI~P5n3^&kK(3?;;%?u@?9)A3uCXlIEP9-Efs8L{7lB zpMGD*>i}ibupJHwU6+v`@c8Kkr)Ssf92%#%l?gO->u&2l?`mSLdwl~+n~u4)d7+JY z+_KQ4`q=Gsp7wbnSL=717FI?-8<_~JvO)PS%6AETk1Q`34q{x_VX;p6!em0=c(~Hx zyAPjGHlM$9HjF$TY{&e)?_coiZ|<=@2uRbC7hc-IaRg=E5O|8q+k|;i@H6*@^a7XJ zy5MN&lNr5dJ-^}hX2oKqD_X~WpI*-+uQVX2Djls9#Q{MaaCy0AKF?XLat1>kzvQ?M zbzS3(#+%wq6~#DFq!S75IYV+}T~Ip(e|(gwZfe+)F;9Ru4&qqf!H^lto8 zRp{G-z6m`q7~Fq=6ZlBSVK|C4(DVHcP}$z|rtaMDRnd*FEf}?|=v_wF#tq&53Csw8 zqe<17qK@Nibe8^Ti>j;`K6ro=_jG$1aQpBPd787FC#+Tlqfx;B^UgVWno|_o%ImK;OQ+?T)22ggN@SwQb9IZ;TK+W~tY6aa~E>wEX0UpZqi5`=1Fu@jN&`A%Ap1 z@kj4yh7%}Gr@AKd-~jdJtCY{K5x$3b?M?`IE6y?&M4&KD+}o-St4nvpEovZz{;S~oOVW>uNT zXlhfpssl^33+^_`+gVy^h4U!nrfYM@1-$f zI3VhIls7Aa=eAj#%@gZUlEi3lg^>nqnOaaA ziDkFn$_^qWH~LuDNFzL<4N3E=;k?jUu9(Nps*3ZhpfID)rzdO5yrN!aRI`Nq=`|?D z>u>F9lf~z7shWx>tEW6$-SW=$2P9QOpnRS#&RG@-FK@lTQE!iBp)U*%<3oJq5xD_H zU2vN%@EwO=ed85oX~w!tcwuzRQSXqdshEUAcA_m-#hP`g4Gddby-mHQQj#e0NmBhK zSl11CQ9)62@A(6y5GW;C&Wwp@QNXOwV_YRrdoi0J^J%WxF&mo{7~N-5c6vl#=jc(I zG4I{TrKJf=?iuDYP@i_SquWQ8i-g_XEe6Awl`&D-cBbLZP&2KzO43u^2w#ZK&}63o z!i>(X_R$d?<7h|sY1M(czPDM&sy0Taq9IQU97l0+J=2w>p35r9xOcqEv&&mtNAcmK zXMFekF;_{#AP(6I1_X}7s#r4#Lmu8t84O~+{H0gu_o7ZiD}`nz8}#eh3QQX*1)q+o zDw-~YKUCfJBnC_dO5bmT`&%O`Fl|)An#t;Rlj~}=zjabj=cSHd0?saPDGD9eb(JKn ziVR+;CR2!@m8p1)S<`Wjvm9Nsjg`44`Z69r7U%0 zmg6YeMyDc3DNXUnCF7T00l@WL^3|#XkT(BP2-r3`kbd0V2A$qexhAG()ES5FW=k5- zDWaZnr^^m7-W@Xov@LRLm*s4!zeD;FmuI)##ctTw>*EI6oMiQ)LYlEO-T2zFf)=RR zkoLRM0XxFC6_-V#fv9pJ98gu2-kxkpeszxHI;>_Zf;iCAojk`IZ<9@D6nVk3lUpt? z*WBK$=?#0tu}c(r9fJ- zU_krBAJEnf-u@Q04$~ROsGd*yt?$x&@FCK7sHQ8}J4Ez*5Jj|?mjuu4;0!~82ipvK zE{jD;z09E3Lq$HtElz>|_% zr+#waIY?kp*LX(b=ow97+3FzoSV>&BV?FmD3>gmfm&?vh$Xl;$F>)MTk7o#( zL7X-7M6zo*>Zva73AE8FkOEg|pMxWGL=&*-v%f4VBB>d}RjrLXb=?wpik-mY*=@#d z-{a;c!{5>EA^zTgbebYwdxNHG@Q$}>l7gmz-PiYZBt+XF(9uqIq&_rS+uN$yjL{>L z{~0N<$@O%FZfVlGS*=m6S`Do4#$_oXsErnMUDwR3n#;0gzR3es-1l8x3jdRNJZoXT&FY2y5cHX zYona`^6C$?W>QMIalsFJ5pn1<>PPe@J(lYP-|t34s_!#+egfk_S2NbF?)u|I;*4yGJ zj_>XA#kXE!JRWp9QL9A_?szpF1C}kbDbSCx?tL&LNYOdrH=*^$Y?anDMXf{j9f5Qu zv)KyJpI5%?Fz7{`UrjmO9rNt+mN4|0W*L#|vPyHF8$7^Mieb>FsB7xF<}1(LBlKM6 zt3D0s`eMN|`c5gkBmxUsm*%2kRnp#M8}?c5 zh79g)={nKAhuaIFXlR<2DD)ZhBGM$&$HZ}16$P;ya@ZU4wZm8be>rFVMJ|&`#3v_n zqR3@$6jGEmN(#1jdI%x-y&s+P(X$0*QQ|v_p6gIGEt9^_ldCm{`#oG&@$&P!X=Xl4 znXe1_z9J4>u4XBVv|v8hT5Mr1{(3zRDFsc_81_^Loi|N`R1&dskJCGCn6_>yrwQ`@F)9wIZddT`_i2*^#$%eZ3xpEL$mj7lf5Op&5pnELT+C@d`k3tT zwXWzqKi4&z{XWH&M%gyVzQ5Ze&uU$%d6DpNp0TWJEzfA-gK5H|(qr4aX}K<|P5q-Z zqxU^evF$1@3+|ffAHK^`zmF>=m&py!*5{louUQufSII4}ZXeP2JhC*WD71kj z2z|!eLsqMl0>;B0QQ$Kk4>&m5;e~xY5qoX>$h36Td@?)vGdfHD{4AcQ_}c4x1fIj?JYzb~ zc<+NN-gse5zwa@fX1uW9=iqR}VqNg9r#H-2Ij*C>Poxk?Dfr=!FWEmD)9d@(+$6kn zy5P~%IrDkO<>i_!p%ZM5v?Cdw$Hswx`u z{p)%zP2Dh>^oe&SIG#yw80~g|)r-1_B|o||tuU`?oNd@XsZ-)(nugeZZZ|X38y*}2hZjX}%q0q6M7F^oEc-P-(Y@O}>Zoii~ zRZd$}grP(9OK&iG>llFi*;H!; zzIb1c_Nz*_B`HZ;)s*v;CND{E6Qal=3>^l(!-4Pe;%<+?Ra{pk3O2cwwPDB>wPwd| z%bHoG`@Xjwhiz9;wA!#@2Xm3qUG6)siz771%T0i~gJ7r}oq^lvW{Jq;b@r4pe5eLI zfsmW_BY?t;f<40~hLad?yHC@!C`XU>CFlTXp@Ehsv;j#9t)Yyh+~hk4Qf$DaBLpkM zUMO<_8zT>p2=+afS3{p|M{QVNK+6dXHNIRHY;Ohlp5jX{jPw+45>s9+Q1=gc>6f3= zCZwGmsznO@KEhF){lP;9eUF3KW6yP{TAePS$M~AP^o6bwEgGFQY5{fHG)$|8qHRnj zb<3ivX4zZ286VzDfE z`gBR16?n%xT>R)f;LdHd=;uG1w-N;8TN zh`o@vFW==~KK>fZA|bD|si4|f50G(RP;Yj&bBj&x8$;VPwDjjEce zs>#xvG|3nYVxqt&jskYJhdg(*hvO*nMT!U={5YUDh-eGLROU_B2DGXmRCv3wZpU#Y zVqiwoWut*oR^g8$!?v;Mb`RnJ$9J`)qCtZsUukA;bSI{#ZE*vSDD?4tkGgIs@H7nZo9j7&_l6v%Z%M<8&@g5`S2(7 z`w<6wW5yH1;0AXa+6uw_qtdn%LZG+QQhhU4NrsU)y>Mh zmIm5|vzs}qWlqzyq-jOm4++8mAqD;YJ$COOXvxfC zssV=|;Sc&9LuSL`LFax7iJTnhsH3{n;HOAT#%9)ybeq~RZ05Z1BRzso<{kL6%%c}} zh9ApF=9y;PgoGAtYE-%(y*KP>*R}bMBkY^8d)2XiwlV2$(~)(C3!%ZJ1)g?9y=icA zI@6Kk!Q|L%r`{iJ(;`BxKPBvwEE9&?L;S$!{+Hj>0IeUAWfh*Mc<|C8C#MTmS;=}` zG6-FKU-9uzE;Q5Z`iTBk2iS$|j6$}LeG_xlcI;=q*85&6BZbKIc1OmPWV-1$+D@mYF$#i z{|M(l{V(bL)-Ti64bk&Eh*w@g+`F&8B$PrZi3~m5VTg1T;UqR!ci?#v-&0)Pq}*hs z&e1fW=5bz7wC!fR{4B31T5WP^+mf0=H8cTIYdLTEgRW^a(v?w=`P68M?N`q0MWe`f}*9%?6cF)6gB}xen z4`aOD0hGEmM7;JYZI;7if(-wdGw^e=OtS^+G9|AI>b7QCtoi2S?=kdy#I6Q$>oR3o zu6TL$0!`aeH6^~|^2MFk`SRZD?Dr-t@{IHKHUIu={~ll6e~YGVIqq+<6K(N@@e7;R z^8=3{@bt)CNuoH^B6`=scO8TfJiELlNpqr6Oj|bOMak-7p+TqBY38;5sWl5)T(0%F zJ$7iPhGlW2HVV}(d1A&Dh& zM&vk*e4n1@@%&^=Sylw0ufd^hWCA1DR^2GuUe(&TC(9h#+bl@4o%JTbUP-C*6zf)l zIx`-ZLQrJ|FTZ?``Esp)RteMTk|^-0sv6f-JX_BBx&7Dhq)Sm({MHL!C#_Phk~N{L z-{)K7fi_&;9s9e6)m)V(zC(4{reI_WceYQ7jXqS`b|g=A@l95=4f^;>iR)+Vh8RmJ4lk*jyJf3Zc^~hB$(~{r%xg&n_tvwFL5p`X2a<%5~{<}ZNfAFuqNLAHD zkwf4rUN|07mfCnEl_Va-xSq2C3PIrF`Yw*+;QB6$=|Tgbc%Vbn%YyvsTt_SQ#+_rm zt~Q#<=IVq^i2Qo0Sv4U#&0$sO+q}?B56nnAPxW}*E_XGKR!42e!(IT6gBN%xb1_sE z6-o*E{eYd_0egpI4N%M605!K`@vIZx>O9*28uuN^Fuc#X*y8 z2m)+4Fkk})3myUfe7rn6rt~Te%{mi>MFjSKDWZs3*}?K z1M^Ec=T=a+&x7BA)ZnOm>4$HFX#i0#A_yGPti)tDcI`=_|a!W=08(>T3`MO zO)M`ob-0f`?4Y|o+`5Ic*GGjeSQgEEPW_kv5%ur^oSwqj8K?i|k68V|cPP&$-22_n zL(@?I@BbtEU;lSdH|UNB=jSx1F9iM^Mbt@7owN_GBA>-%nRM4SO+%8FWVNKF*X9bx zRhDTRQjBbyd%njTp~r9Rbh+odCIK%K%XuX$cKwR)(6_cCC#`D&rA&%kZR|@8B06OP z+K|^ZtGeEZsG+Sn*^fBb4~2mp*?6Ig@?~}5eDMt|tthTngrUQOH+L92_Rj^4fKAdp zsT-17nv=Tb58aNVDVw(SXe)*R<2jXcitCzXRnbwB`ad+V_QP?&z}9^HVzm*i0O#|R zs%#`cR{rwx82|tv07*naR5vus6_(>*DFtZ?Nlf|VCEeHdS*{B9b_0gH5v!`+OrG0D zqPS|p1BVd;oxY4YgoH8<sT@+F}i z;AxkE@AF`Amr>9sbUdoM<}#l0C(pji{oyUn;&bNdivQuqf50Do`hBM9lHa=hCUKGS zy^HViTgU&HxJXH>f@!*7o-MGIR5>o@Ymy|Rs^q<~UL``bumu^D<^^?KlV=5Snt?60 z3ql90>!1S%cQ=Clkli;AWkTs2@1eFtpcVDjzlnH7X&Uhru1cK110_u%Wt!tU&NkV; zYP;0yO@F%OYr<~Gom+?O?DQ#$lK!AW6nOZyh@f|l9^fd&G))LYpI`gxTl9xrNp!c3 zKFurRb}(oneqNkb^%lX@aznvPbmSbXMMkqKP{uM~4Lw*Fj0Rmg{fI}Op5nVMX;$Fc zHk0|1x^BqQoIEc%T`tM1g1j#1xB<(2$@gBq%l*-qMV#{5;U2H;?J!@iw~uSu0=o{TN66^1Ww&?N^S;i;8t#<2YJ8fdiknZjVUK z1UyL!7W0_z{oomQ_Pac~Sd*p&|NZ~=BmT|5f6RQH^Np|G=K4D3|M~QifARJS>vh59 zWlUOBBzZ-z=h5$bB8bvlru})vY?d;g#rS~;x@47*C7Dd}tXE#gVGk^Y-RWWP-GK24 z?$K?5&$r^JZ3t@D*KK&HonE#g)OKV={i-Mg`S-2&P`6yl2D|{>9iX(r@jdFgmL7DV zsw&c?;Qs9)osP?5o}hf6(QEhERA{z8yA46LL7P^1zKUDgq~ZTYvK+Q6YSRv+To0-e zt2csdjUW1`Amr>rNqXmLE@E??lEx`TR?yT9(`mv^&u6j7a9z#WqTuP}ieArSb~&Rr z>fv;vZOc+L6rtFP-}ZjkE}IHd+cQl^hK1UmV;kaXH!W?DD(JH5tFOv!%0FAn&jJaF zW$~8dnx~Mblu3ft8r!vT92?KGdHHh5>u()#da)+UDqc=wJpZ$cTt0j9IUHl{@4({6Q54(@{0)RY%jFl@Wl<0~nvQ3aW)-_#kHs=acRY0DVcok+lcv}= z4}?JQ-n%%z^PA|%rLG(7Ucl^XO=$2(t$?l(8w1EBbXC>#ZB32vN+Sc1Z!H3^HYBCB zOmQ2w))WbW$&}PG-;>le4UMTDt#HkxI;(5b8*dr#Jrre)Hly!$IEcnH)SR!U+#lZJ&p`wZnOQL0)I{y@<5TiQE9K6ppfSwawAd4!e6p0A|xANt|Nanoc*Q6Z!Ny zp{%!kmtnud;qHjhpvQ33MOl)r-QOAF*f!I}S|*_zD7kr|cb#qUWmQsLCtJ)hX`$1;Vq ztZidc(`@{&VD7u8x45WwGFmkv;Ok~9w6l6!4{9Obzv+($<0}#|su1D7Dz-vAudq!( zt>24qZJWhn&A1ow#?B3X{pKCIZiF_!XX?7*u+#a^_s01zbo2s8z~g0&Wx=>FN$JTl zV{a#9cQ?Ye6@K9Hjj!G2y(bgdunj|Q-`hoN#X2onCIv}S@SVqV(xM^=q`;x78m5aB zr7YI#oWZEWVAP>1D;D#FcrCm}-LPkZEBgS`JHXjy%kNi3#Cvs`r|%IDWa}~jBdYn z$b*LmL>-TA;ILZdtd}AJ{lMF<>subC8*Dh08}4OW-`NT}F#cta4d1d|W81F$d)vi7 zIHq3C@Q!ZMqzPz;vM5EcSEWpsJ%^@l@IsHOtmqFTdi{XgHwTne&HjFeZrA0fFBW|5 z{*Hw1x)Q3=w%+_KnQCU+DQqkBTT8>MM=PK!S>10^{^`gk;PrL^Rfvl!)Q@}GT7^W#6q z{@eqqIH&&UyV5x0x>%lvb+AuGnLH^ z&$1Pf3TwmA1U43ev~D&{O+ypv*>x0MtyokduBT;T7N=QGWcZ)wi;TQ(c+d;D zNDIocCh%>Nq~z9}KFK7eT4zv}6yN_b<@0muB%{ePnkS!Nz5amR*LF~@&DB-PVdP3! z*Gz(Y#_w4nlgYA?33b&p-0&P`Ch*h-vlJ52x+=t%t1LNB`P(E7QjR5JHB^ewoQH+Q zc~NeDhGjul3$n>I6K&hJ7>_)hoi4?vr%*Sf&#uK%&GSX4X^%y| z;<&rVRWc!Td}i5#p4VlP%$cT3j=MX|vLzSsjCGN4wz^`Gtytt4&lguL@)eO2@ZscB zo~}OOM(>c_aKLpu!_yv-6L8$!@8YS97LQ>2@#H8PA?yP+YAkW9f3IZe$W?fz@}n_@2^y-Zy_dx&kOKb76nhjigNL zq87Z*rjFA9-5WMA`1va4@^Z$_L7xZXG2ggzo7aX1ynA&{S=a1``y6#f3_2lSynVv+ z7nkH^i5q&xM`~@wSj+f)btT_U7vbkY@&G+|%ggLKP}EE(ORy|vvlYW(7rHK2Q{nCH zpX_jLrkz?VX3I4pDXT-*b*E9|1$pvrkzRumzkiO^fYZ+*a^}$gv^b8)$3>hplc@1oA zTjSW8vaG1i{k}$bm@%e|l%+@(^Tryc@eEeiamQ_4{^peRWA<0X6J)aMs&v6nP;RI(f-*x}-35k4h<)r>9hta|!ua3bK^-<)!qU z$1_;Zx2fxPUESh)j9*lQn^_Zk5v*q0)vgz8Ih*a&@l`0g!2}gqLA;8&arb~5w|98` z%|rTqk9U9koTh0ATura%(H(TTb#I^PrSTgE-R-ono#3?sv=zy)4e+#9f;MSyDVaRF zfqakBkgiDAlGM*$J_FB(phFs`Xj{`cI%0W#Ns$#o3&=~3Ztt_0#jI8tSyA!qTrvl? zEvUE`)0D5gu}|0u==4I;t4r)K+)iuTdeByw`<<;Fp$%j$uU-Mh*V~{`TN!G*BBaY) z9v9dG>Vxi<5YXbLntIz8?}d`!cWoTsL)#kH7h=L9&WYoK>+1y9mGddf`tOEXa`pr& z&uS&>*lq_k8j!!7!D4}TG9vx-Ql7iCz}e}F_-q=~u#bDt$GdYtwM?)AANR|j6F-J+ z(^NHTXCx2KbV@UuK@d>I8O3CUJq!r~5l53r##K^mlIMvDvQ#F_(lL|J2Jrx%<$^;R z**0Ah?tv|;t}?=i+{x17tU+_-I&xj2Q$u@q^Heui1_kBli*79}JY`mS< zrL-RPvtTK2i1CK|hv@M*!V<7ylK~X`g9|W-^{q;2?TM1Ih2bbVLT>$!9~F5b9<9uKf=5i0I(7m5P? zrMIDh%G5yqvK_mjKz}1A;N|L)WggRUL!K?qiHn4x-{Zw{!d^JSR+^FD!Bq}{?XeRK zc`yKEL7Toh=A^g7Wjv$nhJ11F4OYd9qAEzsj8V|Xwlr7C3~gz40$E$faZ0xr5qKVH zR&5(oQ~Wr!&6x_ZSOl6B#?+UE3nNPyA_xY zT4}1fmWe}NZTXY0wk4T5$w4}x{~XpvQ2GqK9+tzY*%{<(E}eU-qqyvJ1Jz}Od?#W(;*{y-I`1#8fY z=ypOz<32ZfW3wHp8F&$OQ}gW`@8FsWXa5$ePfqxe z$Ms!;PCyoCOs*EJ=0YK8nuc;Yr%V%B=USFoq5Fo1X#|Yl5g5AT|Gby*)wQn?bK3K_ zQ#Ln*pogW+eu)agN}$R$2aJo0>>cQw6?f^b3hb0?3w^+RW&?5Us4nm-L6Mf zH5}jC+lFXbbWomb{i?0NZ1GPUkh}3Z+9sgr__FSf=kjseRo^0y>I$+H%W)xIQrEQr z`5kvN!PK_q^5ul68?dtzF`K1$o=ww8i{s-L3)Wf5myRP24mzwBF;>*0Tp8GVJGFgv zG7Iv#m4U!(Ll>|Ozti#m#!9{3`e>U5<`;$rAXS;H%>_Y=xpD&$-JPMipeU%yimI## zJ0Y&;G8lxLfZNV6z;!i?Srv z@s{gW|e!N+|c}GKZC~sbMCO)B0iT@O-E^iVv=d0jm5gE8FpMA zU&q`XM_5=)CK(6&0rO>!a%{3^69KWety89%3d^GTzyFY?swtN#gPn+OD7;d69IQ>P zrf(*jEe0xhML^fE!9lg@bYBS~YF#&s9W9oK_OZr2wg-^m{JOZWnfTNS|C$tuoV4R~I*v&BoArXg}ddTxin_V}%v zU*{^B($FyQe6Eu@X_?{M-p{obC1u8+K6%8@?=td-OtU#fU2xPnz*gJIQ&AO!j?a_% zC5QVXnxwNhY_qGwPG&1yxdjl4?I4$P~@8EQ(S9!U+Du1{9wob>idih@<1Q&bhR*-Db{wrW=t#uJH%GqWz=tk;`n>#@vVSz9}5 zTXImy)KLZYW~DtEbj3=rD(H73o}OOv;QkFf*Wr4$q~D83vK-HIxW1lqxm@8Yo3bvc znws~oudpnO@1Ff7zU^_HBy=-`Csd@9k)Sm)C0+ChHLS4#UXfUw!?AvaDGy5**LrYLQAn$hC>n zf>GaRoywZ`yMOot`h6d*EgoO4c{We!1`c^%;n`aJ!C6TVILu}#{XvMOEXty!GE--e z@JLlw(v|MGB4lhEdSh7w=SIYJhOm1}`n?wu5iKpCJzdEPy=??C>Fm0$x2PjCWo%l@ zU3^?Zp3<>^H)DRCr;(x-nlRA=~bK)hA!)M&UCUS%Su@-2OVKm zwi80wVuoO|QkF!y@qcPtR^1>U!*-IJ$8x^5v+=Y>yJKueCcfQ4m-+Ra(ZP#twr*_iWHWRgI zrM4kTX$gq67XxiFznz{|g@{VW+Y$isR3@J7RJfgBCkyl65*>BXVYI<-X z^Df>$`CXc&fg%?b*0+8K>*h_4zj+_;WGq56ifBH5A10R~4)*pyYpP3u%s0!GbjVi? z%avU9msNvS7C~S$@Ekf?5gAc6v^9sJhi573MuI=uvNoZccEUL+B+$~+nsr@MHw~*= zCWhLQV9c`RVw!2B`MYO)hHTclX;W`}n4Tpf@p_&yc>MtPpifg)l(QI;gr+F5k4!h} ze2)9gU&C^3bRd2jWo}n$JVijd%G!8?+XOfW$Fy%N_Fc`9XOq_r16zy8Q!=fsX}IaR zT$QER4NOQ!TT-$4a*o9ZXS2IJYC|Q49U*spf&by{swp+2esI66A|Z0?(6SSzS}EGn8e7U0Q){VRaqKSwa(+l=D>Hl#Zf~iw)-!Fdoo~vMQo}aAUGb}TZgRWdXO^bKMan!|QPXgDaE!7nrsXR(NKWcse6TR?^igV${>9zFe5vJD~_PWkF~&xt58CGYYw$ zEvU+hPoJN&PEr>0HLG>P!JhCt4|a!KoK1MTxa3Y>Sgv;lLn0?6asoO|fNj9sQRK@I zIWv<^g^2T{+zNifSnTgGQn%5&0nWD;r`shDMQTcM3>JYE8#SGc|dq3LdqOs~7L zP?o~hn!G6ST?fat>GeBkrSP@K$oKh=r%&Z+ZE9@g5V zVBpI%%vSu#hf|cYxOr=Y=eyiH?D0>&bV!^Q(i5In{I}n}!xtXzvVZ@MR7_V5tF++J zWkOjubh{q5wl>qLvaHB5@qspV!)m@FPji$~c!4K4pk9RId)R(}ANqJvKyTQSZucU^ z8xFB-Tf}I*5TV&lq^m+i-TdO`Ve?AU6s9J#xkc?+BOELx{ zNmfgfn#FXT(doDx9(GC7inFsNUwUg_rjL$EwyzCZsAYD(Qjhs_{phVQbwd$%?Ud6} zBA}I)39Y5jdpBTl4N7Bm`mC=^mwSJQ+0~4?s+nF+C1e!GtmbRR2V*WyCvsocDMeB9 zt%p184+4%(M(p(i?jHB)1`eHp6bx(vUv9AV%C^;*o5#%Fo>w~&ZEHhY5PgxFcB)1u zxUJ=&GdAbd-LhI+$h;fKbEz~{Rc)aDZD)NOj*EPoG%a}dM^EK-p3T%yS3wY#Iw zeC>a>=kwX62+t&eXU`xEDX$hJ??0zm$5bCZ#=Ug_-7d|e_fg;Y7S_Rm{Nexf5nNxB zetL;@|GrE(_x41DcKcYJ4ptO_=b>+(2aLO?(vj=X*LsuI_Kl#iEm`m8jUbpB zFtwhtcDIc;v}hV`?nn5xCVh4-b_5Xnf#+cbK4cj<4$W#!bA3g%lFCu7;P@zFFLdxN zYs2$w^9i95p)GJeP}VCSi}+6KZSp;@W!)`XuZBfg^E@x88VMQgcHGT0x2F}yeIMU+ z&{tK%*(9O3Ug7O_v2Nd?`TqB?e(%2`{Jn3%cnqFL`skG4-X6N+(d&Ec4txgY@vD&g zsx1lqv~Qe6SqX~D64<>qk7oha9@<>DgY`RWW;JG@+9 z^5cs~PIE9ydBC zxXQs*F3Qr}?w?RKHD5n@fMr>Do`dV!^m-wk(BGgq9Id%|w9Ed^kgBSf%~verl)(2m zy0wSv+T>Y5wan0=_(rjnB&%(M>IoeYc4>t@4Dftc*6tSaHGrnU_FWn?F>PAbX4!1u z^dLOMhxcy~cpmRvTynNvV_6oVo-ndUumQdC7J0XX= zBP`oOYfV{H#7V~0birt+&lmS!PEtO?_Hnrg}oCztr-rwoE+_n z2=vVwJvaCD)$r6J-}+RGTEt|#qOZl`K%nKE%Er{5*5pYJO+&LPpn*IsWI_rX!R_{Z zlu}g2<`kzHG!U;7_QEdz_VM?5W9J5GS>k9LU;C7G!B-C7RPI?~@6Rqq(|@+24;yi;5q;Sn)5uc7jqCT3NhYr7V+zAaJ;IARKAW(TqZeFWuOKvp)!=H#{!6dD5pWYrMe2aUBVccn(EY;0G>P&>#2lBVTYqamISFmde@VV_C~r zl`ue~zDxjHuz7D!CZ?}&J?+7ch?~|=>Am7(Y@k^$w#cGaJJ^kArK#x*WlEW*B{MTM zv@DBZBp1PrV92m^D`V!K|SYz z#g|=`)#iJf*(J*N$*(Wy^gA*&t}C>y>5t{{X^bdL`7(ev6d(h=i-@oD?-0kz* zzjDkX&dKtM_ddSn?!6rx*TxGxT;EJE{pb}=X}Fzi8V{{2P5-w`$Mur4=$!wMo`VNnt&bW1JAj1Y%v$q%FXp5W2 zJ@Qwpj{lb9vpt{V4$a3O)2vpqHaBTQ|Lz`^>tKKN9T*O=-ue>OoqLpj{Kr@i-Y_jj zk6dq9sv`f+53mM9nm_*&tosjW77G!h!y)Mh&#+Ez$tvHHK6E#5=tMR*-#!Fr z8#gIirX>y2qNHjXE|wXyqLQho(u^G2@E>JD3NS4zA}#CNTb@f?)jZ2{%BEq@u_+o! zxGQ9WCn_Vbw#+#SJ-W8$vMBk%<&v@Q@bT#i+qSrS(&g&$1j~15-hU74wby8V@_k4Wtm6;S zr3nB4AOJ~3K~$SqZ+{v8-T~Dr!#x_3rzJ%pfv&7>&_Gg)kG8D^T~`%j1Ea4R5uPAc z289XU8k|yI*YsPTs1f5)>*Z}k{QH*La6sk!B{d&9TEuTzbNJRi;oEm$JQl>&(IE$K z9gsXam++kH!eoN}_HTUV8{-%C7zaJ3>4K`M>AM|<-hi^MxY653Tbg_QTU1SruYEdB zhyU>6d%V`a$N757Je%`ye8M72IghWYn~EQt|BRtG;QxI5C*1CzP}Fku+i^Nvtgm@% z{15=GHM*@wb!_fGxB)=myVSKL(OW!9x=P6Mf{W`p%T*#PtH`0-32;3Js;F9t< z!w)^kE4-tw{6V~4i>I^e3IYhgvLvtsB9fYB+bJG7o3*g(IV=}358t>2z{O(8jb4vW zrdOP;u5gs*>Eb0_x5L+uzbtDerFe94#XE1kM))ebt`(CFA~IW$d>ck;D>gwUgzeFO zj}d%Lg9LNN{^l{mg86dIpx43g1YBOvdGX#0b_PA3y}ZP>HMdUoI6IS?&A)i@J`aX> zI9;EjEsd{zx=xqfFy!gtisNnV0>{>LqJY2`!2iL~n0M~nheA$DEz7c=s&9cQu27&tJWFLDNXGJuPc~@MOVW-)EVYk_U4&NmB6TyTYvv z0teT3>GV4&rPw>@lcj~=f=rUxaUCpWQ590ZxtuOZR*4Lff(~xri+{V@7opQ8)Z36x zZ%5$d)0f+R_r;YFp(Y8fwB$@d+C2Z{l)Zhq%QtK;iZ2}QStCUXHo_6Gq!IgJS&#lxd6 zZytB)c0DdG)`X!v{&|whdu=t9$8~wN_1wbN!)m)56qBW2IhUrE?{94fy zLfG9x{cUF(U~*ij#FpWQKCbW5Gz}-W#vC8_7fxUR<4if-U= z@OMeOTVa3|Me+oOA(rEyyFN``O8WiTQ}K2tYnl( zEv&bH1!c<%&HDAM<3vP=`EV7-i)2kFA}aET@r>io^Rv1;$hht z`n-PB<=#L}u%opJu?RXTt80p;-gr1$>+7^E(ZH&%D3K(!V_6$^s6sl$Te!SySp>#+ zSRvxnSIU%{NMn&b3<>Y-GI;ZdYL&^k)D7h#!8zKIH&+rv5THDVa1@eHBprXc%oy4l zPl>P<2B+LtUs)zZE0ft4I^WY4u~}z#OoH4qEla0)L0s3|?)a1qT$KeKtr@yDAFdK? zWUYPRI()E);rUZqfYUyU^?59*@zTfTF0$GU<31 z>w!u+%>i~XGecW)lBe=x?@ z3fD1Z3|WCziZm<8i;}vmWpW8nLwdCWWeHe5DNT4t%Tz5hAtpx=_Cv6hh*`^$scDP$ z0nqY0MJbEpZkMl|9P`eN6Y{F!Mt>+g-zw);|A?k(xK1Yw{T@|aGw6hztyb)WA(Qz^ z*7^-H?F17*GE+p$lKWTI+wW;xkc@4BjwAO^Srn&BSmYcZ?}7!Z$qIZM&vTi+m||;1 zzu!Ua1YCZ6K{pC0iW1j#D2kFa&B>~Y%jB9#Hl^!!xzRb{doO>)ZaC!O_=MfCN1O@Y zQQlnEmhoA>BAO#-vqq<^sn-S7LZ*{gph8CkY8xi7jo&jVX_At%D2bQxhGAMa21s8C z=TqC7+FX1#O~cXtm^;HEJ7JfuBQ%D){oA~~_mEE~Q_?DZ1N|L1DdXjK;F&FxkCs6sHKAqzG4o@yu42J>Bq~IUDwM$tx+`m1f+m%V+ zi%G)Q?)0TK$JS&;&B0E@(NUN8PM6%dGa`<2lvWgZ!D6!D?8Ow%cQ%aPJk1&J4>`Jh zNYIrPxa+&JZZ8Y5-I<|Ixtz0skf&=|$Afq-Thx&$yxH=jXCYZ(D!b z>0Y|rdQg?UMJl=Bwo0@0eA=$?$o(!X#pl}J=|f#n$I=+o>32xZPN^%IEVFaM`spVG zqaj(6;rTABnOGBNvy{_m%=tVaEoC3+lRIomV`1I^*T!@8J2g-gwg}W(A7{&1{CXw@aOtkYyAf zKNk>rUCEtxU7WoE)<64~asy}2@$MhfJbgm*$s?TK`lhU99=%KR;wc0n)_6=)*Qme+ z&lBvDqp@6@WR+2tHNL0Gi<)l7VK&bxs+zM&!ly6SoGvqya4+yIMW7W)UGp+8NNVY3 z2MqMQW@y{^N)al(@&BI}(ufopQMsrpVk1WLM%L@gN(5DIn4yj(VJF|yOg_4zN^udc+~LE&KI5$$JxR}7%1i*8&07C&d!l6Z z4jnD6N1-`iS4pU-^@vWA0%gIZkaL;j1))-Swjy+Gw5j5}C`zucQ?jHKn14}WjfPau zU&4G&^U(+J@q1LCJi$6V1g)u!dD?Z93C%WyhO=pz`arE;}JJ?EurPh*? zjbj1M+m20Hlyo`)v-ygus(5)Z;ltdT^*A~PjSuOzcvXGQ^p5$^Hi8Kj0hF$1-E+3qp6Bh+LL7%P{;A@AG z-{&aWGr^sT_pU!?k*&Eq+@Wb2ZuR^8#ScH=t%tYhgaJ<1XVcx@)=RcWRc{edt?1l@ zptLYA+wbd%;Jdh<%k9J^RkM2S}C+vc&>ck?x@drcfg&&F82mENXnQ8!`m$K1@B&eOw+(5 zl`iXtJNqQnFCU@e;jJO#K|mNfJbgOl^yQL+am3}tlHQ=h%L|!`mX$Q)ESDL9tNGVo zKVcTuVCH&~cii<@`;3#hGMmSpGXz|Cpj>fh%MOKifIc1(> zyEa)?;QJ0~oS|*a_4$;mvupXDq9k9g(6+`2LnsT9OXKZyjc>9NKc(FtK~#B8dg*33x|zgvCJ~Ltu`1_6*Osr<2qcOPbp1Vf$M5KPZIVfOSH?A_T`O2XD&(lRi?Of$VL-l?ucXr?Ox>6baSZ3L3j&w3^z zYc*eiJGZ>?DaX`iRgtc9anSzpo{NlK6*M6!40hQn(;6o@;|#p@H53{^Wg{7 zlNr{%duG%gz+!>@`PZRoaBd&M^XH?f{SlVqNVCz|8P?9e)O6-0Sza?5`n)(@OA}Vr5Jfhf&^CA<`GY#PZG0tD zwrN?J{&iWmud8a~iwq5NC~u?(eq|bugdZv4AB{{P7iC4DM6gI_zH>|v*bI9v9j)kSO{f)l zvrV%D23;g8`Meg4QmAA#y(p{AWVhvk&dM6c*aA9Qk(+bKo0?@&is#30G;fC^L?_T^m2He4%I>9LHk+u!DCr zfaOvI|K%mtt-Hj3_9Kc}%$;{`P$z|4y(Wpg27d{UcPAfmw!Y$a?}jwqI3XADgnNUV z)HED-_jtOvr04eNdtLU!9X_3%@<-49J&_X-mkEy2JQ&^PD~E6Ke09d@`V8Op(Uzv` zba0e|vSflaN#?vUdJWHa(OM8XhkGMV&#qBgVcQZq@_i4-vB`^)hK4Bg>GmVybxN5P z;$`f5gx!#4o{Psucw=Nqj-@S%ybzCKW~yMTMpEJ?6jS9TcE{UJ^eUO;w_k6XhTAvx z>GdOi{k1!ET}k@i=!+1CwWV3Om3OdV}4)6?mE#VSszo0>52 z=^;`d(7ppT|EYbKgBJ(@$5SHZ0F(JN0cE!cIV)l!T#An&(i}c%u-19La6@w!!#7VPM=l zy94g-jA)vgye_y*CiJ~N|L*bkakay*oX7-vkuNB!g1+1P`+YP0Jsi)j)}%$nJ9kI; zzJu@EOqLm6_}l?nTZEy5>uMt3rYLH@@Y)V9FV_5D?_RS?3ZBg}l(Ogs4vTrhxmn?7 zMyNg5^XYqb~b0G?+v>iZ-~!GohdX;I<(Hr=jE7&u&CE+`7Q_o_cFVHB@rV~I>Z-=3tE9PRfeR1a2f)Bw?etsyXu9%}N_&%9++R&+`(` zcr4q5c4|;gg_*3i0@t-fsI@`X)(1MBWt_g0b#ApvQN9DK72fAx!|L}Xs0H9S#6Nz5 z{pNl0vnh2_&^sBRJ3iX@D0T)uH~KyrHh7^`wM9Y2b+bvo$5qXM?42I0R@AGQ=95RC z`O^PIJ?`{Qm}M*CG9fK9{`&kwx^Bdi#S79hlb{Ds))kJ@{QgJZrSEt6`r%jk{P+!g z+vl&&Ka$nD_IYD;pHJs6I9s1{l}zb4U6L|oS;*vgCm8bn^kcq!BGc70mC4xNxDO4? z=PQ(%imu~yGa;SNR?_ipfpRsjHJS`&DRC<<0$;H)-=|t9oaarJM2W=@{AKfCd#ZusD7p*k!Uq9iU!-sr4ow6

FSb2zQVFB z?(U3mJ(qQy%4D)-p0%w;ZH=iBq}sJNk24*aj~>MD<~3q4W@a)VzFkG=bUs8*zw1lt*`ia{war@KDN^I+Ovy$~HW8C-geVd+dV_ES1ch4D*0{;0I4|s6Yr|a8% z@K~%F$_xVbhXFtM=^1HWu^V_?tO~BkDMg;;_{X=l+s`7CDO|c124!1q*$ST`rLM$dX?fn} zW0bMTl)0?+TQGbB^XoZLT{m1UGvch|JD<$>_-x5!k>dI;yN5%uE)~Vr zTk1tyD?lrhn?@#;z9-K?dp=bmEBLm<-F6M8$&!l#pehQ}5SLMA8J4ol#99fyt|&Jb zB}!SW);Y(ch=+$=e){N|XOo!GC?Lx!vaF)x+qjNqGEeyQV)dD?{m&Mk)2U1(udl)L zSU)-=`{)Jq`?4nA*^y9DCiPj~x4we)yZ@BtXMbg4{W10+6v66wG}CLW+jn5KlCS^h zFJLeN$3fjV7Ln?C)aREtqlmq|kkMX;**v2xq>*Pj%ZTF=*G%qqTzk`+1JKv@1|Tn; z-`m7`1MHaq%)X;H$?Q-W*gG;k?P|?MQL?D2&DWGABB;eYIhMtE-o!fC zCwuo(nu|-Bu;n?*bI3k;#^vb}PET2WawUoJP_9xeM{(z?x7gbasH=t@$0jshPumhf zr_2+j%yh6qLP)s@_*@hvFY}UP&)x{OtFqWIM60Hut{d(J9(B`jofItArPP7?Hi2*R z?9(}pqlCj4$I$JfLzm*krA)k|E^2=l`cfVcJUAlFDzi~+HWix!oea z$ybVXUE?X?khcHcHNH;YQd}1$7ezs41XEfI-*av-T9FpiRX1`7_qrl3&FfZ00rNlj zE|yl5^H`q1@mQz|wx)V^`k62NU)19=nQ*>ZaGgx?w98MfxYXaZJb!_%V13KLR>ITP%s-i5>T51I2 z^p$WgCXj_}9r}zzz52X&Y_ySR=`=zH|~ZEp5@6ji|@Ul16NKY92z1HVgN<~UlQ`873NH(-(d z;`y}iokuJd8S_=n^@9#)k4{LEoVIUsc)icC?XuSoNQ#Oeu(^4y%fIpZRsP9)BV1dt zND3TBb2O6kdU8BxyiEE0XZEOp|NDb6H-|2sQ51!2$o2*SlSz!@I`p^ubO$o|Ok)ur z^J#>!4M97=7(-{!krk}cXy3W*_@t7JiULy za+xtY8L_j|W_zc@_I7~n*bJV%MZ4Ds(KX|9o%CMUOJ=LfG`wXsjX;tDFXt1%Hrb6W z04`gIl!4`hJj=274pCaMoXYfbJvnqdhiDNA*gtTIq72(8TE5NMEGF~}i&%uV>iU<{UE>I5$#!9WLA97R$^V=@ zNhzln;sdQpY)5KW9Z#xyJuUb=FYXd}hWRYUanvT^o@EtrT72Sr|C7b1 z);M<#H+)39?cpA7W9{u@1p&)%|47!Hb%k~PhOjOF;2(>}@%?w9)4~1iZ&G|D%(nW2 z52;5NmzAAW35%Kh`$|cgemcc6n(SlC|!O;b-**SMB2KV3^!z#?92(z+t91bGxE1#w)6 zU~?Rbj~=0X2dmc=D}w7{eeD~d6~mo?_=6+fd@v;+Eiqjm<=d#h#c~byutmG$u-Ef8 z5dHO!qQ0E+7Ih=;nh;XY2rF}5RGaF}qWS%zELoN%9iur;GAzrY-S{|eU2jW}q35Es z#b}k0HGSII@fem%)Qv-#Nas2A=`q%4J}YfUTSL+ZXT)(q(0mC=fatR6sAz;|Qi(`h zlw}h#fU~^7YtB(x2{+aLm|t{NRV=HDP;1&+`r)&xCe)e(*T%7ghq^2)G|=rhax-K% zEKl2p-CdlnkJ{P7*=h?#VLZlq_72vdkACL*C%*N6UXQ#gxYggqC{0!tgswx|3D^sE z$jY4m?Y+OGsw?uU;Mx8mo^km{cmIH_%z3&z!qqOndhIKW;~7<5@py4eP0e=Dr{}hD zl+CJGp|G%(rt5TMz3({8XA#EMTwKh!n9hmQj8&Y{?S_(u*V4m&KAEu`Ed@YcRV+%GvU^P?p7wtpPtge!|;t-{;Y6M%N7pj7{5h>3IRyIvuvQdK_Mn zmEbyL^H+jJb>pF_8c~|bl#{G#Fih1Y=4e@vM=30Ftd`CB*#y@%47zQ!(HvggL2E_7 zBMIfxktA}B(JbPGq|7*M@8cTTrbI==OT*_li!a!3ZS#YpyJTrj5O{3bIUFTx|Mi5^ zlBuV1jd*Z%6QmlaAFC17ax-8nNwR0s%tTURbsS0VD~qbAaC`@6JKT6m^FqAk{eGJ; z@aVcB%RDA83$}v++d;riFkmMfVw54Pa&EM*v)3B(^7fri=~MLS9g8@p)pDA95{u5T zhvOKAZJBuf!Jm9YmX}PUjO#mXCX1B+{l_QFR~aYMn4WL=oi7|PpNmgZT9FEDt?(U9 zl9wcTOzYr;|0^Bmo7H`uN()rBg0M$Eo1&BwJdy>&y@4Q?wz}AkO%f$i!KvjO z6=lVZofbwZw30C7Yc~eG|6oG5>+$4tNwP{%LF=c#K6n8bn|vvlt!_W0)w0R+iYO^avXVj1XKT01 zPS@wkK?lb%lvT~0osdq)rRD!~cs{W#>d}~Tu_8Yn6a3ECh4Gn+kFoXjSE!>#ktZ?M z^=HKUdGofs07_BMCfL97OHkLOPsS2ZvTdwi{SE5bl=}1ptJB3gxF!=+*Tw2}QMMtt zxy^WzveR}28Vhu~E?FjFm9(x%8<@G*B))5EW@SNCRXk3!#%Cyg%BU;+U!^v5dz0*59GN`vKPBA@z6u z9QWE5t=DccK3eeXP7C)x{Ex6amnzN$z+YA@k7jf`asljWP1txk1APgaPpX=ZQ4JDG z#B!h&NmY~A@^?F0ro7Wae4ft7CZw~hAS)|ErFi@PjN#B@Hce@@Y!0_W-hDb}^kgQ} zZpV=cbyY(YVSVm(>hlv&it_l3ViwE#w4n=Fz_JvtscTuA?W5C7my5clXABobxd|r? zjG+WvOD4|yp3^W)HC?S48bjEeqmI#NM5H>FMW7^z6oxiIV6bf6kQZXP>vLWFm#&Kt z1@y2-_T+;4y?2B+n`NK)*8h1u9Bng6=FHQGdA8(Ve(noAn2jjw5=Yzo%Hi{*MTVHk z!1)FOSwF7vKuTE~+)>aCpr}|bW4eP5)CkbrG1!hxRf#Pi&kMf$_#sEjbCN=)tgr8V zf%nIEIbTiq```PA7-e{I>k3CFBW^u&z~B4je;0sp67%ZrA&xS9FdnnB+sAQi?4B== zX)Ws3q752RsxAen*IX3V9qCT^J9UjHJebo zO}c&PK@C<{zN4Iu2YJQ*_5j^>Q5^>YL+E?Bj*T*kPA8OKE3rMaIsr;q_^vAg%l8@h zUB>Z@xJcRZ2fV!f3{_pR$Rav!$m975Z;#*Quzf&Q{o;LQjaE!1G3WDyC@uKh=MOnO z8dH=NZO`V*UpOSmOJ2F!#`grWFK%M!2ChGd1MHOddrzArVO zSwS4d96cU0jpY1mt@!u9c7wO?jZn(s$)hor1qat;Qt0;k{0F~to7pVkm zr90>_AI}9(*KM(UaF>%O7vv59HqJ`&vf}QO8T);or<0iL2OXj)W7VMJs<=Tbt#L}W zD?&a?#E-gO{b!Abb~T5fBMnJm4{R4J?7(VDIP7ogO>umTW3a;JCcqb}ffouwD`*9n zAi(uqv{odERA$ar8KXtYe&46tm12Z;OUgpxq~JRrjd=a`khJj&|8>VFi%;8b{8bg@ zGJ(Yc|K*!PNlYUG{N3(Q|BdFRbh;h38S)zqnuvX6;OF2Otb|ZqXkQ03Fp&7#M#=r znb+b!@|t!1I;2w}Q%noFh7F9~1eC(YLsK@>#u}OEttXN5w4mLxQMRFu6S9*T_LpCS zx84xp{?SKpcu4%g5%hZe^vR6vTLUEe`aZ-=rj@lC*aa)GPe28AQN z?*|9lXst-IoWOS}s!CF|dBLFHAzCGPu7hs6y*sS{+h{!3zHAL@M5nd(Nm`bydleE~ zu`HR2mNj^SU85}!`XtLF5w9#(4bM_8k~w*rQ{)AUC?*I!TCRh#Eaq9tFCBc2hl@wp z+U95HPx;#QoBZJD0UbBwXYbtS+Vx$MGQl+t&-VA&54S0*l2>AV`=BqDASje(2 zdt(FhSAg=Hkd&`4C!lK{=z9HaD_Ltt1-3C{i-dfF}AI^dbNw=XukcEV-7klNh5OZ zp08*(lc=Jsh@zZUCqQcpr4?FhVQBUQR_}*Cd6r`wBWqXJ!EFW7V&l1DXUS6$ZR@l< zY*xEg*pWZC6jijKUM<0EiHL3W0V#Y?T2WUuS(1Sp2*`Z3q>N+gJfmDp=?=S;Wl542 zjK?vby*c3SBx=6u3l6RgIC?zBbv5Jn-o+1n7FkIcI_&MW+1d)pvXcIwg%^5UzjO7k zwg$PuWeQ&z`Lk@*OcV!~(EBwTG*3lHucxMYg6%c_)m&PQjBW7SAxH1s#r0ff=VOvM zq4Ugbw9%}hjMIx1lV!?w$0JQkK58rz(`CwF;B)-=LO!2ayh+%j?Mn#!Iy}_dm4Hzt zO+@R~rh0M;d5U%%>iHO2eWJ6oOCGDSWqMtfR7D}@2*}eMWejPY%B0w`D9Z}h)%05~ zaazy`Y|ds0ot8`B8j7;Qa}26sl4nKD`T0Ljy=GAeXDf8^Zfwg+v)z`vmmrYZMXe!@ z!1I{RGpy}B5uVS#B%tT81^q4Y5dPi&Sa_jd{0jBYejoxijwRF*uc%fD<@p%>`OjhB zyh5E7+&b*g@4FZyO(3IDLKNk+jV7styV=!x6U>RKYSZQJD#@uwWhpoyB{iI@rWwds zB1G5XbloUa1FNcJ)+qONlaPe~+#O2-Pi;ptnWXs7?toV4z=7>O>Q#ibwZ++=zfb+) zN4)pr6QV!+DZlp1H}LLUg^LrcmtKL*sD@Qr;0WE3)(^o*R z354k8TqKpSSwT3SJ)`MrLtAU?rUlAxp!{1y54#sojOLfVp_g6;V^G6B_1zETPS>(f zzQgjn?@9RW+Tka@^?zQEw9F{$ik)!CFzAU@q{vtmGO6x3ZB|80R_16+b1|8-8|bv~MXC^c(UPFjk%Th~&4cIP?n3moD@nWqsL&ScK|YHyT9aqFh+JFYg&wvm(>Tkr7?0+BcIOJA9Z=OZJ-0_ymmIeDdH=}?(oRrLC%Y*om# zQ(FRdA0?MHo4%IGVfW-w@DjHc^( zEb|q6!7h1~a}kfo%A8f65M`3Coy?cmO*0I6C0EG&6aGM%6;xS?V;i(mxV}TX8{*i)Gqo(_M#FR1+3Djrh7ZOg@+xQGcX_^lo2)GG zjmwAAyA)N4Q3l_*{NU&vk}~0HYyVUD1bw{v*)+KZeyKS3SuXX8kT>i6fy~vBVhJ59vUEX-IV438Nmk>Ih zCeBL6%anutHvPU&mX&k{9V}&SMBw@9j4aLQZS^R!f~u_WLJ!w-r7$APB?Mz^wC{@m zTC+JDfmSbPA~u6olQNgYwPjgNK-rW=X+wH~XLX-v4Cr>HE;_VjUa^gLAoTSYD-w&L|RL za`z)F&*RRQt_m0O+BJxl)bGAceSAcHdL)VP|KdNvdi~d-)e$k1Bvg0rLz+?_Jw*+A z=$D=V9zo&0hp+{CPCi``Ck0hmGaPtajAF99Vt+rt7-`Y58W8zumT&sSW#AzG$Teyy zZC2>o63BYkgp@3#3%;lI23)>ARt-P1qTUP%R;8eR+FFwp74wFBS4AoQZ~pS;xz^|B zjK>0ZwJeJtymgBIw|`qEzqen8G^Q9YsI#UEzSpBlbMn!G=dO1)UGnRGdSl6iv(>EO z+gdTs%S~0~ZQm9QQ!^P1mBqdz7cOI2Jjt>RNA%%&#MYKCcqz{??7EaiMI0C6L-ieb zvo99Z7iS_y=W{vl0IrMeXm0MeNGkdNC6#z->l)m~2ij_0)2f!oI4eqank4?vXwtf- zs%tz;n4MJ<6zdry(EqYxTnIkPYW^P3Og>#$Hp``rezc}oiA}6d((^rh)**vL=Z_j4YY+C zc$;acxGc{l%;Y!?i&WOnA5M<=rGuBah(|=lilgX^ z#ayQ1#%TWHjko!`uYOC!yuVFaW*jZY60#^V_FLOblZ0uKaOc+5hP!87vOP^Bj9X2= zxuYcUZZ&K8fh!ZwqQOVGn%-_#{;p?O9naB5lgBB?XJf7%>`+!ET5EQOU9zHJxr*_8 zSHRkC$TC}T9$(;UhqAfY&(q7)>78eL=M8>m zeIw8WsX9GL=FjI5t0*B|rE;TE6l8ghW81i{O|(jwP8Q6jOS-PR@z=gH{(zp_#y1|T zJfWxx4%^r8j7!ULS>_REtBX(J6ZGjGJ6(?(SG&A$wTJH*rcp+>>vD7==WL$Hrs}=p zCBAFexqXu)D|u$OO4YLL*x3$w>#ZYhUGMReqZNy^ z%i@O2SxZvbOYylS+D}3K3OET&j0mQqZv<7YbluetF z(|AIS)A(2u`F&?wo@bGYcrz|`ySm+v-AD;LxLcMb>v+o|OEQwAAWh{O{Nk>U(TX2EoDsMN$0*u? z!^OplJ3F$r9}WXnX~B5;vEbG_xr5J} ziCbAi*d(z7r8licSzVJh|MvF4V}DOzuVs{y{rMa4=n>Yn8&DKl0sjd)wfMai_3{`Z#FXbaBr9Bo;owM=iVO_g}wX-XN|N2ci_sa-tXIqk(%EJBS&u?m9 ze-RHy+w{E-Rb6wuyrAc{S!65TJblF3>VlTt!Z$wq;V%2FZMJ+#cNTTQIGM1@6S6Yn z!^uOEGU0f+BraAgizPSO*HM;YI~b6aIotj=UAIHe>GEj#gs)zG3Cn`*?Jnc-oK9Cf ze>*#UY+G1ywk=)mX`B)I9&wU27qA-Qk9mah@-noORdm~-6msOHAhjBwr?Qkx<+R$c zC$&=eu1hPF3saSq34e6|$2?vfaS$E=FxcvH*xeycBrFvd zD{Q6dIeor&^b`K}?Qc?56^_z8U7Qi+ImffbMzm7MW9wZX$mDbF?^KouxuTNi<_PFr zbzOP&a=(*4NIDoj!y&^_Py^v;LQhP_B#%fkzm}itO+>f z36DlA(zIl+?efOkr+n*cH#ffWqoW1$(Ugmm5#zh}K9@y@NgSzQOpIdFSC1B%)P8Ck%XKe3wpB@86q0IRGe4UoziRhjHK!V%TsAz} z4#oH!>WX@LzJdK`4JI$_gm{5RS(LcGOQ++}=}1AxGu@DmZ*x9R*lN2xIG&T`CD#r* z^n8QS7GL|!9gon)+=O%5TH`AV%YvgU!?6?<;w3DR?r>!_ zY4}D!xk|CBq!Mz?0+qFVz2SVOSw*=_B^9ofuu6}gKpb=Bo1Y6ceRvGqo8+)tGILbL}dz6j0^lp+eFp5AcLbZmm%PPKSq>|EV z9{V-d(9(*3<@M`~i((V*aV(3ts_AF}?azyn-M%L_gjIp(YFyvYJ{;ie_sBndB;s>0 zAU~Un?{~VOjv~zd5P!Rc>xw_NKL-sRxqmhn zB14g5zV=m^Oh|w94%Xp~PyAr~ydF`$;?ewsi$vNj+D?l{^Ha9N5Ti6kX?*Q*9*>wL zbN-JX{e+}QQCNg_z?IfE&-b6B@3mRwF+I;?kuP{}@;>+H_o=BVs)A>_hn%j?NQ#8h z_>9m5be%50^O=|FbX&Nt!_%kdZ1p>orKH$9oq)Qo@qCvc^jNMENq4U=NbBHDF6&$! zI3kLSV)A6%)KNCmIFP<@%eq`|8%bZsX-b;q|cp$eX8+xERm)&;PaGBQ6tcW%G~j{a^IG4x?nmmG%yvak+?R41J&d zZkyAKDOav-Z$dlMyBG3!*3;0U-qe87b!8fAEULVMElHpM%HR4j*&?}YU}@RH+w6J} zYWNsQh6z4wm9Q~3Q4&IvukcE{t@7k31o6Q?YvOWOT5ah#E+ zLM2d5ji&8L$9lF{3OmwLo0YQw&OMCpOW;LoR->_Wj2k1o%rd|1a4+))G_O#eM;fQ( zY2ILvLMTg&F_d|Z30v~BQFwubqg-2aJkOY%j<|JuhsXDh0r5+3G=cseWHGnC z{2Emg;-kzV?8>i=Ekd!(>F@MqeIBPcp2J|fM{m%k)pCjB0?#q*_XEcBgt{4oxklqS zg1XAmhOIg~6LgZ_!SZ||64;Fg)ihx)OJUj_5yp-$HwJ+2ZDF>qTw<8=On$w%XwFNH zab3YW)sU zd&o0ayPx>p|Kzp1G1SWl_V>}x-h@1-N^%ieNg`|bIEJ$1?tlNsvdT4v`si3r*w&Uz zG57XFknZhK|K*hQS&}r^o~o9q;dw6YKXomLB!xw&G_DeSl4D7-TEtFC+=!jDmMPn`K{%yV zg=;D1Aas19HEnCy+I&`$gZ6=*3nS2=1T43`EnyOEE?yIt5S(Y4U1>?NrAOGMH z17m0@MMnz_;J~%X>zckX1X}UldBix*dFIZ5Yd5-7MMW`PQ7#hf=Woiz==_{2D+D2B zG*y&Rj;2z>X^9_JVQsv!YaNl-(mrJ@32WJw*c&XMZ!~_>cCzM#wzOhi2-0fU;GnXq zW?7cZOA*VSQj~Sg&=^`u69k6A3wyY)-VvYi))nf!l$)9`gkBHtU;0f6!QH>RNng6x zcVr6v3wX@41*;mZs$f;bjME7pKNTVX03ZNKL_t(f7t*RzR5B^c zs*JmnbKZITzJ!R3L2Jd+S>1uw^1$h)#`MM1hsFa4gb z6a-{>PFavY_Z_opAo3Q%dTcefcO<4^Uo^l2Q+q+q$qxxL?JukVwW6?tCJYPnp@ z6UI@oNqPU|`yZjSBF;+UR9d2{8XlZS?Dqp4qwpNfw?CM0Yp+dS%FS6`RxIM2v(bw4 znKbbz%i?^V@WxM%c=*vVt!_&id9-3Nktu4H6%sfyhO#In*PHllQp~JIg%gIvi>!$Ad7-di;MFGv+ zXD5(EJbpB#h-0uU_O?UrJ)GcqHaB5}Di$;I&nB$3o%c6XbN zNw5L0Q|6bbC6GUlrt%!}L_DCj$KAj99(F4f@z>sxDeYhvsv2jo1+LHJ=_%=S#@7Cj zohw74Wz1r}B93!*w?jNfQ&bgMR^l`z8D&)yhPF%|J-5j+_#%`ML1-yUJhWyV)O4Y) zg!P#$WaaL+o3KzRs4O=S!D(!Cf9I0HTI3X~6?HVn^<|oCTvz;{S`mg0+uH$)MMh}L z&FehMxO+V3*}V>5xwFM~$K#C;&PfWf(j6RhH}}wg-SNrdb3Vrk1L}|N%EkS;&rq&1 z>a3ug%w;9t_&vHEhpjJM$9m;e%4I47AdV?MdW3c3mI%wUGpuj@9XLIO<&tt4W8J(3 z7Z-x}DGFIjKXV%^XrWvi-!}|z^tqS`5-3UwlBA$&{EevJbR??$cTl?}1XBWF^Y7*s?WwEy1K!RgpAaSJec8G$N|4rj|6&iYE`I zEN61(Wf?_wJQWhbVgX9w9`w;I7t7Y@mtPOUa(lKsLG1zBEr_Pf+w`)hoj{~3(fSh!La~E zSyHAsS_ulMj6_^wNw~)f%%<;MSt8n;rodr3U!q)t*Av8#(V9W8P2f5VgMfkW6Bt9w z4sn#>&9f)`@c4++@r;*0a|=h?ytH+IvMd()0^hjo1Y10wA9K7M({Wu+mP?Fn==EB> z|Irh^@vEO}666+N{>|4e+mC!B&oe3I`2|L72DXwke<2g!JWe;$U)OhJBB?D_vlSK= zZpX)UY>tmdEaod(?SOVWAYP^1n~r!iKNd`r58KLspf{qL@byPX(V87aK0A zWu$76xY$fC%e<7wWLYwSMV?btS13#2*fv#^3wo)pNt5idW;Czl#==!BqL?u7xVFE| z{?34#&s?FbD&jn0nl6}T6TW`!HI${e*}2Yfbjm!N^AEoJZH|{0oW~=2PKPH8nTr0R z9q-*63%~Mcj-wUdydxov^`Jx&Q)0mF_fUk{TbR*Mykj|iT7ja$1d_V?Qi2R`>s7leVs=bsty#=SA8r^`)S zk9bxySS`5u>hmHt-GJ^(uU*z^+U}*lbKMXWH3JK;wFxKX%SisMM6M}SC89i=O|i5< z`R#U_*=WvUw%P=^=F^C*C|RWiMkzXNmsZQ+V82b^O1onkr_4q(nIKzA+KHNkevuVo zQK)NhJ$a3DAqLRu%Z4bCau1~xw(p6c9$bMe5xc-Ty`RM*SRIdOG{Ny4+Wj_O=+Pfa zFl~RU#rR^u*(%}A6}g7&^#e|(FSO)&Xuj!*tHCke&* z6zkv$R<}p}XWvFS2DG9sDiJ7-1ABXH{r<0EJ$Hxty>~EoZctCBlnP zy2c=@`=a@~#dIZ8K*!)5?m)W>?KbHu!wn^wdgI^xCU5>Xe@OD^g8JlCrl0%!)c5XD zoR0DCTosg6DJ>Sgu1j9meCMaf*p>uw&L=6JlFH3(bJ^lFEhbWvxqEHW(yVDHP4%hxPW+Y5@6i9->k}__Ib_p5z5}4UL=oxteo5aih1*mtT68XSN3H zZS|?DihifXYLy6H=Wq|(Hu#<+6T!R^zGYU*uh)J=N4%0+iRZJpST*afX7%2P(|V08 z($c7dt;h?R*wl+$5I~kCRgcQTu?^FC#AqcLkZ1dQ^xQr@uT55#v>gX+G{67Km-tWr z@PA~MMWltGgl=@M@xkOii!5R<>~j`Hc*byLe@Lq(T*B}D;2n7mS;=g=lr(!*(cWq< z+G~L}N#*C2FiiWe>(vq^ONRtfPHiUr?D<30<87Ipn zPv$e~x@J2Vh%enAkd`S`U9)VMp=I6#h6EOjR+=oy!4W!u)jWP2jb$u(-F!J;)hef$ zB_#9sa@B5G@;sC!1psB^4OI%3IkVZ4$$Uu|%4<~BHOkVIRmC!2^23v#;TxBy(Gg`` zG0zs*j?Gyl-qoTm`Q2Mz=c{{P{nS5Cf76HW8=jsoxwaKDY&rbFyCcHT<;s=DZq|f_ zp5JTnl`kIh!u0`fJ)H3Jts#?TDmF!1@!>^6k`zQq&YwRXW0XZVaJahN;>|}hcDf$M zNYXpYN}ilAscYEX4Y_gq3d3PYxYb8%P1p{ZPb0Ke40j~~Z8Z>dK&EWUYEt1oIF4{4 zn<-qK#1vDpfLQC*a4Bo`GS5XQSxN+uB_MfY8_MNen4f_M7Q|5uHH=Qiq;X2v4rz5m zhAkJ@)zH5}t0w^V&wll)%^EYu67pgjOL z;Qn8JcM~|89iNLpOIMPHFB{KlJQv~lv30z2{dt)jrjekR@&qFJ?2#-XUI;2Gl{!(| zwb4d1znBQyv?zJ>XvXPTL|#@5+b&93T-$E(;OPvdv}%np zMyATHkJ1XO5$@O?_3VObJ|>^f@BL2}pLvcB9IU;4 z>XYLQm|J&SRB3)0I66I*KdTz_hU-%2CAu5p+`1}LP-7&){>D#a4d35_Jg0bi29pV9 zrw>6u^8OR(bmZUeb}_&76_WR#5Jfrjg>=0S1|CXTEan*}QA)aAmp5y71q_X>h_oev zn3|?dr(Pq01nFZTK^TMhBC{qDzeX#~%aUbT;V899!iP!`ubUT)MtL^&AY}FCgU#~{ zul6zhfZ05QIOdgq^^3Sy2UzWvOn7aZdL=+@>$&HtvO>Dv+aAkh&Yf!=dd6((q61fa zt&RoLvSeP?bhO2JUQ*OD9j%ZRe6Qznk`=TYv{I8@U|bYbHJs-qr&+(Fq@ zSgl}m2JJRhw=XwLt(I6Kfcp3;eE8NUzV&}zk9n4ol_fj=4j0LYw9FWI9+qXX%wsxE zhx65#>UCV&~tmlMZ!3lF-@nmY@e3h z;=ydn)%GqmHGQwmZ{7MLk7qL$QA`qx53SP)u`F0DR-9f;<&NA|msO1)V_;gw!dg${ z>L!fSGMirXj|X{_+a$3Yj1oY-Dr7R?X+Z$hHDTZh6BOvQ1Fm(u^gNFr9zQ@g6SW(? z9(~UvOLJ^x`2Ej+iNnqw+ra=^*%Vc|fzrRc^&Gx21h&m~7_wNbxN&V4WmyuusRV{C z4-yumg-nZV)dtjf)9J&pdewE8=zJ^ttvRuY=e3w^t_Q|W9FYSGHBa8v!BBATH={Rka zQVjhzj&^XA!&!XJX?*f2e1bmR!?qP!R&jgV=fQbIoRxTbZ{KQ=`5kw@wj()#2>$N21rOL$x9~lgyXT?Z0+v0I6j(lxZB2P zv21+)g&h`)RGN&6g1WBpLr>D-Y0mUwN?p}5F^r=Pre|GKxo$4gMx%@oaoO~b*Qu~R zahfJ0r6A9+To>JVLaTU1-sD8;x)xuj?}~r|Nn}?wwrg|r;FwOs_uaa6ldUc3YA=e4 zU;pJ>9PG5X^THmzjz`ZojF%~8S@HTydl=i`1s>a1wg3qG9oV|MS*Lrw&ZYys9G_l# zK+EEC%3Ie^<|2@bOnjbRO9W_{OD*NP&weqMMENRWKAuz8HDSLaRh71(+w~X@{S6As z){3gCDa)G0LK>?8bgR>N+ZDK;ye>+kLLm|q%Q-k6rnzyhi-If`FRInuy5xc;i_1z* zr-9|ibLj8N&#O76bID*W8p=#v*Nhe^UwL_thvSsv;{`=oaWY<^wMCQ^7~9Zpy99y5 zOE(A1=LzqRKAETeiQ+Rq9%C6z9j^r34H7&u24ytW(_^r0;t!8Rc+Th4^99A5@1bA$ zOp}7Q<$`kk7Cieb*~t{nael=BF)HzfPuA=PXFj)Qmm3QQ(g*REq7T%&&c5cleU zgDax^dtDcIwC zD@bekyT+1k^-wFeZG&wILv!7mULq^(*&@Tz3VW-KI@p&foTVt9p5g3uNsgu*B^k3n z{GoU|yNv<2s)+vJdsxo@$K9L$Saz6ae!sIX_uReqs;;i8?q)CSCMl94MePzLkGzb> z<5-@_1Ob8pCX+$_fczKv8014R2?Bd2!342l*v`oESVP((MR60GO?I>QuD$B++u4_V zcu(E71B3|>ScY@}qPbOf-COsZ^PKm6p5J4VM+wF02@gN%U@TOjC|F#pvhc+%JX;rF z``Mbr(6Lp8PLiT4vRYp@G-|p^T22)FtRPDzCI0a&Vvy!++Xh#wF1t~JuE3(9v25yW zSSHUdSJ4%P#|I+Z!Y4i4wkzrV4?l&64@D?pIJZfu%?rlc|c7^;DGwLvT!SDH>+E{QT+_gZ7FiqO#GD z`p-d6DqYvspx>wHbjo%7p$L?2m;A||aA=c+;?qw)_r&;RJ;F2!_^Z8JXo^aZhK!;K?;hXee02j|)oEBYT*G0bvd)#(76+3d-JnO1`keSZ zT*Id0_la{6Y0odM(eVegtQMwf@Nl@#^`#{)?yM6hDfL=~<)tQ#rtm0tHdp4@C40d` zt66AOOTsONN)cxii6EDXNg_eMIG2zNNG)ZU!5|_}b1*bCRTY1zsbkfpZAiD|+LI)5 zLseCU-f%)z6kKR*@a)1ihNh7fIS&ShY}Z%W9glgkcf!B9`8LayHZ{}3H5`&W;Xgci z2Sd|I^Nc8q_{$GIWvL?9rG>=?zwzRA+RYk8m_b!;-0h9_Q^A>)>zNXYFMP!GX}Ueh z;nF(jDk_Gqi}2S~&{T9y1w*6A#2bsFqZt~OX^>1ps`b*Nr>ex$2y>|- zfg?+sPn}T|w3;Oo&nTA%2~`4Bx~a3!tg*ebimmCacy02c;56uPckqyl&2tRGG5uhK zrCD@>9;T`DaM;%tgYAC-yd_-n=uMgMr8=8)0yGACN0n6 z{8p3GQ6QW1G~?09L^f`V4g86ZSFf2zRnQCrt5FBdz^peQ7EfoE3I-_8b8Oeft-3Ut z6;xGarD`yp#w;z@czpi^hR5vg4$(D*AkJ`YgEY^1psw8S zTj$ou^PEw4G++H!>k_`)-5oJ0n~YRNAn&0^v>EA1XSw~qdQh)?60^D;3yIwJ4% z=2eB{Ia<}0AHYPO=#}La7>!U2U8bT7%d+NlUGO}L-G|WW;C|^@2`Wt{XkT~^mY2z< zA?k%~7>~&(Gnr6D0oj{x&Rc5^4rdIeF-e*;-5)YJk|&AYFk%#^^M;}`EYBd#7^Epl zQ7}p~l3Z{j7f^br2GYN31D*hyr@XPP~CiMGgs>0nrzk^nKKeI_llIApZ zjo*27ljS9cHQQvGNn-tBke%)=4rN4U<_`a1cv?rw}T?KPP|lAtUu6MT42 zCeNxWllU+s`T1=WO{GXPRL`Y2+=DzPxb^sRPmEvI-(%!mgx9>Y~4aZVYRYKm`1p|gRNP7I=DlW#jIBw+PSFo$)%Ke)fb;nVQ@`=x};6Aj@(({Sjdpljm~r%yL;n zMYB+*m{}oW4dykPb1&#wavVg&mH$scL7o>>Jx3UonN;)XrcRdU5@;wxPrHwg8OKvT z={{n?bqP|R%k6VSSxm#S*xXp+#_9?c-DMO_IG%OLi=2nUA%?2+-Sb})Cg?2SPv7~7 zieZRd4fmCi{8<}(FH4Wmez|Tkkn{+BD5!o zi0^Ss*qgC;*pW$7c>{866Wg)q4#tdvkd8lM63=jThg+R{Y}6LYfTWN*;zWS(0E(tC zorp!nvQ5$`!L$srAQ8)hsWJ5fEK_hesE8;X1%E3ouUkgx6a5=-eN}-xC(SbAI3Yz+|*UVFu}2O4u>ILMYxJz->DO);`Lu`*!+BN%yb%Kni``~ z#Ap`t!gdSSJ)0oPw8}JPau~!Z<8efz1c>*JdqhD*=tmqMPdGgl@h}FUdFF&`+ho5!8AM&%G+?95jmt0rX*R;!=o_^Ek{=Ax*?E$5Y}g!&YP&tiYC$| z#dICAIF{GqHHm@ctIZ;U$ z*=)P)Jv^o;B#btjhS;`FuR9^ng;2j7NdI=bv+YuK3IkkI7DZtn(vT`ug@xqfwl)h}(+?MY(K^GtMAp{h%Qy(mNwjY_s< zMbj`3px8 z^}g3l?42c)t@A=%0GLj&Hd-(mk?x;LSZ;k2V{@75;Rt1WOCE+aSur{nS3dW|_+>rD z(TtPXn2tZd(Je;N1Wi%+`N<Uu2fQ<9f73MG0)m|w5J|V5b>FoqD?LTeVKB%E&0CEEW;0E0wWN0 zsrS@1Z7w|HMB0e{kB@)O!FWuX=M3W!c~NjY>+{*}5x@1^4NOhr$Gh+Iapw`eV8kDM z@+J-2CdpIo4)1e3>*3lK(^-IP7^F$c?W2?V4RtV?@z+24fG~*WZANLH&uc+(wDM_L zf<6bwJrQn(@Hh3g%gIS!1Zq)0l2Ki)L!1#OQW-iq9dmTlW2I6d3S(a0-sB%#yvjy( zfp2bnh0W?3EvL>nnzDP`#Sf#Wp&doMoJE1)?let8Lq&mU2u;ABg%G3^K`IXkX$HAi zCn!MGRhcel1?f11B*XO_&{b(?QWXrx!nG}$jVjCaD%Tdaurw3TtT2j4)GdoaIA(9$ zA@?PXq36;s;>fa`(I{dPCX8n>oq^oj_B&Ht zTgT8;k}T(Fw}YXn3}!LIQHW`3{Oh;&_}WFmELANLl)A2Ra@c1y^r=@&vRqcUwrwyR zO3T@Q_Ubyz4Trj8lBPMsnLG$m&6i0403ZNKL_t)xSK3^@vBei&SSJi(;yA^$#P4a^ zCaR_iL_JL@X5+G{$dYTST`5DfjtERu6H!`LYYTs}fKd9?(STkjAYJShS4CbL;0LQ~abim9k`wA83u3QXNB z*V+lmp!amGT@+ZWn=tK{mI4)KLr!;(xPE<=q9|xDc&w~cSzL7a=JjQ!vlz?LnfeLi z!5B@`=3-wd+xyM}O`0w(ZbYGAtBRa(BHYz12%h?L(@5UOI7HJlsR7O9y(UX!g|F%8 zUJb$-h9hloUQI%pnx?SScCjp-&Lm=SZGpicU_A5*{g9WpTkKp|K+`pzzq&*irYNOf zH_P(>`^Wun9iJ;c)f>-}_NJ(g1?@JfWuR9boXhJdON+!u1GM!O?DGrc$EQ%MVQem= zwQ2TBZmiiv2x`@rdI11g-9(+T|2uEMsfs(lu$Vab29} zcJRJ@mC83?;JqJwLYfxD$6hNFv_PbG$MyK*r;YX%BK^h@VS(gOd3d*p}5Xe*0y zVPCGJ>MGV|8}(bSLza;T33*mv>yqd_Iq?}!VyZQhFaL{g@Uwe;e)rW)R;ngf9h)%E z>F!7HO6f_z`;9vN`sNAL6niC!uD*`D$;~h6l8hEbQX}LQvVpo360V# zsUQzbQ5JK3;R0!zajSF8ERK0$`68nzV!gV=a;3t#YK<$+3uHx3*Pmir2360+Gi>(v zPZ{*aG#VcN%|H2v{Pf*V`R(8ND%Dzrookzrv!bqn=e6;>%8{j6;5U|c2*bp>Agq%@vVc0u|R?KY85{TWm2xH{Mm!IS*kPuxY%6BGaT|FBhF=2e5e1A8;cj2CR0v> zE}!-Get~DwFXnjdnFYqIe%R=43wRC!ukR*|M%lAGxCWuq6oNton z1@HXi9zS_FWNX2d=QL9%ic*$Vo7j#?XB6=0bV{R~u0DHZ3Exk-+X-+joog#nuQ{8= zR4N7+E-v!Y)g|8e@oj=xKoTW*o+RBvKa_MjK%R*=P}82WFS88I60b3S8D`NmjA|9D z>fzKp5ls~d-WirL_lYWsLZwj!y{x}XGtyMn(@GheZomP0rkb8znoaTxPYzyC!(dG8+AUjHhU zbKB^PYmmltPRH_kisI=sGn~j|w7Umhd+vK>EYNl;b*L=~k5g5kv5ZyqE8G%OTD9@@=%Ly7}*iy|+uOMkp=>ttC$e-z-@IzN7A zm(9&OX_~XNQm59eV(aQz_LKX&LsnKidOaW0G8qkn&;9Iwe&8qwuy$7DMt*vVa`6KC zN(<$c*Pvb}9r`HeHc?bnDk9UAyg!6y6TRh;_NNrLZc==53#D3<$)I7Ntggr!y3;|? zHNw3;&_?bZGi!#Mtz+7;iwdvTZDvd%VAM zKT0@^6JFYC@F+6`RNk5qK>gw}Ynn{`q0pVbBO3kX^nI@-x zkH_OD-09z^Vb%%Kgax-j-Kt`02B*ICaX%S#h_V<Z!z;jws+R3)hn2$!SZUGc0+DL3d$UzBrQkje9fNwiTDSz^23(oxVBYJFJnjx zvOIq}&C^vXj*X^jq-lm@S@U1xL@Ga%G$YM(j!ya%K+EyyheJl;l;c^K*(_unMSSht z4JwAqN~MCS8cd>yKl$($kH&kn>;`vEJ7igo;|kHju`QNY+ayWKAHMlE75QB4iou|(X5!Z6h>gQZr3 zR^4M|wT-TdO<>7w;pi6s^7-#`xwVa-hM1axXSyh;G_3~x{uo=g@RN|+-G^*eH(0KG zKD7Fm@fZae?Y7G-Oc=}(o>}pzS4{r#^U`D#1PM2`T4=h)a4=)J;cz?*Fboy9>T>tV zkYSMW(cYMimd$wNQ?J|9YBsYdr9TQt(wtt;r()~aw#IHhV5{ZuM;{!swpPWmbUfFj z*Yo+opWPyzPHD93)SDHuENA0fbG`x>Z*oi;MY7h-q&AZ@67Odih&WR<(8PzBr5RBm ze9%0Xshz4ysLrrt{a)k+W~D+L#TceR5+(DMdr=gGen_?Ma&Bvh{xm|@RS8iIj|qd2 zt5=qYk{rj;aV_DMetL6{Tl*ufuGJX!XCf3;srR+&Rh)W_JkR;z8}|YD^gsSoKHWlJZwn!5Qf$OndVlcV7jFxAjfho`F%|ZJ?VxnlhMe>s#mGhD_D+&VQ6$ZGiI|`8lr%I^^dON zm^!X2Q}kNR#!qrCpKCC?cZ=C9rskR)KG>(dSj8#r9{*3r|10M+Jspx9^(cY>9zP~M z8Ib(h4^eCz=faYV)in*RYQw?;NoOKrpyi=IvxV}tZ=rnib&7+1tXH3V+6g}xK&yrF z+E=N4?-dcFlZhnW4g~R&`7yLwXdA0oU%0};#RWFnF5SH`s$-BRDUa?A7=#Hb!tzuQ zHY7+DrmHH{HC2S?Su+q|s0zI#ov(b&vOe?7%URJx_{3#9kD(}JNVR617ju7UQ50lp zfnw_7Z#4{xENAaWpR(wg*lP`$woRv4&+c&h-~JTa*4g~+mxKavbcDCr!Y~v`A66^0 zmSu&p{tsW~XcFORngH=V@dg=+!ep8VhDcLbF}1n>6TmG$tZ4!36^lmQl$E%muwdvc ze*Fq7hA|g{!!+g6_pb5bJNq!5ibwL(Paw<5{fOfDi0HFj33*j*#*?!Cvh;7N$a+03 z@1;OlXNn+iqvg$4Jovj-@cYd9Xl{P2G zJ=}^zlBDeIo-m&JsH#Gimt4rKn6IaC^*L(ktf~=J1xsVvpQ0#8+mWkdnKD6f9ShSo zNHej?D2jq*8DvpHoJd;>KvV`A;y5A6GODIa&8lMQCVzbEBN`2ll}d%I$mxee&efLr z@8A9r0Kfgx^Gsu(UNGR*a~pV77gbg942N^)1uOC|zWyx^j(gaS;AkqIQ#QBgOeg-+ z#Ct^=jwsuKG_?%x6tKOyB42;j`|j%egXgbGn5PgtRew0}87Fa#EfK{&(h4K76I@ljF8_&>< z(wm%TPZ^T{rh`(ci556(21+C-7Y@gyNh%&s*TZ)0`AXQZ3|Sp3l4!Rai=ylsS5*~7 zmEe(K8mO8|7$h{CHXH2UGTwjG7kl02 zWuhqI;<86;b&=DfA-ewg^78Z3?vD>iM?S{Y3lcaP2c%=4bP`bbK1$USQK~5OHKtZ~ z!S~5#p@^>Gfa3No;+uC-u3RVGI}rg|ua_6nk`uSO`V=hvL zszEvq&|H&d)50n-Lmy&7?4(=GknsTDQWAob|Vdew%g?ikyFfj-!(;qoT&kB+Rig@u-i?|S9=3pG7m#cQKVi4qljf#t64x^uD!ZBSnb#w(b zHavR$kQGy7*^p+T-d}&lEYG>@+9XB6G|NHLNb`d1(XM>|A3j1qw~Y0TS7nl@D5x82 zB;AQTofSnn0cO5pSCJp3sY>(4)$=v3zqrEIfB72#GZ9GCBl-`KKHObz$yIy9T|a5Ef|9~@z{J<`Jt z#m$dUR#wQ4PG$Q3D|ozf_!$S2G1nJ&sG1c<(S)OEpWV@jG|yP7v`F(5*Ra_goid1q zR1AkWOE{j5C@An#pF4v){Osrxc52&wrMcvPr!I;nMsqBS6{wHnr4hfGe%Lws<+7A$|C#m* zwk90AI7|5FuYMD)6q&lJ(eeBIO0>hPjgz0 z8p$Li%`$AqqS>yow$f&Kp$T!0VarV|&vPbzIER+omWgE1y#wH!V&rW0G@9@m|`#FAoTd+tw zn{`}ECrYHf=-%B9kDd&vx+ceifO_2`mxb-p_C0dn&Zrya?X5;aTL!(ExN8_*%p>gP0e^}%MvjEd|pz~M+TU@S=<6y2&1f$diw;`NQTWoi8kqW$f z>lkJuoaI#*pGtr_FG$BD?mZcZFT6j)bq%iFSi`Y&d_Q4*p@Lx=^FSAIC=E{GOeVoa z0fzW*0jzTKa&CJGRaLPZi+D06i4rW&qrOnbaxCGY7SeEbmY6@YQkb@hqAJ*~jpbO_ zj!Bl~?3{1XXb9HQ_Y?ZV0A1HvSZlCi)Tf&Wa#``h5Y%&t@f?PeW-fpg9JFA==6!#b7}3^Y_Uf z?TR0A*e5<6Q4EGCFT8@XxI+5In*ypoJe0|yF5I|$?*MbTAu0PXBzogrwAa6bS2alD zj3~WW)wy=1jmDWzQ`WnhB9pWNK_?lC!a_MdJ`*`2G?_OCWrc7m z+0X7mmb1Fzvc6GeZ+}YW$8@^^m9O4_EMq*0B=*^Etg<^kqT~1ZlTl9Pl&RZ z%gu|ltQKF}c$uSVhtu(dwY3E-QxHopXZo;DZnMiIR+^wKf|s+~DxRKHct&pg-WXmp9q% zN|OI9#87M1s5Yx;7hjT;x?6wRiC*M$I{}7GvYh1g~=CjArFw|NWs|9B1qb&-u zSS$$uNi5L*_47+K7V12{e?*?=()eVUq-BYQWm{A{i&1xk={lrIN|t4qwn-8tb4!Hl zx$}C}*(5;MRcfw*uB-I>K9fm=VW?zTMi?dpL5gXcc%I2g&*$YYY|vV65r!!re|o}~ zzj=-Qhlij0+5cSeskf>m9r4Sds+cPcFbuTI7YRRkM7DnvEUcoS%oEZzO{Jl05@69abVb1ORZYWG6tV)s za+0T&lRI6J34y0+CBssXKxt9T!!O6DJ~`4kZ>~1Pc%39DWwTQA3!6kq2E!pm91|T4 zWlf(ID4I&1q~x)*`Y5`_=D8})g(cQjg&i30cjps{xF`sMlt0-Uuy^VcS&{E#PPW!yEL|R3^HsO-5l@ zVUYju&tNh^Sy*QF(PK_e1JWR7wdtU6wk;Jvzh8!k6hsJjAN9HSR}XprgCnY%yzizW zUQgH3(CaQA-#o$3a)L5FFMaMg6-^!jY)uvXh^}JWI(Ee*AC95bLVflcj7H3E?UP3- zNoPdT8KZsSIrMLTn>>ifCIRW=0~B2&=}pP{Ba{o5qyzp}^f(?*@C=(-60qbpF;tyb z*RJx;;av_Vr%d80NuHo78vSsHty}!-H{PHd49O`-bLj^^^#|0<8t3ba6h(od8r&N` z9v>X<)9noTtiQ{J%@vxh8dt8KC-6fQMPV?Q z%+rvHrl7haDybMKo`F%ZXtb(xl#r&W*rtdXMN=?z4YC5Y>_e6zo|xZt&%)4!Q|bFs zC6}bq6Mxzpq9_V8KV-93BP%k3G?LG-Y4D}>P0}>OHEb-+dWVeT*?iT$# z<2eRv4Vy{1w(boBsddy8X+o;o1VKXQWXSuUo}g+f^`=KQ6|MRHm4! zif&o5g0~zLr-D`Ws5Gh+d4cP>sG4|EHC>y3=8AIirWu+*>&pqQS*xLG8g9)Kag=7L zn*2GV-UxruSps?aeUQ+%65Gp;v zFS^WT@qF!W*%qiOs%b%`hH8ixRxRm0MN!Z_88PgR$Wm#BGECVt=@pkaifOegbWesv zen1?>sG3Teqy)2IE@aOhDs){((=}Gs8WL_)6f8?8OEV^8pS!n@upJA>F?jvOHC}#h zRV;R<#)BtA7ME%QrOyjC+7-OI_qm__&tJ+n8n`z$8Q(jVC*}T> zHZ0R^`}?RnTU>Z;OaA}8Q>aL(N?%6YO*ALsfO_W1>@wnuBVO6|fTmZj15%(=h`3%RK+8U~iCQrC2bC14(y z^Dn1=16L#>RlZ(4o+`6a%qfUyD$40%T24kyU1fcxLZe|Z{P=((j^*{1Udm+Xv%2iU z;v&Njp5R1;-vr;Oq$<4Ei*`{NT9ofhAC{tDAL$KZ7K0P`i$x~`pg&-B2P?9Aq zFSl55n*3z{E??Q$q8s)oih@z((>)#XWHjLF!UB7T9ln44Wgdb_!2OJ&s z%8f=F%QnH$iK2v+#U?L2e~G0lDTa(72 zqJT8#Zoh}pviRz2&++aX9~1RvH0_F9k5mmuw^(pJPG&vcJb0TZPVmEs^J|M_S;jZM z`hvVSu1OJQXr?X`4_&3*s4<%cxD^{ei0~)=+_%}RRk*Od#ycP1BaC9<0nZZBIGy`$ z0a|sBAQDfTswgCBhFfuH+ICrZAn^MO%_YWVamnTO7C*T67xcpclh`NDQ|@(p{Q14x z>@+r*B>|4^vR-ZdqEDy4^J9IzhU*&idOlH-@$h&;zntEwnkq?mLnBRdEZbmze@x9W zSl(D9Npg+{;_WmHjpbH_X_(?#I$@IWmv{R(rq0V-O@={A#n$Qf1A-tG|7Tt>^Hors8pnxs@d|W)l3@gDwSFV+qDI2HW`uUIh9sJI@oQCS*M3?=w+dU zN;nIpuf442JQJR(Di1rlp%cu4xtP*)5v7JH=rWK8%Cl`NOLbID<>fD5F0W-ec^o~h z2Sq%y{#1lH1!9ZP#4Bsr7S%?TlcOO?l%N>~%>IV|R*`Lz?b^g)ER0n{D<3cvsV%nz z^;HywutJN1BuQyBZ2tV+eJoRBGzx_uyWgX8GRE^PW@S?U!ZV+5ZTo!jSrp7}KB4`+ zmxvE~7@I57cyxS%(e@-{RIa40omH~2{GocYf@Kye+4G$ZSeNV*dgO~t=^Ofj3G>};cyZ!*AO5HXy_3{sg) z)-|1$uAwQ=(lz?2R82N?sd%(XVQH%}AwBbV#(6R4KZ8^sX9cu9W8PP;D3DQLsS19Q zvGRLgMODFF@=zQH#$)vLMS-Z>290Hp=!4q~1`&FzO4=J^TN>TRLxy1@7m)Y&m`oG) z|ILq4Z3E}>Iur%VFP=kD6u$D6^U|m^j(Ksp#?4uXtt!-a7U(1iIdIN0`NN;>@gR)Y zvQ0(@W16~35TtmTN|+aHS|+bvY4e?LU*xMVt?|K6_o?X`-j}YhX<2OACPa~x1muD+ zD$)!#HV8kuN4FdB%okP|J?^pj{Hjd53rX1v-?Jzgo(k=@&C-hS7-Z=u}vaEf4+jw&1KP z6`Tu8q<0=tWI0N$in-dL*9&27jUrAdb|0f|{_6S10J1#i{k;Qz>*8~q`ZI1U?U3dv z)5OO!O`5h$6AjJaQfremPsxgmCAW&J8#ubf$K88qib~b=_-}voC**m~R&7I|{cuXx_pvpdPdcZZ&icH#e2t1>peZU*nlbYu`lBg> z{)8+_uqrmKMioU-sCzD_{Sju(#?UoPLr2qO^{c9Kqe{|@EYHZYoFI(LDo|CzET+Ng zQj76Ksw5TVY0xN1QvR#gzKdxZEYv+}W|fD-1J2c&azR#g)~i+C*!_s3(U=9d!NcJm znyT_(Fpw!<6!Mb?kBP#V|LLc1vRtX~%K8pTmh!^J8k1ST_kQhF3_~Z560Y3X=HvJ7 z;#D0kwpxs5tEpa{?l*srLW%L zC+~eqqvrAY&NH+&+qBNL$?}|0G$AV=x{s%0wj1l*>g;oL(B;=&d!GAGj<|gB>1WPtIEc5o7;DHB?zXeb0EE@X*{>R!QN4qJTLHENBpQofjrBIhC`y@*eOfK26eHy( z$k6!c_9=~q&H2R&fBK_O3FC}w>vhtsV5w@dHw-x)h0MYf*EMh)oz<4hXd0ucD*b*y zT(;8e?g zOZVw!uk0q-&1RDvaWtHfMzcw>G!bBV0c2Z(5hO^AILTdt0J#f-AU947M2QjDfFnzS z9BUg%Go#r=4mHEIo6TO&>9e2O>)Y2{{EKH4ASMtPlA!rtkwo)!Rh_S@-tT#z=l9Tb z4Yp4_=H{!Q>e#kMwPx|%cMlj1rf8~oKANsEnM4prj7I?rO=wyg=)W?qnF;xo)KHI9xvhQ~vmxx9qu z#kf_QZ06I}O&t_%wmB95t=g>8oNqGfjb@vR8Cq_JsycISp1=#lV5zHMS0T>{Ju&dB zs(RXzWZEWyCtf$l(HM;*;v{D<3Rzui;7@$cU09@Ex3Me@(^UETw;z!tIi{)6?lu_g z99xTo&O2T_yJ-j9KqFh>Fdcs*nSgst^|CX;1sd1C1g{G*pG#ubsi3p_D#u-jSFQ zM-XAu+n+hh{xm-Q8HOaI%rHU#9Gqix~vbkQRNORPhjoNVNv`tuALQ-X{ zsP-u+<$|h`zwm1E z1Ml5aizh@)UY+p43<8ZE1isTv$ir&J6BP0ZUvyi(?6enn^LakZl)2}>x+S6WS1-ho9stWn6nL|-zZajCM$4?JY z6fumdih?Z3n1&dL9*uVC_l1{Cmvy2nA<0vgSLPT*KAJ2u?^HS0X|qvXBbs$tM_DF( zR+TEcp^;`e=T{b}=oU5I<@*QsIr4piQ1q4Snu4M#e0cW>XD_aj=LLS65>3SL`I%c+ zL6ccKzeF~P*xfmz)u`fDZ1TK7)l@t$-`sgmcrPm!XBur>*J69`gs0m_R2-YzFJ6K;7i;%0n<>LkF^toIlx}Eb zSHEQzv6Rp;v-2C11~1a z3ZgV;zU?se6OIqZ%r|UIO(9JSbVH|FF)%c-h08KQc8H^tt;H$_!w^ML82Jf%!;lx& zYi#!ehF(GtXN*0eG}o&pP1iu1VfjSfw?f6%2!n*GtubHKXP6&x^QIZ%W(dG^ZLz8@ zg?br>v9Mpvpz%p0*1K-q<>IreVkj!aP^1~!X*DE>t;F>k8~76+B+l}uV>k>^6q!cDqPy4-H`bag+If-`G@W+G6<_|NW2((6d0x_~ zn!NGeAz_$Ocw@paMNt(LMPcv5N7OD}N2$~q4rk~nN#doSct$|v>vItK9PAuJrH$cO z5P4z%o%9(T4d`?n;#efd8TVLh+8CC>rR(cVCh@6Xa%-VVnikx9)W`P|EY~_+bxV@O z{@w&xky%{rK#`NB0`RZQwmPb+{HOz7RY>EM_Cg!eHhH=;Bu|CE6GS*kH3W0F$P1!S zr0j(+)D(V11e3nU$Z0SgAYZ$97=yu8e{B6o4!@ROd_IQuz!2vWHlzBngn?g~L z9uAQ;1xZtJo>>6brPx2DdZvT6*rphcDW5zPNStO9S}lT}F9w1rf`bFW_Y7k6xvKD- zY8pnj2JJTGo%cnjddnsEVthXpt6p2w1U`)uD!NLX6{KZJTolY%I-@K{MGRqSSrY9H ziA%wr{FpVFl;vrSrlTlmTdNeM@O&DwBmze>#nn_~{`fcECQWDDzK`LrL4Z*;$-Ri) zN5{n5!tas1^&XQu`^dV&)JtjV8vQ3j-1RnDRv@bi$;p&_IH3qrjDK+cnhpgeRYl=&93yRP zqAbnx;(z@MTy8p0t#bDI0?yBWj%*sCUp*)IYWMDm?sP?_OfuTH&hX~%-y@20s?RL2 zaBG7F+d$t~6m3Ma08&fWsBN~96q$-50P~I_Jh!r~V=Ogz)c1)?Q2saJPNs;9O%Oy)>Pxg>?73a0<$hwMoaUH^t^qb!$>v?!zf1B`w zZN}RJ+AWiO9FXlEp)PiQ)Qt3Fc9J}2tyW{BzD(UTadeA&gGT_owzkF2bf3Gu9XfV{ zq{xV}n39s6$&e_^$jgE`yH1qF^nwvDoLOU|w!|o&@^JE)I7?Y@JG8AjyC(x|)#T9c zk>m+s8sVoAUDrjEWh~WTrCMdqZu9QRT{K0ZqU#I>6QWsAWqGMXQ4|c1$2gWroMz-j zK@z3RwQ7u~KC&zmgfU?hvv<%V2x9@0SLM?Lx2|b;L5Qj-ytKSVl4c@tt!w17rXv8$ z)cK!(=MP2Kau89J1&(H-$||m75oZ|>heI9=dmMNkPbN=!=jedCX%a;VwqtVl_=K%? z3t5s-WSP6YBc4nSkbsVD^Xki28BKg9(}2m?hXO8ct@6=>UG~NkftJ!`c1L4mTccWa z=&sGNvexC|`86C(V{K_}rbbpd+Uv1aS?0>z0{_*|{Vdn6oWW3ZE?nH;SFe8-fR)M| z``(y$Pd;R+GKZzA45Ema&TaC)eeF+~jD4D|8lQUhJe_8h+so@z=WEEbMyYz$<-+(7oce>&1Ur!aph_zX_2$% z9W#!nyuN;&Bu}~AS!0^`ymk0CS&{RHkKg9$}Fs!@f@(XIQpqEK0ND)W;aa8EflJ;#rpU5H6p0(a!5~0a6{!{LQY%uPR$+Cqd zAV8TV@d!hq*a7tW6mg2AsbXC|KL^7h>0s6>Q>`MKx>&O>EC|-6W#KN@$saxup2;+Y zG(~GT6iF_yL$Zvq(S`ke%HasbF;F^95!wN&no5vl1VzE7YvLyvNm-DV1uac@V3e8X zFfU7P|HLM$YcR@kHd^*f@swtY=Zpzh6kwXDl7y*i+l zFL0VRx4v?TvJ|QJ=^&t^X(VZZt4KWKTGU>>gbY+%jrFw(-p&BEZj(+Umd>?!<<=^i zB+;!Ilz|UfM)>>RX5+yWkiTFS}dOQ?ug0cuC6=jJ&R})Gk5;a9-n&(7iNkda{bd`oC zP*_P(5~VqYt{|&os8$sTSy#pNAxWes6C}%I`Uh_!UA#ba=LswJoO^AJGAnTE z7Dl&5I0#Ui74oCrj}TrzW=D}_o}J%7LgMA6>jY`UFq+UXt3n~mGxDPzn{5G|O>yQ4MEkDn(i1I)XWw%#zqino+Gf zq-lnq`MiC!M^ z1R*QcHeL|&%$a32n++ZghP-n1Jcs_6sXrU)Bp8lGwc!W52V!k*Y9bI;lx(doFb##O zY1<~57mMFt%|VtW>Q(nNppeeKm^EFcQgz5Ok**#_KANmB2*((T&ToD61{YgfY>y9E za=WzbI+NJra%YJ+&#`rlwOWn+;~|EkvoqL6kd}saT97&S6dcMQSB%F1vl7;WS3q6>64_rpTxMPuJAY zR2j<>p3f-F**Wo;Okx^!lPFAa934fLxV+Wk{ri2U(}X0+sa8b=XB@`3b(b_w$ZXp; zS`dh)8Cq)lV1j8XwA*5!k|c?H?>!-oVpLUPe%_^CH%}Rsx-MQzvV{KO0N2$?^MY#C zrI}!bylRsf#ER1YSe^ssasH==h~UJ7(UAawNfMWLJZ3w@FFVp3Ku{9 z5&&{*L40q?5{S(Z4vR>!t96h)%mbWl~9N<(;p z^E_vHxyI9-A=@XP{2lv=!>3|tltBo2PT3c&J;wEC;P{x}{ijH-gSoW`-7ZC(iUhHu zh-7hZifm~}3yVlU{bh{jE?_Lp*kFc1aoi)jb01nQ@{b;3TsbSeq2sYoH+`RU=%dyh zWL+WpP;|#5%Sf}js&wZ_tRKpfev-~swIvl-!`6h-X3GlwG~*;qsVV|DBuf(dQVYc~ zST=MvzxoooED;sO%;zZ(OpdHTrGg^CFwMv*MVGuTc$tPO<7x`4uU|l)uTdt6z);Or z$!gtZ{?-N+S0D?LfzR|{LfZGpiW0}sNa7sz%nFXGAgi)Sw^c-FDf!yhDUuvxxk0qu zLzduN-C{CL*j#i`RhgeW)8hQC6{0)aTwAM&L90{2tXVwy-V<>F&Q&RrjAyQQv29J< zL>%_9e&$nXXI4;~4*frVmm(GGh2rp-=4YNIf4B{`ngIG2CI0(QkpboEMVL+*jbn_n zOJtJ(MG}MY$IMmP(s}oIN>-NK`oaamqTmZZa}lL#@~t;_ktOkaTQ?1&qM+$$^rMt| z&A?Fdu5R;u zcZ)fvNtDINvN8+Z82D+5HoJD8o4Z2Gtg%?B5atmF-hjL)c<1;&UAx1h(JrsAUq({| z_pQYcvsxNIJ9R7@A666j-LtXy`GS z2Dpw%>c^BNTK5Y?LV?K&0RK~q)2I1xkX?1Nd7By?4! z=Gy%2mtLY#aqyCWm1+%JvxNVtEcwE@%d|RmOv_+*GU4fD!XOg8*p;e7Ruo*HKZj)- z=&DNHtkAaV7>dFlJbF_omZr&*@fh9ExO{n&EX_E#wF1B^uRhBQ7tiqS(JnWizrcLG zO1o9#>}r?o!yb8Furc2z&2w&FJ;%aAO9aM(5&!V{pJc1qrEZ%1$=&-HicZyV8H8iL z`oayKj1Psc7ttI3*1<)qpJ(URnI_51lAt0f5~`xobzOe=?gR2H=X0NW zjx@{p>Q_IFCd+*1&)&x}b%H2ne!0!m4`?^4OlRt+sf$X`$uywTsWTb-r)l?B*ETR! z!57TSk~mMey>yoE?*9;1x41ui!VeDbqbVAXM#uO`!qvHXbVcErl?C>^6B?$)!_m=S zvAs$A001BWNkl6~j*or9Q20$vTW~5bt~a4JPf--Ou1*xCND}Nzc z#Nw(5>CIig!P(0jJUEj!w-?x&xlrB(NUXzS8 zD>(BHf12Si7JuLU6T+gP(Qz0IB7tHmOB7qD^gIeLKyn?@qY2K{HPVwQWs-CLT!W?M z3S%#&^~^jEdZOt^a^)g--#wznB`yk9795(EhI?a+ z>SB%I{sgmbiQ)o95iMFvZL)z6wvGJkRn(1TWK+YqaS0>|>+(9*=RZZ6WF$vp)YUG^ zTvI5`JN-|5WBg4$ANx61D=SoV@t$=w8$;1quXmWY+YF-#x~$VQYgnqm{oxMl^$sAE z)6cHF&bRj7WVzC1!D(VCVntIm96q!95{JPFiX>wwI#=h`aCL{#tN}@pWTtUUKMa_6 ztBm3)ej4(<-A4pzN|a@&s&ZO`nWP!rc9V_GMdCC&^>eEFYz-c#rycK#B=OpQKflZN zaKuLscFD_vMYqMjzWZJ7ob1tcYV7a#&=nO;)|kW*zy6Is<+<*8?(}vzIOr4j5i8ZI zP%>qWy9Y<2-cXj&WSQrl-9k}hHdhwJ@UIB(Y_;mpwr!y(7X@GY-aC*Lq*;!xsrX?; zqgKIjE$TIwj~?%l<~hrY9p+j!K6T+Ni;Haz_j_2DL72saS%#tL*s4J<5Gv~n^Ow2U zIt#$()^DN73X5)y*VmsXFAJt|%*}-}*s4Lpte)bUew@z7Eix-D2SZcv{gkF_(5Rbi zt~YQTojA^ERZJRH6Gf3ZIq{jBtDx%&^}5MFy1h!2=GcbHQd9K2Z$BMj>I%2dx7ihsusiE1V2i_usL^W zg?7#2-Us_ss|LQG&~DjyeuAbcbeEdc+cn1hG4;BMzrTlJYP8$p&lslhBLq~CV6-|Y zs>0T}4i7)vC5=;}!GJ6)Szc@N?t>op?g$?8(f$Bs=7TKDl6QY7IK4Xu0@gn4P0(hg z7`uI+C=wN#N5cR`RXBTLStysQ>j1(sktNs_8%>i*8zSJZtOCQ~&J9Pf!&ZRh3y>YLI0G!%4&!UtMRlCR0@vbXg+FOU%u#=xEm!ygbL4RW{Bx zOl&$P6a~u{IxKW;?mZR389y&(6_MfsNq0}6*CQ`Q_$AH?{74{!DvHeQfBZV0mkO_{ zB4Ewh%QryR(U)3ChKf>iDNFe1pZy-Aal-L&fH6}}71zMFHIl<2?Y4z=VFjtt5X$J$ z5M!-HdOTvhHzxFADu4H9QEZ*4DA1NWTwSRV1R2qGk6;)unI>qR%BhhYpiD9(%cfS* zDTfo;(4-R1Jplm=8`47)Dc~JmSzF5M&_--U)`H z(J(7Ko%E@jHcM`c|K+{^9SMn~NHA2Lo#_F2S+YAlqG>kplaQpyNQx9$k{L!5Y|W&k zr0cecvW(Sg8(mg;Fg(OiG?uGX)@n`CSwdY^6iNW?lYj1s1Ph$_qIn#!+y@ij&h z!H=|56Iqh^g=cOfOA_Z>b95Y$t`7W&|KU5oL*R$>`eWo7v(wQ;echqgV_~VyR&(w& zL^BA-oNct3Bq2jDr0)m($IpL}rfD)B`z*S3u3p+;630B9OgQvB(xNyG`RKDAXGxN9 zb%$z2tl(aM-U zZq|4@Jz_cu_{ods*d8BH(RKdE&;MgoMP_Mb4%;#a(v*s0GwDxx(Ceef3MYQR)|q7_ zO~#tBJ{3jb+|~+dnxU&IRo7AYoXQf*GYkX(@%`Celtrm>YX~SsnKj#Fl>YU?IR>fB94TISe+rho*Ya#83trocIxZRX0|Qe(D}um zy-txA=&FLD$y7~+n-@ftZKZ0HBst@8grX|^{x=`sjXZ|EF}ki`*cPs@&oMcjv4fQzI=NXRh3DD0K-seZf+6=F}u5Crc>d?t+#6!rh#n> z{7~da_`Xnkr=uzBSI=QtDnXENa_kXI116zZnJbEnrpYWURC)RK88l77_XQT};*})^ zgAji-lvlfZJ!(`rrK(24wr;dpy`1ad_zQ zgL@}P5{yP6ow`MN*StVokHyp_t4V zi-5JYApCfFPLbt!?`$K@cahwR2oRl|FyrPxQHVgx-8+(HEN{$fU^P=a;4Mfa(G^Z8|!JuFNVPOEy+q;>Sl=vV<3B)KrD58+ESTUS*hx zi`q05^08RycfRt{X{%8_^MiVMPE}EecLyK|7`;3jNS9{-_=UF3-CzF(QC_g~yYGn9 zepwRz!MDIPDg018hxK(9H|o@?I!RHm_39>uq0pVP$-NlcR*^N8rN8@GC<@}cPnhlu zP^u=;lO6|e@6o!lgsv;}|JUE3%u8PRFMbx1gzhV6snv93Rbetssa16p$3%4u8fy*a z&I>gQRb}}?2St^z&Mk`H?aDF-hd%a;&wyoN7z$+=A{n}9mGV63_lYMFT0{Jfrw@-g z|F>R%=@fIZj?%0lZEXpw#G7B|!qqvftwoZe6sk88HC16}XUg-hZQ?!dq1G(sO&voL zeeT07=g#+@vT(M^=0=s5f9*5aim)?GrYYGZWPf*xA7sde3W_Wqo1%bWP^N;Jn(rNv zO+w+loxO=D3d+4*q?bP>*s)m-trp5_pB5I6AH#F8wZ)v>BrP&b#iXL!Ok$6QWwGG4 z2(y^BRU^t`3{|IYREV<_Ls9tllgC`?TwtTNM4Tu1X-JsG)Qt-BP8C&FdB1;$w8%N% zT*FUS@Ik2y+t}3YX12T|CqX2We|FJNy4S}8P>XO+BKIrPI+l-0|}U$ zZ*t`OSe8&f{>jasLsK-qe{h#K_MXzR>uiq)y!m*CXBWF@s>1*D*1zRw>hVv%@?}P` z&sVNqr)61G4TIyOAuY>7Qxs}dhs{QV*EY{kGYo9i;?*nX&{TyNmo^Bqn5&)h+`YHM z&BYZex=qEk$cus?i+DPna1soNvY7G6W3|&nkrW>F2YlhhtDFQ=+MPPKW^$pmNyV`E ztp~r)Gv`*hw$LTZa%!f4#A}Yh_LDL;G#aKFb^w?ntxB+GJSSzrvU{8hn~lB zrNN=!;Z5<;5G!IrYE3H`ZU$X;utWMPfXSaZL5JV$(D=nl#VUmnWqr%440@t2h zB1=W{O_3K&LctHceq$4-;+(GOB}u{?d8n$&cpS6TafK2p3)ZLQTIhyOqf_U1|KuY= zKjeq+A2N+HlC0#-yGK+UoxqQ&RCHPm3)41nTnmN=oH^GOqei2`WD;XJCWjtf zuq-jqH5wMn8}ovHYN~8(Wu0YETYng(D?o7#TAZLw(V(SJB)CIxDee@CdyBif7I!ah z#T|+}6nA&u`=6EBo#h*uaG7M_=KY;>-sgOrNVEKI(h8^!&{Tq_E`h}IikhYGl{)TR zEh3~lw|2cND}HBxMP}h0v{weq?Uk?$LiIYi6at9j2cm$%oE%0pOP$fuX~s}o!)rdn zg2uwRI)HZjWrxH1E_ZSW`@RM_~&2~AU14Gf{7!w*Zud(gTy999xtBvLOGSE;Ac!UlR{LN)4dJDi;xRGb@FPeKH)--%0vC}>xBy2Tb^m+?sl zM3nU#e5TlWQyBT9SJ1vr474SITl%<9h_asc#>EzbBo9V0G}J9@w)_ANG~B&HMgn}* zY)RZ4EUdz|@6n_Fu2Hl;U(mZZye}M41;M-|hTK+Q4Z3TCrbNF?C!VlmIb}L}fr$&2 zj+TZ8WrvP^)Gl<-^1;gvoNdj}u1Ggw&lz|>`--Pw;#Ou8(;J;Otcy-7k7LvINH13gqN5pFIW#Ue1~i1<8M!qY_vo z{TjlxR@*r@t^Ye#VW=uIq4*^Yf9ZBw{$gD|Bk!3o_l{>2rR_ohL%ORD&NVg@Ei0?; zNgGTJdK~Y>>e)~hm5#|}WJpKS>=HVdVtB-^wFvH;I95337b|L9&!-(@^u8rH>)3rc zx#?aFvL_;?k!BCcjlyS)ofB7s>T0$2K6Shf0V~JRrevQ_blOYAfIXbdr6#NHTE$n_ z$ITL}A$tn|B0DS*2`~Yfnnt1p|IEk$j^6!v5(TNiy8Ao9FKQ}W7Sfx>5oIAiClwqP zRMTU>_Df=)3Vq95fE3yMe~TH&iw0$s;jsc)(}YQWr&+OgilCzL-1vZkl4Mm{`&b{ z^*$-Ww%{`a?*_HOb9Qt=t=nuaWSD+4>SEzbkdnAO5WK8hX z-vD(i$@{*(ZCJkbJJ}?TMRLvof@CL!V1s;(ZpUBF(NdPbj@nST(6rwUWWYWf(j_fy z1pZB|T4p_M=NKEY4E_%}OvLrc$+y|}LA_Wg21v+tq>2k}{(1jg+gkBlJvvVL&jlNp zo?9imM_2r^A-we~UtjvWpej(=UN+7;f?^=VlR;Q;uvmXgdN#iCli^D=El?icrLcD+ z!jz!!C?mVp5smCkiutDPW{oWdJYJ;LUGqK!JW{mCcOcCf((-E+>$F#30o^t;&j3-o zNG&Kk&g+|$MjY7A=Lq#|y{x`&uY9zoMIf@cgnx+~NCY#4bfdA9zA-2}o>`uhJL4IZ z`rh+Nr8Y3=8i0HB*oL~N&8uF*Y1?7%@D}XhD)1@T%zJ90`gTvqn_#<;ypoy_NwO{lv)|gn zEZvS6m>Ji*%v^JeWHr?)B8vEYoS}gf$LITHj*kp9A$}9C&mo1A85JZ;Uiw>?H@YRn z=z-A_q5{I$sl)DE8q~6Q2O3wcns^;!*7NELJu#Etsh|=4%f8J<4XOjrz6(5*Ra4 zMsLyxSTa{c7uyu~JR<@TH%?P7eiE|bW*cP=b{k}c&8Tei5v1oc@|Xk6Pq}f<57@RjoacFS>b&|lfp4PW;P?ZGRDqy@G)fE&t+S!bZIGD zbJF$tq;(kU<>4i?l0o4IqBx=I&%Q{nOA;8)D4{Nu$AQQ`Az|=F+DJH42$Kl*uS~6t zy{^}iDar(h8miRa()GWM6%34VsGNDh+ z!U-CjO)lwip_vIgj!X!L_fGnfMJ8bzkTf+Oo6bX~2OxKKYclWS-#@ak4 zjig^Q*5kHQHp&sb40RDRw*3)-ov0J|PUwxF0x$FQ{HA5I+DfP&0gnKc^+~4c#qN`@ zZ5W+px2q4}88^YwXc07mii)8lNX?T1<{4E7p~uV97I-MP^xR&-B4Zm@wQBPg<<&c6 zF`JAzX2Oe38V);ED!#S*xEM8qP)yhS+Mps56^B4`+)BaEbi)Q#Bi+-GI(mACLnO8B zgs7k9F$zU|5GO4aom4Q+-h(1TClU~pLckG4u0tP!+h%*jz8G83^4k_jVbf%s*w|U_@!KyG$PVQx)w;f%2HC*A zoT!zAw#>dn_1J`_C{m5$R#O|sxOkW!AX-gR4jN?0AsNsz1%vKa{(5&N#4% zPDHHumR4Y*((qSztAx--nFC$m@Wj5gxg+q#SpgjEeY5gFloF6Asva;}@J)An+^pNV zu0D7pj<*j-D4Kdh(0whj@}qAV$B>7ucOY;wnzspA6Nle!Y1O;l>+x+f}s=nyTu-qCwk-2@OscX$6xsNNYqocSczA zt5Y@XdQ`|t*%G(RpINfDcU749O2`sJXl?%7AiXZ8p0t<;GGaU5%5eLL1p(~Sr1|i5 zm3Wy6aQvSx7MjFY&udKaFK5iv5W>z?PY^4y!0je(l@!f0_+^ReIQvU5xKbN!ab|8Q z1&>JRmu7vHb|_e`eJzHI-)aHdjK=t7K%XQts>i7<70vif>RjFTg6p9#v3I%)l2)2l(uE))9NQgS{r9 zHx$>&-##7Q@YksxEVV4bIG_YOIx>B^s~3gSWy%R#U~Gtzh%&2Vhw;@@+`-N#;62)4 z-FO~Fh67Sp@EH#sx-tnys(a*pDT~VdYUYI5LUvV^{@HpsXE8iIR=@v_<6}!zpgu{< z%`b6{xZNfxk^+@fxDVx)??ZNk)~r8%Cnvn^duu3IIthT#QdGa({s7ijV%HGh%8hQu z(c@p4D$VQUu)#d}Vzm~3_mDq`)tJ}RY14$TYhGYvGvqBhsq2>O?=gAB*}3q*X7Se< zwod0vO}|kizsd!+Pa$KoRwl+Wg%(u3qjVTZLX||0x(B+rS z{YpnXwS;XC4PS%{$^<9V!7CG=`Hsgj*!Wx1&}&7k)?u{0g^m?}(R2G#f*IVRmQ_tl zy?VH|{e}IbR$rVkv!2<-p1k$1cDJ{U8sdqx0vAKvchBt}Xt0D|kSgo=MZGq^tp2o@ zCD*||d5O$JH2+yg#)r2=;r#_T`xB(fEHF-JSTRb9*tJ<=BX27Ihv1ulh9SpwLH9uW zif{UmDaLF+E8JfhI40NuPmZtK7G)n#$LTki#T z06KsE&~{>feU;J7QmZyQG3_pY16k(Sge(Q*N=W6)D2G}LRa@~$ARzZk8~lmo+_|q&!%{2=fWUbGcv}8cbe}!{oh;y|U{gpvi1(pzB30{5;CeM-(bCb(1$f zJzYQg`DUqU_2TKNZS@<$bLK!Uki6+778ybA^W}Jz+dZ)9~ z=QhPS_(@)w28$-w?a1mK5q7atLUcra?n58Y_OQ=!5!ZfCt>%5?+Ry#_wEcf)0lq&% zXrz_adAgdKe858tbsd9g(hKi#AF*C&xSvbDeI-JbmPV{L7p+`0-k8-hc&?Qeo>!qQ z7Zi*vE!o9?H_zVRhi9i;-SC5bm6CrqYo$$&Jx#cPCc7nH+2w?ObM=Yq&IqCcQ0SNm zB;@Xiq}!8p#=nvBZ@Eke&_F`K9C~Jdldnym4w;5@!>z9Q0?bAGDC~;r{!s8g8geng z1IDA?EnB}D%oiWH{A(PaeXMUu=W83pY-y!RAXyEPcjisL)?g`%idN?OT*aM?5Y`!` z%bIJGShT>^6&zV!#1jE))$P2nvVt4eYEuue+pNreZG*$q@O8bfnKTm4PEY;Z@`AvU z!;PG(Aut({jT6s34wVo@tI2=sz0~cO^E-F(BWkt|XfV}V`t}R0$D5aXc~+Tp)?iz! z*wx4N0tJx2-t(okT!D_jVaE5`wvN0(RQgGv5;*axBT9PuZvHq=ZpabXFszTbVNB4T z0BRRaz~z=#haFoe-F9zLD^u~)bvb-jcxeaB%)n0ed>B`mvE}PBhm@ZI=XS4 zS~PA{S{K^!gN+&1Ds2};I+;IwhQPy=Ugl@LvEZt~H6S(T{`0f~Ur$n<#|MurKc*6^ z1hv1Q@NA7QVh9dcK5XyvXt$U6c!@)DPnTQW9eiKG6L?88vzbt5%PTHQ#+J4PU-DQe zrEy!=l13c{!C?(kg*gW#2-jWOY>cl3hyiH{qrw^|S=lU4ah>=tj}2AlUoZDNC+ zBB?l0uXbx)Kv7}b2XdgcU4>{$b)JFcw81$n-;6Ze-QnqVj+qn-kzM=E5ATOtdLvh{ zxR6^GEO{O?d0_OEQcOBZNI?`>B23>u(*IG;bgLi2uSFlS5mq+M z?tR&6jV`jK^^I(uhp#*jFg>@jgNp~%Q)E)M(4T@jM59nwBNdH6 z0&y{IPC&aLzqlY@o}}6mOP>6%1gNr=`_B#D^&*}e((9{$zAkzlk`d~jn32F$_gLqX zOaopz{j_te=TWj(J`7v8E`HXQE$z!aTq9o}Z)RZUOoJ+^8 zb+2!_faA)62i>)a`->uenom!9$wz^g#-Uf#FTcTjYoRcl#myv=o?>xt+_SOg)7KT= zPG}W}YXmw>BdA!%6c@>}%!);PomqMpb4wP0mmeQ80+m62Q{{Wm#D`Y)=3SqmgN{BQ zN|bT%^0L5_*B?dG&ZiqpVy8fA@fnUWDf{Zf*cw+s*BxbecmER9k4ggG6X;eIoo`zw$ewGD$yjn$eeTY#kwj}O2 zL8zX)Tv(ZBrV$kFJqv-x3ds4?HNoy&NQ)sUrI%;q3%v2_4kM)fWf9>fBPx&gY%j=C zuO%p#vHOWJ#4zgQBowII_R;_MJorH(G!zH`yJped^VOi|nJIdmQOBUW#)Kf3K*Sr} z3Fl{`9pINGkzxu(Up1Iax*pW4CZQlLaV4Y6Ph+h6A&NEU!;WB>iQ}}dL9~OZUMbY$ zLCe4~TiuVJ9?kI4xjt*0^6r#zLhpey%dKv4o$jrjwq}nIyF;`St1@KV5hu@ahZd|s zEzhnE7y5=Dy-j%PeUBgsS1+H7+L~%RMNgu;Rz=JEI^p(&R9%$iM&O!|)krrQPHQA0 zQbO1-zgXFT?EmIk3ghCMpm)2Jq*4KU@J^ijLvhFoggV|bX^2w+p1tuCfH2aj=u(me z5^=M{V2Bk;%jTBM3fw8L?SSy58`|I+#zf(NP2;WXZPF7HZO*RuJkeo0dtWKEYFR;S z#dYvd*ZPQ@d46J`QHY#c8n@15qOv5{wYTe8d4fOB1`aGY0u!b(XQ75MGhEFU5W&Mu zT_Xf0dA_znR!+EMycBY74ZHGQE>Rsfo6$Zf_&mJ2B_1e`(ixO9 z;MacFNXQ7tqP8+U)h=_3Sriecrn678EXxM94gE%k_N`Sv*xwuKl&ZKIJ7U0i#rIoWAkTWd#FiRwk zGop$(X6wSY1QXkS2>g~Ufht?z^C{Hl{$jbH6hHCyqSg6s>uOfAdh^iaOSF;LcwA4+ zZgM>*nlhV2O<1+YreZ~3iL~12`fsU>u7X5W4F>3K$Mb)i1nc+I8W|V!XzyJDI?xV2 z%oPuCXS$Qa5*oFwU;Sc4Wnr;iCq_~`aHO;QlQ{cLxqirsnakDDH9TA@9y+4_vCibk zm_4??PXz;{vF-LmEff2=1OHrLzm8X1ulgV_)_$1C!4RPSBvb_&DE|?1e;h z)5p=HY(O%q`D!xkd&j^1klpH=9KY5LoN7q)7PasJ4OVA|O{(r#Uo}(();R@Ap#}K$ zcc*54OwuaazLMC=PL3d0zT$6nYY=h_x(J?F1`mO#+Ggm!S&DG|fngFKS}1HrZOBjm zJAqMKqi)X`se?|QCjN<#PJFPiK0(XH5_?Jbo2}}eucW~(GCV_wWRZr~&hB7yv2o7P zeQv#{OQiOfdn9=|vAOb~G`BTnLPi2vIXMKjWAr!cqAH)>*$vJfGgoWd6J7N|ev5kA z#u!SmaTQaZzj z);%>VKIInKYF3nUYp65D<`JKG&h^&8AtHH7Rc3Jz3;a;%NK(Z@VX;Skc0@i-3<683 zn!mXu9t^a0=oa3U!~@b8Dv^fuZX{`rHkW z2{4IdHsa(BsrAdt>3e1D?nRr$RYAsOVz(r&_y9k2f$#a{yuHJ$`*LhWOtbNo;*Tk- zXbKAIcqxfQX2X}`Z`30rRGjboKS=*F2ew(pCt)(mMSfb&MDn<4J?x-R6_WBfMW}2w zrI?Zt^RiB-24QmyMYPVwbThwu38K6ET*b0Uxsd@xRo%lC*xECCh$=3|J<6ceBI)wJ z7rfX_HzdJ$Z)lh?;7hYPlsK-Y*^g!~G4ui4%BESuPjgIncgFTUa~0Pjoq1Sk@&@y( z7x^T1XfIGS!~?#+@eZ*f2KzEr7gIi+bH8S2aUeFV{n^$=8T2)W>YCRWWx-mr{fzjx z#m`;&)jur_L7&z9&eYQ~q5f!uzqAP|^h^BLdDRmMqM10SV!HOcpCY^6dc>J74{PHv zWO;_^@v6HFBVHoiB}QD0v;q%Uu*onKDy(d;E>fxQzKr+Rkj{e+u($pBVkuSvDS`ar zra$k*By)#Ts?jc<_e1Y!QZ8TZUm+S zyhvqz5G>bKO2|2QBJO={2>`kq(hYT9Z06^#56(gPzJP`V!A}8ebcQd$pPMP3sId5& zTU;BuR9({{V`l1{P5OyRX;Pg&woTaoldUQ`OAe9?qgR{w)Byhc4E)7*QjG>n6uAW=Kzuh+4K_Wvc z-N$-~7+UBN6R!`cv#&t=#o-4C{?OxDPJIK1_fLP}*MgX*vDnI-bC9xOCue0Q6BP0K zhGmPYO=hK9$a9V0?Kc1y7{VCF1FsQgA*xm_p1?rr))-#fjCVJ3X0EC7#4Ll8-zeSQIrM^p9~_79aO()lU`T*>ZP3xp<$b zmt_Ph1l)(1uMA9GwlWE(EiE3w;Tl*ELmvo}=w3fj{xh4P8{rrfGk1D^qbltvN2jx2 zC!QpVVBW7<%QVcm3E)FI%>42TA9r_Gyo>9n^@zce232s%2v~c4wgh@UPM3K%Af-&8 z&rS(cgQARu@3hM`FZpPgt$tTpr<=?hZ1xq_RK8sGP*;QPJR5;3zJu5LNvFN7h6LNF zx6ul<5dkJbf8s3!CAM_I^P z6}5w5K1mxt$D~UBgrnilFxTzgyp=M3SI@AJmf`Ib{4~ktYZs*Dz`OgOs_T7!LVoto zSGlEn$YXNr(xDTuE#gC9tu{5aDh8~mjlUI*d4iL~h|?AON3^7Yc;itOB)oq0vq|3Z zXq-akF^>`Zx$A}^p=|V+*oJfcJ|OC+ee3j$|zW=1KSRkArxcs*yVi|p`OY>)E^@{&uJ@* zF+0tB6pBQvkuc}w@~379u^O^-HG(>6-d&^RIKxt>0AFL6g%aziHB^pgkK6L>hw!V; zPMzlXnI}~`^XJc^-43|-d0b695~P$96>x`|R+LcCfk@LWI=cUY_Kic$qk>dR=1GDq z&4~hhiUzeC+x|RXGfwaK^>R0VjWtf5Ba>rCdSYy1s%d>0&{)Wn5HJ>@{bY`o=uV0@ z(fIp~r0}tPH01q&onrk=R07MFvVf`uY|M@9cOgD)jbI5`5X$=BlP{p?2Z6g|%;U1j{knl>ovKfb?ee$Bc;{GxlrQ60LNOh6(J3FJ88u5N->0x*Ts^3>XzM>|>inj} z2uvchP=7BQ)92m^Q>%=U#W;#5L|OIpnM%P6$R9v>m=EQ@kG<)zGvlrx^s;n+Ofv_<@O#W|5?!S*$;|yMs=4TQCCy4gHEqdI z?!TTAwR5|HJpe7@>ehT^H=KJC`gu?ZrR*>p^zppjixM=agko+P+9HT;^qn2&b3;hj z@5)!jgQvbUm;OxV&Xj4_)iQh-14uMgCVvl5XgSAvY>ZklQz9;}^a`%$52*jNvx!$b ze@|Erp$1L~Z{f6adkW1}l-J*7F&5q>X@yFlNt?A_Es{Q6VhdC3ID5a%GYhp)l@(Dk zR@X>=;+Itk98DZ}M7Az}F#IX+1 zA4nBRbS$4rFjse!a*MwD9@=_F9s|B6$jrn;jV)Z}$F*bCkYOP@pS*tX@H`;+(1Vm% z%o$NYe~6AXM|@<@Be1rzXXxc}%DlSljVG(h1`>++Z{8-q)=oJ?#*`RdllvZs{TPdonY?r+L9)@>Kpo?JuHaYKk+H@z%p z{?pC7)pYBjq(UKWc4v+OUj0*8cTa@vozfTex9O=B=Y8@kLW!KHO|SR=it#9-<< zJXCM(xOcyFtabSMG$~uLduBK}$CFGDvtf09V|xLYH+#hvS6-a~#IOfzYrLDi9d)OO z*&=SgIaD(}{tm>%$5iW}4_uR%~e0hTBvkO9HgJAL|k0z}5g&AG@{=E?qnte7D# zkl%poYQlp~ESJL}&iUtNMKFs~O;`~@IkcR0Yz(ZvF^0j|_&#yz>$b)Mi zGxp1Ga+HEkK#TCcaP&wST``mW-_&aU#j&t#(Cj#)I!ST<_alRFo7ui85FjyNVIswa z(gnKfpo`@F(^y(6JsVcS(NPXw)68A|hIa3wC`56|*y*JiY^ZOHdPgBibuut3x-7y2KTOhL{ zHoob9V4ppt8$AXRw@gEK<(5l(UX}Avx>us=)Z@xq;vOs=uN^Nf7^xCWS2fno>%{4#)2T#jaP`SdE z#+CzwqYuk6e;7wc^i&;i*Y^v$e9<4x(c}z%xqR3Z50tnYg;7;LajWggFo#unQ zoT=w0tQdCji7d+acR=9t$Tv#wqx!7Xg7XE=&SkEBQ{ArTeM{jh4F7#;B2;|rD3$oj zXOT7SlZ;Mx!JooEODEqh3bnQ{UrWWRL_HAWK)0oYx5%%frDz%Ag0MbqJ~1B(nA}|? z4%BDHv_D|pe~(pk7v@X*>bbxWa}fp3(eMlh={qL; z^OfOcJ{-qizZd_xGEB#)r`qb+eQtSljrojI+uiXxZm8j<=UeE@!NXUg{)E>NzDle; zb5D(*GH-itU14IQtZCS$dtp#9Kl6TYGPN}OWH&wi4o4`{D+3|qc` z->u=3MFcG+8PZK&Oq^9`8osDMZWHaYIrX}s3Mpkr70Cv#O-j$+KCh)NnQ<~EqCNim zM<$nVy`Ap5UpEpNaa^OVzW$#U!ALTDVA%}7v!H~_^i4F`eIE{5&g5GgiDjce%e@{N;xF9eQw*JztH zY)is{ftRh$An*RJiz9xDT?M$aszY6DYI@JpSh+9?a2&@()$osPRQE1ng!g73K+axX z>0{C^voK5{$+^$0)E%;9@O#egd`i1gpU45pr_QBf9zi_hw+&(nzAy_u1sU4cD5$2 zlpaw&QE{h-WYiz}Pr$Y%QM{&cXvqblT;S{4l&z-csA(P+f-KJ>Zyp7Wx;u zfmk>@KnHY+C`Tjx6~H$Evwg~PutzDHr*=J|+7ER`(7%EJNkcR|p~Cj()Tkixi+@

(=ZkOE)=#{i&}6v7-Mj&gUFMZ{acxNQJCwA#Oy8Bpo(GZdn(kzx4T z*SGFriF)_$gi5DX^8BZnfD#j|ig}GkqDhMH++WhloVaM}O9>$&@9*?^P5%aB%8*J3 zT-5ya;Yny}kT^vU<4+qozN{aH<_e>-H=h?te;^n5%3Z}rVj{3E@j#y`YAFl(7Ajo z5F;^SM1G$(lip@{PNqW5AValG4DD_RE80ni%UhsY61dFxy!F%3@nb*px03o3FW_HJYhc4HL2kc3xOMPB~3bmZim9zF3q| zZV{0?wH}AKxq_2l)%HY-c%H%8@1xjU zK+O1IY7Vjrr<7=L^2`_s7_o65-cNH@)wwq+hy?#MJ!o+%8uaMtb>#FqJ;rg@$=Wqe zmgtcHG@QS-vi^4=vNaHNnaIU9R*JVhA)$FCK=O??Y(XFkKgUn+eUJP_bPkN-YRZ*=bk)CDU?489h#(mS zE>wwP)}i(0Q5F{@dH<=7lBA8L&6$e;21m>arg3>p`nOkPYb_l^NfSUTe87p}SVY^q zbF)gg*#{lCxkg~~xFL5d33AO6d%VORuOn_AE9W$68iFZEONd_WNzpGI3U7S zEsL8~J-~jqD2U6Hn&opu4IfDS!{4`JM3F=f;-fTGuDjHkiUG*rj$Qm)Dpx%2F=7$bqdo zL4kb2YcpO)2aP@jhZz36UyBgJ?Ym#i9BAw}dx#<_H9VOSt9?m0dF3oVrM_UJ6qz{+ z3VSHIGCNvQ@z0!j5EO?v_X7za{jNi|eOE;IMY_>E|GN8>d;;`M0q*xD9u|A-pSnb3 zrvE5?1a2kb_5J5zt!J<6OwLDxZ8t02q)FxF3pHuasLa*=;^PE;D@Ka2QRFOvrZFLo zYEQr!2R>UZQ}G9}*;e z61FfgnROJ&gzt?_l9D$>eR!lJV$ntfOLT*Wbd)3Pb%75uv9HwZd6P&L>OX*F6Pt8Q zK*5S%qeMaIZx82G0Lq#WA-qzbggv4UtT70V0QBc`agM)wlqyUF z8+J0|Gi;79B544JF>87V1d8MmwjAhRotPN{uj-pD%sl6rEp-M#>&Yjf{8vIErP9rCb~D_@WZ7N%HN< zB`~l+AV<;9ve=3_vESa76z9Z&{nXWkBuM3lO4P_T!@sLfL#DaqU(M4n-#%|;T5}|c zZt}(rV!EfJh?12C+M**K(Oz6lcei%&kISIuv$g4T}-q z!lEl7;jA(Y&3s4KAOJlyK`Igp@aQv?oY42nM{NW<*+ETRQ9Ppzb0mZb(twp27X%M| zdZH4%KYp7)7)lfnVq6sFMuSQljme6E2bI-t=jdVee|@xOlLJ?c|BWn1_EiINE_Uwue!w$G0z%YRHd?=Y6JgT*5XZxqL9Sq#z}aIXVnh^4nf|0VJTz_x;tvM0sb^{a?OWyK&*TvISy- zBwr(}gLiKKKZILG>IKS}L?nlWYLyXx&lVWoS(+5)71z>12 zt9cqYIcyb*p+yLume z^l5aqPFfSB5qRPLGvku>cO^ijHIfvHg|8i}_F(kv{gxJTmaso-7Kw#-LN}$1V`CJJ zYFdQnFB?`pJ6TD_EB65|NpsHI8RK$TH@UtAgbHAP8`eLQ zI^@@xQPCX8y%IqrnwHm(>l)jp1K67a;!#a8ikog%OzA~)YH)CJlg_%^(;NAKPmiak zWTYbotqo%Iy9zZH{V~I7TH^8eK#EYvxj}Pz-Dp9dd9u z72J5+vD`eoj>rkl&wY@@6G-;*M#OJmY&MF@+ z2aqNV^L(=jL;U>Y<3|s-%HvnhGg{3J<-h>X-mXo9N<%8%$Hp1W_`ZNBpy6k1$}9#gKDJ)wMXOzZ$>t1~K;yI#8EBd|Z8DX45GIMX_XAp+&%0+4QHD2C(aD8IBh!5CUtyj8I~ zO!csLhFH5BOF4To6_J}LSDyoc^L(UOXPEtWYR#Zd(MP>m|1||D0tS+g$B2q$F`R)Q zx`jGqhjNe4H9@FAr0qf-yAgu7xnkGdH~|$(vnI?poTy)UU4ameG*}=&+uy|4Z$OSf zJzB(~`3opF%*4Z?w)2*nNR9Gm8({e3T`B*4iYipJ(`U1(b2I-#CnbOkeF*enO|7}W z*i2Wp^D<4&GZoZ>_qa+b=ibpqUznS%JB|t7l^^clOD5RXw84Z}SR)Ed4K38{fz>-7 z-9IWaz{%UEUTU%&FRwHAp9M2;;%4A8&!~j!FeY8@92Z59?kQDZ2ktHQj$s3R4n|FUeMhhJa)Vb;gsycwn%Rr09*&W>N?< zNHgb4l9)E59^IHdWF*%Bf9yKkI~p6tIHqS_x#BPmw_}!3?y-aNk!6}E{mn$)7`md3 zbekvWmRIft@QnYx2QjG3& z5qSU|X?CVW0$0?$mqErH1U0%d)2(kqn|jRx+mHiT*;J+2{HUG1$CPy zBaH}4h8mmeB#Vw*P1a-?>cR5SSiChO3OPfzCYA+lZHDzErcXy~Bl-OZ#}OjgP@0rr z)AADK^fK<`?L*Uq5MOy_mr)}|NQ2EJ^uLOZ-4Ike?OE-JUX!Re|`pdnwJR= uedhmjo#eGNj||{~|L5AK0sr4cp5-4@xDDPO5>&ndz9eCCqUFM0ef|gFgInML literal 0 HcmV?d00001 diff --git a/convolutions_files/figure-html/cell-45-output-1.png b/convolutions_files/figure-html/cell-45-output-1.png new file mode 100644 index 0000000000000000000000000000000000000000..aa3df0b7c1999e8113469813bf4351461d981d2c GIT binary patch literal 7767 zcmai(WmFtnx2~&kcPB_7c+g1GvA8PR9D2up}_$F0AE>2P8&S#fS(I2jJq>R z#7p1-&0SVm7YqFJ$Fd3s|HpPwg1Q3$F3H^oGBF=`4W1PBkT>+uaklaBdg*2jIKK37 zad7ryGRgn#Q1qAAw+mlIVjJFhu9Qe z$O?u(Re=1h{s0e)J*xQAvtTM+A|lP4PU&~s`@L;G2g9@Q1Il*JQXxfV>vTU&(q}kDvX&hKC*lucNnYqkX2SP8#^v)A(&#`EBy~d(gOz z)A)Pl?4zMUg^L6d3vnxn{;c8?>N(>AxYn zfpNv}BZygvu|Qx%pTXBdhB|l2$Il^P!nVL{pfmq#0+b85mZm2C9L=MMMrF(4O(L725mS{ z*L}d)_jpjGFjgBzXE`K^@Ls~`bxlF%j;#ng%EB$Pmdvn_*~)o~CEk;Ujlfzm>UGt} z;Er7j+t0$ys->~)K`jf84Nj0THYYn&i*tJm-b2kCYYg*;T{Ll&%aCj4Utg3d0v&wr z9*EY`2AGH8!d6y2mr%?rS44|KlDLPcEO9QGZl_%{XKOj49Kn@*s}3cXk5Dh(01ro+ z)_P>B{|@0Ip6->3pR}P&1p%oNKfSax2TR#gat8j_fe3zDuHq}|$?0r8eYQ6{?_Q=~ zfnt8XKMy!8v{A#5SLdzMj}5B-SpDNS1EnQ5vP6(_7z)AQxAQw*-iZ z0@eA(r|#=ymw_!UE&E3rfybmkB)RJ5fo`$R`UeJS0z{=r>zq5G^fe!_GgX1gR8i_w@ED}p5ccl~=x}6WXx?&lK044ZQqKa| zbqdwox?aO`^M1r|mgO1BE;${33B`n@Ne6ZK?f0{NLTi&z67#t}YJ(4Z&ABQvrDCoR zWJ&mtz`Pa%M9eapi#u||7$0rs=O9(Amt ztSKnDjnFIzDFl#n>8qU?U?tODBhMF6Ia&&_PsaWtgz(u6rCB-WI#uWWP&3yNQT*@# zlH<8E1?>K)VP@Bo?N1l72R6rYL;Wgq5M!RxCL8pz4AS&4Rh|~Ka5~0>14f#v&KohH zY0gbGgyek&3CppmC-&pv43R2?{a2i;D`SZdayWQWx7Q~!Dk(youc72$Nl@y_zeZ7F z=BOldDhEihv0=gvI<5!~6M$u{T-mqz*{R$e7t6T7<@v#SQw`WbA=xsGNS7&>P zzEftmm($@_mo2~E(I&uc4T-rp_;LSG$9OIHV8X!3!Z!#Qr0@_)96EqubM+FkpA0atrXe@2u69{n2^EqN5j!Bk$%rRmO_hS^5jQF`D5oj8U! z@`+U+(Rq3VDI1Dri`!asALYJ?ffiXR;u}8cukHxaeOE9K0B3F+!N9{%2B7-YI1{7W z>(6m1Lb@F8Te8~Nw1Tey?*$xheU_OmMuyz|R#Z#^p!((C80T}#U!x%2XEU}dfl@I@ zGW_Qvx?~yH{zIH4CO4j`T^pZ*2)sEwG^^#4yFFow^gd|eYLhw=`4(Z(=R4m^RvNAQ zw9&dm7X4S~oqyJ2!|c8lLaN{F88J?jg?|;Aeu3((d^wyhq?($B{W;}7TK&*P#BgpA z6m!wc%vq&%4uhx?7DDvX;@7A}VcNw>G&cQJAKKH^qK;UjSfu1{ec_Fe2B zDAO)bDL8yZ7^H`d?RK_3iF>#(jmHwZ`8@{Ah9%1>tN2bA3znpdzN8dG-H(MWyS0NM zBpek=U4t+PDo|zaQ>#>B0Mq)cAb*|2kweU^kpDZnE9bu-=nEW3Y<_sY;Kv*14^2a> zkwUDF1|%FO9}wgn8K1iNuFhbzI^c zqNv`?(^obxN9uN;eTJ~g*HG^~E?aFF@SVc5%(6~?M2h{vV{788A%fKfaNYR@DE}P(SuGUOSG-*MXGUbkf z`K;q$q@raSTk6l4XuOF@JcSRYaJyH2rhke8?K zv)w|K;I1+;p;4G8AYZ@7r(MrZM6s=1+$%^mH7fQ~2?;B=C->M^&`R>pcYs=#GX69p zpJ`OC0BiL>ttQTE7LEV z>6`tbT(k=m8&1u{oe#p#|Ns(i)N` zee|j)>%*uMou3z>#kA$@!ikL`cD1Tcy|D?N*bD)A8~B6|M2QYnBre&0jwZK1`}&$5 zTwHVINDKqB03o8;+Oz$6TBUN23Ta55d=!OD*O!Lq`%HXzs6za(NU5@ah~%eN|7Xkp z%oy!%+V?})7>9kk?Q!p4$#NtaCcy)9u;zU))r$g=K&LY>zzbQW&8JhOUZ7W| zuUq-zBUrh{3!l?^nYgB5&G+bnv_Ks3T``uv02I29r8H(%qHe2Lj<5-ZjOGNI zAT_lgRZ1K1_e5h}qQ*SveM)@b%Oc#9R)NU)uo8`DMDftW$%X74P*sxGQ@~b@k@hlr z#x{E9W%S3_(fvv-$h>I&LMlyqQKEyN4kThCKVtdURdT4~q|LORW?&%RBBEqOawzzA zhDME1lLi&`F*zZ)p%mR3#q;KtLlQa6V+icJoQDW1_YeuyyU8Tlj+~;HVvKk_V5{jG z+7RtYdx;RtXXE1j+Y2%id#s6 zgF6bJ%900l0YU*h>8C9lL7fu&@J(82rt1U04XaP^kQ4&L>>GctD*-yQUZ8AAc~4pj z!Z#-ooL6W{FGVyzU9cjo5D|FXQ?~M;w}0W?V+xCC4khfHf2dUTF?dO2-YVM=7#dps z_muGO(5)&WG5uM?NRi#A{vbioo{uAP_}^dezlHfqmXTyNEe6uUuJ&6AVIYb0I*JEg zixTY$6ROz!!>}onOdWsLX@Ser9ZbZuSr9$~Uu15{RHr=c2FYEzDN+V+Ag-A)q z&E*cnnRI=Srxg!&7u#1M98g72w+%y#rs9~1&0r1o(+c(6hSiL-%j~vs7hgaDo^uCF z-N@#X$veimpOw`-{>||qFJyDFj1u57s6<1UnHGYv2GoOLiMaY+Wd^C2!S-;^L>2pUwh7-r*FIs+kJ%qa3wLA{+<_qvkT;a={ZBBqXn>=bx15# zxcDA@rNlk;`M9l&-cTNCfgQYoF?cz6G9o@I=`}1gP3GOcYL)#Qq^=1rL#!6?e6ah9 z7e1{8lua!S@YWH%K@|E+^LAbf05LQ|ZnGecr`F>AgN9Az5saR10flHP;?r~x3~g02 z5pi}^AaV7!X!ny*ntDH6YJWc}ecLw6N}<;#ACx!pXXDeSS(YPeJ?;1X~-oiso-HIw@*f!V1OdFJn! zaQH1>IWgZl_T9fLT3!VwwrY4@uP1WXZb^7q%+y*t%~G2AYi-*8G1)NuCacwVIY8_> z*o}VD`UMnKrDqRDPp>wlZ?U~uEOA;xKtT7(|RJ27Eho}<=RGdpy&c^f7Ua$0_CLk zJ8uKey_dTq-u`*Dl+pl(u+wbN%?Sgbk`&HBnRGD8Adw(5FMV?qiz3Z-p7IC?;?TV% zqmg+}KnL)$zoCF0w8k?lqAVP2Y0$^3;7^-)nRMGya2u`CgVk0nuL2bR{i8H~OMpts zUljP{e~e88t*{);mIT0dgO&OSSqvsaMnBvd2{vXBXSbGWC0STfzynbiM&Rkwr~5)~ z2P~>7fGG`?%-2YA+>_>VW6YZ3@y0K4-LZx`qF3h!nC3Uve}HH@@hL~~fJ=|=_OB>v z>4N?33Z)w1lbQUM?`GeON}kIF6ske8kY!}-R{qOpS=ZTMmb#BdOn-0p^8zpk>317F z_vfDO|Mk^~_1J0P$vZsi&By3EiS)g8Ea%lgKn?P&b|K}uenyG?iPa7j;aZU2pWqz-9Nd+BA*$f3j=t) zJr0+iF}j)LT%Qh3nAMkKrqTOuK4gT;+s`%gFR=(^n&{HBb&$kb&o#R`WuU$2j*8!Y zaMMkOUE4?Y9?k7q;%c`J)>LK!dDa?zmW9@TP2Y`5C;`ayC$QjNXO_P=ZE~U`qGr6@ zts7m&VWl_85O!QP%|M|s*9M!J;nEDS*Kh8%(0cnU6r-hg<^eO>7jlCaTILz$zvHk2 zIg~lKT$i3(U;i$W9`=$}c8S}fQjSs;oY(BJOK>s-JJm3$RAn*G?N$1y)MnQe1z@Vm z?4U71gvoE_GEp)tiU*DbGiiN8ej%Y8FkEdNb1z0=h~DxjN?r`6sDQ!Mb_dh7sz<4> z>+9q0Bn}$`>>*K@5=llBdK_Ai-vd|BRC z9w`iB2`@)YvP)NUzNHUEypbg}n3NVe>cZs(BA)Zhk#7!par0P#91JNoZHN2Cs0|9f z8e=T6z36+js7&uvPcE(9Q>2>8v;XvCBZINDzq|w(LtK z|9A>1dMZyZ4OVak5a$}3m~zEuROC^dS9JrgKhDj~g-P8Ga8&`>*5t7)bk+i&hpCvw6AK%klXLYiT_ja&?ShR zh4a}e8t%O;*E&Iw1q{f(4-=7ja`*LCc8a^~`>ox09{N&2SOZA1vw7^1dUy9z#qyW5 z@8d`yy@JYK@%RXG$Z9z#+}VwwwFn1u0Q4ag)&`RM`}=<_NAcQ#_}=Y0O@541Ol^6L zY+X%I4WZ!v{$s*9x5SAZETb{}mOW#|TFfe`Ji}n;KrQS*#R5v!4|A1%4JRk3ZdR@T zgObw?;_xd^Hg9N3Deu~6hZB!#3+Pv(CDNtg9Q2y#u`^@#OCl@4SRRn5Zz zOC>C<`rMd(euoYkTc=iM^YIJ}uJpt{!^n(}b>I4AjVreKi$YZnIN6ZZ) z902CGH%O=1QoS;!O2?n|C4Qg)THeDW*@8TBDU=ZK1}pRlngsJLNR;#TVB1aVdayU! z)aqyrvf0qe_heQ2z1CGN5koBpR_no^<nWj(a%au5k-Y0hep)Jd}>wu&fAV_)D!t=-ur=0 zX0>^1S66{LmVjEIThi-%-lz4fp!%l*)>?O9=_3K|q<8b^s5|0E-G$FHKrf=C9qhw< z0o_tv?C=H5gl6XH3*tdeX%Xjz-A3f5qO^*hjxk(aTKTJBpAp=m(7}|^Pus7>3tL>H>Gk#E#mY5AZ1fW%LznY z0=o1hp8lx@=MR zTEPdWJe;b&jL$o+vl$-9#}cyvS?)eBu_QvbmcE3_{FWGc<$v7I1~bTcE})t(Sn|oe zhHPsjOB}+BDNJG4cN_E8Gl1&O<;isDpK zFFc%3<%ML+Lz>Ti+CzA~JwbO_SFS#CZ7{XBef@=L84WJBk$M{6L$eHTPSEVM)VDsq zw@Dwm45o7mw1Y+j-Fc>=ebBFiyy(TUzKO_mrv5uFb@m;LEr0*~B@LhTKWj2ys{&c~ zn3hl2!(()t4RsGTj5oWz(B*y|XqAZr`m5XF!a-|YT|N2&!T)moot5L3tNqRze8nNN z8YrqQ+5#qxvZUfZs5xd3KF@7kgz+Mdsgwiwx*@oJcbi(pGp_BOPF0>{Km>2xo%v}E+3b~ZO^nOizMwoUks84W*Z$ZW|8lFy$vC{xc$^=!cBAj!CWXMi v)L<8I*<#=MUH1?s0cwqk(*OT$+Tkt7k69Er?rsYB5*SdHSC^}lH4phOLxjGy literal 0 HcmV?d00001 diff --git a/convolutions_files/figure-html/cell-51-output-1.png b/convolutions_files/figure-html/cell-51-output-1.png new file mode 100644 index 0000000000000000000000000000000000000000..1746f2fab2e2f6eef69f80935a62a9afe2a24438 GIT binary patch literal 22808 zcmagG1yodT)ILh1q=-m|qlkobGlVh-k`hCwLrQlHjUtUSNQw+dceluZ5<^JWATcz^ z5YqSX`@Vbs>#lXzx~w(KVa~)m?|$FCpZz?~A@Ys7A~^{I2@Vbp`D-PJ77h*`3OJs; zLj?Th6?Ps1?g-ppzSg+|{P^Foi~#<=>!M`fj)Oyb|MrGEwh(v;JSgs=pzopWZ0+G~ z;bw*7XyM`F;OyaG_m<7e%FW%**-403fLDNr&DO)iMUs#2|D5M_cC+ETXH83wgTsdN z8uCKNCu?WHJ3R?{()D-$r;hoCnw&)eDd<@Q$VBsj=L?g8S+A?|XnO;AcU*;MxxE1m ze4mhphLo+HY)p!*y{C&`NL6ibKVHoF>CYz_mQS@4C2}!8dsfTEdY2B{OG?Q3GWL~ResfPoY@Jp~PgG={)Ky1O{L^efez2)*cFGUXxbAJia;D}Rlv zUxi^LUqT8a`!hj@5fMACLD)bY2ovZqIAZ5vLOba2+muWsNYE4_8l@BxQFbrE{xS}p z6v6W_!I)}>9h4iP#8`QJvWp&9uxyE7dYF&`60DIl>(u(I3?Yi_=b`%PDx2E0WM;IG zsp{EDEatn5<)fNe50q6Wnw^5orIfs44sn1Denh5Qb&1JQ;!thk%@Y_i4u{N7^&W!+ z4I#SGN;wg#Gzsc~bH_9ZxeHT$z?f1ZJPr(l>fkdJr*PMd2;*gMvWwX(XR4XI4wPes zc6+DIH!IGjbC&}Pi+EH99H7%ErTnRLwLQA!AW#i!`kLt?GQd&x8R%@!{g@QvO;aiC zQ(<&X_5?Sqs>5mt-=DI;B7nM+xk(W+?B;w!XQj zOCWwa-UX9$X2bud1NjWuP2q$RM=IeRJm;qr@4lj=Wb(QpbHN=U5+7|x*`g)T26>bR z^anbg4MxQbRV?55Kv$3gT>c08Pe6EWcjsX-Gc?_QXUz%c(kzbOis3HS=tU_}qP@*2 zMkvK;T<|(0luF>W!e}wHYMK280osv@e$TriIykk!_~Ql2woUYS$!#7i?rXf{0Zt)q^i^s( zPU_inqfnX+7V@Uxy})hO1KGHx^A%kDI(J#t^}xW6DN)6ywAixErD&NWssYNp;)`}+ zp01Y1_~rQ4c&z8o;j`_#2_jdYkG{m0_~Bq$DqS=5&Df}egK(4Prx4Eb+l%;PFPUt> zZ}94l480;RK4)wNUQ--IE(LPxn>qBo7e9fZJu5Ne!S%t9L#HI}KO-3Sl&##C+0O`^ zGr7xjWXl-zeiE)A2!vMEnMjLi1yf z0LK^u>bH$7U44NA)_9FjO`(($nizp4+@%?m!V_jX;w*wToU-pN@)x)+vMzcNJ-htK zonyZa=IzfjB-5duMMbp{tLM9EBp$B0oie%~e>dy5_x{um+0^L_c*p=VUT%9uwHfIt zw#j?CO}KIQH-5(hs+D?QyiZ)9=k2Bg{+;qC1SgCz-C5EYfe#=-RC|T`7`oYs^91e` z%H#fqfgm^ZICdh45mF$1fPWyPtK273wpd|SEkn>oLueacNX`j;jZ6=U=no1J3LXy$ zitZ=ZZ?}8lU7CvIgtoR*#E2mss1vBV$NQVvh2vDjw#=>K zw7gw=pa_9zRV`vms}ED#%W+78A)efR+#?U|5B6F0 zy+hqXgdmoLZ){^Ef+uQ^n1G({DC${{5& zeN|d)GA>K>v!n(1u;3d8m|%!Vmo3%V{q1%??n$`#A2hwsQ2RbqPNmXgzyYRO5dkIw zubWRwKfiZ9Ypb4go8U3mIG0Zrl0=yN_V?&7AgwJ{!)k3pC;!Ji z8B7u*pi)g_WV~V;B<12BTc=ap!b!;;bVyw`S8aw@8^Sm*kvIj5{k=rOgU65bkM+#_ zr*6)vTOa&}Rs->8$i9mjnXYC!;PivUNvLX3Zw=x2-ZIAEL&`}ykt(v~RY#m><4GR8 z)+l&LUt+k^Vofbbvs;^@=iLoMS-1bm%3E*v^{&j)g#JpdbxW=@7sivWEI3F+muniY ztUINM5q1KtDi_cQT~d4VKb6gQJm>#a*=}p0#TeS)_FlP|-|oLs#fi{K|38IN0E%f= zh<^A~TDrY3^NUV-wafDN0AzZq$U>al(N#%uCtN&~K(%kJU8HvaYyO4iau zd(fL+Ix>GGiL!6uRG#o{{=hze)_dQ&Y|dz0O|t~q3q9~ZcOR!eov8Wj6t2ZZ5@=GN zX%lEL@OY`RY_sqg6hjaD#{*+5^Zhmdq|VwIiHb4K zDvdS48{~^zmv|RTFzr?Bf|G@O0>ELw7t@QyCgxKtLQx@g)xe zV1nD{F#HE6ifv2MlH~#uN^hquHo6pjmaIO6YoC{(RiX^$1zkWaQzOW*W}G0H!V`Ij z;K^R>a2F`@mu9k7N=jmKo-|6C%BCB8;8c$DY!q!!T;f7ILS;*=iqk=zpuWgR2YX5f zJEw=8*E`JAXmJSn5x*`rWM?0JVNrbo=BCl>b`R~@`syZmoL{O_M-N-4hq(bs44Lj7 zV$k)iM5Z$0M4B7Q_(Yr_EwC8M)e(yML9h)n`ZMN?REFY*Swo*eZNv$H?*SSPwb4M; z7CJtofr7>$kXKPkB@s`e`mMU|nY*bqs&PW4nJ7lLOSRFSvR)!aceO0I8jL@ zvNZlV;_a(Y+u>TRdp6y*w_he`-C-Iv>V1PFH#KQ@=|3>S;FO@{nH1rr&PnK+i7mq? zN{OPqa3htLtz5_+C=BpzleMAl9ggZmMQ8Jh?hM7g+)gf$DtpH$vOt1(XKGA{n#Gps zT;B2W_L&|ZZwmTDaxQyr-+zTAQPFSTe$(X{uWs0Dhq@dd-nslGs$DGE^Tm!)8Q1k8 zcupF{Ziq1`Zt_OExb`251+}CL<>tP4;W|S!SHV4|K^p3Ie-TB7~yehS(E@;S193Y5qJ z%2Ze#yEjKcn@|i&d=ARYcMUWO1wsHV0v|1q9FnMPT#cZz{?2=_oIA1erY$Glb(fxN zld=(_4C<^QGAh>bAJOtuHprjAUJAY;s3YRVH>FC*dC@S0zlgUNG1e@7zg{O>%XK-H zK4boHGtsRP4xfDLC$k}?F)&vvmNHXO^+S0etA0ljAdJ)AlR-8*Gu2lx zj1mz$7nJ#>(hg}+7_HyodLI<@|Pg(J!=ePF=JMJZn(2nryBeuBU4-jw7n!9U( zj6p@cDnQ*&$Z)nhd8fZPis<9pDPOP6R-@vksb;9*kBd7Uqwe3x_+Vs7dOKq%YUp#2 zYDgPRx|r&csN!x7j*Rwp z8M+|#?X$=EGg;Qdv*=g#au-^{lu#g-LuMJ-??5&47_=0r1V3%bkt-BHw&HW!a#=ko zPPj|aZ3`sk6pcB4y0q8X_=S_$vM~NLL z-UrJ%`~7hcm3D2w_`1DZWi>ksq%H)D_>!loriTfH7u%n>Oh}Q6-vrf4oc&z_(@3=0 zJYu@cEspW^)%}5ia*+YUV!3-s({$IC(&2~lM8uIe72=g7#O2*Vna*$J2@~Sq_$TJ= zA(bM?GMsw}-Jrzn`rUhMtp9Mg)pFyVD|A21NTYhy%NxGvfc4J~`UMBBn{GS`7i3~O zm_NIrzU`51Ot)!a(lax9uiHQse((^~VY|c!xdXfJQ+vb9bL>)Fo=%81NFrVar9S{U z&0{!mSn$-T5|C6Z93YB>PsQrW6Eu;d;t>K*N$IF97s$$-zn@_3JX>b@0u(SSva$m=e5AeWYg(5~@ z2D;h?uLcb}Q8rifD1(d3V(&SUTs=;{oCivoCnZW#s)m%S&g|p*adV&#$KnP2MsVBoeBf?b&=C*heJ441wiaBBhuFiLajgm# zv$hnRlg@LopR@py^>muiMs4<3)?#sfOMlHT>AR=axm?)BI|pa z3qOBxe_y`G6ew*?dm>#ksIx#LGFGb9XEQ~H&YxQM$#M2^NY=ZnMlPx25IqThRjg0z z4U~EL=q7HO=r*`@Zfnye31j!A&$#)lXtCmo-)r2dIqGu%)av>{$&XzsX*pe#-bXMl~wO6ucwh~9Nu!mTAKBrOifdwYU{|WUd?Qi zg(*YHsWw3%LeSxhy7+88ozG4pH5e)ynPCA(214?z_O*w}I4*%_`FmkQR!$m969 zw>p)gWP4-z-!Z4DDSAK3jxWToW|n?(^8^H_G!W+exkz};-3%080K3t;v}=jH?nH4~ zMYf_Px|jchQYF6zx^-R@pMh#Ad*wnpq(+8FtcXbtLrlfxU#C? zB}TiXWOD*qEKZg~&HOS_9aXOLJF=g>>jk>8MEpAN6vD2NwN%PQVfN~36|zU~soEuX zwLIE)4wl{PN45o8$?nON!ZRG@o42wFEip!BB-VaIZ~lExJ|+wDW0<2{#|G_NR$aWo zrR|XH8(%3~x`8?t04cNPhso`-+V$1t`UNSVI^cIPf@Z^dDN2dlJCCfPo>5iI6J;{Y zM#2YR*<`c9O=&}HP?&P5X8{6I>Fp0-h+K@Mll+9Pp~$QMhE6RER0FO9XS5njbw<<6 z6k=HxVHu%>Tx?HJvrSzYe&ICn?DBjV`l~c)7Zngs;6E_;JjmAaxB8mw^RoamKA3&# zWSDM!j2D=j@CWRm48WZVDG^7wuW(Q)jpYK?p#p`u0)=J+sm~uvqGY^hUxmHv_oh%x z)17?pB(%>kOoKm$@8rH)rLHM4wIW+_;v4ua@BN&t*&kn-y#d4}rfA~26<1dw{wh!e zky66t=LzMaP?=ztWD>8>DbX4gCQ~AAXc{O&;NAs|_0YM$tW!VS+Mg^7xO?sHIQ7Yf zcdG}HN$Fxael9c6$~yXKqP0wzRF7uydxJXySH{5H^Ph%kb@Wu_PTzW2583`CNw5s% z4PJ68I{J66S%w;_A=am#4`sv|RKJp4tTPndiZ;02&MkMlI80H_eI$jI|Tx{Wi}8Ff?*IUFl~oUw%a&vNG{7>i{< zwN&q0jkIWTQC<}n6}^k-Y|gmYoNRfd#`pxDYULm!hg`>J0GA$YtO4sxbx!GC7VmAD zs-uHZFv7fMDA{PA@gpIrznQ`x+SNZeAsJ!3@#_L6d#5{V9F6ho7Nzr69E~<|ed}Pa9H{C3YTS_0YmZOK zZ;oFePr}Y{(`Zxmld6rcOo{l^O!f_&P%cg1on7*^5=Kf(wOrF1z6gWBk#!J%&t7veMUwT_#5H-Ng>((-RrGD)MUEkgPw-vvu>8P##;&m5F4xXXQ zpiP6g8U|ph8{&R~HR!NDVl}egnyOj&M}v1nzZ=z0s)SgOo1*Zn`EAGgRwEMrsq$tp zu(~8ePhEgOUD5aQ(iH65?F#J0&TlyvHDc?oy_r_pLQ$S<^-*}`0K`A?%P}L03Z9f> zHBXG-0npZ+s&X7XJe3gjE)=L{f)4vS*zs}dhRY|jofzboWUYxG)ZjjSlsmtd`qAIr zO#VOVlg1+a*<#jC1m-I%U-g@@_oQcqUqZyo;oL+X4#Qc4SDI2cJLDaG=YFH2Ue>hl z+k>1e?i!u27AnrY(zH*C3iy0jmW&t!(4sI7FHW2YaurWVVbustVxDz#f=s{hkv4e@ zq7Di97q?!?f149dk_#PwpeB5;rHe-SMI!xv-jx|pc%S3Q2+xsX`rZfAC>)oT_0i&H zk*cIU^=J0UGcRx>RcTrqXSYh#FlGXqtTvz?3iB@iw(MM|~dt*SbMmK%;NW^0W z?AueHU=HY6Nr`4JI3^sYUHb} z_~Bf-z}5y96#lqq-u3-3`C#*Sp?wY0AzW)Xmj?iyym_EYDvXS{dzc;x#ZJfyR8W1= z9(Hx^`V}BEM@L=XY(-5ieA|7%h*7U2|1yG?{QUIPr3yVqj)xeY2vxb0qOfvj$gA

bUawpDC6pu-^jvymctSOfG#!AHeKybfro1lHe#Osvd26DbZi(rN`-)qA;^ z_IR$$m#$uwqM8zECb28I`+P?RfdEC}>oKM*x;GI0%hv&@7PVp=@2;MfF#OopGeUs0 zH|xk@sw@XI2UQWm_Yy+7Y|&S8bJ0N84eQ!OrVswgSu#tM2Pfe^L%i+j?oq%IF3vR` zPW4oonj|;yxY=ww4Z6amn=FTBIOa=l&t0k+Sf#ehz#gY{3dEDc-81SuY=YZCVnAKY z`nOT3DUn(t^Z9naSktvpd?Vh$l_9FA9{{SMIn~eO*%PWfi7GjW+d{nF*WVQPnL@R1 zGbpDNg`w4NLy@wpad*AOLh?lVv3mAxR_Otb@~`sP^PJp$a4qBR=ijAcUJkP9sM~h> znDt5%fzhl__mbu&gcJ`0q~!nN=@%bPuwTEr4x8T=v*}v)ZT_EkDdHRq>v7F_YVFNW zcSn+I;q}Xj*NU2N92Trvo%C%g7$-9T6hASRDP^~*eqQJNy^EvpAnjT)Aq#B|>|XIN z0pnbj4CqVG2U?Dw?ARFQ$W9Z1c2dKAVVv#-%b_}r&o)Ta!hOdSBAf7 z*WKI8V#Utn{lJL>M3^ zt%b1?9n2`>X~y8?1%LaM8?Ws*g^MyV01xtSpFN;t^-`*qbUGs&W#8%C1@Vc$+5BnW z^k>KyI>rn2^@AyKs?3{|Z?Ut#*%3|_uRk>?*0(qYZ>LBYBAJ%r0A#fCp_2&(#UJ0C z`@*?&V}EaGTuZz~0Uzhp2{@GWg5_tY;_1=O>GjeD7TqijM)gr_>VLsf`uLN?-!y&Z zEIs|lb7ObLo9c+o*0y(A4`j(|VhT`wwdHRtEe)BEQ`^9EZm{^J;YVYC5q6J(9+I@H-6oA_7w%5t8}RC>cihf8 z{j=hCIf3oaU-yB$bevdbXGIz%;tA|}%`!Vi5iSwVkh%w@e7#g_oMSeXjed#yXMPzr zGv&FwytNAol|z3o{U@Zb8T`^oL4j4D)HHLl6rgb@Qrt8jrBQaplPZ!vP5O!f+%%6V zXeC}x;)c0y$|g-!{Ucujubb)Za@H>VDJPbeo9O+AuqROJqmhdRbNPW5A&O~T*+ zs8wxoeKXznmm-S$t%mxenX}#_A9F#C%ev1~HV#Ldy}A=B+Q7bB$-%U}RGWLlrOU+Y zHdYp*K4fCV6J-13^<7=D6`*KU*$%vTx*(oDRb=Cajo^LqRQ%uZIPy*GL9@!i3N{}6P&vFDs%P!KZKI;Z zDi%2v_Pc19^BIx(aRpQEni=mrQP(O>YyM(~&ldn`8~oXOxAuB&1i&}>yRK{tbmMpa zQ6EG^9F_09a3@v4Sppl;$eOn1A8GtpzBeq@!Hgr8Gx>o$KK2jL2>+dPlpomf{-_t| z`J}_NjyYH{NWXW7{9?L}Fa8p=O*$(U-7s!{iLyFrJ_-BKCgA=!k27d(bSX~Dl@1Ia z6FtIzQ~XU3S;miiFsrc;ubv|9lq2O+5ykQvioMMd9~Dnmi)C4fyMP>W8;^OQl-_50 z`Ei|G$=OsiWo7nD%Jul4?nrLBlOy3cUo=OcL33s%zUnaE!OG#-qIJ=Dm0w!QcL6c? zAjI6gyHs{hL1woCvctm!l`sb}Q;6KMN&f%s1&C63GPONAYTxe4+GBe9D%tRxw`U57 zCCtVfg$<+D`|YBV93=}nl%&f4`?Fd<0%P`Y|KU^gWSy7~Pjigarr(E|0~b3rcw4bswDGYO*Lk z^T+Rr4(f*FCbHT|qZe3>fl}!YD^_`TY{`v@+CZQXjNV6$SOGgz${TRXqUm;i;#&m3 z3E!?kb(hXotS6Az^M~o&nMdx?k@*uoI4{pNkJ+?|*_^7e8mNjZwqqnge+|kalLNZ) z9IM!E4p-I8S771uX%gnzXE9L>Q*E6inC5Y-cLl$T|AUHqV#rknm^I!Ko}LaI_HwKO zAkKMxynNb0&lL)Ej_6@od!!c$UG*u_Im}?O5p=V9Z729jNT~%GTjcrIcd^6Z>RZ;7 zY*(P&mLH32S_gIY)+fF3`T}mWFtY5}uz}#tB-Xzo0w4oPsO}!gWbuMpA*Zm`m%s0uMU&-3J^QPt+jy zA(l@LXw8+a;j@O!NRopdM?#7ItMU>VPuXm}aT3D9nBr-p* zqGzK06p!auI*b`y&TgrW-*FWMxA@ctQ*=c1o&L({PBv6?@w{pi3N79^0xNzl`Ve8v z1^O5qpwCJH;C|8k(F=+zYk*&+hn+CM!Wm$n>0k`>Fh6>jX*{wT$UU~767{WLk|Qof zlwMmRvwM7zeEc$-8`d(Yr29-yoji141DaeS5{y9jkcZ_v=Zx;ga&7iTqfRE3}eTb$hAfg|AaqtaE}(1x%<5-NHgP_yZr30_&B@}>`^ z&lnxH0&ZfD)<)m^6q$12A1CmXYhgu1GZIofTR5*lN|g~V@{jG4L09J;A&r4t0qg9D zGMsDTEVIRvWf$B16fFVv%5U$_e}1m{!c_$A(HWMgc#dJx`@G%eaY=8v_HeYrAi%Hy zF;Wa=h*vZ0<;>1>-=7)?I59gJQMx`FQ%!Zk?vs|tAk%rwRfE@rsw7KxFhPHpkoF4? z^4^XMrONYFDjWRT^%X^u2_cm}^|5iK6%lGOR6AoSa^f8^tmE8>cbWP3<=yg$P+aE> zh^GmQ`M4Ax`3vk-W<`qo2GX*-5La{V?@o2C8g5R)UmV%OOvLh`Bz%juowZsPN8q$R zx+D&eSI*>w9BUc4TpQ1Ee{tOiHpoJ?i91iOTHzq&uxQ8V$T$@}X_2A@E%>np;(XCs zr*lk2wRk=ki8DAfzwf>p!aK)Xkmg+-*uqhF6P z%mYcZM}M$E6gcQ3mhu5N z^c5;g>6lvQ=(^<3wr=&KQQ|;O_lkhO)50_GRS;PqL+D5-8;AdXLY@QNb-CzwnwJ^# zZZk=|7%;);l5fucDp}RktK_>CyfzSyza;@Vq@QoBjvN@q{i0|B#rePo#o}wS*_VVI zOa}7L0kOETsr{{p{inf>`R}&^bqNzYuYBS?aVaC9eFBiQ z&yKO2q0kNOBG9XzhDpuTDmmeFWw>8I8y@w7*{HA@y+{S5stDMeNX6#5j)a=8?yvie znpQRN-?ih2rKFUSp(qnc^EbV`ALX|o=$$WVI*31FJ`MYL_JFvutNZ6SFxIyrYz$J| z3QRx|9fhaGk?F4W13Ru8A@U8P0wk#0h8lperqw%s$rU82ev9tkg7pd=M{2-MsOy?k z05kzgKQtc`mb7^@T`95m~ zRf3GueU%0l9`8AnP{Y{SBI}G7+T{c4wD-H?WsO@S=4}1SmkG?|=l1@p`Gbs^V5)<3 zzY5jmLe|9})wlo`x7FBK&0cld$Xl&A{hrYRhcYx4h`aBYXpF`3I)2%-#qpxLLHoyB zV?xhTCE2#PSD9_!%M{>!FDtjf(oG45wcH>7E>#>5SShgcntrZ{3;naPzSY6c?(vCs z2sd4?T{_q4^onj&rn7t&zl%{wOv_lk^6*Em6i)wqrd~A>5&u!KU5t;H-^elCjb!7Z zzY=_7-@Esw41l?wa5wJRwsf8U4gPJ3ikt&zcW%ttEpj~})!i>=c1Wf5m}R|>ypnEh zA!boGZp)@^$J@1+)$f<86{}_+*iyLixqg^)?faa%&_>t3mFpZ10MAO*iuvCna88~` z9?pg9n}1F}DRTa~diFc+Hb}no|MT%&u*%6>y=!eTX@B)$>cI}5Jf&o_c?uDoA;IEl7m2ZXNT^e>z!}ev@Aq?3r^?I8$s%(63hZ(Int!0t278^QX1PY=dfZCCRtTD|Y(@2S z^1~JugXeaJI4##(0<2O|1M{e=qN2aP$Oe*nk#q$k3LKXkv4Q4`QY$h)w*pYxO`Qs3=?D38ud7U{12bq%Dji$Z#lb2d|6d&ehP+Jc?1M1I-qTrqn%Lu*sgHhJYCV#z*HFE9p8!jpR2Dr8gSNbapjOPAN&ebVstFQC$desRx zm#e__91S?|+Oe*hK<-59SMmXlSTgZO(tAEtl|8stjhwX^?I#kU7H!b(#&!FHYHC8lrVRAV3#`gMQ z?pnyT5pM=RZ7{$f^lq7a6fcHh^LFw2e{tt$z_*rstWGcO0coqc+jg>6>+d|)flzgc zZ(*}`UOlOPs`K!I=vK)KYJv+mdNm!-SK9xa_77$z#!7SF=7SbW+VF+c>-cLV5RMP^ zj(J`5Y$89me22N+60^;Aiq+rDFs)iy=pG(W$i{|5n`ZVDqb~Pq)z)RW8~>Fw(*7fh zshdl`_ra8udetWL>gGII&okP*D7(d)lJSISn2#dadnX{P+~A|{Wgj$$4@N3>aeYOw z<=bF#cH+;Q!=LuHC>ls-p%gE#Fc-@=vAtXu1G&0$Z%R(ay^FO{n|6IECKIeEn`+^O zyMiuKln>=D(0y~6u(jq{Ru)+vQl?ei6o@yx^5%dtDvS48x`pGO??Id8_6wPlE%xjN zq;mH&zIZhVm~rNXTT|8^EG>--HkYI=XQ&K1P8vAFl8x9(-H}Q+`|L)=gE_nXLSQ}~ zS2vX203bRR1<%2WZ-N5sWil=fH>SSWbvb6M_W=E#?LD-}bjr(};EUp)_8YS;78&5n z@|17)?{n{<4Tu4Xp79nhi&Nx;5vr=M%#kwG3H^3fh!m>HvT3~!(Monw1Ue6ysQErm z9dn{yV0Lbqg5Yhug(#!;?RzGM1}{vi*cLVgA4r+xTUky@A~^LaC+D;+@tzS??LxXAtZ2N+3Q_kwF{%!b#<(~#cINw8Jpmx zUzQ^~Zx5mpMe0i?6^oB%-M8Yes&!^i^qqi|Bt;b9+~B{$845n`l18TY|3dt$-gdDs zmPEV_4(x-HM6A@szUgL3Cdyr`wh2r~nrNlKwUT|j!%}nTmP1KvAW;>Tll5}{V_;m} z%!{F)^ZVF&r@lUH> zwR1BbdUW0@J6G4aFB=xz?H3nXr-5VtG1Cfvdl{8R=2c*-|6xnr!2`0N8$YyxIBaBO z!=@JSciZOZH{kMld}`McsCfU*L~ZPbz;J%L5t;76ZJa0bL8o^!Q&h9Q67m1@y4E z7+oVAk|_MsS;EpTHaxMwnh3yAWZf(Ocwh(PfvF1L^1XKG*4?{w<8;2RXKkgVAzI=m zX@f`YU%#VQ+u{&vGvdy5+&g!pH=mGl`oz>`L+2mX4m3NbK`_F^=msXTGs8fm_P$yT z-@X%d_yO;lD8TE~EIMnP$bZ2|Y3$Y~D7Nzpr5Vc!YLZXLMz@c^LpE#j}+l{PmP5 z#nHC6?PL#d%R>f&^&kZ{5*PEhJCSc0!J&liUYjk+5bpG&J+?s?J=14At|@mDcUc7Y zdw~-D1Ss92`;AV^OJ{3ZY%b7n+uCuZuJe3!Zl@HIPx^6XmZ|FgQjdM7ji0G}lk_*r z09yYsdKilW~0g33cGx}ttD z^<7J;|Hchd?hQA*Y%b98j8r}VI-FqA;EPy+W@LIsS7R5=qZ0{+CMF*+gX4kT8!b_N zF4vZSPLU$p#sQr<`d^MxJIAf?3LK}UQ3(4AS3P;U^WVa`j@s1nH-@{0KY%$$BRIEx z%>TG8=C)?^1?tnd$vTG|T40<9K~kORfCd@elio3#>0McLTHP}w^KZIRCsV97RH?sh zgCy?dU&{VU-=Ih8X^*6q8ed`Kc4~_0pqyhr&2X&Cm&~qT)dxpB!DYqUXMpKmlr#P> zapH{jLoen_i^_3AJ?jR6hTj(9=s}o;q}!+GNHt$mB*KDRDDMfD0IsYq{os>b`Q)Ah z>SvB$vF!+0CdE0SUicVzBOc?t9RIwdyJ$f^b-QBQepj2}K+QyZHpJ8v8VN|T-@jkH za#_5wPQ!AAa(ktci}Lw7QULPH-&^s;zm45UMP+gVd;V54qc|UM>!mtL^#igJ1LW&( zbdb|PW13pZoxTFA4#XW&6=RR~{XRkIPC#B;?=L)7Dk%)HyH3LXAfb488vhg5FH2qzf`Ue zVroy^u@HJt4e37;+sB|*E~ArQMmJwGs~s-sEu3?k#g2ZkE(%S~Tw*0W(PIz^;xAzR4ib#z5yiY zgda%K^bKc()@-=IQw>N59?Qdo(rVtSuOZra4joJf9o|7C2lrj@-dx}LdPi7QEoy!F z*BuVT^8UUxfw8G^wENrkfqsR#fW7-ZTn%(EQEftRM-`8*JiyINM?J(n=_w~&Hs;QX zKLxCQoQPXZi;y3gO!uGuPU_N}JC*aj0Xo=WQVu$ur3q;E{w)CXFkIfR;t#ds-)2jv z$^i%tdU3a-wv7v_r{I|Q0H*qo|7m{CX+X4deiw`corgS~ z`FpZ2&_`r~k%e3FQ(kfY+c^$vtvkvX5;UD@zPU}y(|G{w2E5>JRmDZ>dMq?(7As!2 z2X7B#Dr|r6=pH}nAty-sn!HFguoD?|JJ$kv6#ifIxR_jnj<3=C91|YY`CPizZ=-e1 zr}^0vOm`XJIc5TRVW^g^~neWcAWFl`^L&GR$ZCn)y$70pywaxy>l2eTUTO>bWCFWIdw{S z{|60H=HLP*!?ME6dm@0&Non62_x$_zRZRFJ6C<}jqeK3w&{g@9!=yQ*o1EVvQxzMe zT>vZr$QswPpUfL`-KR{w?1*9-J#w&QzWdCCWYqVpGUTI!&H;6Fe<7mt1`rHe8l3d4 z=UlYzwJ>Y8m|=+!Awk=(INJgyA}#7US*E+)p?Vsc$_nw5e!89}*>`frjfC?o-u+fK zociWxLGg;4&+*TG7>HCIz57(A7;AFl94?=sADVpuG1YqRf-EzM{iqrkPwvfQ)BN344a<4JP8hZl+t`>u-IC#w~GQqO|E&Ei^KSl^oO zFmCZ@$doH^A3qVp6kpK0;||kqr+g_J(Rsh_YiX3tk?jyIu%*xXjMkR5sHxLktYkZG zrr7>70fc-2#HtCufNox%>+BLea@A8`nKC18-J1*5Tg}LZ@b1V8H1gJtJvSgnHNwzD z=A!@!O<6npO_#KO+)r>X!O|RbfIITQhc)5M-3^eCeP-X zCnjUz-&*P;o+fXC$9{F|Z7Xwtj*Zp`m`zM|Sm11G$zpMnlI~?uq8|?a1xOmJHA!U; z5&%NR|*yZ)rcRLft&ErwVw+XMH>eqJr*x^ zJLDWjnmi!Iu2q&a_}`eSA*u=yL|N%N<4*#@==t z;=o-|IL;U8=@BWDwa<@2Iz8sW`P{U}Qc<~1EQ98!!CI|~2#a_3gBX20AR?*K-L+FP zS7QO#+I`7dDS#*Yl#c#JeVo~Y09NAR#{c7Z2|Whqa)S&&H7_9*$A*j4`tSUylhVS) z)u->zd!HBsYW`N!KP7^=#JW4!{OpRFupuXgQN-A;xMY`krw!khTC^~Cf7?ab9$+2N zZ|CO7Us?1%5n!UqCqXU|u?#ifhZN=Rjf(zDBZ2**V6#g|eYw5}=JiVRB5g90*d@2Q zH`4?2JB)wCJd=@4nM~A;11ygp_TxghK4)Xpwh5_&z0~Vtjq=)%Tea$KPY&3=Q~8I} z$@ZOzdHau^e`YPRxdIc#tuWwi04yls*IcDq;ae%P_t%Xz&ol7DP0yxX7WiUp`4Tw65D1Mwym z(py6j4kq`FBxj$9d^y|BUS%o~c=GOU=9>*Yg+G(yt!~HYF6rvU9kxP)FiY!25vE|Z z3krAD%<%a$1vK`>%#uP+GDH+C%4I1>AG;Wx{DVNUQ5n|PeJQxzh6*@w)#d#QNJJ+y z$Q&|+V0W!a=~=;7{HYk-ZkkrINQ%)#9|Rli!9K#4AbFD=uxcIoNg6?}NiXUDi6^c! z#f#u_-zx%e-6PrL-3*g#b%2juD70fV-68!aA}=X;6}P^VV6j zq7gUh1lUNvZf^LbOfLR@L&1UrPT=QlEUvBZ!f}q1sEc#6l;Rs=UlNIdboUMh0E6uK zUL7SB_dUvbv!<{M(4)76LqJ`;V^6X#$4Q&86$p83Jui_}N~~BJ`r2gKgPxh^Te8*j zPtQP$tdoE_-(tu9Svy-9P8{_TW&O%`u)2~L$~{9^8nHzOPzPPh_h!W?O*DLeIm$~n zx2(~R7d>C%S)@8SLxE53bhKK$X||dQ?S&^$bO4_u&r((Dth539=yu}j_|Ix>&#kf5 z+E#IkgZ(@?Jo+g-*wo45b@SY8TJW!M=P#YB-^`=3d7o<+Jur{?Nu5v`{83@`T^=Pr zgLv<)1VgS$Oo7LNCx&<0q^E(O)fEdm*PrgoScAK5jezr`*fk{;rvvf}h&r z8(N$_bn8weZs<(>jjQ0&0{^oOnf5pb_eV zPbGZt4MkMf3aL!KZ_!u8ys0m8^n!~x=2-*g6u<|;H-&o~EUnK;cMHS*Lt)3Wd-u(y zb-9r6t|Z{XB-|JQg)Ta@avA#kCRku^E#)oots@P$$v9lLf$7_*=&g+i4i(c)lp#Dzdt9V9MQAu)>F>a?Z7nGJBRudxtT&zSMBd{AQz}lRK;zt(v zI-b(PRNcJ;FnfD$9*cbjmNA?5F~v4965VvQ&lq;c(FVSm{Ew5cH)5F*j3>kk)(gN@ zKAE+}%EO(QH@Nt@>EC^CGReEz&G=U8mxMB!1I<#hP)6CE?@Xqr7$Ptxed0`O$L~yC z-G~AA{t6hC+m@%7;mDM-vs-t%x3Bkb$WX5vrg)G+_wB4(Ygt{DPi?g6o7n*g)93?r zLSnez?iUlIS67$uIaARHS8)jqVHzp&*M@fT#p$2Eb=Mx&AWi;qj|2zIN$?G?hD36Q zs&AV9@%TG_n2kGCIh`EDkU_F%3|PV@aB_5GUKF$6-V ztgqJBkmNDEVSQpi<4%*zOlcbb!BT+~`FH0{4wwqDfNt-5wva`(Wq%2YLbb=K;N8#i z<~TTXrvLq403zC>=NC7XC8m+uaKQ3HbJwt>LU#^uLLKg2LrK0qc6a7=9_;7wZcUM* zsCF>2W84WAou;jrDzrI7QC^!LMw#F^NV%lr`|5^|&hQOd{-_=AdA9^`_Ldl0cuuFF zqqJUUT6gjU{MMlX5PloSXvs49NMiV z>et}7!%0JYFyVCU}4LG=(V3uO9 zn8rUhJbEW}q2h9<(qy!9@Chppt4Y9pZ6{VkYu`M*<(uu|NXd@noUt5p1!(7eZ=fg8 z*|iCZYXvTY7XYZ!Zop8&TkAg;(nAJVvoLMqLhmqw$O8kU?qPJ6@zJa?OGaJPC5QvC zM+qQ(Dy{%oBbk_km)IQ8LB&rIHIC2RQkgAVgrsuoTg!9S%D~(Q%txy_L^7LF4aZl_ znZDj9Pj8JIz-#(81szVecUb^x;-Rzjovxeq*5H{voy5-0%;lM&$IU=-VD0y@FEhwy<>&rIdS(~t96gRdc z%;}5EjREAJ-KdV7T|m6^#yAwdh>%(Ygp@4~qnlZGFqu!Au##!R6`M+fAq^66d7bS8 zs>}A?jde4s8UTtSdL1IN8_hA@)ZmYaiTZ!9S8M^dfn@nJf?UJ8Uo(jLJ^BghKLNXF zzN{_7yA&2XpVWVAP+StPEy3FX1=wHkWHn+=XPjM3EjSndxJ0Ab@tOOcOu6!0KCb)3 zy#z)GaKR^u!fLiHbK{S-l0?5H<^QXY^NeS+efzkg+_hTNsM#u2)Glhbz3aA$Rt2#& zRkcS15wlj68ntVd))uj9$Br#UZ9!?I2tjJE=W_p_|BL6dEtD?)F(VP^pBB471VbMbzRKx@=@HS78z zGPx0_*sKBz_-+(6&AoTQtN^uw2G9|0?qH$Q&7|Ow5Vie=Xv4L4PMrGyD1eCryuJY$ z9vEB_Yt`>P*PC4gj)mDg1r@k;cwnby^wcL|s7mJT%<;L=%InWEfhb0pN zEp??N4J`S+ECoM`F{@~nUVr#xEQH0+@i~9OQ(i74bwV&}a#-ijYg@+{ljmn1R{1}A zM`?+trJ}dc0y@IHB27rhKur~WK5YKx0KZBdEtS&hV9;|El`l1C6i7!*^nF%=PD#bx zuX!ZN(^>L&pNU@)1K;e%3Os(O(UpWrN60ln0n+?ik@anQvw*MLCV(E?8*(*gMiA)>Oo~I=1OFBxRCx@gZ*uJ4C-aiEv$T@x;_3%os(hQ3nhiZ^ZeHB zx$YK4lCP69)D-1x{uI|1?8ZSI`>xE$Xs~R=_|YoSJ1+nTxJ!`LZ`J$EH;0@-o1E zq9D`ueBn2UDh|0tTPSK5bJ)*GW_)(mg8J*tMf)al--gt099_c1KZqMl$725i>xhpo zmoGq)XVu7uH)8y3BkXa21<A03Bv*WUsY>Htk|3+&pi(3-!b6 zeTStzEZ;4%Ad@B6UV%o<1jP34kN)$@7Z->l`f&i@Zs;ABEYLpvwa5(z*DFS+I27ZD ziR&AHl01q@v)7z7P-os!nXymM@S^o})3;669?g{K3|P2VXsaVIz$YsH=xDg?Lyc?F zS_5BDtCw*8aSgfQ_Q^Q^?2Yf0iU1z_xtcS%wO6JWJf442S4WUlkd3bVTWRNXG|O4_ z+5_H|6fAqSJ9ITnu+G0RO=z=(JuaKW*D4BVk?z7>_a7h-TeG858}-}jV?C<--2nF$ zobL%YUYTJ{mf#1}-ZlneGY_B8ywnpr3e4TmcvbW6KAUb(S+R!jKl$Q6iw3_Qov_9V zE~A;{3{?fvKK0LNX+K>gF3%iLZ)0ARApL^W^>F;7nsr6fQTA(%TBPgA4=kAtge#It z;Gf?TuCBOz2GD1GgMz}rKW#`NE~;c%00rnU*{@At0dw8mdpSnWuR++s*IpO&z?D)LQCe(FN* z>7;(r`9febHM!|9a5YwDTqw}IHWHB6?@)4@el2vp#B#jB`sy7ssr(U~x zr~(nwysvN9FDho@yNp(eeUsS_SjMui6g$r{@x1?u8$0$ zEe~vRxvMExP8u8Y2dqs1J9-M(J1w?X{O9Yd_%HsfCmx!owb-^6THI^PWIR3`Scf(g zEhPA-*fJu`0n3O9lU8At^5x2+uI_zZA4;hKr<6v8*Uoez)>mq!qu{RJ)-XDiL|1gkpXKdDJtMg{)nur+}Er9X;n_lKT7JmMJ- z6DbXVP8n>PZu{PHv{Y*^V1rdezi}KXF`kte2V^93)V#H;!#aB3>`d#7les8zOLCYv zjYQ>fdxtE*k*8x-Ci{B0GTOAC&24z!>ltu*ROL$>yn)pdE?hjHZ6g0J>c1biyr6*S zrHs0wODPy;>CJlcBL%Le%r$0FD)_IS&*6NW|7<{CU*~PNyWRtdgXD}Y)8ORayT3NO zrm3P-xKZHX^8HWnTijbpN*OI~4&&#KH%~m=KsX&y?eO>?Ey)XnOoSHhtMBH{9k-TU zG?x2Q+tNWFlv!+ebC4xy>in{OE8{Nyv>jp&u7qFZo>#SSi}$}NK3(oqI_0rQzv=Iw zkYQuLqiN53ZIkR3?Z~1Nr$z zC?y4%>y38HQPlTeT-7<#Ruz(@XcEuQZlBn#dNEq5Ftbu8@wDAPdy7YmAn*OKi)uD@y7NYfU)~)okkpY(POFT*E(S%V z9U~R3KYfnX?8lJ#L}flph0rF2&8Ygbsi=r!g*qQnd0H3hc>XW*{R-KLow!!N)_L?; zgcrWi_VUT$l!)*oRNSeKpU(Asw%>|DVsK@T@pBpXB!f7GO<&{pV}@0}PbZ9v^G*`> zMimyr)9V zNz$!MONb5Q6G0}`$78H2)f*JDI!)C;J~y-FNW zRnKWhNxoaT7AgO$n|(IA(%0Y3Q^qju`An57f2yHIj>^QnyAbCE-6Z2@D(zKe$u+1v zp1wmfM$YToiRTvnLJEy$6jUiK_0@e4?hH0$i`jnX$UU=TP5msV`BYyKeY-zdq1H4| zm8JC9YAlgWlOuC?}kd#tXP8?rlto{+~$Ue&s8Z*@1w&Q zL7Me}zK^yJG zE@%6Y1N2T%R89vZydqzU-2xryk$6|+@);Ongsc$38RFty!IJ}+;OSf+={<+m&j3dNs_Rad}+jQ6N zz4{?^nC@S-=1AjBKQts|`!E&NUvE+~z@=|q_?$JN*U@p@+J-|{n4f>XhG*3O?xIr#3?_t zA~z#(1o)a&0(T}m;c)HC8oSOOyRr)Zs)xodS4Th>c0&bRC4VPv z4q)VAv)2;RiW_n-g$e{N@m)7g8?wB3X;oHKHY?u_XW^;4=}AqP;7N{j0^^N z)56n5^qBS#$HP~yd+FHEYL4?9E!_*Ht2(R$cTU3(#9n`30G0IY4hSpU4j;{%^CNjc zz;USiUN0iOmVJi3ek9VuE)yl#8SRjF`>?q_=&W2KvY4v#8{_(X!oHd+AXj`FV6etC zLGPbGIp^OCgK23mZMWWdK4wd@2uURnC_v|eV0l<2lKa6lD z?r!$Z+RE_J?kef`*fg?hV(5jX0?5n;HCwbax3~?8MCUnuQ++2MA5~K9Fm {>#QB zvT;xCLHHBML2CszA!FKi{|1C1Bh~ns7npp92|>iz8u1=g%^yY3EYzB8RPU4(*e9gT z;sxs$8uy{~@|gB_T0a8OHrJs!xZ$_b-I-pDUgl~p6jxmir4D9J>*OV6lh?+)XDa{v zdV*Hu@Bc|;_l>(@;zj6TJ%*x=o}$>it>DZ+&3if7^4X$;u+|)>O#4T$Fqz}A_=@DI zWzlhG`&xCIN1#e2e^ac#UW6DF^krfWqap*n8&}`x^uqnoiJ0Ap3-=S&z2tsl{M}*EKB6=7Gkd zZgXncA5R8t@Gv6}iMm*N#!STWo`-FZGuT-BA02@kB2mN!N&jG;wy;ZCmws9jss>FTx*+_Fl_~#>`X5M=v4YPLnb|{#~th448 z&Nm4E#m@mpdE_%h_suVQzjiEzV5)gjfbqi;JM;NpHFUHx0)I9#`!s_T^>R)IQKw4w zh1>0?FV=X~n>B@Lya(v?BW&f!lW(OXN)Si^W$|?ST6TxNk-94qoG+eQy>`rC^dHpM zb@db84)+GZ(Z$WeSU2@DS8f45)EkQ{acFdEIN#I11qDX>usV!Rj8;KTiU@UOjkmHk z8{>A#nI{E-Ov?i@hDF7-Q@_5LDDU9GqaRs|iQKrG_v_kzSqvp7rCm!6o&K_$-U#hN zfWhE&5C{Yt>6x4`%d9A8+~a21R)!4niw}rK!*~*&ys&C5Z+PhW`0>`&axE3ICp1PDQ$5|!wSOP=(Z6tBfd=TJp{ni9WS(4!R0Zg^6;Oqe?DCrw&x_oOT=@852*1#_DAqJEAPy3v_$nrybv=zTM!Fc2 zHm+|`7$dFxLHb3OOE-pdfD<}XdjidZOmaf>xgct?m^tQr=s~&kN~Rd51?d9Kgen8G zA791v!Cayb1B#(827qav6B4-QOzz%|Q?T-t;L4XNl@a^dyk&9!2_A&69RjDYanNrG zpf2@Ni-xea<(l^3yHYNdQNOQLM_Ev1dRlQ%vB&>ttGr4z8_Z*KbL)nb5Dj6=+{QL+ zH#8G^gJ5wCYxAp^=O9>R(qI%T0z6KaUAAYSBW=(;ne`AvzRdcEZYQipm_3kus{OAm zNt0=`?pNF*P#HrBS4nD$I)4U(v2^L$aUl!+D<{O%l?@-cOv-=1DW4evJAK_#o2 zeXWBJ+b%s0wY&IqhwUXOv)!C%b!Ee*XtlIe^MS<^=IVYYXC$KOZpHSfOFq9lZ~zHF z!brA3FUdTRryRsIb@y_$S1|wxB|{-kv#YI{o&^U;T&h&5i2NWuj!CNn<}yMj7(3W< z?7+t!bh7i!lH?F;Gkp=*cIR#!hn2qs*H<8Kv%~Q1hBxv3rTtD$(W(8=J9{QD3?PB7Nw`2r^``=+0g|>gC&FS>$0OUMa?D6-@?C`(z-`w(p0UN4PZ8fe*qda zYGQ>Enkt3TGzG?0viX7U< zv#19wtrkJ*sUup)*Wv02_)8A-G0Cq%GIe%%jW-?t93!SH}hok=36I4Nhz`CCsQB z9BA1X%yHPnutHN7kU=UER&a?=@1ENk+ZjjqWJmwA^a2ioyEKtMz$j9;FnG$0%nTpS zG+lUr$8Ft8@;m(T1b9frmP1LwmG! z00JHA7U&7`b3>z$0cfPR`-u?Gz##7ce+^|dWi_P}H_>R6o{GwUf36%5=%sQHA$%MJ zIst+k{B<=fXLdLuL(C?3Z*kpAITNnVo21Igb&>OM>PffYuc^m`=id|vRu?welwoU+ z2_JpC+Ftt%U;M0KCSUOOn;}NN;)yq5e{rSI=jFIHU5~J{U!FUB;R52LAEL48T)v)s z7BQ1(-h~cbom_>j-q`w@Hx;nn36J^pRrl2qa7HF@4g7TU5y!ILIXp)#ArZi3DoVNIcM@bTp2%*4bza zZ%SENuXy-baCIIX?MIM zw!x}ZM@zFUo<-sK!MD5(hIk_d`z6oQBI!_iwU1>=wDO1|QxzTxpGrq3lXlvt8k}hS z%t?$0GfvvubbnPB=;H}_gyzsVnibsE8ElRnfr(9RHc zEv{Tc>~VM}EbzmvKvge)P~qnW`^>(joVBykoVU5Gi}6>E;VI`Rk=jh#;ibpmlnDW2 zl5A(Cn4ijbV>n{=*Gq<}p+pu8;d}NWBZ(jtt`W;6sYt`v$zAmYj4SvJ`$i?{dQgNX z!ouW=BI?wF8Qqf^qOgG8(x8ATL0CIds~GpT9EuxtVnLjKPFBO8EK)6;A)9ARL(@yJ zqb7$?5)1e7Vdw*s5d!eCh7^);gdKgGW(ohragJkGbJ+@Djy{;yn&DM}P^{x^48OT52VgZHH1q3$v8jEZnstP?wWU&JLct9zr~fYsJ}d zw36nj>sVp704`@;HqJ{%)y(I1A5m$=G=HbAJTt(uhv^k@~f7~CDCpbA2JwU1;*BSKy#s&E#c)Gxln zh@1T`o%2hCKGZp$jq5qzam;!08uk=rkkVxwsY6yz5yq z4yIdI?B@3R431n6uyFGn7&rb>RF4!S1hli;LS0~0zS5g(2cXUBCXH=#R!d!VXiX1E zA_l{(dLaoJy9~cW$;pirM{paoBolT;Hy)8h;o-H#3HUl=9b^oBsjTb=<(}M0b8_uL za35P=s)Sh*!JX?n(z!!V!jo|y?#j;Vbs0Pq}TplHr0I_Zm`kC@I7jvpA zH8)Ud!N6d<@#;bFHRz7|a9;`#lj(k*i5?kcM?;`*c^*Z2oGQ6Ps-djo;^24Dg)+?9 zE#9^mc86<?gbh2~RW9 z4O(J6LsH$tdEhD`HNnqeb}#l+PMc$_0Ss%dIkOY$Z?HYD8tnYnlHb}La49c=_fRr8 zCv)~7xQQd0Cr65jB-n5kTZUGp+3cNpb8N%tC35j^9&cM?XoKJ-gPiQ66-k}Ew@J%h z^||_rSPtwtBfZ|IxBCbOo^FMRSnq#>yH|g;@1M~ zu*|H>RFvi8=~USAUee1k#(=^De1uG{V2&cw1DY)Hl0!xA_~fb~U4jrmluSd*x80yv z^(Y|72x%r4<(G-F;ok8ufi@|mSZkcCci96CNpAGxOO2BBN1Yt$CjRQ@(Pv0O^`a3OL5Q# zdr57S)x_U8-bQ*5Bh4(@l1CkA`rC$6-g$5%@JBYpeb(~Bw}sQ&J)8jJXlQfK91a~lGtrf8H?7(^^nm<7<6nZHUZu_o4I#SP`TG!} z3K*hxfP|uL;p^aIh~SH~EXP(=u_`;VSN`N0pFbJ#C03uq9LU2+dGk zg)-v^M3X8N`5=8UR^!OwDWTNmOp2|m0O|y)fs_g^%`Y5LC+PPoL24S76XA1?p&{Li zze)RtY!%T9{skwEwT3)XfuwQtu^ZdGjy|xEiVstTNU%4u*Xx(qcXoC@Fre`gY)!sF znC~u6?ZyH0=$C|UBqhN4z7)zcbderxs>i?u8lH-{SfMFp^YwUJL3jskPt|s1ZEfOc zAs`AkFvm8;P`f6n&;~A@<6#`Cg8jl9od!H!z2-||m7lqgClv=lov)wGaX&F5KpF9Q!iv6}AIw zWzcfIb`L>U!Qobt?m@<4$KwNBQTTwNZR3RNOOY=vykFOJAd;0K#q3F6IcCmW=<&cV zn>NeHL>;Y8fj;f-8aVe$IwrDSg=(E;k$=&pR<0!Gb55?F7S*cotSiD{z}(eCDAc{bjV- zINk%R@D_a>IlYS^ek;s8#aY}2bLQ=QbXp%mJXxaTeY_0@o#@WJ)^ivsDmJzvIrRQv zw-y4u5m%!5GJUS0!%{MP(q+fzi3M#NUoCg)8fS{tQ7CX5(lTvO6Ls10vlZ)EyK30t zka> zh~Ss6Qlo-D3p#P-$a>e3-c#Ht?}hSX_HQJS8lY!{H&jvI!#tAy4)P-3ia15xRsY2W z_mvq|VA8(}3}x!FmS;^q+EZA;g=<7UyGq6-QvX|Ivb(P(X77ijRUl^L7Cn$&jklNa zzE7H=zYbvUV+&<(;wZN2_+Usc1`17Dk$A$h5%_Xr9GaZ424Oy}wWLL-CM4p6AkX9= z;k9+sYeqf@L)+T2Yi0Yw3Ta94xi(Xnxtjr9(Bt_%}JxYZr-5MS|P3BTd_@|z)Hglk)KVbzJKotT^k#U2TPj_#BVo{c`teBn*q4AC zt|z@K>dgJ9hfLENcAvjx=rSuF+k5!gM)v=ebM;n!09Ue`7cz>7P z(!{Qzcpq<#v%WVloEmiy>;>{-h&R{n79BXiHGlS|M9k_t|D*HT`tz?;efPzR%sw_h zhF(LaZ9(7MzY*0JV-mAVBGnMKpsBqt^tk%DHliIzR7PK(4ETO3oi~LY!t6j$tWuMcRRsqGi7M-=l%7NK1%yz4~UgN zqGmun$^6KQy_auD?AEuFEFrIvy>Br6wXe$6DOW87moJ<1QLa9{n>!FO4Uz zZ9%lfYx0BY_)j!v^=Q2hOAk4L6a>JqvZ?R zrTO+AGqnr3#<2D6Dzb0WaL(^8{QSFsm64N{#3H7UA|@n)Rr|rgdwv__-Ylo51h0iR z{A8nXsvFR?DNI^Keqo!C0wyhzw;%Xz7f?CSv*VY_8OJesdH{;@sxo-*AkM!fcnvKh zdr{kJ$lhaj38Dw|FqJRuUNao%GXsThtJ{FzU7?bLfG)o`CH@!;0_ecvZ`$jRM+L(x zW$g+X$47~Sot;QXSe_o)pp@Xn>cFwxZB1XLM)(7VXRO8pLvpz~FH7?%@R`{WMNC=% z)enKt0>3ls$z(G$Bl-eql}*=dPhlx*;GVJ83UGgpvIYtvs@_aHX}hHKJJCA)^y{*c zi*}hT(7plwZ%7`voQb29cN}TIao#T#f<$WhU$jkvp8Br|crBdvg)m20`QS9xF%Cs& zd7F9=ZC-c2Mb7Z`a8@2Tu=Hum!g+c?X;F1Sm%jZ-0Uo{|rM|%JD)B~TA=5my12+mH z<6<}(74stM-`1pNX{Ie?{GQI`y^+OzppNc5q>MIBeLmYkc#} z#DLOg+i8&OyJV|?g5Z6K_#09vi-|>3*96i4v+)RJHlHeLt7FUYf3brD0&&$^KJxG1g$h21IfXdx5Nb4@qu*?#}{f-Lpg@G?^C zXaUwRvo#Le3K_eP9&IEbQf5_}%wdS#4NcMHQYWr0DO4HhIKlZmZ5mcYgSQ4&d<2?! zDAt^K2HAW7S^=Npbi~=ha|sGvK^sRG5(#VR<)RC4`UPxx`g9fL)tB*60Wpx1?#M=D z)JLTGhd`m92Cj!uf^Cs^J8(RTxo9Q3IGEcfrOTZR%ty%%1Qfm?OYr=;E48zkOqej8 zN22&ienNvPDO%qi{Cas*8pt^Lok&hd+KN)4<~sZrJnK}R4ecpKouE0|Dtad(x9elcq;6eg_Z7MlyxGG2r(BJ9vvE-PoY&$T ze!xU{G7e-dr$w zwho!pG^%b*eYC+4_fT5jsc6N431DG$7P>;*#Zh6g01e3=Nt1}-*{~d;o;yNRy2-t{ z0!s|u%;Bx-I>RzXYD69^h)@xXWLP3omd`^o%@b`3n;7WqRC4*w0>=jo2U-`wJ;P7e zqyGLo``JzlVE~H|h_sTYQdY-K-%Qp0>u@ zbz@faYmm2*0~1smGQoX>IQYAV2rae;nXrgXKpZId_Zq)a@dU zI~4-&fk9Vg{6$3!0)S4`j}W;hUY#y?APXRmfxm$tA5eW!@g9hg&dxwav=>?YK{~AJ zH#upL?|)|u6jGpF1at){8tw}f*EMgD1ZE$3O=dWAU=K^O$lTFp2zhJ}jS#`qi$G&; z76gMZ*|gpQE)BC{KlpS~IM8X)CS)EbA z_?tNsA|7|ygAN$AOqmaux_&>|D$YN22)v%2>Y|WmN8=|P{UJoU=a-S`AT95-G{ou- zfM%C$E7>yC+HV|B|WyE5>9w3p3OuKGLa82*KZn*Rp5}}#o5V9o0Ov?X3Fzv7;I@#`QQW7C!r7Qi4SPfYX zXYw;eBz5^Hz{fJ54Axh%gD-$-@}P#+&&emu?W5A zL)i?&hi(PESjdgj#~r?_UrO?%sAFq_CMUoJ4&Q|;CkH%;U7dv|SYLEFFQ+P+VX5vN z)=!-DNl#x%g^Zoxs-g6?DKx!Xdha?*8ZMRH;FGRmM(-0Hw?v2W$YMZzR4WAg1=5o31%bFzJa zFYbGDyqf1H*RDv|uNyqRwm05qtNtW<0rk0wB6^49x?Ba4Xqs{dXGe&<%8;svN&&`#U;2?%#uD z&nB5IDS4-n3S?Hz9Hp5b!Bf#!Y4cFO6m%0QaRPj?H>H;~%)pgaSD%)zf4HBolTCoL zIK5mQqA1=h8B3q zgjk2=_w*FS9=8#T@DXX|YPLx#H>dHz6~iMU3ixiC`tH95LpB40(HW@av!ujCz|}e{ z#eQ-i(!{k6_v^G{tWF&NwXF><^{fsD-?B7VF)*+S4PF0PvhU|jU(XJ$e>z-pSq{L3 z|0IC8V{Rw!lGfSfI7;I2JOzSPde*PX%P@nkBd;`Bs4J^I=O+3;vb@wOGe^Eii7;z} zA?=aLk{dn|irIgR4TtWfT6p^+C4K9{=3Jo#&Af(UzvVO z+q^I+=RMlF%ONwY%w(>Na>&iw0RBWz;=5s@sOz^BTjGe`C6;;e*BZBx8IBC)uX@O+ z>S+8r!gIo#51{FEP#v2vTOa8MunsI2P2;!@%8tp!F>+J3UdroeqpWP;eGa0vc_~7KxUc*fa9zk*@k{0 zyNahoj~TYiOOJiWAA5**0l9GP`WH?P=(bOu2Fgr+@~LeZkr+`qQJJ;EZIoFC4scBY z&wTW;W8*PtN7V3K#Sj%9w*w5Kc0?UROp~Pol00j`-rp4pY$4RiFPhQ~2tryQe{OEv zVVPhPJ*iVox8Aw@4MbM1{Ea18#V|m6SA+swuYR8}oadaAIsO31Y~#SUz~>E+Tmn1^ z+`Sz0Tmn`dL9F;i^y+-`5vLer=*eIl<}j5AVequcp;1;kEz6!J(Ns`x>98{jQlXxq zFlG)1IsT?_Ao@o=Ke1Nw($$X)7CwpG2aw+8B25WyXEv2yZbW<3{Ph=()Yw^RL(5GT zFLAgm6xeU{3gCUsgDe1|{kvRWe3%;W4~LHPHX>@|(bVOaMI4$5EkF*n4YlA&09oG0 zH{$IDoc4=pw%=OD%3QVgZ0!uOluDkQE%0OEC!_k-kTh|8?F_1*1n{BMJ>qUnFZr2YiYIV{XvV?a)i;~KpRaJ#Xg0nR5 z1G-$?ugKin_j_K~ARvE$(Utf^lki?di3!aYdj>ZzU?&IZzKHH zz?#q?8v!GN>0OZr6;6*j0*NGW6`thFhEeBC36pYLIk0QXg#R!>&nhrO30kJLE;Qqg zwR0!DlL2h1a~mqf^aBD`^U1prVuUeuISrsPTWc@&YdBpBjt+Fq$@c{?J8~>MNg*+T?Js%oXJK#$&KLK*ecGrc9WvGj zRyzm|<>&*&$!WU-fw5)R&p1vP0kZu{*-8))`aPLtsg!q*1PD-9-b*9;QF$b1xVDMo z>CV#sT5K)!-<%+F`Dyaxz;(dI$O~o@ZEx2CX&C9wT_x;^Dt}D*Pbv3r)PT1d`yImg zKsd1=HzlQa=LzW-^o$JC4ZbJuec^*Mm3TI`0&oku3IsD8Y*{Qb#740Ehi0PQoi`W~ z0cS(TnD`C$H$+nCH(3jDkn*m3(Mpy4 zE>?i$SW4((B^`y}_;1VqaC}Z~M#@z{y(c|v+WyeZc`mCVWbhFz+aco zIap_>h|~AvN#R-DJ5R9@lJlYsWh^H8_dwkj>>|sYWM<7K!u7n>Jpc{=PL8^N0@`6Q zy7L;qjZBA&e-vCAyB9pXm%j})Lq2chs zN{7WGXEEGiJ&ojz9cio5?@T{d3VP*~_foxE^56>xp<3*c*=s=k2~ExMi*e*|c5=JHhX+m^qm`6ffHyeC?0b)tT&|G}F@;~!*Dk*03Ud{SM z=B?I)L<@nlaa0fw{F~=(kJG+<7LQ=-o!N%#4+V-hXD_m>7kmQQr7o$R6lt1V+pmEz~=F(V6P` zg?d{gh+4SqKT?mPI^Mg1peRmuxp&YHO4cn2AS@og6Lp5Y>Xpjud4ad*5p#aJeU!i( zJ5WZ(l4a#jlV8$Kw`ovX1u@{N5)5HnWk*voay&8tu){U<2YtoU9IO@i-)&FT3Eb$* zvkq(3j(J-a7vS}Iq)xTrdHlY9Eu9w1B~?|OmddxTt~c?xx2}VqKCQV)B38$i)^}v6 z*_uVYZW#ldzWIzAazmy~(M{8(ZqZqw-&ffAjj=HKrIlNs_iTAp<)>bV z<2A>dez>E&@{e_oV!FS6l!q300A7E<17~}wmzLf?#?~7j1O?P2y6iFG#BZ?kaZegv z#3oc8t=0Q>GeF4i)T#1{2W!1YtJn(k#b+%v4$%tpG;My%iQE9CC|$+9dZMr0*-ml6 z;z_xfu!nMwM<%j0?XP1NgAiJVOHO5jEAo*uNy0sP2Q)g%`PMROZhT%2 z@dRGOyE>4cqk13Dhi8VNP98hPcQ?@V^>TfSm`+;&_iWMox%c7IY}D^hb`a!Udz$Z^#1anF#0&St?w+H z=cT6#_bzA~2*40nY1dDr*WF3649$nnVxDRjq+Pr1P@4POKVd2QQ-zlTj<+f88dBIO z*Kq3`CRyxG98T;r+)kWM$!RQEEd*peTr%EzC{C2A!HQu^Al;Gvny)93t?>|8(5U4i z#SR<#>X(3Qjp?cjxKswxXr#Wkx_Wr~5CB+H34l2<=J+ogvc9=;40B|amRoWDg zuBCQyYS~^6mHm{yrezmJ{4b-oF5(r3wuVN59e+iA3v0vImX>unf7Y@r|NQg7?TRn> z(s_+{jlZK6e9OwQa-Y4;)46=~sGrbO5&Kysc;-`4o+NW4v9v+oi>U2nU(%XmkUu%N zEvdPBaf=(pJp5N{QSSRA;7L0 zaM)Pa;TQNnW+LM7yMJx7^Cbg$yA0C@zC-9W(JSj!OEsBFLOYA}8Nr(#p>Ng(5J^d2 z(+4c&_17ZdKzeqScF$);#6PWE_we{|W|Z;Ek|Gz{I<%{OreJga#Z1F&^68VzX=dZy zu)VmK61&PqV_MT%zSOINF~ZHaB7!4w(csH?;MhWOKyu-U1rfp^k4j;%lQ;4U&Kie- zy4a7H28LE*m`BeKs&zwI5;&s@1D_gxN1OeW4OAjx79WvMp$UqXvle*zD`q`t(ahAY;=6%Q~H>4 z9XQW2-EV~76rkf3cHc;_kK|ys2awH~En)Y3`ycZtcfdwecCL56ZXMl^I)IYYm+jDM z`Q<_?lGszue>mt@sWo3Wh>Wia->!QNK~(j9tDm>{>>Q{5-@Etl#?l^fc#w&E_s9>w zcoL7y^%LIfvl;) z=XQQT)m*Y{Rfbz2zrOjb)}9rZ**{}gW;-5CSo2`4Hx@^$5GL4TxSUet{ZrPPOs1yh z-B0_I{mHg2KxMz@=YU~Nv#X>kxezJart`E`Dle8nXt$+vV(~vYY)Li}$!PWkJSh`e zvY*gbrn|gMYAObHf+xQJ*$I|zTE8egQxN+c2iTo4c~35n?A`Xpv(8+2{_=V2S9$id zL3VIN)Q3jLn^|j)Da6Tt5iM+)U||6V&bq1c=s+Nq{MHrdyo=yP=)%4>U-`WBJ|V1$ z`+&q_QWQ>rFbZ$jaZZ@X9K|bo1HE|EGdOB!=uaN3>2hq?xekjPoDT6XNq*XUr+E1r zR?!5JYsque+E@ekWuu#WSMrmM?XChn7V2^Xk=&WpAWz;y)4iY?mt72&?rG&|T*h6; zRe^G$c8Y22JKjV4fzuE&zb4T4dQk599E{OkP$ZbiPk-5aGLkY7b7PCR4&*`Pso8b*$ivmu7cj$3dxk?(Kjz*4 z-WWm*BO1;uN0r1i#ksi$vEu4$QF#iUm04!SKRd~?H-Sqw=a0`%R`}!6YZMUv{~yry ac*dl?v76F%XMl6IAh@BWLGcCG+y4i9Q_SH2 literal 0 HcmV?d00001 diff --git a/convolutions_files/figure-html/cell-55-output-1.png b/convolutions_files/figure-html/cell-55-output-1.png new file mode 100644 index 0000000000000000000000000000000000000000..6daf4afcf9881905333ee94c09c9f1b440a8d5a4 GIT binary patch literal 14780 zcmb8W2UHVZyEjTNA|N0L(v&Jl5520i(5nfZwLF(_}>lFGlj3`+pB1*h`kdzZ#Uir?erm7hV<71QJc&A(|lhDtP&t2O86UQ=i zi6ePHa|!!KQ=Y8FH>{wV;_V>LGkJ`x->A6D=X72kLNBBkC)$;1ZlhjQSe8){jmGUf`5m z-8AZlT=4(v7oSUzr2&utNXUS2S~B>R!-kxg3M~>(P`aq!PN+|Iqyt4IA@%$qQG+WO zh*J*5WdwWd2?+|ZtD&4VD22pKJbFvgzPjU+XHlCW3y7eVy%_Y%-EGH&F@$bCSKR| z>)jTOR$tQ+RYDKmjy=>;>J+L^OMm&LOCR3ZO%!DeV9cOZLi=6-c5N#NyOcsVC$__<=rI30*u0yE^kL?PHAMqnN*TAj~roe+!O`E5h@U_O9M( z)mT}0JZ+5d*FV!U?GITVT*-mte~miCE1B-TMy}F{uuyQP45oo=?q2`kl)rJy%F!J4 z>-W1W>_MlxU3aA8PMB4BN>XCa?mj}c>%&gUy4>O@w5IgVG#={cPDM?!X?y`qpw#Y} zW4o-0V>pSe>y)QjP!7^6V?~1}E3c8RCWzQ#QeyE{46(Zi9FutdUKI)a3m%nYE zC!2sI zOV)#tMPrd-w-sg515#o_%!x>2sT=u+S#e|iR2=#vu9=-d`l%U-zN>V0VdUMc*AM2R zB+Vh&3+(R~R-;UJk*=aMogBM%-J44+)-asF&&ej*A48Z}#X1gfI*Af3{EfbZcP8+( z2L+oDzDBn*PmJZ;^|@LM`gkIkA+xL3NK>Xj>Ac(0csv`K@>q?L(v;{n+p)+1{mN9$ zVXb@cie(5D|4i;7$#RE30klSF5@6%s-5wEd5hQnvVO6@)#Sit27=kEzke#wF+~A5c zgZRy+<^zw!h$-c+CyWPV=Ht8RAJ0~@kRLDynUXt@@(jm}nq0dET|5jwz8%vv3+*mk zBoX!8zOMN~ z23R|+_7~PEj4m9iGzMxQoF9r|X|P&v4UVWIJspU@Nj{DUNWxGG@uDAl@0j(6v~BSc zC|7qRHFFutjDmV@OfrFrISGvJHnt=6IiByAV_A-Q`X<~YMDo~E(z7w06W9)pL-zF> zBs3&kpxbxqnT=op$w+p(DgHXS1CPB$AKgP7h3wFiK%aD*)SlKtdN;6Heb1;o4}K0NH|g^DU4`_{xIN< z=J`&0_yqZmF_I9&+1)oDi^M-<_#sqE=WaWOnd*yl>n*Znys(5xLz#>DTm1rNlKXKq70 zXgbc2PZ+NrQ@BaBgqSxQxgL)@dpQSJj=J;{vhyQJRpQAZ*S<~6tK_D!Dpc)Cbo-7e z#M0-Rrr_Y+n8 z_UZkRDQNm0ho{PiLPH>F%VQ(=XvIQ~KopCuG4XJ*}lakY?z^{syBDs@X;A=Ew4fJ$88;f>u z2U~n?>%shbiwENjTeP35a`b_Q;2$$+^UBzONeF+IixPSuE-kKrMx*t>_~CmD%PvQd zQXr+6a5Qu2XY=x~Jl6N!!Xrk97n&t~kLJi4^o4kHPx2WnMTU-FWWP^4WsCu&b=<5n zWx66fc*4sKT==&els`Nk?M+Xb-hqdVwcCv1b22oqrJyG|y`^d&{7n~+49G?M3o&{V zVs6fKsCB(feScF#KmSL~B+GWP?)sK>IDAJI!6#!CAh8^F<&%;kzW-S~`0%YoS~ zZFoaAG|N|xIbZ9V6q2Sr=W%7Cu4izoOF!2-n~EM?g$5=r%7-15 z4GO};8XmYYLxuE8yJgjNB1Z^2eVammtT)Rj{+_Y$qQ=)#eLr~+{RA`9L&Bw;1&F6d zcSp<>3s!#$?H~j~ChxJEj?@eK<-lfg1a41?{Z&oKs#easFP*bJE0_wFNsZ~aw(c73 zvav#*pqZelc5hM1&L|wz7Cq`eZ_oOx(;)bK!OXfT`4%Q`;8uG&MuhmWH+BQ69XV1G zLVz7ld_~wkH4t4HT;Ic>JU?Yv)8tzP&i7C{5_~|ZuXx0MDSn-6q4$-aoH!+P>AC;q zZ+3;6pZc`J4Xsiiwwt4jd%8T3cxz9MAiZ^Cc;=kWcNkwo5WDKY6wVoh?BpF%0LF=g2zie}mF2z5Kc39>xe1EsGtE8A+Acn>Juqw!1`$ zF~!Jset>AyzWLebU78*Y&AQlfAnQ4Hfm37Q$9+mIt%u;Rr>U(6!|zllUTONcPRAWp zbo#b(Ly<~S-!}+PK3x4+-3rah&Q;AeuABT=HdxKm%+@Thd(H8xw{WWaWjV3ykfTO= z!bZgc;+F-)uE0EBM<`1f^gI!IV2ZjL>vU;<=>=607 zRYFu})A%=sskfz7UDm<{#JKT8u`$C<-89F}6T}_COxV=G??CPOWM}TPm3%z1h=4ze z)3zIO_VTLJiQw(1dr?Z#T}Z}rr&2AAfW7*v8`VY7tb1H?+4kg1M&7FGtK=8&S{hHL z#IsUh*CcW5YO>R3D%Gi*2gN&~%5ZZp02>6(0d2<_fg_vx2#Spbj*=f@i>u~bf8I`z z#8n~qDy7I7I_H7+JHUB=oB?)@*ph9HdcHg|M+rJ^%GqBJHbVnRYUzW|kEJKsW&mKaZ#;uaYmV*Y$P>OJ{m`bwy zP&FHqan`qa=y)AZx@LA7&br| zZ4H|Cg)Fd-1T-LHaM;GA>8kqF#l_W9S^U$<6bXdF2g4-)lPN4&865-Jft{@_t9>qo zk3A5*_2H4gyRgF}iqj@AB*sVfVk+jquzMTTFhs@+bnSIrhcvcc~@^=K=GBZxs%DlpIzd;n=ApD6_bCc+K-h4s!|i&v4p9%cUZdp# z0IKwP;7!f~SGX_X=qkKZWKwBrLILQfxVxmE9b5Fh%UD|e*-PocdA*xnf3wAcAF159 zZCmbWN-F^OC};{~SDL(%$4k&}^c6>^4FW9Y-Auh#Z!%q^w#H~r=o4LwHY4Q?-4PBw zG4a(&_75^Nkj8Nb(flB};$gb3R)1l;M-pOOcKAeae^Go4q0D1Pn^WZ|z85d3h6M+Smp;8D958r72p*P@WQ#kPb_0%O! zdHcVKR;a<1TcFLWjRyj*Ng^TaEpv#a=W{KuIuc!TmRxJIpjoNe9yQOqf$aE>-X78@ z7x?3pr~hq3_>WaGAV@6X9@guwC!V?8(Z@s5Z!9GDc9Dvy8+BsWFRHoI!wq8I^nNN@ z_%~3JUkFF)s*cZPFC@|)6b$+f16cUD-=+{vmSE1kn+ndrz>DyMUA&MT5t1eeMk@c< z2x(-P6by)^cR$@G`!#}mG!U*3@tf{-(|1#ZOIDTAQUg1DjUiaLwI6FO_2=8fIln*% zE9fory#$O?AS5ehVbt+l2`9EpyRL2d&ElZ$hjzmOnl#6!hc}>OdTFPZ?Vr(3THB`H zPr=lxp&bV0PTr33#F?^o&>o8gbzn@@pZzA6qpdAstQ?chR?2?L&@K35pRl;lNRMIB zQH?{Eo;t)5L!8f+FcESngoj^mb(eAV5F_$UYBDl|YG^p_rGy&3Zj9-M__; zS%dJf{(6yfPPoxP<5$nVzc9dbWR0AFgmhhc!a2trCHY#4ut9j}dVZ+6-Z~5?#w-4k znjx$e5Y~m+(3FZv3EaDFwf9Zm>+e_anR8X1#lw#MeW*zmKJvDKJ>@O%0~)ppwGC{| zP;k;kvFC@{3+eYz##Ps(crtV^Bk~JVuWz(@-ry0;1F~v5t&boz>z@L$RC5}zBj|?s z^bY0QSg`{9lGwFw#)tpxU96ii7sqis|20QVC%CGkrr!Z*X|5EMmAmofqS&i}n{S_G zK~vsFNaAMChT+JLi-};#zA}_G6>2V0-wM z1|SKzVo4m^bkXFS2KKB}r8?Nl^!Q|Oe{jt8e)Q+-huI5vtzh^GE4asNAid}2A#Xw; zZwIS;u{DCPR}G5rPM~QhWTMFR=2_*rTBSDtv@U%!xL&HjpIexEb3+$yPEUhd({q^z z8+|1+l0v#Z7^-E@*_eh z#l#~g&k3b}D+^)_=ejHD#icv^b>LKh%E>yZFRy5xkyFWc8bp6~Kb^A>H0KH+M`b>} z-v+ss7E*|RKP(bK5|g3MlCfj5{;i$8liAlv>f4m-z_>WqTcDut$8*g2iz$CzT+QNE zqd(XnF9bB5RaZr)ebQbU(+OYU-|3=q0ge_Ut(>rtq6ODG3gP`BDz~vk?zO;(jfBy> zLr_ARIM1qwQv3)puQ0W+z(CQRF8Tp=6MlLu`vBO%n$Zx#%AV8{(uucW11T%w{q40g>f}Q*bX1aG#1u`B;JOE zm>lecJop+8p&3(>YCydXapw)7}u6--fN+e;6S&3-r!N{D#=7 zK0_OKgp88lBwMt2Dvf;#!`+)om$>nLA(f@)yW-%q4soFP0qlw}*B85NLTFg4uWfnT z1`lKq;87(=HQEKb0!&mA<_9N%!`-%gPmHuc?ieIu;zhYEHMH*aKVla`IBm!&t1ZnT z9+jSlpQK_=hKZx(<8vf+(%f*5GIvroH5=yUK&H>g^xIwOAx`{Wbu;{1zN^#K4^f}S zo@Zrx|A5cBHQC*7C3v`Jbdgr`A}YS0%?W|4lvN`HA)|5C!$tV`JoS)ohU-hSlo&~bT~rO;}d z>ZsC<9gn>AEi_EbN6jO?$d90QRQZT;Qx_W6 z{p|B}T|XL0^n>X4g&T-3f8XnEPk*+v_r&mKwCafQIdiqB;P&}QJ{k1C@|FNr`+^T- zU}NXqv)!h~%W=zu82B!JpPlp@GOj*#A^SEy(F7$)29S|>v?b;|x6tUo?^?msg+0#j zjI0I`Vm5taQ^b{{g6S1kfVBgAYhXHhN04XCloFyJBh`@j{w{piwsDaGL)!pW3hBxo zB(n|}nL_?TEqL`@T?@jKR+txXBS1Q$yL9U};6DKRVPKDz)~E~fXzGyVlX(f`Dt6$~ z7pdsPL11zJN%k9DaRe>*`BChi3A%8u(9F=ZX#q2(rD&lJ{Tk@glGn{@1?+yx-Qrs% zoGbhu4M>M~7m3kG@;5NGP1}AdTvf0ik2x_ks?YV_nPb{l85+tEdEGRgxnPk7_9ejt zzoLwpegWoLNa{*wCTZ#=;pip<2xg?w-6HcKo}fUdmHJMg>ZB0qvD;_BPeskwu3#`aXwKAg>{hNGfJ zs{e+rpS{9AvgWr6Dd8%Wt*ZhXhC9W&P2&~5H5PYUwX;;d+Mv|doi znx|rs{{{?#MY-entemCo)sZXD7i%1WSitX_qCiDe)<5MN`$3OF^Z;I14r_3&kP?Wd z@oQwy`kHT^i1u%G;?Iq6*r*25SVMoSLk@WB2Vd6LJadVCKh$6-Fq@pKa~1&QJvoNA z_*ee_Y~NGrsJQ_MjPi!xxXtP`M#-T&WxDjRDdKe?#s8GKG|h4>_|%s>drgakU%7}SgT;7rfE}yRw)(=FI@0_c|c>iYh4g~Aj4lsg- zzGkWh4+0VYrmY}||*V6qaQ*qG2Y0CYCFNaJV*UN_Y} zn2rZfo7-Yf^dpd}%Nt&Cn`jqHmWB=fm8<7Fm_saXLDW}PB;LKvGwQi1B`D{TYgw4T zz*iXr1a!ZqD*y^1=BNsd(c+4@az=NddAYuRL90+WBZ00Mtg~I;F=ZL zpak2+#J=5u$n}dQ;5Wbsk4T0Lge)gqO=+2w#L;ku=tV3d z07z)}fm8W6uT+~rg9R9T1Wi6tRpMd-0)+x*txKmm=7%PKd;%j0A1vHy<81-E55e8A^E^ptMZUvxpK9^)eJ?-3hm|I6zmR95e zE>fReydir#kqKp-2!S{ZuJD1DRnbo%;WHOjA3z|&2)A0Kp7zv)jU>+z+P^#-AW|Ln zzd4?9%iRm4BOyym0qZAE>wMO(rsHO{vAvObkmNTuEKLSISrrWsboI_GOsD=y2a?Ek zc<;R;>hc%>NNU$hKi`lL$Gt+a1HlJ_2x4KK$aY|j?KZ^6>Sw`w;N;(sUA?1ybOW=_ z0s{1*%0E_RFnleDau5$#m5GR%Ya~a~{&3GzH~v@BrDI|;+{&QvQWt{Fn;$prV z#T?XzX`<_;yBx=9a<-QX37}t5dHroDRO{23lu}@#oTrMdi2tTop#DRcxC6owa+v9< z{e~Q!(No>bE!ZTnES%EbQbF(Px#;_g|B3fU7o~S8&~RYB3D~qWJShhdLBJYRSL^vh z|CvwWLOWY?Kppeo${moKKjbZZWm0)A9tgSv6=3AXUjS+OFTM_03WXfRmokXsoH>UZ z=Q8xpr%e|{m;hw;muwT*{Np!(2N*8X++f@JK=)7~(+^TX1Bx#@J>EmCy-&#_cQmxO z$Mn$zi{sjXL{XR~_D`pn6D7H6%~QL4b^ghXlJJ#bm+v#5dv4yW!kiT_P0C+z!YB4A zjnm42-13_O8SBEI?$Dg0)4)VYoZFJfx%%~6&d@!8XMMPx0|j9wu+dLfA7qeVn!Usc zp3uWU5wmr>8-#JAK&b&h^8My8mQZgHiRP{T-C~?LPcH4EDw1(;h%`ME)b}_JGEUR> zc-Ae;(@dAp~TC+B`8!Z8P0tWV%?f7eUMI4glSpe*@PhIl@hze3LcSI4%_)^>fL zrk3NT5P_NvErqJ6oZ&uS|4#{WM=|O0i#wS_(;&Os;d`MUv~{08WG!^JQgK^$!$MA?|hOF`c4^DlcgFD3LmAyyb-d%gOf?$3cq~LV8EeJD- zbt=X$3F{;(#x8kC7*mO_E*0*!7CbzIz2r@CFn|H`+yr&go!a}y5jf`8Jnzd4tW->4 zj~gei5|7TqJr>EAr>Ccr*u{W2x(3)#yo#OkTCV^kP(Io|_c!&+s3QgFgZbNyx>{aM z+sSW4Q8?usLGKs2ld*%NO)d3;N(%xtm>eX}%q2j-Cyrws4He|}Fh`}?649T#{x2({ z8P8vLXBOL=TPgFWl2u;C*!QkJg51#kO~s$U0tn6SXh_sop_IPKAc{2!LOKQVQ$gp% zqvMwWL50Ud)W6UvGV8Mt_>6^sp-yOcaw!A29g>xmOGY%3IAbfn8n2n}Od|OAO;qdb zl|?+0r%sS~(7z>kwRkO2C$56UT)Tra8c*yzXG|l&$!BIJm9P)xs&ua`2QV@|Ie!6_ zoKdXtcnn9TE=_s$5aIL-XYsM3-HeZ04vZB!(yyskBY>;`{yi!tBSw3)&H1w#k%Moj zE%raa00Bf@!f9sq5qu4#b=jG?A}9b*%CF}TXL<*VPd^)B&r;4VE>dXHZThNiBWhO?L?);uvF<{Sx|NqYr>nnExN3q&GnUY9?I}9S+{=tAc6)J~;NzZKybW$LHn$H3Ob{J1FQgD8K8zR9?bu~xE z=B&uoz=Qxv;tUJbD&qkj6A|&!>HOK08)Ulfa>iHx2zMC06F(rwxV_9#N%g_AXGJ2z zHEQgXv%tSiigjorIY~mDDhN0|>u`+PlD948sJL?=q$Xv%Lm=cK^0gc6N50Xz-6ue)79R!wk{n9B3HDpl@8;3g-+&py3R2}2x=(|lp7yhXdBj{Z@E4+mj@ zm56gXZ;&@(fCB*A&HzG~UCfz69c1(y6O`#lWk?5YG~Js&k;z6MBYtP!JtQxdRz>lp z*gn7~QsL9--|+bgJl)du7^uV9>jHH>`NFY8o@hQWhkM{>X7piaTDYM9oNu0PX1RkG zB#_CT{9qu6S!B`muM5zt`mM={K{TfI>&CtqkKKuwObS6v#)ku3-T)|Z#)BL2ci6au z7y|B7k_hdByQhP)kyhvZ&-8l(tQD^=(PM7@AD8cH1&4)h2VL~D+=+jB*F^NI(g4FT z)X>(^XY}1*IuZH0ibr7PKk0z)?g8{dr{V8_OzmIS2hre^el(_xOjhp;KLx0*fw;$A zF_1>yW`RNrr5RB@2(?q2mJm0x$OCJz@w=Le^ob`tQ4i6r|o?_9Tn$4yJ}_knMV!utNhjI zE-~@ue$crTu$234C4mfG`l9=W-o6EN>&J%EyTX6mm@DM{m6uj=e^ay!dbGoFOBL-a z)0CXv^}OMUp)(oUU~Lr)yS3&Sn0WFa`f}6pB0}UxLs@7KVwp7r(L1n!e)H}w?3Sa% zHFAfbW<}re0ZWbE*B@}+pzGh2sZ7&Y%mT3ZzR!9kg{`#pk|mo}nqRcvxo=B3JYdHF zRc1yPoPP<)wVjDRlli4!=7HDIQV*3?=}!D_&M)p0u3^)Eo~oIbn;j zf*Ga#ei_K_pN&$M=L}QMjscd`e)4A*Af$Mv+A5!5k%X=_jg_AtbNHw$QB?(k2#!E<`=3HCS4q6bw*Le{3xwl zg5${@W3693xQT$@4o&(!02|n&G`)M){)$|u4!W`2vin}rJ$i~;eQoh4s&j?Z5vH@d zH|2jAu??Y-Qv1H1t(Bu0>BMF_$kO;_)$0BC2_wF@;16Ix(E&p0r)B>pOIvWi>Vy5> zL2C3}kqXSp_5O_ZCv-lL7CjyouP)R5gB*#x{F03Gi(SO{1(&2dpj7X{9Mg*<`UJh zxqE>gBGvawhP?63n6!#U`1)1`hdO!X&M&exkc&CthlqjOFXvewR$6@ktWB?AFLsCX zen^7Lr}D(}Hw5qbR@w~Pm%V7INdy)Otv<*UEoG~If9+dsHey>`u8?QjpX_)RFo#~u zA&lm&?|S36Ak_8tP8}b+mQP%j_Z|;~eEQ>us*NHEI1&G9RtS#`75|C zIw*J7;Baceava~-S^Vw*gYW1BKr?C*Km2JZ;}%eoP*;J@WY^J|93AWJco;)(QkUdV zU~cP?Q{EwU^`@+uzwA|i6=f3CYUGWX6z~r$`NUCdvH(+R&R^-h4$4xpPw{+jATTrZ zD*#E#K%PWA(CNE*i8V6g{`hC0R zgov(g{dNCV6!vtD?pnk>hb&7kk8JOcg?cUV_#8p=dq0Q;w`1X=rFsI|t)oJJ7JmUz zJv4KgIcijBW$@cr!E=m;AzT}90}@dka_vYty~We*i@;V6*xqcv8wqk95vWki0TlQC zNH;E2eX^imdoev{2;zl49a+ynyaaCLxjG_D;N1C5K4&q`iLu!&SwB`=yU}05eZo|g z2e`UG%uEV;Xs6Yl1nU{Z!Y-d{3kIrlxGHY|4lFG0P49cX{SZUmD6MrjsUqbU9DrizWR_ySGq}&a-(G;h|@!H`N&5P-=>aN8Yi_p>SYs^-bJ#D zXs#ecIv`Ro&f8c-=a0CBEJ|C#ua+per8q$N18W1C4ja1HOb2~$12zLWIy8+M0(~A5 zUjSifVS}0gR;uM=BT;3w#IN}=#J1qSs>f@HyfV##Vpo?TJMxus+3if-x2h(0EKg!Z z;x!Uq2?Av+caGop1Sg5x=K=hP8{s1;nV}nqhd*tKS%yn+2W@1lAFoz>Y5w{nU|wR} zQwXT0D`l#tq&A)fz}BA7U$<;Aqz;|ky!VV_*sGz<=or#_yeA^BI`nt90Ep&2OKcaO(HEWt4qttK6SA z_167uZ4WTD5*dX4wKc6U<(usS0TDr7)MNgW=n`5NJb!${-G_HXOz>>^G`I)vk0@u@ z8l3{{8z5P5=|I9SS19=X!f@(Z*l0UYr>pg`n9Qqj-PpAzT<~TYYQYdH^yNk4YvoKk zBPR33gsWUPl{C+<>G-p*9S(^$Z`l@EW(zw$rIsfhhB!0mr#<-Q{G1h(V|AeO$BcdN!Aa!Lj2e+5|4+WvY{!@P*E2(+TMg~`#CRd$QG-U#D@8pe*TGer z1-?`ko^Ku4E+dVbuvm2qsc35tDfofy3tbeq$%!mrO5NY89%n7pr4;xV-d`F~@7QnT zbw}VF+9(Ha_ZB6k@2`}Y(ND!55B1)CW47@s#G|T1%3i9n{9j>|fV{uBXn{E4Jn736 znfi>7cEbG$ky;MjdA<0@8mPc}jn<&zcVJP?%;}pgV?+BYp%kBoW$gm3quuwQdM$al zk9k9pBi*Y&;aBKWiA+Y&8?(85F_C7~`&Jv@f z1&8NZA0`$_uzxUHvNv1u~MUJI3$U(CvrT|6`h(GckjKvrW+5BrCe2LnawQh-pbc* zTwR+r2Hj|0FMs@-)yatFozf*bbCl^Ic9)>lyRl#Uqj$P?Pj5~4zJ9G1gejy#Xz%O| z@=!cVb(%t{JG!Ew!?CsXW9GrLB;nac^vfhYL(9Ag_kuh2hE^wy0G}M+KYwG%@88&0 zsW4fzoUJ+rpq|w*fO?e*W?ojQ`%@Q?YB9#rTmy4sx(hl$DVNCMoL_|Z=&c8oEd|tM zLm4o|7vy_!&lU3IOy7ucj{s(rIZC`9X2NztY5Uc(fvRu`>-|NAi+Rfc(jV7%*s`g< zt#R!eOAbe7zS=ywS3dvcvguL;|R{P|-BSi?U>+~1YF zy;xH_Jn@a&2Kuh>OTR_M@VL7hQ1MgsCGU!&61^rz^C)(_`2eVf3k;^fO@zC2Y}~u1 zJ=7JKKBYS5^>s{W{Ex!Wc*Fzbug>#Ej>7R-nfU*;{-uPvFTwrVk5gjj#o_m_2IBgn z&0n$koWsXb@W7#IlcTWgkSF81Jy5WJ&~q8gMN7JL;TL%sSQDaUIw;W_ zz=l(w%D{NnJuJe1fizBGoz^Dn#lJ=vOI3rj7tFQ9`LagR>u|SNqQ{6Dn1jtO=lHZ9 zc^58PU#1=2m1*YpXYU?(k$j&CM<}k}1szP^VGjGRby9<99~&+$cSmuYxSlvuDQ{Zt zD0qKmW4(TMsQlMgzMo@ zsKkb~JeG1`GOY18P`G0nCB-@r+YN+WTm_Qr6TgE!#=%tI~7XHJm7bnMP0L}J< z@+*q}ob0Tg&d705h)j@to$w^%zgM?NQ1XmWW0dJ+4aekZs_~;i=pKXirq7_W-sV!O zeak+)Vamj=m@=5HN3qP8wXtbdP9Ek!!qwLWJr&ngNPHxoSD|F?pDwH9%cfB!n!{1* z!925imp=f{uNcsX(%s@|JYigCho3kxC_5eiz4^6a!G;l zJj+mWpoFeClM+x50+>;&R5PkW>{wqC#hV5$Pu;ks%6fXDBT#U!o&nsL41`oG^UysFSCKUretG4?5s=Y=APIDc+hVNU{OG}*T z6@Li~$QH`jaP1fHjbKaa1Dx1f1RodhLjIBZ`LCkxzCvI*gj!l{|AI9~w;1mT!hFGM z55is|OP$GuvUbfRt0rXFqiK%~5go0Z^Q^d`d*;6Beb4 zRsdmov3zrSPSo-R`~zy;wWt7v^fr0l@9uYxqzZi<{qNAEiev4zlo1bU%Z=0StXp)T zxXt*tSQr9fSmjdC5*5TR4415ee7+WLKvPKeOYcTP*SuN-29i}qJ`ZOi1J>@RFNZa`Zd*iFnM04;zr4b2Zn2mNumu2$FZ!(cV81NF>HKPx2 zc0q|TnHU4wXu)RRl8-gAOSM_HvFw$&483i zgj6IQ9uF8Xc#`d{s{_Ltwh!I_xG21?q-3g=ZV)$&LpZZVf*VXiaOT4a?k4pu@+36y)r0ToDj zrX`jcH?6~?yL9Ye5W_N zfQ+h*bBpsDTp_IgwV{s1iQaWHPMxJg>)f)XH<@;1IaU)^fsftYb}0aUhl!J-I*}DCR&F9;ShnD zm)99yGVV=Rt=CV`*w8V@N5wxz;NFTCMnVnh*muD#u?6Ncz|}=&0-LC^@6g_b7^gDf z{Uf_r`PG=BGe=_|p8*dM7#Vr<^Spo={_{x}SoEUColI6Xl=_~A8OEbMgRZ+ literal 0 HcmV?d00001 diff --git a/convolutions_files/figure-html/cell-58-output-1.png b/convolutions_files/figure-html/cell-58-output-1.png new file mode 100644 index 0000000000000000000000000000000000000000..aaf65ff795c1898e41a2d521cfe9747229b55370 GIT binary patch literal 22603 zcma&O1ys~+yEjUxsFZ-f&^ol_h;*rdG)PGI&?$p-t4M=1NGT!G-KoIPA>BP7UD9># zd7k~Qy}$jPb=Gk$MF-YD?zpaB-3Gr_lE%MJc^?A<17B7~QWXOO3kCjuarX}Rv(J4) z1bn&W^io#+F8Jkj*E9(H``%j_Z6^#2Tw?TZ%%NGIOYotI**dJNGd-qm|i|fC?&*^}$;Cf(APJw~(2t!u#g}PhH z)~u^n+|k+1{&-xY>s=mP;#YpR?&`kX#pG0fSgKQMoljO+S#>?5Q~0A$hxCNy2TO=2 z;q!n8uO@gtK8I+V?yekOEK{F{TYbJ2?Ue2)N*8(fW9B5#X)Y(R73E!YaUKM_lO3xn z$C@4M+)zO9_20kd3}@(pPr%2aRw_mRe%4;WqKW=7)ov4=Shjz@X$GUq#}<%NPzaM% zP^b|4q$=k;)g8wc8V)PfSbNKG)vF;_o0oajdz_dd0)s_uZQ16-S+do0f;&0$c?7=r zn6qW;jsEsAx48)U=LuBF{{P-LkQ4pAK~f920`0|a zDz+Z32s1RQh2wc0Y;_Q?^C-fNFs&cbx_TAoRbTu09BGbm>D_pb@Gs-j&PW3y%)jAx z8TdxhH4JT8vSTHlRYR_?Cz)QgNk0{Wg-pEm&8KJ0)>F_{#6HXBeW)>_rZfB8N)cOA zS>e|}2P~X1qE0pK{xd3gRh3XYHuZe})U%7)vCW~a8xcH9EKcGmaV*jn@o?Bc#YqPA zDeiQf>(cUa*T*s;juVw6Wwq1`+r7tIBWJVp(kg+*z&=`ek~GxCgRc>YvFr znlF-$8RqMFbZQr5~$n7IpuN;)jzj)#j5uI_*xK8DlD&EULO{I@noW`Ir?A< zd85tGn91Mx3!5goOGV24?(4Z#Ex`v<{*|cbL5;-?Tn{1&JC(6i{Tw7s^I@y`Rm!Ge zNw~eYJ9~RY6ew~Da&l_}q?;#x&9v8M9T6=1=Sm1VSt@5p*lK>=piE{hw#%xh^Y=zo zZV77j9RGU4w_CjOVbs&zNm~rVn;ttUg|esXgU4GvIlODJIgKWc>{u$fuzTj)vpMBH z4uaylEQ^!7u5ZW06ZTrpB$A?kcWk(Ur9H~ed$@dT(lo8tcA|?rsjq|k{Bt`02aivP z<2?h0j$6ZAPlD2nF(q$b5Rq<4e@S053M|gpHRT9 z{VSmdWN*o;=A1^QD8J~`93R>GOz5=5Et8y1PfA>`Z6;$FI$(J<2IJxyy)8Dp-sh`^ zRFP_wnOLxfR+E-nI%6KjuaRu*w&qGK)mW+Q10A7J`%z(Gkt+>< z=VlI$DeZl1@GJ5A^n_kDbG+#uuBd?cOsV|3$j3cJEc-m!{Brl;(EQ~Mq$nw|?N1iV zog=)~X<2I`@btQvbVRZ+q-{B!JkHeIO7NAI(C5+qy2|65(fqmDt?NksgVr%9ZK6;t z82g!%CW>bI7%1b-bK5M8n;rApMBc@zvUAGby z^mOB5`Wxvo<*?OGT_jkOZ`kP~HI32S&gYF%GkQ6_&IUaYUNB#HcI(pNl!P=cKh$9e^*yy)MSDPcH+l1rkHpWhqt?bS1GFeWisM?!LtB@*tmxmKN9WQNex8J6}K=e5Vj~Dn zYVH{K?L4JTkKY-5PyL9K-LJl%;#Wae*X3riU2jkK+K18GGw%@hd6*f5Y+wCQ?H1MN zE+gDE-Cd0u;CJ%Sneok$0X0zBTaAZ{bFyoA-aaQcJAh)D`1DE^JIHZA-KOx}Lktve z_~q4MpDB|h;`;6;GO#`1_TIu->*+>hOqW8~%1>o}N2EA;IeT?mnSvbaI5Sj)+nHtb zNKxc+(ma2eB|Bn>P&ZWID!Bb}Ih2Dsow8@VJaR4Va7eG|5e`Rp+$@QqLw3P;|BLT< z&LQDG(QpYj6hGYUEKh+lS-0lh&Qp6|{=kDTH#A$tv8pst#N^$)9gO>Pd7`#lwhqu@ z)o$%L4gR-1y7@_G2r>hMUz?hdi?tM)GaIzeIJ!v#NS(nzSm>CGfBI`LtTd;?j32Vx zqZ_g2+Htbh_~v%X@d}|=bN1kdmK-a&^X&fBy}kX_`T6Y1wn${>o$9 z%im+vPPbNN6_mm&g)|aC3*G+}t@q`NZq4<_YYk~D&9CYFt|@{+g!YLtZeO`H8_V7c z&l^hHNtBQNj#cGkdNL8ohHNiqvEZtg%PWk?j6EkMbq??KvA}QkbYg6z$2vVFj7jvi z&KvHh5ZBO&^{n|YihpV0F1D6^;&NW>_vr|Kt#zKR1I%u(ZrVVtGMCx%+?|6bIWqI&_szUr z!pP5jC*xPl@0!M&$X`q$?`}u0c5_94Sbne{`#Vi87d}qU?kE5BVt=Pwbc-XuQYb<- zj}(r_#o2|*So6uKZQnaCaO@Scd(X1c%&ymAhdX919IBevS|lu%v`W_6fI8EVR*{>0Gs^F{-0((ZuZu~Edg6n! zy--AN8%sW1FpLaEYy104qxuN1lzj z(;yO@FVj7kx`#n8aC*89(I#lIq{dzju)zq~I#;FLkXrx#pt4wu? z)Y8wQqVqiF8qC?pY3Aoykvzg*z;jw}r#&4bSLgP&ZP2|8^*vY+5UX*-dVDRW;A<>M zSHM{!6s^jsD48L-;!TuG7Nrk;dd0m7m0aN^VyzJ05$vs7mTC*?#Ga*WAc;`kevuyZ z{5q3^T~2#7JpHg{BaZa%eZm#=3iyZ#(~vGhkIaU6&%wRFN9K6}^{y_Jn4&MW-z__a zDFiLVSC8+ljO!lVd7T|G$MYQf0gfJl2piODyTB9cE*7yrtObwgOmXuzbP4y8L~Ab9 zU$|#lzQ**Oc)UFqQ?XVD{S%Z72gfHI@ySm8P`t=V^Hx&3`qUTAcb#ey6E$S8^e z#SdZN;qVK~t1x0X`_~6A_p6OkJ%KVVWuL}y@#gAyrfu>!d1{gjkeUZIJrFgsFzx$Z zcY7@@&T3mSk%^RW1=>C0x6aAD)mVmDO4ZF*jF}gU+l;-2-!yyT5V3Vgb02YEQZDw% zuHOB7y^T*}9{AGb!?l${5rh?BXWic#D^a!xPkPqugvSXb zN#*v--u@B})77Qv!JMjBC3s|a?f%Et_i?mep-l6x4A&EAxg>+GWLaoPh*0`DOIyJ0 zw@WQrVp{sookD%ezpK0E7uc-iX_lS7oAtT&7&F=teFFsbIK)B22==^D*S zm;BQj7etxv%=p-w3YHV@dU+eI+RaC5ul`mEg-G;55?Y26!Wk@-DTWQTUdg^`9F2-a z-2M-S61H)`vi7%Yff|XG;5?V?zx^^C=HO~L0(b3R5O{ytaKsrtqjuUK*i$)e9@I3#37H=pqJCwwqwS~%VJVeHqD42}Mfk==f z@isN3ryF_I^B`3;cHJ9oA}3&tDr%cP%vHiE zwqFRpbBPCQ-E_D~4j@QJgHIMdX3zKpzl;~tN*J4oCiGruyWXg8jL%}+!U~wsQT;DG z0v)Oo_j*`Dplj39+JZtR;$t8a<>0;75`?yPoTErcj?J7HC*!BiNAov6$vfypNV~S`&!l(*+OcJDhb3E)@MV|jU7yGhbRT;}D zr>AbWI$WUy#xw`v8SwE6hB0N0*13kk8pB~PkcoKkUh?LH6io{F^=i;%DhdDh)zi`F{Ua8{j@3VfMDTsyg>a6 z9S;_0y~=Z6yJBfJqTu>;m4Tq>T-4uqds^K6dO)idWJw zVD(LG)+zqXiu%cvgIof5TJzr?l%O&`(d%H?V?Nw;Kds*6Av`9tFk&T|S~WIQhWqW~ z&T+pDM?D-|Ctu>9W+)LMB}?qj$%H50(Y zK+RAk1C(a51{3C0yXfabz%q*2$MH#bPN(%CH5)usfAEKQ@UNMuA8e@H=jAYS8_=Pj zdunzMZ>{;*&6->gIO0k%?7#gVwN=DbB8ZER+Q@DG?YZPF9h&yszLd|Mip=;6sav8V z$0#y1Kx9Yg=uqD_tF)cbG|tsh+HG?GXRs%y$jXI3#fA!_XV*H?e^jD7%O_ z>~Az$x&$99HrT{zWp3TU^z@IEYRhRP=SBANB27Uxg~Q>IkDE593=O3Fcb?kmuYVO! z`_gR&Ki}_l6?Su)S93&&lj#xSTT7aLC>OwW&$FB6LBaZ*u z-6M*M)#w=V$KNiPH4=Btat?$%_dzvCU)ak(_J(4~t`i|v+V7WyOL=;n%X~V%w?=rV zS#Ga9&E+1ey0i0fLv>`R%mJx3sSQ|m2!%nyXUQLB5~!8;?K;rv0VM4srgzv=jID5iuKb;_@k$t33L?! zQn@!za`V>si;G(3JCYNMDHYwm7LP{FgtUer;0n1g^E?>S1cbyPEXhK=sSQFhWSt5_ z&e(?qmx09nkqgH~&1;64>Kc>s zH&=dIC8LS@9?QIUObqB`nVT*V$GKDSL+9|mUJp290O?VK08dO))C&!1gz$Ol2dWDn z`NzvKnV{Q&HZ7kVOWY&6mc0)a&GmJXiyU|hB?v^`@eMZB@rI=&YBCHqb9ODHu_M&E zJpA-sb-#UvRBduMTM<)r%@-0Jk5!h=B0jht7EcHB-mmD?hDPZ8hJYL^PGXAn#pR`s z{I_=5*s?Jo?y&2$>|5V4~wGh=8` z=xpU7S<#b)qjXnvlN?n9Y5_$mq&*VIv4jUJ{L`l{PLEyFg+Ib%b>sy?$WZo{T~#Kp z{)Rq!_B`<1H78kFX>sL+XwA)X`1xp+s=e)!AEXKZ=904h4Hh})`eJ_C1;csU;3!&$o? zl{?3Hs9kabdbZ+NX|ZWrXXf*AUt!2~yp~_v3 zEkuti3|Zo416w|qUS2Nrt%!KWm`R9Uwo5~)UQIsfqmHqv`sk54jvp^AubD!ROzjQ( zz}giMED(q%9XT5-eEF8B)mI1dHY_aps2a?vI+Fn50a^u*=DXJwMjYjU7-$h3@6v2Nm96=09&^jHJ ziSxtAQNS{pxw?!%@7=kw%>3s?Bqf1(+gCP2yv?R*{}a-hPPS4~To94-J(A(+#K49O ztunZbaoFP840_}?@6v~+3jDx9w;Q0+vFoTA{WGo<$<$H+R=P9t0z9>m*mwY^HMAFL zp|Kz^QGb~=>i7`6Q8jo+SFVdI#T{5O&5YMI08c6okH2!D@kRj(v`@ z8XYPw;BLVZS1Tl7P23loGZ5kRz6Gk{jDSNW5T-Q$;tgW7VJ2V?gvjU!Z>C|q_mecj z}zWI9>e}Rr1f81d_ zH3%&Jr5qZ@zXXJj#N;eOg+dJ${n1e4yEm!G_i89xATc&!?lX|`0m!f|P`pnuv1txo)g=aT1Kq)_HhW65NG}@p z2@Dh*z|WgH+gn60rlfZiz`J1snrl|e7`987dDFgWszmv)!y!_BsWRPl|Lpt<3`Ab0 zs=qnBcTA%L;dfjVi!GDvOFOj#jl#2)Iy)}9YZc(w^?R%M2Rz|8j*a}8xD9`L!E}dR z4&jIxf*G(Es)>f?=nuT%Q_4G8_Tumdtrwr1F6spz#*Tu@n;UT#vwNDF4d>;w_J!cv zz@U#Iofx*7T{mlN!bJD5=P-77krm!M5;o?+GF3sQeB7*zpR{A5fvPn14czi{a&G>IRISs&;r>!?&#OTbpa*CSkIa}jGh|0(-M?$& z#E$pF)?!=nIY$Y;)~#Ng;|haEP=C;ofzI0+=&1tl)q^X1hcWT+jS0GvZqZRGCydzX(k3;zQMkaK%8n}-*aG0_|x-j+JXI{LE?LuuQBw-8%yicgSdrY(FLiX z+K%tHFjGx>d=2Ty$tI!NaB!w}h7hoI3&RZLC0B@uSWCre<6J1SrA)sEL5R-mPI6og zz+@IQs3Mux-ykgboh9iwA-@B2nr6QbQ^l(BAl0#P{VyaLv?Q6Z)JiJTFW(3KC6BTs z+9!+R@z-v_K6Ywqsh=pyGPDYF3@r`@gi{4j7Xv$KHO>W~AfauLawcXT!BN3xe^tJS z2GzOW`#R-*xf4a*csTvv`bJ5Kf^S{F6xOs8=^Ohc*KJKnk^Ioi`Qa$$i6V_$^N&a9 zirsBP38rbJxEAy7t^1{wS$Ym(laHV=l37Q4S1K(+wuKyo*a=i{0&hO$mSYMZ%GXTL zH^&_efsLW|+{kP9dZ;qc_|~e58{&n@ip;dq-`WfJF$U7QKMZ_`N~JF5B}s&bO~S)i zF;+1&E42@~_qe{+T&UK6LLE0DCHU!B*T|N3TgAC(UVu{L>QkcBk;j^2<{+PB9d?fo z*+vClos8syAwO2=oJ7FBSHqY(Au+~bXBnflbYUs97Lw_7yhv@-uS7V%`x;8*8InMT#3l&KlU+RGH(U!rT@ zqo_BdFPz<}fw_`OQ9SBmC-}f*m-pn(HU8x{`o`d*x6C)C+{h9yi+g|$Ig8bXo&hZv zjDNc*oxPE!Y$du-r#@qXMHk}a324n40iJQ)Q74M(JwxDH5Nvm~CwYT;5$Xi4ng!CP zQlILMI>q$KB|nBuI85ACUXC27B43vB?trI$0UmHUVFIZ-3oIg;pB6seXMGktT; zgG&r@SE_arJp9d#U;Y^R(l!|-8dNwvj(E~7EMm~(!wv*Lr91uP|A-;eijq!}E9>^1 zTYm}c3}6};UHYm(^P?5=h2$Uhyi>>kqH&|)EuT4qsb3i>{U6fp8LEGLLGJ~k6$@wT z(R*SMZbWc}${=dW;v?Nh*wb!>_qN%6X%ac0=~#CFtnc>OdGhG%=v2T2(ynnt@ptOf z!HlZM$MYD-m3ZGr66UR%Q1I|e-oG|z-sLx3d%P#+qZh2(FX9eUbO%&>(`D~<05 z7Ihj+xiceeDB!)@$V8TlWf!N!T1R9eNf-=G%>`lr$(}S+$+=pwfAp*+ftj=GQFFzo z3-LKibQ8rfW0D*iG0`fo@7-YOZl!?NEH_pH?RbBMk>d2iO_xTN<~EJadIo{FnUGE> zqMDnDHDr_N||9wL;SRGwWqcG)WX%cwIl)tq;b(;OIDH)~hl1^RzNuXG_{P zewA9$^H2nNCA2tp@42C>=O4oKdZ6Avk?;s`?C`WMnYs9V$0cD5t)U;WJ>B+3O@ayu@V>kn+r>v?rPad)0_T7%|*krvI9AH_jM)oL=Z?wLgF6e z0+<%)ahYFeEBd-U6W|AZ;n^S!XU^|sMN#3NY>>=CHv8RQQQiV}GSoMxCb+uCnrM3C z3`x4D0+9b}Eo}?uhbYYWwRk|E^f>9L2JT^df|qoD4CbLX@A9cmSU>a0E$A-^ayZ_*+c#w7a$UmYDhAlb$;d|g@-~udwr8oAGT+x67W_nyf&v(Ym{iS>>I816 z*brEFn1D~Y|9Nj*!1ZGx*P&V$%_AbdHMZ^_?we#+mHeXG6Zkkr@ zye#lCS5#tB)76@d2Gf}JEjNI-zNb@RB!4Asb;oJ=57EZJmh0H-@ri$sI~6?%RNL@% zk$8HZZtUo@y*1bIXiD;5fGC2>R~HPfV0tx&*r3$?%cM;BkoHdx7-9=)6<((%fE>W) zqRL#Nx3c9c;9{v33PDJ?`qualZQKFoqknT`^{Asd|L=^M0P3k{mazt`Co(arCV=0F zaBW`8Y1W=yEHRl3rt8fhGb@fEA!`ZMg zK>%U`%CWDF!9cGrW_Z}+DJ$dH zhD^602S$VciN8*0x!XsTdr^ROKlic12lxjp3QlnE+g_!M7-&xrY)kMAID_CB3rZa1 zzQt%hYyl8)rJf@It=2T1E}Q;iqhzHF0I~uZwsd}=49k0CSWAZ5(AwfEUfz+S0_(pE z_Ux7HqSIu{e#J`CTcvXMk z2|QZKdf^B(+J4lN1vMgV0%}X|Ul6Bs#^9Nh>V(fkbO31zF`>QW3l6Cnr=16l57vzT z%GKhs6#SqECHeQ1a?w-`aJNA$0u^yGrlK(ncn(UB_SQM3<8!(E4h%Ml+Ik=?+X}vx zHA{8D&+VUfDnVEBw$l~MBIE1>@N4g$#XzZrv-HN5}^nL zX95-lGBGp^#-k%zR3VfoOcnPa81}hbm!C*Ab$H0+6tos#AN-MO-5;tVjm(s)#np=X zr(6MDq97t8WpGez@$xzg)2qasE4_FgU`&(<0<%$X(}-f9DCiH<%e=$uaxZdmd#=U) zavTs<>D&Hd^fj@Ch#f6hb8dc#k)`#^SYrW;|0`-E>MeUOX>qlfkw`eiNh>5BjjVtq-g7H0j zD%16@o)|iCtt!apG*m?a=@qmt1OY!*qhFw3f{v)c*23=YAB$s>=MO&L4Z}1K>U7Xa zO(!h4li}ZtwHp$oOE@lG5&T*{6flGcbm(EaUhvfIUZkFY9*&S(2>}R^Epb3KLxXO9 zHv|RU!Y0RZrGV#!!Q}l3{VBHD)9>}dkXtb1Lky=9MWPmnnnl>8NthMpElZ?EO1)is z9aD1{S?1NsMkiQF%kgTeXQta?Vg~i&U?xnEiCL{85dwc}V$vtqup%kp)?qOBiTgMC z+XFH8!*1>HAx9|TbJ$~(>C<-MVUb_Uih==!1{H>LVKn`qb4nY?VFce?CBFh_5+I}= zO9lVp-w_Twl0Fmqp9;7B(AFA3y^`b@mh;4QwA*ip+QeLFNGCf{7g^L+Mn*>G~D4X7j_*!#A|sk@*O6=n_3NW}AaOMrgm##6qn6r%P1UkvL)H zjT7Z(o3Pxi&cm8k3%*MP$>VGvMSB&}NT1TAm^()cODbqs%08BK92Y6MGLz|*`rzw! z;UC~AULdRVfebE_zv~nRYxUai9Af2|(I)SM@eW3t5J&l6bn&V=I)4I1C6Ej9-Ht6!P0Agk%AjReY6YLj z{c121ySe(lF43$GeNIUF}u)MbD$gWrtShXS~%VLd{{lZNPkIA%FT+ zn#EVh?h#tT5gAwQ80EA}_GEDB)?{g_5beQB#@*39`o6MN)`h>duum+#V z*wl+5|DXrGk0(Oq5!!Kv$i}s7B62cxp}8fb7F*om(mLqc;$kG7-w|bd+e?xmd$jc3 z*T$dSR9kBi6*~_M7lK5ii!7I$?psrSIbu>CwbGk6CFCNNshV~Wy@7Cq}ZrlUq!C*bS=LyC5@~jHVh4x zl$JC@5BTUS;xD_GfhqT2cBL&HT;TR}XHk^_j(MmI9nm`e%>4%I0UjmE2ofT3qI(ac z#No+!B@J+g@ydeEa_^&DsoD*82d+gr@|@wpnO`)=eJrsZlepCLs}l?t`-Y=Q1GYr# zT+rXg{umY}$zPBBuH37zZ2an_7=ZKJ!S`mf5$8iCP1QeIe`H;Ip8b85%-)+h z5cun~iFtNx8#mPJ-_sL>_NYHa=;t2y)lJnaPhfztI67MC!nA)0l+%FCb%Wux5 zE?^kG3x>ys;m5odRPY(ZNLxs1Hc&3JENXlTvxT^T6(F7t3-T17>U_T?sz5ahzyD#?bN) zLl*(d+l&QM&YwZZ16})}16L&pPdUgdJ;90Kbgx_ zBA;NZ5=0c3dhhKF&U6+WkcoCQmsd1by*@Z@Yno}ygaY4qCTCxKPA3FlfBhEO5iZq< z#@>KKm1F;&L5gTY0;nZ1zd4|(BS57M$)|iL1{x&@CV|#9Y=Y$jj+22BPMPB}c`{$^AqJl~NS87h7zzQX?w6tCvyDj(;=iKoo_M7xIe)lp!%2{RG zS1a)7cLyOtd{-I&Kv4EsgWlwxLo_n5z^q~$na6Ozbg1@V!GR<_kX4l6Nj|ARDxnyC zq3l~9u6Xgp?a$>m$vYQ-e+WLVo=uw@HABS_Q>@6}Onj#2(%86*#>M1R$A^14$%!e% z5-;DCj7F)SP~k{Y!6^#~mU0Q~pcMc(NnCu?O?jow3Y5bEujUW9uZ|ZhD$>yFT&_4) zICrZ7u$s)jMYf}ik{_ixsUxcI`s$R#$CKH?_c7%CBWxdL)yV?7yY%a_vUsL-l$XzG z`aQLY#AWTpOsic;KERN!ashG9D{&*}Kn)lWs&yKo&e^qWNAPn7*N)81sVnizSEDzz z_fOR&cfw^_@KSP+pWMnT?Mq~-II@=^$$C_k$ND0`+LJNd-SJB zSEq(Is=FMRT8^9Vsn1{CL9A&{$$pOj+<`f^vOJb(pXl`L4_)Mjhv-XeH=~W$z|uS1 zIuQoNuuhq?N^vYUV8|m7@WZ2dhv#u?Zl}Y2Xfq=+bm-pxxV^Ensm_sLQb^q^zU^Wo zh3KlHA3IL{dvhttbIHCw<>8>qqcMI5)r8C6hJT<&iBKZ*{>i?%Tl!m#jW|SP8OSv` zuur#-lEeTp+YS^^C}1Q{*$xRz@WOukAV&Lk(xYFQme7^Y_kU~3o!k(}+nf!uV;=Yy zB2+w$Wu^oO_53{`5JzjhB(dXs2RXNGCSVf?gc}2F(<3y8V6PS8bc$U*vg8 z-8$R<6VN(|_!`aJv@zJf*&P6ZM-vEJ4|OfdZk1?@}UR$cloSc7_b0zSj~QYkm====FT-p@kN3Z zZOwigCf+WUF?cr<@NQ7x+7-;IeZN}i{&wwg`~W>CU~2LKwJO`q7V&{RqYvhevfH3sa|x?DgnHB;#1+j-}U>_{AC8X1umdX zvd^AXmLSGoq*~;$lPqlZktCSD));P?7t_iyEN2@Hh=#umx_e-T;siFLtWzkcNj7`L zi=|fUZtlS#GVsqO3fNdOt4fm`yQb8g6fg>EjYXqCsRuOK%WIeL=v~9*#Opy$)98WUvK@uIXGl#8FTpR?;XgNz<>Ha}uuFP30d!S}^F| zK49{y%?~KHIzV$mE1ZGvs+F@NCKKCOzUbiDxFl!;NoVMrzA)j~v%QsU3P3c0hE_`< z4Z5VB6YKN=#L_p7-ALsGxnrQ%#{m*-BPv1N zR*G`Ls4vUWZtzLYrpb3Lz_F^W0FWtY!sV?-5o#Lam#pUM~>N_qSU-;fjkyM%&7G)`ka8ZcrC(%)$!Zq_SVnKlFA@WpYC$7(>d9AV9^_&%=xzS zD}+Ke`~(f{jDaT(cvwnJ2?lzptp3Po_}Bii+$G7~p5p%64LO{bcY+e*dfmI6hVV3p zmJ2BWj|YegNrU1@v@P37x=alEBz2@$m39Zi6X#eY!{pB6?jbU=oNCZB25vt8(-z}F zcuAnUPcV;V{=dV3E@Sp3={ByZL6RnHo#M}sA`|%9H0Gdc9w~At42}U}2(SScrIKk0 z7k^{rmoJ}~^67K!hk}E(ub~GiLDVJ6?dLL*=M_TfEYS3j&KE?JTu|lEpvdL9;KOxN zS{X0(2R%;H+YRbU88vxnlgImkuBoDJ;5o1bvRL^455LEce@gpWh+9|kJV?f2L1WmuL-~BthADDL` zh+tR(5tu5%wX>EZ5D0`mm6goXDfFa0y{q-FijFNn2f@F51wIvBqB-WQ8&npS16Aie zIDY`D*(fW?owm2F_paQ9J^ATYw?OINFiA~GjJxG!942TKmWw^Nl)%5njJXSeZ-l`v z{09Ut`z~nVwuonDyy3PSBTWd4zeB)zug(r?P8CgjAv*0c|728@S|fJ41ER!>yhR0H z3WptTbtFLGFLerekcrdbFqPwuZBUlNVZ{{iwrlFgg|uf89(4NIbxpxQWvpYq_X{#z1cKn7=N2*9=X1eb zvOrRKe!x&Fau9>Ikvo;|!+h)pNZ0GGblA0@x_iQ&JO+ZT98Dz%?TC1&2-%#(9-a*F z0mariwO^svgX}IwhQE>R38D9$M^J-_9c&#-adK=)tVnR`tB4y}l^=8$_)T3?+H(1e zCfzUpY4bFmJsYRvW)vTBtZZ@->>S-309?T`W1vT?M5u#)$W%-|6T`tlr0~Bs!;hlh zNx|CdE&0b}?H;!L?h!;$kVp6b;E33TV&$mBW zJ@69Ku8-7JmN!#>Phj*qB1fwBHpmW_qMkFxsLfo+eLkS}6|{K(WO+2OKBgYIMre+A z1#7eUu}LxLNqUvejx>)$)NI38@3>%%gH07AiNSM*D(a)Pu`Sz9%P^bLw68@Uow@n_ z3Z#^Jc9~9qEOhW1jGfWGhHmi+130^pymzv{y1q_tX$AW?8BiY>q10Q4{{y=UQ);5< zefs>ygKgWss&yUQ2olnQYe%tP(l?J(Ho*=*&Om{!lFO$QOpl7lk? z>L-vZKU7vgK5RM{6_wIqQ z-L(M=JX3{e^aBH`VMKMT@fxU-S?V+aKW2u}kqt?&Th-0=8V*Kk8+Qr9+pnxVOWS2d z1^^&*|1+$ZBE%43!_0^_1~|HD?DqL|#m^kEE7J99nE}v9OA;dnUy6L47(q%0jR35U zLhol7sy`Cn8FWWQsO!BM2*1&m+68W5z1CV3+Zq6nA2=p8+CCc?w|%mn|AH_C2TIPy zv*{-^wAu~HiiQPy<*q`4ui#qox-XqVuTunGsyX5MCRTs>z>6>9*)H=7+nKf&K>&c* zYcMH56HZFW)9i}75C%zQ5Hm3YM=%G|}!afiT=cmcGkc?Z@N5R&w2IJ$8` z2?C|v9UKG!g3sw}@_$liN*3T8A26X*=d;A=X1_IjkJ_B;WSW={{5QyWEn1Kgd9Azt zNYJyJCD(o->nBjgRk{~dmtUeu2>?p_)r4c4;puXfjx&A`;Gt+Gxejiy*yn&#GJ(|^ zY9L5Zo)F2v$=(9oq)Pcv1P%cCkAacA&*~AAbD&^>x81JDoU;dx+B6)%{~6~e=!^A7$R`Q zXWNK5#A45jfui$@QL@Y}|2WPy`$Tis7(j2Jtha!3XP~W(6c1(0U>?VfmpK~VW+oiU zW$P}Vw7=|qlr4Ri|I#9E=QLNHEk+GKSyBA{*Zs!Fb!-JQ&Y#7b>m$$>p>zKO04ba$ z!IEhK!DNiLWxytp3IZuny`ctv-`O!PF}kJ;W1M`uJ2;FW7e_~VUHip4<~ zX^mbFn}m#B)M8v!k6?=FR;L3<3cS)b^n3?^vnC?0?JO>I1&gi@MZnrZ+i=?UGR54$ zThnTIqgx*#^~Rf|*_$Kz{5zS!7r`%`0Qu9ijy~3jbu9;{bK-Z|7kj^n7Di;ms!_x| zY@g?X^bgcB&SaBl$NuV(PXt-aq3!mHia!Ibzb&op7f%i~N()OuKtyaL)VMp_Qf02M zY0Axy4BNs|rD)`)=B>Kn_1htgx&FC6C-D`uuh>JAPAL!Y_~uExE=@ZM0!JfBaF#6S zA_vb5k*6fARwNaAV1GP$e$^&@8XDZ56Gy2F)~X6wH5dgdwt)rHKZL`=}=oJe`P*Lz^G;%k&n>R zs!r{meM#{ZGYFgW|1uKlG}fH_sQli{eyPIsYFx(v6j)a?RtU?N&SAA5BGvrkxp`w+ zU;I@Zx^g|uAqb|oP_B)5we=O`tY*%Y2r^0N!KS%mVBkTdP|E~zEB|-A>;HiGLhptk zhheZ)s+M)}LNV>?NP|Vptdnr`2|Xn)XlLYj5v>F`#>QjVpYgQ-_;PaEOAjwjXB_y* zbyC{S?4~q-Ru)?T>*h0gQ7=Qw_%!$l8s7hRlrPNytt>k}{PWaRt-z0zw&Y95?R-99*aWoLZG3l8bj9H7|W zUwOG*eJPc^wf;u}HT6%9-OhoL>pyru)3TfIzoY9kp5({Uf}U3PFg@;!VhKY{R!#mI zO$gXjvcOx^Y^-~qcMec8E9y1$SJ#Int-8j2l^Tb9tRv-4``Of7`?1{z|Czg+tLHsUR*i|3#t!%LT^~B328&)u69wxo45@}<9vGkR-docql!={x|5Y8 zE@MVe^G?GZ1^#jkb3V!%>O?x@qcuOz-h%ujXUv`3t273d=6${Fx49op_Nw->e_z%0 z-5&NL#^aa$Hk;^khB2pG9awLuBO89-$qE`xLIQF1xU*Y0op}Pz>F0f- z8_@mv<N&0v*BZcFEUZvs?$Rm(*bDrl`YWb?Gjgi zi53>4h@0I~e7c*{kukwJt=brvHcgjh4Dmbas2bPVPJ_$ok33ox=Hw?=?!1+CS2fRw z61?(BE_(8`nsT}Su=wZyC_*7EoH{2}J9mpIf1P4}vDTtY&$7INuIW9VyIfw}4&CS6 z5xJbfJh_OJ5x3C8mJ(qU>ztPN`Tf|(rPSWw5h8EqSruU%Z{_9jtO(v|U+hl?YYlp< z6=Z7Ki+uB7cD=@OSvt}paG&pMh|{;jK0f?r+zI$&+Ll%+Ce{+v+;^hHtUcPhM8gn7KV zd2zCKQj#5Sd9Ji}acxo`U%9BchNZc~7wz#9=OVsx=j(wfOLKTeIq80}yDD^fV5?2I zwm!GOit_M?JXQnImx3zj;#v*Pwa9&xz$77c#(J=kBP^h$(n=_Od|xO;CT6cyrSY_H zy{C5A4y~FH-k}>$;^IF9+A|LC7PLILknEVxrrgS-eHFLbr5nrD-ZRP_S@Xw zSrQ?e82Q>ol_Zbj`aLV-)5-WQu8`aZaLS`Uc9O0v_iL>9^`0%~wZ__4`e4cMkOQ@^ zW#8kO=jU4nX}1OH6YNbN5p$@O)$?2!ek%1Df59|hfIR+n@RgqTzWLbw#9JZ@DQwRD z9GKTQr!PK^dSdSitQ`xiJ@HHM8(g|dXnD6bgILo`b>f^COqd^>9!v}qvLzc z@Ela39GSW_Vd~d;Wvor=TjzLd?PwDM=JbcEiqCy8_CNcV?)w~U`y^U@;fu1Q6#q(c z=m2@~LY7fetTt>^IOKiA2;?ueb*hv5W4nBTvI#L;PVTARx_n<})1A7^WO{r9(qkBGzV* z5EV&Elq_LT_OXoYJfb`%L<|!iODIdoGRRD}A!8)68|#?thLDVz->u*K{yy(N@B4YL zKkm`#$G#cDeE->)FL{V3vICR;aDMZro+Wm7X^8bco%1_C~i` zkJ%Pxdgvot>uu({P&8IGN)fzIh)=U6)qlD+7;v4DHP9B*@j2lj{;r(D{tex z)ZSP+ZsMI@zWLIh070Em&Nt)Z_Y&{=%R69xx^57)7JcXTZOue+g&UQ+C%ed1mq&TH z@ka(B0%Q~gtW7`9P}(@*gCMBUQUbN>ZHn`_Y#VQNNxcY$O zo;?Mx)^v*6-&2}~P2^Dm%^O>X9rk&Rtx>Obc93}Ak2o*1F5nY~b;+;^neuXQZ1pyp zMKOpJfCFY?U(_Ck&l;^9k*LTq<8A7&hJcytfSzwrUO7@osF4skp4^4Xs8Nc{O z*fo$B(XAkRNe#N%q>_L~kddS)Kc%ox-iZ4}zVllb1>HE858EB`LQ!a$BVtemL7TNA z{ln{W?}feHKBviayH0^ugNfQx&?$r@Jbd zeG)`Dw4=7gFI=5*zu@%JHdVH=)EMM_B~ChVvAzGgCe(NER`d9=g(pVI!$WvaekJLz zY3X-8==!*Em8F+upp5n5hoa@wc5~8>6LqU~;Y&mCmrBEjnCBZ$d?*Z}B%bNHZ-=y1 zO|l46Kb&WxYjX9*+&|qsDs)imu+8mHaxat}S5tZtk)r(W_q?RW;tamkknNk*zn>-D zws_E8LA^&x9qINF5*=4d8B^|*RlPLi@XRnTkEwO%_Rz)@dv0TfG?t-Jt~`YKF7AK& zNJ$ZcTbn_da1zf-qx>D41ErM+2MpNG+#rxOY`-94g1c*P-m^L8kBj%K71{VmN?#uU zWz_>V+!Qb*_H=8&2b}C=VZjo7v~)t+bF^3Ph2lJ3xX!N?{}I2YQv`xsH@tC^q|vk6 z8Zg52`s|>wsz6I2y;}d?Xzx>e%~Jjvvwo@N0$=xA^v1s6C1coSU%=V{z+bvXm;~QZ z+$=|A*_)j(%u1ch&41RWYsU9P*!0UCE^PaRXHxvjRZHA8vgG(j$g#LU+KcNNsGfBxfAh!UZrP*S zBz|e{*}fn`?$4X*n%QGnIkp2YtTIDv=js>w{X}X4Fky0Owi*TeBOgam)8g2I#jIwN z{1j>fj2*Uhvs|1S1Dfol4bl;Ejjkc#@M(e9kJ2-O*g<=nfPFKE*yT=x1OfijF(_aQ z*$S<0E%ejzkZT9l1m%fksc4lvDFb@78gwK>G&i>l#iKFUIWlu=N2cQg*dWPQ{< z({r!m@ILfltayUFkNfK;$7|P^IgZvhGgm8uFYH#GeCz7>8WoyU_kzUQmdo){$P0R+ zfP4@lIteL;n#sz4#yys(7It=ZZN%YlxlZvWe=EEzoyHbs?arq3h@{6$6)$zm8 z)ar>t`%`S#46a*fE*)eTw#_IhE_Z2hN`Rq@p8^_PM?Sh1!)jg})u!4tX2ICwZGZ=; zU1v6p;jhX_nMib=NV7bo#em-j4l0`*Doj(?-I*56wrPk3M$p;i19CB5%Jjr&Vy$An zPO6y^{={`^_EDuAd}`DK%i!rZD2W0ss*QjAUBt+z9QbI*Y7F?t;+K@Mjx8GCk-EJq zcxZb%_4$T(u8^JK4MP_*MgF@h52;m(fcx;q<`&oS*VwKdo&eVBxOcll^nir`@_5Iy@9Wh+0#m$e{XG#3eyQ&Wp>rNI=9H?bVh zJ(qm7wL#V0T61vz_~tcAplI1hd)~K3w~-6U7GeD`LWJ>^?FId{A663P3Q_f;CU^aU zq?{=T&B}^`lu3K_0xC3TU|_H^Jcu`eaA7JZc+a}BFey{pxNcjqem45TnVfHlQjqA^ zG@}C5g!$NPbB;UuXH*VZJ0suWP}bL_`+D4v!XmFuW8fcxQ2-=XC}q3$Egoro=9f_#(%&q-^wy@^)a z2ux3E+&uX%P{d-jcW9DeDd{CK7RSr21AYJaEtMc^@n_n!0^mDoaR~TRXuF=9QK9tl z-j=}!JiwCK!^oNB7@x!GkjNd}y&MylF*t8-uRzMjuu=hS@OfFmPcRbD2Apc!`Mf6< zfE_v8d~5M?!{Gc?-h!G(R{+-1-J6}>VnHODWw#iYsPJ&csKiEsP+yge?1Qlyj@-Ak zm>Gj_Cv%PqERD5Ldvp>4ZZ%-KO}j7)exHOE-TNF4nV6+Oy)M8(9ZM z5-#|E-_hmj1NwwliN=?!q6Ycu&7;9Qo zd(Pi|DB2EkukTcu+%pMjrK9z3`>}3IC7RpWulnbvB;Aykxu!lRXe$ne)IYta1UgV1^g6jO=mI2d08( zS?uN9$*{Q#UE&(&CvT?ja~B_8y;wbu3~Zca?K~wbAH4ZBDKA*E{QnFH1tUgV6(W}+ zWv56)aHf#OZ@p{=-f;O)z%$^1-;vzZe!2LgcFcyKYo}vfpp*BTLTy?glTwR{ve_f=K>K zUJigNK8tUIojh&D^Js#yb)oo-rv^v4ymAxBssi$_=7Wa7 z3q0QvJYA66$D!Bx)n@xLM!q3yfe(g#NS+Z_8Ed18u|8!Z(l9|?}j`MJkDHw8jh7{S(^Rr)X#vJ#gRXE|t; z!zs$lw~C!}Xq)SGlni<;-yJz9faXR^xe4p?H%-@p+~wD$iT(d1k}4~txvC#F$*r-zBDjtiW5D}eZ@GES z3aW|Del|^R+Y|X^ zmVRv6XK7rb3wAdP)XQ8BA+JR^KvZPrcD>hG#Td{A!_{pg-IKdn(jSTFj^NnD1ljM6 zsllCh1*QtEyQCd=ZS=1Whb+%0(KR``W5OX1Y5#=lBsDEo$8<{v?brTVo?WUAC}1xA z;;fRLJorK#n6(-4?uo2zkd9&_m)ce|r!JG!X;VJ23NJAx}a zfKnzOUhBf6G6bvBE7gpK zlBE33AFA1U(M~i)!C<9nZ#uK7WWF>a#}dR;pmSk zwsk0nGN%!^5`i0x`= zxSnQ5gkrWlkzWr}DcH|Ip6n#*JggL3`{AX#%r+zTt|MdIKuwsS^B=|EgX{U%UM#M# zHj$ikvyB~E#X3gi%}-C#_ziYzhB2PR=XOb`pV&`2Jnf zq#D+SH}?|b#>hVRcd-Aw_i%RHdd1vMj`@~-j9ODk_Sa~Nm<&pdDssn&=ryH!Qch|c zK}CO#-~dH(O@U9g+G~jXZ0lv6Q@O~q0iPpG8b}L=^*3*`_4N|(sw{J^J}YDrV^{`FNyh__&FRL9H!IH{S4*l@5wj;@CC`~os`Nm z@W=a^2@L!j&HjU?6C4~m-qQvLc>|v&dk}((9smm#?aZ`+RoY9!idt< z)X~Yp&X$vvot2%L@{_Z(y#O2A|MhcLJ4bUi95VtUI5}&x}dC z3ibPcZ&f%f#7h3>o7|YN_@|#vmgK`%KD~)cnc|{UdwQc(or2Q!-y2J{34aZSJf(1$ z4lCq6bRb6f75E(5)8`6_#GnJ~Z;!V6$-|T;zQPviA*zsZR){D8u6gF&0p#p6tc5?> zScNn2e~y*n0Hvn5=0CAmRa!M#ofc{Ke({65=bi_xlY|r3A#dGjn2Q)^)Bti82fJ5+ zwoyYOPB}N(!eDYx5jqGaWSknJe{@b53|nM?^h!`uL++rP!ibS~hPZPK5MSIvg6I`k zUz*4j9c!;14MZE7D+9d@>*H3wxs8{WfK*9AGw`EFu5HxsTU{9224hdJ^i?x^y%nKF z8^_(f{%0oPx`hmNI44BLN1Qze@Z<<;2(Ui9)y|H)9>?$3SL+{fJxXDuFQWZnLJW{F zl!N-W(1%x#zSelrs8AE%%sYav`l+6kC@<({0(|cWZ#Tb>&^`YY!=Aq?_pKr)mysfO z-fu*fzrjdxqZPtnIivqnPYKr~A>#-_1S=wR4@=9eke}C1Hl%~?szu}e?%Q67t4KVC z>6m`cuhG8+xb%1no-p7xvbH@6cU*LM`M>NS@GlSP6GSDway7s_@hoARS;076TtR9> zC_%1+Z+{t`hUR4|J8t{MRH0HKRSIt8NB}`~exK7v%UY|Hp zKEKz63Y{)-`1b}_Rkn#ABlxmHQc;CwQvKhphF&`aIr@0ZhAbrd!<`s;3%MEjsQcmV z-`#g=tQ=-i*r#E`M|4PZENncAV8agvsKf6dVxG=?e6!xJ$jI6A$0lgmzra5ovF;G@ z5@WUwoylDnuFHQ5@#t}}V*{hXkIcY-{CYI8*RQQ@RD|Z#W`_E1MZ(TAwUC#R_d%q| z8+JDk)P(K+s==`;V8B3ypmHsMD8lUzL#5fw!yMX}y+PoIHX>L}h2E$Gd> znuot@#r$-9?)38H+TW)P<|k4@dLpprKT31=$fa4oT+@_N>56&XDB?@fQ2J~?T+QER z8qJ6eby}0vARcOv?oiexATF;Xm89?}BPfXP$KEp;_TdG+Nasw}WQlpW1%9-be=l?s zt;BjVuqR3UwU9N<$v*r-2C@i`RHusN{F|P8qHCvhbKF8W5qKRqZ)`q)7n+O24)XxP z_k22~?D>VGqud%R$r2q>CB+_cs%jF|y@71A9#spNHvCh0L1SX?YT6 z=pn@wW%rA?eywoD{#>ir5Tn}zTT~&4((F#HHJN>%s#qAinV(T0d%iYQ54OU~WFaPW z{uTA!I%v*p!`Z-#eL8uo!v`nYakadoRb%VLutsvBpFwNo-5!yVkXBI6q~@ER7Hw!7 zx(=oeviC=*h=2Sk@ui_M2VY)(dvkzb1p5@kk>(_`CkY0-$GaZ=NG^CH$a30Nb#Zg9 zw^}SNR7dl$!|Oj|l>Uvpi_ziw)i+^-$Bs{INMg{?iUCSLi}0Ic5jUEizwb+|&&5h} zgk}^oi8zKXHQyqx&zXANk2)F;=?Bg22$fWiL=hT)HjslPh5ls7W9~_6?a*6YfSieH zaPClquh>vj-1)BJtxEdT>2mA_s#vDrM!O*zg*OVe^#^hHqLh3YnWMF?gWrMcm2DX@ zc*fSrXn1SmEz4uTpcZk|0E3b2`}pA$V>Oifh&|Kz6n?YMhuw-zj}sjq!t8M0I8yMq z(^rxWf68nW&d&%DMLc>H9c3(sae_cnv6tV5Li$rc{5}b`7|d;W;N5_b;OnZ$U$qDrA1Ke|*y-Hivn9>c*sPbmQwXCz0vFlm1N zYBlFnUgo%$@vQ)f{!d2HYtws1d3;6q7Od+s_Ix}(q!u;kga3u^Kl8H zC%EFxH;C>S`+{e-CB;RDr%MkM_6Wsh*A68Dn=6@X%6gI958@j5%Xsy?y}jq%*XOP1 zRwBQvPcw_(dyt_p!9-!Ip%;*8q^{y{_F;3rX(EN7(Oahf+GPAKm-zp`)+pmivHtlp zg7U|Y(Fca~+&0!LZLM>J%1H+f7!oVx(ia8C>Un07(aYsh*f1tW#@RX>?W*9c$r>sM zU5s$h+Mhes!iT^AiYABH$L~~SX#Z==|DWA>{tHSMc$(P=Y!95y;7$EMd9(&tUa-M0IwR@&;ZS`Adi3ctvkM0zG^ zEaXuUeMq-pKX1*P85=^$%sOD8DP>j_oTx<0Mak161V;%W38)GYx^!3JLA~C4jT%DK zX_Lq%Km8_7$#Q_pHRyVg;;OQaIW>6M4-FD?K*f+Z^3Lje@WRo;$a#Ee!vRlr4^9LT z9CQ_Pf6)DLyIbXjd#up-m7Vee_;%xnf{%1PO0S zh={LgEQSC4@-E9t=xL zOdWBf5Pg@<_QQ#O5@xHRFa3se3*B$Iw}5=HGs<@U+X2a1J;QVGtzP0_RL!#gq4g(`AVD1;ooBn33ikuO(dg`>aP z#(yqZxqwu#)H9-ds8WxNCTU!f7TZ1VF*h_QM@P!}<=01~K6$5@)T3W!_)VUW$-8&C z&7?2PnkumyvT>eE^3TmnfM*_Qkdy=;HPK^yx5q#IV)e}Q>t)$8zO+NhRVi~deHSQ`?kJ$!rQwTAR~HHzOr%Hw;r95$<%A$WB565M&7 zOvx0iTuXE4j+ZT;4sWB;czCfjFNQ+MBkow(!Fg=sImaTb^?IlF=cg zg}k6l7-!|&m-K>p4--4#mp8j<>d}MskG_Qd-sNGT2y9+fK0;OX8NXzCBV)z!tZ(db~p0s;|l%J{aJ;8HHFwUI>7_r+`)onucS1a7F zIECuUGrTf{M=tSgU>#FTVK;x7)G{2*oakADBZdblw%4ymX|Fn;5Jun&_4_-pP?{`VLJGNByr)9$Up zv+{*MNF|^KFZKNHkr$E|%;UFcjY5|+<~ywOjpA3vPp5joIJprKUBS4gv)@4y9j%y0 znD$$pud;Skz58+g^@*qC)s(81GBb@(vppcY{roKSpgI?``LXaf>;w6U@~Y)`qU&7t zZFTX39h5fo7IJ%pQTSu-o=Mp*zE>|j*ij;RQ8n11Ve@;KI-aW)S|5a_p&VQpu0mExJ5U!fy(t=eAt;pe%d?ep~d+V;@El1QKqZ=G||Bu?*eLCoNGl}te8Sv#LLFk1=eu4B=-jmbYAPRs*v3e zfM#HJSQ>{@xC8isw20ts)NzFF-y6=3dD{Dca(xMnFn!w+Wn=U(Y^}OLzF8@HG+8!7JFU#e@Nj!ko>(~hdQ6ch4cLC)?; z>h!5QL|`Q`TFFFMc^Ta(CTNd;(g($)9yXmarPWFpK?2K<2e-wRDg5SQI(G5u7h1wg zbBBMoO01eX9iX5twjaJ=Q>m*c6G|LRc*P+qn*P$M3TGAE$SLbH-{+i5LM}f-jy^mp z1<#bE4MZs8t#N+MCh&Uofkz+Wj3eL~Q~wG1evbwnYP8++rFsed_*F21 z5;G;1vn1aXF{nh_@Y6$5howK_q*ZNn4T%MtH7Cqziobv-^(Um~hxPM{5-8m(1@U0` zU>Gxd4{3;YbG(HnI1RwU1CE@$VcM)VGqdEKRv zL~@ai+G6SJW0Fy_I^nb>vmJ4D<~8uztzSB1r4pVp8-vgh2#muIqqm(`$4l07}L4UU85`-=`^%* z@=Y&4)w#*F`(GzM3cTgBtjP&XQDKOu5}6$P-HgKX7ZcVT!_N$qs23M)lso~yWUszm zmDBed`PuYpvX~c{1*dUY#dp?~*^l>(k%i#xR{tW=Fn#ML>Xc@s9{=}JM$M8VS4~Xk z*jzJHbr(-_ZI9=WD=SV~_=1cIwEWJI7=3=;ummyei1a08Ar9^dfE+lMu(S~S`*CLK zP#f2^6`Ur7+5V!3wx7)ec7?A^l)I*DNjl1 zA3YiT2t##~LW{Ff^Wl%*Tkh#n49O=hUp*E^>&9p2hS7VqZ+^x~!WUO}Wx7qBWemPz zXJhjj=*=@rj6;K6O=@r!qLy{)C8XvP8RbpZxD?ffd1Z<^yf?+XXj}bu(TQdy?PM=# zZ7o~|UrDTM+r-2`gO7b!vi2z_Q@>?Hs7zmd;EG)IS7fZs{lVOZNdsBS-8izc2rc(r zuB_Pocs~zR-W-ZI;5Y%$ue6-@m5_43ImP^7R?w+i;E$`X?}u=jNqMH@cPeU&w!(Ys zH%v&5TipcZv|OXl05-0np%Q;ONGQjWP7QtLqxT_WXtj{{!GrF-sT-Ny_z0e5C^%2c zhKb-{C?{&G131wS8*EFqr+fM9ZOR1aH>b*5*6VTs{qszMo}5Y?!~Ws3_vMW17!k4G zc6q*VU+H6ggyhxK`PcRXimQ#Op_s%YS!uDB;`!djb4MIp4q^GW``al}J1iXTAh%EE zXxtJ?5X#7I3_*pu$}%ChF`xM`4F+!AS`<%D&Q9#(LK5{kXzS>$Y%1qKkr4rN-)l3% ztDK(Ah0?BNJb=ISb3|E8G;2}y$nT1BJ$ZOYx1hg9T;7{|yymXkjKP-O(QJK57MR9Hb5P{Gt zA!gN?&47R>$`_&&atb9eIzd{f$Mq9 z9gL!-q4TCE>>TVmjT4F0mh1byEU*BJ`!p+&ZM$%R&HT>1Y@N4W5Bi4G)Zrt_=yGK; zcB?nL0;x5rn{agsapS4KJ0ro)tn$W2TGh|3NNKrRA_^SQruqy}mhAZ3y=Q%<6L+cr z6l8xYT`9Dd^MOy;v!ui6Z9pPEi>~oQn&rU(d2J{3*Lt?>t5=>L)+;Bm>nQ@w|6$jv zystXVO(uOl%ihaEDgT5Qov+YILljW%7ur1AuC8(0Zf2>*bzPSmEvQ~1>*-*T00F_{ zGBWYJ!zNKNA$7!yO&^*u(+!v^N4`UGVSFlma#FTDKFfnGI9N$iEdT9@v|JUq*t1%xX;yXpgc{ROvtrJH4%{()IF{ zrR4~?57oqkczXxVSo`X?#ZR-sV6WLboqACe%IOj$^I2? z7)1qXxoL6CX!+;3>@^1wcxNc$xP@2ed;9!hXZynYU@tExa$|)}vjdffZCgK{Wzl&Q zo$Jo!XVk7ykqj-KI#I$a>_@?ZNtNV37^m0)ra3wM<$L)5gfFLcp zFQ07T!J(tK09yTDH7DV=d3(UKoBl!_H}i$JH-<}B4n94KW*KGi_wHKSmF*i$jKmG}qO}xtGqAR^JPnAo`%oNFg z6^%)zmi*J5qszbt>tQwIHBd~vSJee)U9%(3na&z^$VmF7-z^lo={9{s)h}9WC+F_~ z{bS8xzQ7x!s6EY@z(!ex!=dK)D0l`1n~ibA!%&niB7eIM9*Q^gw=bf#1GM1>27}q$ z-t?RV42Plph3-Z|9cI4((E!|SqqCIZF*Ksm{oLdH`gg44&3sO9!_FZ|?>%3h%AUpE z0j=P0$Y6AfM>qH3+Y$Y5Gj`e%ZHXJkeK@?XTKLC3BsiJ+hAbQ23qA{T4pr%oO}?0R z%Y1fS{DiUnw)i6F1M!RZ69f%683cTjWBtM98o!!Zb(7*w>HFl|#(9uwo|e8Af-v*% zTSIO+Srf4X)G8F~K?D?+6yBaie5?QdRj3^lS-<=|9U_Ymx@B}7~( zL(0W~Wy882O;En>Jf+r2(psHgm4}64buYeK$fqIX>sKQ0-8Do2-IiTHN>l~&Fqszc zd#S%olLbH<3t#3Uv^0g5mP6Q)&>r?-<(Vr>g&jiXM#=ph4SG`Q;o64ZYy=x0H@6aK z-y14c1ji36HlReQ^e$x3h>M%^{!Yr`s`nFX`Q9O;Ks~(>V8qu-v|e&*3Tw4R1p>)h z)xvd@RYHW_SnMBEJKfR9QN3=86+bj}X0~-Fzr|j!qowyUEr{K}-;1Va_1_JZSz_5= zxMh&n_)l0L=pMTW{@F{u->Su)(q_2=x^#XR8agb39ex#l6&`c;AS(v{0j`c09~~L|7le`MNQLMW<8o#&0(MPd*}$h`iXe zyU1p=-kuJN`oIUSbrt9V`dZpEY?)f;U=6km;HQ(%cJyx#2 zUdGakV(Mee-btZfl*L6C0obqiUVyOoMRefP1mZj7^gS$cka3&a-3yVo{PhEf(v3O8 z)_Q8WWVDkt?9tp^gvMF{Gjf~kbe#*VMXNx9zX6qBr>%s3uJfa`T=Z=u4ya&N<7qhw zG_v_?9IJs+kpCkK&}G3Yh>p%V%c~_OG(z6R`CE{+Y&A;IYF77fL)%Vg5RpywT;ESv zjGlBW)vr2*$Y*Wz&SP%;-FUj|(TZzmq+*hrt=5Mj!sW+evioxlbfD0zr}_!XR=1~$ z9u{pq*i1oQR$jO>0r75l5S?!8S~@)h4HIVmJh8K9fi-Qk{=qjXCnBAhbv)ab+pBy3;R>!D zEb+91Q`vk^eOT?eBj6zio8vQ=yNaj8eGxRlt`QB zKjOOdPa7eD5%=3m1diExVJkMG5^sZ26G0(Z)<5d7#cyF1R4=99=C;~73$aR^7$Y)r zFnmAWWJj(1-rM1&pPR`z!a4wBYmT!GpA3KIlIj<7vNItX`Pb_yj$CC54Lm-aBk6lD z?U`Up7Mk2rofuW2vd@LHPr7|+pdE~0mz`Tj6fd;F#$rtTpux=>21YuswKzEKTB*q= zy`RyAbE>7~@3PiTBfo`^{Q}Ls?E=HAm!|f566BdJw*1&_D&lU`J?eVxDE@2@rlRNP z6F24iGxi%dTZ`_#{J)dH*Z>D)G<75uRgBBbecj-7`?6;Y=DCxUljcu-*CwaQ?hGYO zquQTkM?a=yUGRiFeng`aY+pU3GI5g)&HM9-b`Ap}7bwkSZf#~$4W7hI@r=;T_ut8` z>At0rn<(eDGRZ1Xzn5|)&a#g);FG2&l^Za^0c-BnODr;*k~Axq@5Y3^b|vIQYpnW}y|F~WBU>y=3nrdaq4(NtJ}W#z^0 z0mp%3)ylPk|FLVThT4^y_;S4l9mt~J4zlRuG4zpqEyMY_$K@f8#V~99Xd5{>&U#Ln zRyJ}R^XC2#eLRKtb5O}Q@4nLwET&~4&fjD3(r9KF(oLs-s#L2g?z@toC!9K%BEeBm z3c9{AE(KDU=0^^DGPb-JD{!`CaykMw##P`6&BtmCGeR6$?P*TZe_wL;;gRIlB&xnUmem6kog96{dZ2nCwAZUz4VVONcjdEcw0C`~j*@ zr-iWTrEB70cHG6r?a@-!KlmhXJRScldaceoIninn%H_@<=B(UxWxRkkI1THl4Bg7UQE$lQZ#OkY2}0whaQ2H3 zl2z1qJxN5W)CcH6{NrO%%H~%;?xx+o(D&DA#na3u*G6RpT|;I3|GAJ6B3{{%R4#gc z^U5gP%rL(-Pq11D1kL}fHBh^VhMA?#GY4Ch$03{M`$ebac=$DIgr@5?j+DT@!@J7x#V?KPl#(j^=85aY5_ghh(tIHBH=~gzV zX3JIijA^f7EPK2xFmK5Hr}8xKFT0h!uS02!wOUJx_&d}o_+c}Lt1GOUV+*&%K*dFp zqY;HB>(Rn4B`ky6o$AbamDQ=iSCjBKVG%;OSD;5gsm)H1I}gf4e2^`36Re)ZRb=Gl zw?ymE{`V3A39>)>H(UfqKosFR07dVrbLYCx&h2b%!6hwGF0ZbXVim~z>3F~!;oG*?nr z5>fAcPb2ou!}bN_4z^6u{%t$qZZE&az^ldPh!0%vE9eFeua1pu>w=%i9e>`OkW&}q zFqWh-mvbZwKw4@2{nKT>$xRc&Fm7;-Q8PB8#Tch{dO{MW%Ki#E^=aJ_M9eHBo8vTJ zr8HkE6;^_AJmEVmNlEQ?1&SfJG1pBgoV%W_z?{VhE@xLd71PP^-?R*#=-4CD+93D4 z5FXIt2Bk}+Y|qbI@BeIHv}~+Duk-fiJYKBv-yX3Am6<%46SpC+6H!OPe;pQr6~*^YdTZ!drlFJm}^S4zCrmUv|5^Wq$TLOZAYQP zRWC9@@&}RWv_g@LhI+=JoxYF+A8{vt5E`d+;ij|+44rccEFeiVSgE!8%5p3JZkeHa z;5l+9D3xB5+hhc!ow_1GCa8w~_aC*`!Ioz2HfvVNk;| z!McGD9Zt+vyDG@FqmuYUGW)Z`vP{p{*mW8wh08=W$Z6 zRjH0OgKgmHdjgtLna?cPpYu^VA|F_9&2oJ*ZXe@z*EEdJEAD6!*2Cdx@Bze8FAVxJwxSGB$>2;RG32@osHy55BOnj-dg1Zjp z&5mj~O9u*Hy-+Z4@JX%C&ij@<_1eo+=xFnBaQpG2Q6;D;A#~8q($@#gdeAx;Odm=N z-Rz9zF2lG=c1eaojlqLV2F{pe zv&Wuy`w_$@_;p zSDcWZhOJ*W=EASIOYd?1z=u{QDEetYU4f@@u_Oh3?k^eehPk!hGwSq(Dg>17l_Q9zt37Kzh`=K=kN1YM+h;BY2?! z@1UCb@DrHgAd!&7kIZ;o6axcwbTnuUk+SnHH6&`Xf&;)t1Cllznl*fjF?MR z>IKQa{C~5g$mE1r{m!?f*-VVI6ReJ*v9WR@@NtL1jlQmab+P zIa5p!bol2h>bRw3+wMuk+B+-i3dkzZ4*KQX&VCms$j@p_)>J$RB3M^*b?6%0U2Oyi zrI0fPT#FacqG2Cy6j5JBYfG4R`R~ZekPh3`KI%p8xxc*NyA$o>@B8b8H*5$?n5fB=V}!RJIF_mv=(n0UbuUR2Q1f4(Fl!U@57zlF9y9MMj+R+p(9>IPX%U-vPamptk z$K~oeF@=AaUQ#qE8yoj7Glc#&lX<6$U~5*F^V%t25U-oJYv9TEo7${LSZRZIFw9S- zeYB6=Lz%%5&jeC2d`7wTPr?S1N|Y|kf&W}b4ep=EAbpJ=EhEvDIonToj&#DXx^~?b z7GUW0Dzg-ddFqa^-nBUi6%@}iOUacjN`+-V_E**L;U_NjWLQ#^3z)OQ{Z3ljXkQry zbbqY^oz3@F+9tAG1+Nyl1b<@juL!!0Ndy1*o4@1xYM7^EH24O?k)rdPbRf=fC{#M5 zs@zF9@w~+rb~tJv*Rh=9)<_^U|wU1Ki>;-FEQ_yM)U&Rq|}Y%5<>>= z!uS6+d3$th!=nvtQ}d0!DIc23pw9tux=qWYr#O?b4ERUw{5Ln9}t6qbH=2$_gg&C6$$aXHD1zg!~#zKK{&&(k1YoXIsJ8CwGTa2gQf0t%)o~h5-a% z{MQUw2LS*KYWF&!Zv2cAGu|i7f5?;OO2rq6 z;ou_)i#gbxXxA=0P5H)L#=b4TIugP+?d&k|_1psOZ$&O&Y_a;QE7tlZkbu}>GWT}l z&ois(z#&@ChKe0fuu_sgY>b%2qUq*q7AB8u)I{-99z{YeF#jsX$R{DqMVk;m!?tpE-3ILNCOIb=kLY23A;NDX^<`bmlu&^lD%w> z+(k17s7A63;<`gh>LC?S>RsXC@+LQ{6O71P_(l|qr(A+cVnWtvrx@~3sx4v0#`E=5 z8C286M%=L=@GTE{=iw_rr_~$-;-qG!S+rAcg(%7M2fGySnDT-WwrlW-t@^*PeOWM^ z@Zh$5KjD9kF$BPiNf^jE(ui}JJqtojl!bd?qES3`5wFqp`ZvRS2JR-V89r%Rfp>8x zUO3TGI@9W5=+MGK#y#({}2RcSd^zpE3X6`*#r0DJv-ctlZSkS30};B*p) z*ZGU{yY!S(E=m!^^Ya!!I9oZb;+2%?-bjm)a*h%630Ib};L!5wA{yoObZ(I9C!&>7 zsBxyFbeS9YwoP?BLS-nQ`0b^X2`u>ODG|14=~}5{H|otyV#pW1h~BP>D8#O04+@I3 z-ToAe#@%Tl=8ZD2v0s}x9^xV`*Z5nS_WPryi%kIe**LIVEQNZsIDSvR1ewB#7&PvU zr%!`mlKt!#e1S^&LWUV_4tA*iT34cD;IT8mvbK7XPI-bXJvVuX|7=q9&cG*Zqj<)r zo55<17+>VFY0X!`yWX&wY$^K*@9;4po=Sf5ip2QS{vMS&XP0zDSTD%l{fP`;3~P9+ zUZ~9Q4so4RB_pwn226&x*(OFm;&(uH=thsg<+MZ<*l%2BeG|lBBxr^$SiCv4$Q)$6 z5v<+@we?O8<-?y6rDSIQ_p3iY#O`$rsL)iY*_^UjJ+Tsz5P$a?0V7>BrM%~uuu(-1 zJ%Kg@LVb03AyK3AE)S`- z#~}zr4d8x|L&WbBmuiKo3Np^_osSw^Z&a}53gce=iNw+t#ZU_({0=nnOZOlRf^9`h zZ}~*o@I}*K&jD3epM)^*B#}0dxvY+L71k@j6)yB>Eoq^ z)3f@%g*j4FCwwbC|N05@?`j2F^6P{0IAZIP*gatN4dWEYeW$@U{{RJ2IE4zw>1fXI zEE4&@zC0jO_+B2IQb#BjPQLg<&QB@NOr^bon_UVNMP~vChia!XBTaZ~5Z}85Gnnf0 zG5>4kxb1w*=P-S~<$=9%>+Kz{Mqgb9(01gkS}tOh_70FeA>w69iQnjxKb?I2g#M*} zLUk{WxE|UM{WQsnZ^)9Y$goy|XoTw!)~6r=tWM|9J{gGP5)=dEMh4~f)x}AlOM2|8 z2=1tF!k^eBGE=^YJUz*1GQs><7`K5f@xFv=#98oz+gxc3nr@zaAt%SBNEa^0lIM7# zSzAaSj-bDChp8CPiRLQUmzCsitYBr@XaT_W_2+5XOQ7I-LfC=6iQO^2jsXHA*2R`` z+i&8DO=vUwZku15U{qQ=eTFH<*szTJe)Z=!7QS?PfWv=tiD4C7w6Salp;G~S{s199 zXU{z{AC@)W-I|=8X`|YHZHoI`7kWGkti$7FqyI&>HxOJGisoZ@-sc6em&%(Q`#c~4 zEsS)c?cpd|hPER`!>y_|tgfuWHA!&~qk&A#{mu9;46yVQ;|+OAvVHgKuJKj zdq2CQ_LRO~NJ&Yd^?asmX0TuTzf+|JqcrnCnk}@zR@#~H?Y6v4vZbqPUvLd&d%S=H zZCz;H7YIB+5^2m~u5q}jdUrW_{pr#zs;OMb@=dDT37^gDORCF#Mi<7fvQGxI{Hn;R zUj#d9@WLpeQzE-r4!fDLq2U@7%TPLgn;K!AvNFkVr_dDy84v46d)({XwN;-Y#yv@B zUJogkt3Tu>;)%neRw(*MMf=;c^Zg&WYU3`FjO`=wK}0w#91@_8hh-Xkz(b>f}G7_{C{w z>+gd3RvI%%2ON3i$3*Dgql$W;{rMu~21F6=mAPN)6hxOT;)U!)hfr5Wd4q)}&!@~_ z$|a=&xizV4JG3|9w}7O3nyZM%(sQ`b4WE#BrH$C_nkWs9-?&xsCbcH-@;-kA4|-^; zhmdHy4o$3tHd7QiG=L1{izNfcL`4BD;!3bDCAOZxo4!kzQ5S>$+ z6GS_<7V>LB_H+A!>Z)Ruppjm=YY!m_>G^{p(crB~#S;J$@tsEtuk=Gbm^D}S)e=uq zwb?fJRJ-wc)bh;mqpYlnj6exe`U#Dfy(iRwZ<#0LEDkj-*ZDXUMyGXi_khB&7)hm` z=XKZpauGCi{nop80PQ_oWvZJ0YthEiPAn6Ahx^dhZm1I_JpZSFj^oTRjqyS*5q~c7 zI?>W0KQ$EL7zXbk^PR*%HvKj93lKs#TxaRbzJm>W01v>>66Ha;c)@||1KUA7h95!R zljx#oUvi$#Nrl(*7$FT0078@U^;fuD3nnB+2 z)MaKF*t8GyoAp`nl%cI*)hO)G=kBuPNru%~(XDUclN-yv&s^}qXYbgxwQ!)72`wo( zY24z^Ilu%e3|Kk?1dmk|6|_CN7wIf%S6hB3zgLbnPZ2TyLX7}DT|Ap8)j40$o>e~F zcMAuTqBjLWr>^GP{!HT8!S8MMM8kUvb4+$b1#(N^lM>hA!lWH0cA<4FB3Vz65R?r0 z8l<3M=~~yXxRsXx6_jz!^a0g^v+D`eDENiZbudj2tu;qc7~0JJfjn6zsmP_!_%KMI5B%L2U=_sbedv-eb+;CB5z}dBa zPXq3moXqo{nn#;dg398i^kBUrs$tU|f=6EwlI@*w{E*Y3Xj<}R-QI^LEMLb#6d-hM z>Fpn*MC-;*) z;aaI4 zj)MO>Gq%20C%^IX%3;NMn4h4i-fL@aF;tKj)2Yl(Vp98?`O@!df#(clLQX^#C~~L= zhr?8Dytm_-aBxA*Dc(vCWy9i#0d`q82$2l$;f?EJi8y!TiQN4c;_BMolGt$XmX=F{ zilwCvb<$W4k?gh>{mX@Y*J!YShLhlcP@AzpE0Y?K%L{TSMc|R^OX+S`g)TW-yEAfKn?!$)EQ8rr|`_M^?4VK(RtUT&RSz zE!h+ld*y z?zw~&9#Cc|Aor>Ni!=?`noSA$MZ!ChLtp)t5WZR>GcZxWbwBd$jpKb76$45Otl;r{xVLj=HW0>Ve*p*4{OSNKj- zSUa}&b3*nzDoA~39}n)_^yH+o8sd<>_T0)E9&LKoGffKsBn!bN&KGakcq0_~c&xqB zG=`o|%)>H5F)3$c<6XF`tHqNQ(={_CZkvhsoqx^(Zn7@;_ApT+PTUIY`Rjv2F@t!E zZFi7KY+m?x5}vPqLjAvabQ77Vj4~n^N6nSO>m@s8A&7;0_S}bno@q^>F znC`%ZUt1o!aXWcdWR=n>bwI6kaw=h>tZjP;setzI=_4A&6W@zX``c)WwG-u?j)#^b zQlw=&ToAK}9~?)1TbqtSiznuyl!p(Qw(4|AakovnT|*KU{pJh@_bTG){{=|bD2OS1 z@{z%z;am>IQJ(-b!}^<5oM;-Kx>95mR;nhXA8;AC(VnaD29YqZS-9H-Ym5XN_Ad(% z17@=le+{~+!WUWa4$tWaYY|{;0&+rLHOUfRmzQOJBbKrbXO9qMw_07l42es@00EZQ zFLvu+IJM1u9W>0Do@qCM;Nn}2JJI@!r_C^1IAKIWZZ$;Bat#KC%N0@Ssbra5lOng4 zZqjnOfHO24zvDDW&&9m=5t`pL|Cr^bSO7L!ZuW&MB%NbdYU!E_eRz8GfY8a~f~W@o ze;Z+_glJ&9NmUb9vs>eK)(evchj~-Q;e4f7mXGzz^@B(n>9oWG@1WV0%Qn5lh|G+n z92WU;DM;i6n5h^`rVt$Lm?xM7NSHDdqWHu5?8=t2r=q_78u`D#ft#EhAf=@|Vo4su zsFcRNO-+LgoR5QCnz0W@7qD00dS2ipZs(pFsqW`S*wKOr^V616;0(PiU-&s=%NH!5 z4--8ul0aH+FeC>l(_kNOYT}I#Ihg|b-@*u9u7Z4={a;SyQnn8c`6SJye!BKX+2&x& zQ^eSvS8GF`;FP$ErP_HDnYetBOx(vm)avn!e|h;O_zrmn&L{3nVc3%{5QIS)lu{&t zzBFs>r>zx9L@&~EWA^G;0WAia90+A!&sFz=sMG6Ak1gq^Xmj;Wq|<3Oh(KRA95s)w z9!IXa%su*fxsmI-cC@XE^G&J_$ms$TYEjek-P7|< z`IhN*uKdCi(@ixlX^b`n@?-=$0QLue?M!~VttoXvy}p>dLf;dc5fglqh_k!pL(+B8d_)iUwc^_rC@k^@I==O zvsvg%lRsy_jQPGKG3~q@&ZZR2vS~xHJ+zKDlz2+@y~`A;y?58ryHtqFB$X=qFSc%R zdvjOw9M*->R2rSE1SpgaQFj}gw7x6n^wwp`ft!YO`MQE+3uc*Zj7YiuSgG-d$@TI# zWuOa(j*j+Hm6G%Ixt5xD^50#xu zCUqaKXZXkL_^?EtX2o`qf1?2V0 z*S)i&%xtrnV?lH}7*F9f9rN#)^LDY){bVZQc39t3g%brlqP#S$IH)EKzvOF;bD@V6 zQdtszqDRgqaHNIgkSC)kJ~zeU)w6X!$McgIzw?tkm-Dq4Ka6=&Uq9PJ9!8@=r`O9h zeI&C6TZtPPT6lq;CBRYl@i4c9wL=4wgw{ob&-d*x*~{Np>VPzgSf74~AiFul&AT~d zRUe(%N>OeyhuE~$h!fO_3RiLZ=R*;>Al<3C+%r#I7*taon{mNxdi%?@=S}e#WPJF- z3`3n`jbnw++3CkIjUaV~hhvrQ%Z1IOZaXt$H9s2uiqSZ}$U-`g&vtz&vG+83WEU_U z(W-%S9QB`>FpDJE$@{lDrZ-O)SMSyjVDJZJMK=a!{G}SIP(idlhu-s3%Ay#HU;AE; zLAC-=;O#cx?EMFb5VZ`9MOx?PvZVYEPxALrq@Ndwyy1WpcYd(!8T6*TZt-AP{lmX2 z-V?ItOz^u?tNFTp%{z0CmnF9pf8l?ao!U()(`y0QX5?L}!b9Nx8t(M>?9IS_2mua% z)r5do4MM89RF6M!V*D1alUYw%4`UZC#b`&K&Q5QrJN-t5)fpQ0_U=5#mKH?=VcPz8 zjXUjTMr@>c{;bCi(n1U@wO#12c}cl_{*0BSPh@NS>sjg~%W(~_f3tc}iMgb}hjJS)k0RhhK zr==TZH+u^~Pmrv}?j=@>fmd{T=Hx!$S5Es#H5c*d*N!`LXW)EFuN=L`#daT|({E+( zESUA>zD{>N2tcyLmrm;{V{S$+vIsG|UvdVgDOpP-FLvu}*GhT&&+O7lqxhzIM*r0= z;SdoS?A1z^I3YEtyUHLoLJ)CkOD9n6J9s*|)w6SJSEtcC-`mm>;^5!_IvlwsrPQ^@ z5gS1Myu$AJtsQbW&rCL{A*sVeqwU~2Jy7^;ZX!>c+i&@(+2&;Ftmc-&(BHY`a-YM| zCZ(&}qZa9y!ZDiWLdyX=J;gbVsag#oVL~A3)`V)?d2gGE|uAxBp%F*4uNK+Uu zgNyQ!Zvk?fnUllxy8Mj_nj>p)?I3;(J$?p!buo~98j^?ITRV_5pOC9@nops(l7q`iS(bI zA4b;oZ@*tE#e{2_!#Js2oi<6ezX%h#MGyw#2;Hc@ElDsktZwWes2o`~45_9}zcVHO zOCbx{=-Dswre6f#*QaolqwJ4IW7J&zK>#~>I%yq6m5H#aDW9*P%=P5B@@*g`BdWl@ z71=OaC-iAf>GLq_;Mtt2#0-XkjmKH7?fbmM)@3BoKlVel$$s#|5n|h9K!i&x5`Ba` zqP2e6{%BKE|6s2ZJ@AYtlK)#{ZfZ*jx4goDW4QO!Nv<(2OY#yHNGF^mtr=g0o|#?t=U4EpKY1P zh|_aBxBcxIO0tGO3jq~ACw}hB*Gz&+RJ+}o#;piL#)m4ZAmd|U_nkfn>dl$s=I-Wk zX8z2Ha(@1cifMg44$9^WAp}u$sy;v}!Dj(HfHOXuieH9z#HdTG ztPPU-Y-Y=swO92VHdI~K*>yKECkq{&?BET8Zc(Z~w!c*Sh%CTeCWXb<(lxNiGRhOx zTN9v{QV^jN)`dq|L6^t%6vA1l8dG$LC-oi=wrkJr_l6ixPlf(svgh`g95QkxwW{B( ztk{ot$Prts1eCvGng=t9&c|E6+`oL&hpmB`NWEiXw24?2i>7xt$%fn>XeEtg+XoXMgC(U%6vrrEJfM z5OmVo^-q5;<9p#mAASE_h89o|Id0xMU;g%~qca6#pTziVSpycy09#)Sk1n*&Z`-e) zjy%gM2H^Bn;m{H}!PIxRx8URg#WGuJPmHxx$Q5Pax&3dIsnSnL@Oh9I<1li#Wt=-P z!5HvAos~KUdpa3;!MMODz4fTy&QiAVb%>B!M0Lgskqf&Oc@i`nsG^nZYQ=1QOEe2TlI_9si@P5SIv z%Wh!YGZ*DzP`fRWOkMz#dlwXnWYAPP?N}gq7XY2V>$J5a$X?mLeEC8U=RePsYMyLJ z>dxscL^!Ulv=6sTGtsk#R;WI9jJ5`6 zQ-CXteENjQIBqtKUk%!qIuy~s?Hj*p>vY7mF@Sr;vH5)^<9KiMc#J`Cd=*O1q;$Hy zve8=OC0xQr$qio6_%13ov<1&C$WEcn3*DEL6aKD2eQN)N1uy!sgfpw!hhqV=&S++U z;n?QYT2mmapg3&`oVx*@T*6FBOt6>DKJO&m3>*Qfp8BHb#s-_#+_Xo+f>~Yq<=Oi1 z7HeJVxMC^y$)O>4X$@sO-Y9gr>HaE) z*3=GO9J(1Qrx7qa+fa#im>H*iVrU|GsTJ_#AnRwscSZ z@b$-`A2E1Bqh1+kJ1k>~W%^0Em9X!xDSxhGgm%1~8F!=YYSyb272eB<@;?&d$xgX` z;ZGm^SB?TwkdSSyV^rszpZx1f@OOJnXoQ^!+fVnA@01^HD&K-@>2dTQaX8;D^oj%b zy8=HDgO>b*N8O+8O<^ChlNeZY0-tmkc1nbN{XDydA*CW+bCIquU0t`+|JGAgwHFrP zVrI?hAurE3wB}T#y?03A1p{xy>p9TgR;0Fd4y zLF9>qJJ|{C+=`t*4KE19PY;tX@*EWaFNEO-SPHO5(TAB=wlj$R9wxd*SBfmDl4{f^?@ zz$O~!yo)&VSQ>G7l&?rlbGW!xFsm*)MA88ki>LxFSORDTYz8fwS8%sA-u9vRlmMt1 zamdXLx(_)V?j@B)cj?2G3E>(NH^1ynPd}%dlzSvN@JzKq&~yd zw9IiSFhU&rqOar&p+*%PFoI|6E9t>ENUg-hgJKAC{P4)Hz8vgVl654DkU0AwmG~~% z&$~+$LZOj(XK!CLQ=+R^f1X!8{Mwtt;m4tyR0lTHySDcx@9B|3cdo@BDZYj?hUSO3 zQ9yvjXVKPfH8=ThKtp(%IN;vR_bQ~#1+2sJ(>X8;Ue5f0owC6o6|Yh3d4jcRk+mHdsk?fzNvFOGh zLr65lqc97SZx&4TVH}MoE$_ZVwa08mOFk=%NT@0~zCiBf-s@ z6iz7Fv1tv*`Ub@_%t1b|vAlh2jo(^D!%oCEhA{ZPC_Qe874{I=XYl>bM}a#o(Wd=1 zUi~$^tCncww)h;)+;G94f5e|XJoSJ3_5iZ3zbK*^Gj3>H7lG<9PhcwVzy`b=@d|w(A%p351QJ=_mza8NY=926C%hxul;d5r3d{ZuWjg_WV=8WI&5EQId)5s@7TAL6}Bh~~S2L4CGx1Leh zP#+I4bU$uK7`*+G&e0IhRBkss5JQ+JX%g8imD*MD<}W@2uvAs;$cwU);JU(^1ar!N zQ0u~d4LAL-NfO|YtA;Xwe(34x6FqdPzF%Q67V$qU{twid3^1SrJuBhzVY7H~>(G=8 S7C7{lOiN8qwM^OepZ^03SqZ8D literal 0 HcmV?d00001 diff --git a/convolutions_files/figure-html/cell-60-output-1.png b/convolutions_files/figure-html/cell-60-output-1.png new file mode 100644 index 0000000000000000000000000000000000000000..b0d67d2732b21095af610edae0d33a8c65d7d07f GIT binary patch literal 10546 zcmaiacQ{<@+pY-FJJI_nA!;N@v?yT)(YrAiBI+P|8_|h6dLkH6q74#8H%g)=5nW6e zHChlojB@Pr?Q?zScTT>&*LAHmv)239`?ULh?)Qn;f2>JG&PGl^KtKi5Qa2e z|C#j0)w9i}g68Un=$R_enDpujA$5qmdMESLvUo;7Ktcc4eQk6$?Ck2JoR5aNj}h#N zkH4L_BZ0e}kEa{V$IaQE$IsFGnKR7ej<}S#)NP)pK0coJB_#fPT^#1^BtiRxnU#Qm zhXAPl&^RD(>-Fbk2jI)B&zF4s(xT5QDnxTluNOH}6|y?Vd2kB?7U@o~V_nnTcJ z%J~w;`r?(-{+H8BeB))YyVXxUW%wZkllZYhFtdOD*vdM zGQqZ-ptGA#(2!&a_(^vA#pm^F9VZ_vO@GXqg`$EBM+l4-Kg*VFnRg0XD0V)Yu5Sff zD{y&-Lp}7AVR+}134Dk9HQyu+T>baV{kdal^;uY=6k0-0@8Ac1E)Fl-ekb`WYHM>W zX(-kvruX}4?3{Q@*5+{;dpXrOMD%H2tAri}m&a+cxw2=~64T7%DZg{^kg81kA+Urh zc1@`Qn=JXIe1}GKEiq`w4WAsVi-Xk-qmJ#sM@XgKp)H}r(YASGfegO4#TS|%t?GuF7pzv| zJ8&1o^}J6-Cw$l7Hhu7ul*@&m3?E?sW!Jo4e>vkoZsE%2Y3p9y{8vUFdsY&0xLz0h zO|j(jahc(S-Po!>k~^LQ279ce+!k{RBrkS;a?8JIT_cN!(*x7wj-AB4X7d&{i1?XF z9@yXxsG-9%w>Lu0aYky}_=1S`N1>$WM#J&T;QKow#L3qdf3Pey33rS2`vauk6x&dr zTpX+D3#O$M_wGo%KmySB*8LNu3eQc{Lk=;m<@k%CxoNTQ=}d@(6wf42+>GgcjwDX{ zpoh0{XP&350s*vEB#Ezs@?|>KF08^CXOD-7Rz%K|>Btw6q&j?lv#bKJrn%tMZ=3Mp z6doTlU=ZbY0bVv6pE#qks@rFsoy|{uKv`Hv11$s%3b&2DU?zyiv}TtT>^75a1^uQx z#aQEJIqR=&;7FF@Pg5^S6=HCIvf1B3?8N4r`}W<+1*%}%=>B}bvldy9hh&M4gE0cq z$n(bZVJ;6a9ieQL)=cg#%o20?9M|U>`U}b+Qk>Q$otebORw}+{>b9=>E zt>S}1FN+neECXFm@51x%aPr#{^x~y2-+Y)E+HxH|VSyU3ML24eQqO@4opfHNf`{V^ zs=u}Ctgjx*htuDy&qTz#zLbm~%Slb@#yiW?W7aDvg0c(;y`m9$<(OK|YP!%d6vioX zs#>tC6L)^FHgHI zliLB=LcZHVm8arbo75RoTd(O2lmXR=f*C3%gMRJNh$5s=>bYoZWRLmfy~L4rB zN%Btk#t5<9Q=b|EzAYBX-nSUZVyX@DFSqDY`sPdtU>`K%3R#0XLNYF;iA8Ktp|) zZ|PY;@=9;M!7ROnO~~sIYmTr{EP?8r7jSa2yk4W*1$-WwD7B4QBjz7qkrv>u zDQJyTN7!i>mZs$T0x*^b!l7Ay919^@raJUbo%6m1ShmNW@~$@w6xG_xkQXmEOcGe87JL0%0^w4o zbRB!=5B%KVnOV*P+xkQv5(4_I-9(#$bk`j?0ZJo!xHjUP5}y_a?<@-eZ-_MG=8XeWdmRc=|~~!!6MJc)ivci zb{zIr>s;mU?pdc2lNJN*y-y->*zTdGFFKA+a<}2 zhIJ09l9M01!_WiFEofpL#V9s?b*<<1O>3(IGCk;$#+hx5KbNqfZ#^y)UU`Xr{Rz&8mukHq{ zcpdh!iC*^XhfUdlb1l~dq;Uf0-Y2(2`?bG%l~KG{`&z{Kr7SMbw25Cf_IrHi=S~y& zx@^E&!LtAUI7vjo3ifV7Ua{1)iK~*TMC2CD_v=2_`|kpK*f;N)2fp^xF%yB|pI=v7 zNOjLMA{9Cj`Wj~4+=7mr2_G)&*n-9oo07zLKisv*&Rb$poTr&-3I5h-fSL5uXa5zb zeJy{YJYv5zb86%eSv&qt6lJVu!zpjIlB+QVCA*g2_kje&`AzfRYC~Y#d6Bzn+PfPj z(cRXA+waG&7tT|ti}FCHnd8AcrJ0iThpisL?Qk;RG!@Xe%00#zmE`MnZ3*w4^*K-< zz?yf6Hw|!+Zt<1**-F}GcD=uvMDD64uz_hZJU7je(qF5X4r!u;Gra-jWui3_FY*FH zh~0URGPF+RTLFp@6V+GAWN`&s<_3dNc;q08kz8|B0##@exw!VSi@0ocY@$dizO!qH zPB<~PUg{CO=mbsZ>%`21wwf3l+NO75L34}yc{WjR-NU8J``aXV6F2ke5}((~d~q%0 zA6z)73LwJ#2j}>I!6PG!JM8j3nkrp>=pKEZDGY~p$Jbzz2NfCPSr`<{VW9@Q^5w&F2Te@4d<@wnr2JJF5)YODISx3sa`&46Ye~ud6Td7#zDjsIcWkk?LiIBI*<4Cm*`pL5u0+l+I~hQwFb^ zd=nYMM_#x(eHjem6+g7|78@@hePI&E#h;zxdMV^Q0Ielz3L#k;3{-A=Uc92uRmEp7 z^7t8dzA3teW(Ovcl_<1k#;6CpNk#NjXQcFC@g0osbF$aA2C=Z2QD;w-v%-@-hzp_% z$U@!Al20Sh5DTr!MEWexpQ!gOMFk0)t%S(+DYmCxzcmBAf46}G!bUn%P#Vr~XpunZ zBXFl^QX>CM3~nUW9cqtFw|_5NDiHX2q{ zUI*CY^iU~%oE|wumTGH0mNVSIPdBZfN_l3SArq;-E%imK!||*z4`eStjuA(A>+*0# zGMJQGyY>jai2G=4hLGO8TeQ)0dA~tQ=ZXU<(}9ltLopMrIu4Ic0^rS*f<`^l&Jp+( z&Ayb6gd;hh1$jYS}6o=beBNzV<1u|FHz>QJt|z_M9ct2!y9Zw9mCACIdy^Dz{yH zbY>+j>M;q7#Fe=|U1WhK5(h{v3rv95{f$Xk0W~Dxtd*sL;WRlS=QWde(u$KB7`?H( z+gZtF4wPjjT%v(^{lU+SX1RQk{C>YqKFg z5;)c#QY=OLJzc8gLdN`H#$;l5CZ;mKk*7tHh?eY3;wOdW0!P9`FjpV2>0Pk29}3)@ zhhlAx^qFH!w8XxQ0w;U*l7LWj=bYi2rja+6y!J@{E#Ub9G&j>unuxvyrnACdzz_P| zv8U(G=Pc9eye^ePh+D)o2*4xW#20FJ3-Mtr+mHAJj$ECuN28#p;#Qn^##NBp;ur?t2Kp{h`W?sZJk>KcHU6A7&^)pN%Hqv)_pHurq5`|8 z*fhhL)6x~{2-YE&vGP2PQlMaow7=H_kf=WYuw^8*!I z-ZM#w{uK$^Cqa6nkiMT_#H2D~K*E$*039D^?C;wkn;FtmC9znjP{<^h6NLZQ?PKs2 z!(+*n9#1)4`R?=^9xJbFFB(2w*~4=goamcbrkJtQ43^k44-{!QJjzWsl)hqsyfyhk z4R>{hW^tL)pCS9)jn1Y9ou-W4xes7fv8oTUxKWN*Y0n_6?ojb@imOaVKJP$7ZipqfsS6O zZFV}1+5D=!S%~?~A+B=GR|xAJ8TqE_tjEJW%in^YSc$3~yXRE3S3nu^?Q*yt$5IZC zglbDP+Xfvl?EVYo$t~`^cB{a|TiXb12E!e-cm$bkxeQ8?xu^1hur8`=Murhq39y@j zNn;Su!|Fq$nP+Z{rUPP(h0Qfc>slO_VVqQ5L!uO;=&idq->PzvAYh6|rC*#}8#hLZw^g;~x-XGHn+ zz%yM0tr@(89m;+jt|Zs_HXZ)QWsyS4|2Xa7A0Sj;5p}rI-R@(6vqzJv&}PT9Pk?W5Z_iX+*`Zn(4hW&;M$w{|30#!21dkw){lz8VW_^u(RNT zeKD89d6uQvfZ1ziAd2lF!07#&36hD`F}i8L7m_90LOF50z%y37I#M?%iLW$X0|D@2W%Z zd%l(Y#Tb{*eLzVO!8pA2U19JSYhJ+fH9fl~K4VDiW0r1U-?HS_p<@T|;YHtdYm{pg zenie~A&J`#y(s%10?vO54JXSbj^x)q&=#v(-mus>Uk&|oe2SJB3$i|X-B|G2gWnDX zw1(QwTV?th*hKF4&UfA1&KmG1A)mj#UPYc}e7O+g&@iOR8$(dKH~ZtAa88Vi-EXj% zs&ASC>4X^&7T+yqE&Eo~g6}@l6f>=Yx#QVHFu8THAF=A~n2G2`=WoZPb^&dJL1;vP zt83GuZ~dtMZ-{P&ytY+2IM~ve?fUORYwx*o2S|a&fjv=twYu+k&nn?;8OOYZoV_c#Q5!=c>B}H`0rm)^K;$X|3nHY$xM=xUMBr|w# zO*FXi)lq0P=@VAP_iAg+X`J|ChwcWZo+;4F^0U&T4VrmA`z4A8K{rIKX>^*zIA4s~ zXaTHBN9}m%B#^Z6uhM9>3E^x@R-2$4(f3wsHl;?THVMJ#=dyM|-t+l(?^-YfiQ13(axm%uxD{xEtF@ zc1gwl@b}aS%8wd2s@@h-;8&iPyz(~RF#CTBm;c@D=N4Bm=q>jJ|Of1PFcrfc%5@+EQ!~M<37hXoh*HM zI0F;zK$@FX7L6O~)W+zRRF5Bgq&|(Jay?we99V z-{5`<5pHY`;TB_9_jib|y&VP#Yvuu-Dr#zrum#oHE z?+BkCf10k5NRFDixr5mV9g~mAS1xg%!aUbYi*&{6C(tl#yxO^->&X9eg;xrUU2TOQ z`D4-iL}y~Ip13RFshjlG*qz?#$ew)y(YHAGoZcd8##Jda~U1PJrS*N=+bC$F{K zN21Ir&ZBu_oC&74-(gimU4(v#?CMjS5q6v{Jv+n81e%sy1Z1v$$VB!;PgS3r{w48D zlSNKseI&zT!Ub(Rr+qyhZCGgFM>f9AUq@OQUT5yfd{@VLn93N!OkMUtLJiLEV`E9c zjoNrEmOZx(CYPeb7scR4o;^2Xk8KI}Q!df$B8m{|!X(MVCle@OgWg@iOpw;NIy z_Vls=D%30#7>%b1?)^>m52CeFpmQ#dg%8=D;jG_u_-)G3J!;cOeVLP+_Yga( zsB`Kg3NtF$HMpHH6R4@{UIt+ectL?Q=K%!nIfpb(Jd9+40PlQpK?{JMFAVOA@T zAj1wP2nX^joJza<3aOJ2?#t8xze^{Zt!87c~!{at=5#`lWJ8nVXJI8F4Re zCkRo0Chz4`y1v$C(55#-pxY@qRt!Ok&xoaFS@OaVTAua80_qNhMwm$nm(?p6{xq32r?4c2@^iSnGb^!UkRRj~4|nlq0mqL>(2Fa9TtV$Wi}&9;`Tl_R(3NJ7=8qPvHC3k~Um7-LeEtT_W?%orAbk0#aiuU_@h$6hqJvHE|Hsl9Q>zlDX2we}q zRZgI*>h|*2tY1`1q4}noi))bLpqfBdSY%7@+LZglRhER^^YB_K2A{~&u>(&RQL;6Y z8+}%Sj7!>(rNgEHo5Hses`C`=>U?c9sVifBY`wzSbwG){PHkGbdz%d(Ru^Jt8~@1H zhlO^2eTRQ*tmgRyqYC?iZo0k6PAU{-TRdACrbCXaK!PYp_pQ=o8E@;g7M2U2-)xV@ zIWRPma^&y}6fA%iSNtufY0L;8TjxDppSv@THZ*A>3|!+M_s*eYIW>%DRx8BQ<@ujk z`Tq#B)}@%&j%2g5;_O}zTM(J(YXK>o@IH7;@iv+ERCmGGRgF?@Ypo-?1yM&fEcrcc zqhjh+eWvRrd2|cM+#MgW>m-zTiXQf%u=4$=;i920raJTFqjIae$xlR|>>+YBPQke-WomYN!y- z7#d}QwmP)q!P1{*5^X}MIzWzEMZ~`x-#IdRKT4G((YJMQB^*d_Zgr6-XL#fJu@Fqr zG}q+qEh205)UI+fh^%qzX7UvDz1WyZzB6_OPx?{UlIp(V69KADx4n>nHskT?RUkB7 z{fUTKrQYR>*Ky6pfHn*XvF_v#BY4*{*5L>1JqN57J%k2%)Mh+=yT%Do5z+`BTWhb-D(+8<#}&ac9P{>se4@TGF)*r;QKwGz@iTGcAV5{L8q! z?Hi$S!?pjcuKl&w1xMx|Hg0~Q*a{dHrMLPF|4LkL7BhVSojdSA3T!b8=r1^XPmxOI?jneYSzM2mA>UW`pD7H$s|urn6gq5!ee0CaAsi*(A@< z;C99V)j$vCH3)y!s9Qc(-={%NW?T13ot{fc-{Rb1%`g~xCgyGy^fhS4GszH$?f``2 zyP$V~97^3eHpLJy(eX{t^1=|8FYbU1seVCc^zDBTSoR0x6*eJfXUqGGs8;z#SI+=j z?D@sPfeY;d3$$up_Q#gkISUp3W=-t(qPx*QkXGI&joSiMq;PWxHQe&~4!sEf@5t?< zPw4|?cEfLA6&Ih3!jzK}Qir2NLm|}854cV*nfsNI1n-x#ozB4d*13gLu>e4#$Qx*p z8ttjjHM3S$#x(FehU; z<&%(S$7-T#5qqBz%RjaTR>ibRU$K+k4jE~U{_w3uf^1Nf^fy-R!Q}J$hKKUM_wq6c z>41|;M7~KN&D^%oEJt zDfx+)>f?P45{_7amDejL)=t_#tC$NHqI0+cHWo|1U|CKT&R+ZHuS{VSF z3JsjOO7)On>?ZvtmpTCfY1Ch{0DK;xcY9R*<3s|2uovOLExvDoG%F&22kAdG=x4b` z9hpCVe=tAT^9{6UvIZ7^Z@dOblV_UI5APkv4oPz-tUM=b!i2D13CXu3jlmo2^kx2% z*6AI|%upIcq!C@(VD;d%o|%`>O|!xIa+MkSk5{yhM|{OF&5vsIF8Xk=cvDWGT_1Ae zw--kJQ_Q{2{m4$QY^@RGS1XI2XKZ+`!HEmxs*IPrRdxo7yEJ?XJsKv;az3DliF@;A zctt3F-V3lA})8y$-n{JD0vZ#O?ou&$`hka82q+8;cLE?oQLzl#N4oE4> zNFCI33fy7>=-=;q#ZG@qf?Gm&V3&`t)1Hf`)6ti@EywpvUlOHUbg^J@$QcP1}@HL^+TQDuo`;$o0X%EvR8$m5s) z7WIwrB^iyA&o9Ju+_Zfze%wwgT(?{kl8%);S2{$2GijQ6C?$L zP~A;ao)|-ReFC-krv5HZ9hY0BE0ZnVj0Sw`1w!$kQd3`#>n)YrFz8fv-24rrBn$UZ zXJbChGY|Vb>YaX}r=d=7TNB-i0sWdPQx(FOIHO;0B3%3CT`jar^jtb@5ei#ls|`r*jJF&ZwXj)?cYhBUYvGGq_?B5w;)}s}uTKqgM67 z#FaKGgc@KumtDRaAR8z*>HD~^0Yf!*qJLhu#905LEdmF?O9rH(tSljh@Wo%nl}QW} z!JziKgSm>8BihoyYPf1~ua>*nhR@e&%;du&D5}e=^9d!^AEEx7$fHs_*vyJ7LC~thKKE) zh^A&iYJyl6SQ_26nKr2_-NH0Qc^G6hMzvQS+8ZoCv0Mlt-YS~^K;GbbeFe>9p8oyp z6^9H4+H@p{&Vt%XzuD%L)ABjbB#)`O1e^zGT3Vgs0YnBkkzuT5Z&A z;Vbx7_stkk)Xcr}77vZ-F1d6iUOjz-j+EbWr3assJhw4&za$5&AAEeFzNTBS3eey# zVrCk3`nafKKJTC9kZRyiWg`rW z-YW3nJ)yCIhwh!gX3r`zzeO(Q_O}AEXRCuO_hvUr-FqBH_#o|Af2JJ6SN@t>5OMcb zizA|yLqbFmQsQM5XQ>Exr;D{JB0WERUwy|d6w-UHGow7j17H`*IicX<^UNCM*Dfc>j{Nvf?|6!F@=~yA|fY zwl%|vm-5%pdcu1XAoF#gqW_G5Y>?)~oS)7n5o_BKYl&(Zp8(lFcCtU}LaQTKmF=h@ z)!e3rovZ{vxI-wftQ%gcWDUvP2qIc|{iRiPeQsPF^t!_|T+r?=Yt2-${EY0Z#I5W( z*QpLI6|p9?cm#?>z(Ghs<3r7GOj)tMkZ+0V`Bn4V{wTAoipA5No!(1vt49;N|7X{R zFvhN4p0&b*_D-8`!2UwYnJuXNBdr`Ae6e}(;NJ?Tw6(8OJR z4xv-A?99Yn>;#h6?go#y{YA6~FXIL4dM;j}iCQrZHu~PQjEp?MP$GH3$W!NZNO` zP#3LRHP(B^fO>La5UTaI!UmV(rSOjjnQun-;HL#(8NsY2 zuNYgAjsb#j+(GttLA)a+G4UO-9brWGmWcP@#$sIoq0BHNF!{oJ*fhI=|v3OxhpH zl!x_P@pQv120l#;u;Qoy(M%#g9RBT&B8v1jk6e78W0Q}4*Z zBgNqIs?h3Xe8#>_wKxRl>iEm}t=^#GO35{QMO6Cx8YWD6^}%i3;$0d=*gu+JG2pDJ oJn1iStbpy0ZRMXw{w|dHLEq`sy5zL4<{Jrs8jsacs&*LAHmv)239`?ULh?)Qn;f2>JG&PGl^KtKi5Qa2e z|C#j0)w9i}g68Un=$R_enDpujA$5qmdMESLvUo;7Ktcc4eQk6$?Ck2JoR5aNj}h#N zkH4L_BZ0e}kEa{V$IaQE$IsFGnKR7ej<}S#)NP)pK0coJB_#fPT^#1^BtiRxnU#Qm zhXAPl&^RD(>-Fbk2jI)B&zF4s(xT5QDnxTluNOH}6|y?Vd2kB?7U@o~V_nnTcJ z%J~w;`r?(-{+H8BeB))YyVXxUW%wZkllZYhFtdOD*vdM zGQqZ-ptGA#(2!&a_(^vA#pm^F9VZ_vO@GXqg`$EBM+l4-Kg*VFnRg0XD0V)Yu5Sff zD{y&-Lp}7AVR+}134Dk9HQyu+T>baV{kdal^;uY=6k0-0@8Ac1E)Fl-ekb`WYHM>W zX(-kvruX}4?3{Q@*5+{;dpXrOMD%H2tAri}m&a+cxw2=~64T7%DZg{^kg81kA+Urh zc1@`Qn=JXIe1}GKEiq`w4WAsVi-Xk-qmJ#sM@XgKp)H}r(YASGfegO4#TS|%t?GuF7pzv| zJ8&1o^}J6-Cw$l7Hhu7ul*@&m3?E?sW!Jo4e>vkoZsE%2Y3p9y{8vUFdsY&0xLz0h zO|j(jahc(S-Po!>k~^LQ279ce+!k{RBrkS;a?8JIT_cN!(*x7wj-AB4X7d&{i1?XF z9@yXxsG-9%w>Lu0aYky}_=1S`N1>$WM#J&T;QKow#L3qdf3Pey33rS2`vauk6x&dr zTpX+D3#O$M_wGo%KmySB*8LNu3eQc{Lk=;m<@k%CxoNTQ=}d@(6wf42+>GgcjwDX{ zpoh0{XP&350s*vEB#Ezs@?|>KF08^CXOD-7Rz%K|>Btw6q&j?lv#bKJrn%tMZ=3Mp z6doTlU=ZbY0bVv6pE#qks@rFsoy|{uKv`Hv11$s%3b&2DU?zyiv}TtT>^75a1^uQx z#aQEJIqR=&;7FF@Pg5^S6=HCIvf1B3?8N4r`}W<+1*%}%=>B}bvldy9hh&M4gE0cq z$n(bZVJ;6a9ieQL)=cg#%o20?9M|U>`U}b+Qk>Q$otebORw}+{>b9=>E zt>S}1FN+neECXFm@51x%aPr#{^x~y2-+Y)E+HxH|VSyU3ML24eQqO@4opfHNf`{V^ zs=u}Ctgjx*htuDy&qTz#zLbm~%Slb@#yiW?W7aDvg0c(;y`m9$<(OK|YP!%d6vioX zs#>tC6L)^FHgHI zliLB=LcZHVm8arbo75RoTd(O2lmXR=f*C3%gMRJNh$5s=>bYoZWRLmfy~L4rB zN%Btk#t5<9Q=b|EzAYBX-nSUZVyX@DFSqDY`sPdtU>`K%3R#0XLNYF;iA8Ktp|) zZ|PY;@=9;M!7ROnO~~sIYmTr{EP?8r7jSa2yk4W*1$-WwD7B4QBjz7qkrv>u zDQJyTN7!i>mZs$T0x*^b!l7Ay919^@raJUbo%6m1ShmNW@~$@w6xG_xkQXmEOcGe87JL0%0^w4o zbRB!=5B%KVnOV*P+xkQv5(4_I-9(#$bk`j?0ZJo!xHjUP5}y_a?<@-eZ-_MG=8XeWdmRc=|~~!!6MJc)ivci zb{zIr>s;mU?pdc2lNJN*y-y->*zTdGFFKA+a<}2 zhIJ09l9M01!_WiFEofpL#V9s?b*<<1O>3(IGCk;$#+hx5KbNqfZ#^y)UU`Xr{Rz&8mukHq{ zcpdh!iC*^XhfUdlb1l~dq;Uf0-Y2(2`?bG%l~KG{`&z{Kr7SMbw25Cf_IrHi=S~y& zx@^E&!LtAUI7vjo3ifV7Ua{1)iK~*TMC2CD_v=2_`|kpK*f;N)2fp^xF%yB|pI=v7 zNOjLMA{9Cj`Wj~4+=7mr2_G)&*n-9oo07zLKisv*&Rb$poTr&-3I5h-fSL5uXa5zb zeJy{YJYv5zb86%eSv&qt6lJVu!zpjIlB+QVCA*g2_kje&`AzfRYC~Y#d6Bzn+PfPj z(cRXA+waG&7tT|ti}FCHnd8AcrJ0iThpisL?Qk;RG!@Xe%00#zmE`MnZ3*w4^*K-< zz?yf6Hw|!+Zt<1**-F}GcD=uvMDD64uz_hZJU7je(qF5X4r!u;Gra-jWui3_FY*FH zh~0URGPF+RTLFp@6V+GAWN`&s<_3dNc;q08kz8|B0##@exw!VSi@0ocY@$dizO!qH zPB<~PUg{CO=mbsZ>%`21wwf3l+NO75L34}yc{WjR-NU8J``aXV6F2ke5}((~d~q%0 zA6z)73LwJ#2j}>I!6PG!JM8j3nkrp>=pKEZDGY~p$Jbzz2NfCPSr`<{VW9@Q^5w&F2Te@4d<@wnr2JJF5)YODISx3sa`&46Ye~ud6Td7#zDjsIcWkk?LiIBI*<4Cm*`pL5u0+l+I~hQwFb^ zd=nYMM_#x(eHjem6+g7|78@@hePI&E#h;zxdMV^Q0Ielz3L#k;3{-A=Uc92uRmEp7 z^7t8dzA3teW(Ovcl_<1k#;6CpNk#NjXQcFC@g0osbF$aA2C=Z2QD;w-v%-@-hzp_% z$U@!Al20Sh5DTr!MEWexpQ!gOMFk0)t%S(+DYmCxzcmBAf46}G!bUn%P#Vr~XpunZ zBXFl^QX>CM3~nUW9cqtFw|_5NDiHX2q{ zUI*CY^iU~%oE|wumTGH0mNVSIPdBZfN_l3SArq;-E%imK!||*z4`eStjuA(A>+*0# zGMJQGyY>jai2G=4hLGO8TeQ)0dA~tQ=ZXU<(}9ltLopMrIu4Ic0^rS*f<`^l&Jp+( z&Ayb6gd;hh1$jYS}6o=beBNzV<1u|FHz>QJt|z_M9ct2!y9Zw9mCACIdy^Dz{yH zbY>+j>M;q7#Fe=|U1WhK5(h{v3rv95{f$Xk0W~Dxtd*sL;WRlS=QWde(u$KB7`?H( z+gZtF4wPjjT%v(^{lU+SX1RQk{C>YqKFg z5;)c#QY=OLJzc8gLdN`H#$;l5CZ;mKk*7tHh?eY3;wOdW0!P9`FjpV2>0Pk29}3)@ zhhlAx^qFH!w8XxQ0w;U*l7LWj=bYi2rja+6y!J@{E#Ub9G&j>unuxvyrnACdzz_P| zv8U(G=Pc9eye^ePh+D)o2*4xW#20FJ3-Mtr+mHAJj$ECuN28#p;#Qn^##NBp;ur?t2Kp{h`W?sZJk>KcHU6A7&^)pN%Hqv)_pHurq5`|8 z*fhhL)6x~{2-YE&vGP2PQlMaow7=H_kf=WYuw^8*!I z-ZM#w{uK$^Cqa6nkiMT_#H2D~K*E$*039D^?C;wkn;FtmC9znjP{<^h6NLZQ?PKs2 z!(+*n9#1)4`R?=^9xJbFFB(2w*~4=goamcbrkJtQ43^k44-{!QJjzWsl)hqsyfyhk z4R>{hW^tL)pCS9)jn1Y9ou-W4xes7fv8oTUxKWN*Y0n_6?ojb@imOaVKJP$7ZipqfsS6O zZFV}1+5D=!S%~?~A+B=GR|xAJ8TqE_tjEJW%in^YSc$3~yXRE3S3nu^?Q*yt$5IZC zglbDP+Xfvl?EVYo$t~`^cB{a|TiXb12E!e-cm$bkxeQ8?xu^1hur8`=Murhq39y@j zNn;Su!|Fq$nP+Z{rUPP(h0Qfc>slO_VVqQ5L!uO;=&idq->PzvAYh6|rC*#}8#hLZw^g;~x-XGHn+ zz%yM0tr@(89m;+jt|Zs_HXZ)QWsyS4|2Xa7A0Sj;5p}rI-R@(6vqzJv&}PT9Pk?W5Z_iX+*`Zn(4hW&;M$w{|30#!21dkw){lz8VW_^u(RNT zeKD89d6uQvfZ1ziAd2lF!07#&36hD`F}i8L7m_90LOF50z%y37I#M?%iLW$X0|D@2W%Z zd%l(Y#Tb{*eLzVO!8pA2U19JSYhJ+fH9fl~K4VDiW0r1U-?HS_p<@T|;YHtdYm{pg zenie~A&J`#y(s%10?vO54JXSbj^x)q&=#v(-mus>Uk&|oe2SJB3$i|X-B|G2gWnDX zw1(QwTV?th*hKF4&UfA1&KmG1A)mj#UPYc}e7O+g&@iOR8$(dKH~ZtAa88Vi-EXj% zs&ASC>4X^&7T+yqE&Eo~g6}@l6f>=Yx#QVHFu8THAF=A~n2G2`=WoZPb^&dJL1;vP zt83GuZ~dtMZ-{P&ytY+2IM~ve?fUORYwx*o2S|a&fjv=twYu+k&nn?;8OOYZoV_c#Q5!=c>B}H`0rm)^K;$X|3nHY$xM=xUMBr|w# zO*FXi)lq0P=@VAP_iAg+X`J|ChwcWZo+;4F^0U&T4VrmA`z4A8K{rIKX>^*zIA4s~ zXaTHBN9}m%B#^Z6uhM9>3E^x@R-2$4(f3wsHl;?THVMJ#=dyM|-t+l(?^-YfiQ13(axm%uxD{xEtF@ zc1gwl@b}aS%8wd2s@@h-;8&iPyz(~RF#CTBm;c@D=N4Bm=q>jJ|Of1PFcrfc%5@+EQ!~M<37hXoh*HM zI0F;zK$@FX7L6O~)W+zRRF5Bgq&|(Jay?we99V z-{5`<5pHY`;TB_9_jib|y&VP#Yvuu-Dr#zrum#oHE z?+BkCf10k5NRFDixr5mV9g~mAS1xg%!aUbYi*&{6C(tl#yxO^->&X9eg;xrUU2TOQ z`D4-iL}y~Ip13RFshjlG*qz?#$ew)y(YHAGoZcd8##Jda~U1PJrS*N=+bC$F{K zN21Ir&ZBu_oC&74-(gimU4(v#?CMjS5q6v{Jv+n81e%sy1Z1v$$VB!;PgS3r{w48D zlSNKseI&zT!Ub(Rr+qyhZCGgFM>f9AUq@OQUT5yfd{@VLn93N!OkMUtLJiLEV`E9c zjoNrEmOZx(CYPeb7scR4o;^2Xk8KI}Q!df$B8m{|!X(MVCle@OgWg@iOpw;NIy z_Vls=D%30#7>%b1?)^>m52CeFpmQ#dg%8=D;jG_u_-)G3J!;cOeVLP+_Yga( zsB`Kg3NtF$HMpHH6R4@{UIt+ectL?Q=K%!nIfpb(Jd9+40PlQpK?{JMFAVOA@T zAj1wP2nX^joJza<3aOJ2?#t8xze^{Zt!87c~!{at=5#`lWJ8nVXJI8F4Re zCkRo0Chz4`y1v$C(55#-pxY@qRt!Ok&xoaFS@OaVTAua80_qNhMwm$nm(?p6{xq32r?4c2@^iSnGb^!UkRRj~4|nlq0mqL>(2Fa9TtV$Wi}&9;`Tl_R(3NJ7=8qPvHC3k~Um7-LeEtT_W?%orAbk0#aiuU_@h$6hqJvHE|Hsl9Q>zlDX2we}q zRZgI*>h|*2tY1`1q4}noi))bLpqfBdSY%7@+LZglRhER^^YB_K2A{~&u>(&RQL;6Y z8+}%Sj7!>(rNgEHo5Hses`C`=>U?c9sVifBY`wzSbwG){PHkGbdz%d(Ru^Jt8~@1H zhlO^2eTRQ*tmgRyqYC?iZo0k6PAU{-TRdACrbCXaK!PYp_pQ=o8E@;g7M2U2-)xV@ zIWRPma^&y}6fA%iSNtufY0L;8TjxDppSv@THZ*A>3|!+M_s*eYIW>%DRx8BQ<@ujk z`Tq#B)}@%&j%2g5;_O}zTM(J(YXK>o@IH7;@iv+ERCmGGRgF?@Ypo-?1yM&fEcrcc zqhjh+eWvRrd2|cM+#MgW>m-zTiXQf%u=4$=;i920raJTFqjIae$xlR|>>+YBPQke-WomYN!y- z7#d}QwmP)q!P1{*5^X}MIzWzEMZ~`x-#IdRKT4G((YJMQB^*d_Zgr6-XL#fJu@Fqr zG}q+qEh205)UI+fh^%qzX7UvDz1WyZzB6_OPx?{UlIp(V69KADx4n>nHskT?RUkB7 z{fUTKrQYR>*Ky6pfHn*XvF_v#BY4*{*5L>1JqN57J%k2%)Mh+=yT%Do5z+`BTWhb-D(+8<#}&ac9P{>se4@TGF)*r;QKwGz@iTGcAV5{L8q! z?Hi$S!?pjcuKl&w1xMx|Hg0~Q*a{dHrMLPF|4LkL7BhVSojdSA3T!b8=r1^XPmxOI?jneYSzM2mA>UW`pD7H$s|urn6gq5!ee0CaAsi*(A@< z;C99V)j$vCH3)y!s9Qc(-={%NW?T13ot{fc-{Rb1%`g~xCgyGy^fhS4GszH$?f``2 zyP$V~97^3eHpLJy(eX{t^1=|8FYbU1seVCc^zDBTSoR0x6*eJfXUqGGs8;z#SI+=j z?D@sPfeY;d3$$up_Q#gkISUp3W=-t(qPx*QkXGI&joSiMq;PWxHQe&~4!sEf@5t?< zPw4|?cEfLA6&Ih3!jzK}Qir2NLm|}854cV*nfsNI1n-x#ozB4d*13gLu>e4#$Qx*p z8ttjjHM3S$#x(FehU; z<&%(S$7-T#5qqBz%RjaTR>ibRU$K+k4jE~U{_w3uf^1Nf^fy-R!Q}J$hKKUM_wq6c z>41|;M7~KN&D^%oEJt zDfx+)>f?P45{_7amDejL)=t_#tC$NHqI0+cHWo|1U|CKT&R+ZHuS{VSF z3JsjOO7)On>?ZvtmpTCfY1Ch{0DK;xcY9R*<3s|2uovOLExvDoG%F&22kAdG=x4b` z9hpCVe=tAT^9{6UvIZ7^Z@dOblV_UI5APkv4oPz-tUM=b!i2D13CXu3jlmo2^kx2% z*6AI|%upIcq!C@(VD;d%o|%`>O|!xIa+MkSk5{yhM|{OF&5vsIF8Xk=cvDWGT_1Ae zw--kJQ_Q{2{m4$QY^@RGS1XI2XKZ+`!HEmxs*IPrRdxo7yEJ?XJsKv;az3DliF@;A zctt3F-V3lA})8y$-n{JD0vZ#O?ou&$`hka82q+8;cLE?oQLzl#N4oE4> zNFCI33fy7>=-=;q#ZG@qf?Gm&V3&`t)1Hf`)6ti@EywpvUlOHUbg^J@$QcP1}@HL^+TQDuo`;$o0X%EvR8$m5s) z7WIwrB^iyA&o9Ju+_Zfze%wwgT(?{kl8%);S2{$2GijQ6C?$L zP~A;ao)|-ReFC-krv5HZ9hY0BE0ZnVj0Sw`1w!$kQd3`#>n)YrFz8fv-24rrBn$UZ zXJbChGY|Vb>YaX}r=d=7TNB-i0sWdPQx(FOIHO;0B3%3CT`jar^jtb@5ei#ls|`r*jJF&ZwXj)?cYhBUYvGGq_?B5w;)}s}uTKqgM67 z#FaKGgc@KumtDRaAR8z*>HD~^0Yf!*qJLhu#905LEdmF?O9rH(tSljh@Wo%nl}QW} z!JziKgSm>8BihoyYPf1~ua>*nhR@e&%;du&D5}e=^9d!^AEEx7$fHs_*vyJ7LC~thKKE) zh^A&iYJyl6SQ_26nKr2_-NH0Qc^G6hMzvQS+8ZoCv0Mlt-YS~^K;GbbeFe>9p8oyp z6^9H4+H@p{&Vt%XzuD%L)ABjbB#)`O1e^zGT3Vgs0YnBkkzuT5Z&A z;Vbx7_stkk)Xcr}77vZ-F1d6iUOjz-j+EbWr3assJhw4&za$5&AAEeFzNTBS3eey# zVrCk3`nafKKJTC9kZRyiWg`rW z-YW3nJ)yCIhwh!gX3r`zzeO(Q_O}AEXRCuO_hvUr-FqBH_#o|Af2JJ6SN@t>5OMcb zizA|yLqbFmQsQM5XQ>Exr;D{JB0WERUwy|d6w-UHGow7j17H`*IicX<^UNCM*Dfc>j{Nvf?|6!F@=~yA|fY zwl%|vm-5%pdcu1XAoF#gqW_G5Y>?)~oS)7n5o_BKYl&(Zp8(lFcCtU}LaQTKmF=h@ z)!e3rovZ{vxI-wftQ%gcWDUvP2qIc|{iRiPeQsPF^t!_|T+r?=Yt2-${EY0Z#I5W( z*QpLI6|p9?cm#?>z(Ghs<3r7GOj)tMkZ+0V`Bn4V{wTAoipA5No!(1vt49;N|7X{R zFvhN4p0&b*_D-8`!2UwYnJuXNBdr`Ae6e}(;NJ?Tw6(8OJR z4xv-A?99Yn>;#h6?go#y{YA6~FXIL4dM;j}iCQrZHu~PQjEp?MP$GH3$W!NZNO` zP#3LRHP(B^fO>La5UTaI!UmV(rSOjjnQun-;HL#(8NsY2 zuNYgAjsb#j+(GttLA)a+G4UO-9brWGmWcP@#$sIoq0BHNF!{oJ*fhI=|v3OxhpH zl!x_P@pQv120l#;u;Qoy(M%#g9RBT&B8v1jk6e78W0Q}4*Z zBgNqIs?h3Xe8#>_wKxRl>iEm}t=^#GO35{QMO6Cx8YWD6^}%i3;$0d=*gu+JG2pDJ oJn1iStbpy0ZRMXw{w|dHLEq`sy5zL4<{Jrs8jsacs#5>i7C-AIdoFyb&scOwE)Lr5r{Qqs~fgn&qlfH2fh zLk-=-z~Mc=@0_#VwLE_JT2J2pJo~w?d+%%SYe(v6sgRR0kmBLtk%Lqf_3-d+N?qR% z5ffgYTP(j&USIHC8 zqzE+d`h@vB2xC-9w`3D=zeP;Na{mRQ37oe+AyZs&8eH7Zj>JKJ+a>sea= zhhM3M8SFt#%SvP(aqgE_B?FYYCM{lBHKo}R*F&Wv?d{@0Pe6N?;`LB|b*3*ScYU*5 z^0teOm6a8~6sB_h_^yv6?*04sx8v?Spr)q2_u#SA^_;NOX2j)Epyj1;yUA6;a~!f= zc4l|B+33|lvj8?=ezq1e*?zX{+-_fLw7S)-iS)pJp^P}fS|ICNq-Q)1nsyqj_0@v{(rc0c^>50aSvpus zC~Vf`_^PMb^)7mcLObX@dONLW`?OVQDgOLu%fHf*U@3P(8=ZJ;-ORiI7?l|NU5S|< zb0t4UcHnd>F_cG4DS4Y!0rNzQNA|dfEi;VuOBcvCW}L6$WK5H?6jCm;Mwl6Mi#KvcXl|U+X!&EApsFErA`Xnl+Z$mVAO?PPu`qp^gY?M z+)li5FWA;tCVb`xI=%8YF=mdIxDjg9==CCzcrGRU(I?$ z4LzYcmOXS~p6eib6b-MpjCZ(TtRM=geS0eAKO*lBv?bJt~lx% zrU|HjV^{@zX5Y1VE-2)EvTDLp)3Pmmk0jMlqxqCgHJGJ;TL$Bu8gE)3AF zv||3*s2h)uNPwjnbGV(uE6;C$%GiP4IMg>eHUD;ECP|pCnT0j?;YmB!de2wpBmeYN z^U57SKAaNj!<-rFXRZX@fQvlD!qE|Z`EOMr1x;(Ib&y{XN$)fl&sX<%chFWRzOY_5 zR-#Il8|QHJEMfa;J@cJDZ?Ge+^NtOuWJF1%U{7h0%OcN5y29$Htv$@1sqTt`eg2#= z+nyP;tEkR+X(Rg(5Dc|qWY#Xd@AV*LM143aT}wt2;f4jp|I+GT5d1kDrK8E5qcIZU zIlOSmgDJw=Xfo?a1^w|)<-rf0px`^QvZn7CA1rRoq6W3ikLb6AoUg zjiMkS({b!Z7UlfeTwDGLqP3!X@_Boxj;NQ4R@>-M5zWN&Sd|=)-8sLb94OK}xoN@A zE8Nw=$i)3#CELupfo$cX#nn4!RcGK@6GkoTGtldvMO<@5t)~6X>se>1;t#!#Dyl8~ zA~rHK?_l+4)}ABPF8g~t7mh|Gl4UL~8{+4PTZo3Ekfz&g#OwvWX*X9U?2tsnH0;KY z?p6Le&iL3lu!4|YYWb!}lVqyETof5xk8fhC|5StScN3)N$NpwcXJ{-DFjr0^`inqpgF8{|)_x&0Z+vd^DM03} z9r*68j8Z@c5u{@eA0vxxW3GAEq1!(8+iL7L*HUg&CqhKilPU-V@FVwDMBUjIwajUS zmgb}$2Hzr5K0cmA-)4&IlM^srS?Buz-Vh+IgSQpm$f!N{r5Zbdw?zc*d=zX`^?1b9 z^nq;4H~u@xZ4W-|mcMy*a?O$rg?o4r{+IBeHuyLUe+4r+ zUkiz@%%15%%_QD|*4WN#(xwT0Zh*2i3Q)f&;RlF;=pc5S5{a<4i6h|sDINTuMmF=4 z5cX)m@*P4}!GwIyB2X9m%|yYO3KEj4-F7Ws2i4^F;0q^kxbt0Y(UnxaCaz$QT*GbD zr!VdDTxeZTx%;_~z|gJAJQ;gsx8(NXJvz>}1sO-wQ{D0|Udk6AU0`(QrH$Y3(r9&%R~ zPhUqpo$nEaz6DDxHJ|2_Bt8(VT;4Jrpy6VrNv+g>UlEuj0o*PfW2_6dRR^4WIRrrp zWb*STxnFO~$+O=}%XdoZb!^V2G>Li#DewUVbAjjzwtKAYl2SBmBEDU2ogNid)dbn&{cFswUg(rC1{gM<#B}L~5|LDmW!oWuRH5)=7 zBdI?-;5@jiytADfr{`tg<;^P`bV11jMbXv$v(xO`b?6th^Fgc25QL{6jVFQImvUTd z`7FktNxv#3yLH)BKk+gtK~=)DGirJ{!dZ~zm(?63@7AqM+Rtp6cL)Z?n>e=wPv^N> z>X+#{-AmDtKM8_5->p^B(oD{kW z)8h^06=3As$%u1DB`uXT<#87`$z@{AUGs{iNU73|Y|T4yC?95BXJ+6DUwMk~f zoV-*kuZX{VIf8)g_E_AU(pi!Ol13bo(T12PoqUeBbjF61@&J%&p^IUMA~>Z*hZK+O z=Y8WqN_H1kaxx8DU8x6kw8o9la^iunKN@e8xHXom`=1E2%jHp-4UU|R1a#hEFuqUO zClQO{=1Y9RMEIuu!2I}5(E`xV=oeIa_tp)nUU;0)#LAh9i{QYj;IU&n?0GEy2_5MO z*n*{VvPvGObV4)-?fk8srH%1H97u`JSS<^XpMS;;Jb;TTuO~jWcs?g@w_X=P{Gf%Mip~< ztghhupT)-Of^Cez043w54?t2Ok~I9IhlR8sZE|0z`hWhuVEsk7zpk#_4I%-&mrnaV zmwh1bP@Tupc>PJMvdGg-(JtDS9AO99`n)%6)S}7Go8FZ<79v_Y-4&(w@aHl4m%anD zDTfXkZG<|P0+0eQK&QA!%igerg>XOSFizp#1)d>j{+;muSk*=K7fQD9~W%Rcjw4HQ(qqDMj#j+85YT$SAW3i+}3@Uj2>$a1gtaiNshM3&Li zX(iSt9N3BTDst;Ck^Ti;`KQS_-{!|APj5eJWXfcYW~sZE_{&-YQR8DGW0}p4HsFQ! zHkIk|Go5_e791+Xe8yYWDGZRc$~BhbAd#(0Bj&z<*4sUxl9F~ zx!nxk``DLt(_g{-KH%`M2|rAVc774UW^``m8?3P+_@P~!H+o)ML|X_L*mZ%MRJ6)q zKBw(MsgKAZ7?Ot8JH{jQ;+X(yq5POl7C!IvZE7)4hyX5hDRNqgq{C2;vcO8F1C^C@ z8bjwNX&zb+;4Dt@2Wuo|Yy9#BgnNF23Qc{?j64b;t|WRSL9`@A8=O(bl;5F^@Q=J~ zUD)PTT`jUF#TZ>dvg-+}4@5LEaQfHHpuy`rhn3(z>CS&FcJq>d+K#P;Gza*eRtLCF zq2n@2FLPaSIqlIcxaF@i$5Oti%(4ZI9B1+I9?!+yIT45Hn<0y^}Io* zPnI?+#!@J?FS=nS8!33Gj*uN$QrC!oI95x*TMv_@H$owYGem0GBMqRs>Ez z9@h-R-oIkXM)TC=r39ak4wH0Al0Trirqo>jA7Y*6HL8!-Y#SHUORL6krsjzIN(E7dOORrxA3*6vZ*myLubJK-8v?q0H- zeT#MERv^!l>Gmxh$Ysx!x1doqku~TLY;hylfBN&Gq5!#DcXk`=&Rmyk@Xv&s@{X!6 zshWJOnqOPxjW7}RFMh!gw8{EN{Gcp@6g(Yy!h1TxO8(8CIPgzN#Q#Zz$6US#5R?LU z)S}juvSb&(AUBsnY|{ZB7T-*zlwC+`^1|OTIB2f^*eI%>u-QiZve9TQ7q%BrV0CR` za4U^|3M2khHo-_b@=ek?{%Mr3J!fA1^-hbt>Bf{{t>(-s%daY>rC(&-qKwrQqS;Vy zR(-BSc6f^Ga0wvl(PzMRUJ)XMbffqeeHcEd1Al_l#Ogi+3Uv?p-(;SU$#Zp|R;lnQ z``?k7H0^rk|6?~5TO8Hf`hAPi`lZmb;NxrNcH^%uEbw4#exK410TNr}Fi)NgjW+TJDb ztzJA6(L5;=F(0(O;dgl1ww;cDsd>$(!FNr`@$$~C+sVK2mY1WV4o)wd>v?Xkvz@RU z-7=;2sf>~7*&7g46}WrLOXltjQQxPtfX}MutR^^Igo|5{t;%nKHqAJJ>!enX1zcGg z@lrl$mP3@)MCN`hQE7G&&<%8ze>ACAqOGv4%`_<EJvuf@=PP`8k z48Ny+<0%ly-N;;2ZS}KHV&#wK6@kUk@^!2?q|G0Gg432ph1huG5@_I)sm8gFE&5sA)2^k;Nm3h1_DVT(iQz1<&waMzE|CL;38Mow|iHAd% z7gQ{1rWX1dS!!n{{JNCeDBO&L5F2x7hX@PhyD^86!mMJLyYQLUr51061xo+uqou$0 zNM|dkKUtjF&IR_~(++e%I$61urWz^Fo5N0x2FyEwz}ji~MQ8aoQV)Y_`0bslG+{sBF{}oQ|e(~k9)dRm?Df#Lhq9B}(6NQYLjw#)> zg%aI=ti1*5kL~XV1|k}8+k^F(^Km7lvM^?KYR|?gD;!j&#M#Y0Vvt%I3}+#DIq>+6 znG;L|rExy1zzun(4VzO{<}jsk(Rnqn(wY7u2ErkfRAI+%p>RZx!z(ZUMFwk=4QfkTrvKR zjPeu6Y2lv_s3qycZ91{DUInOS3o#5~o7`sf2&%J5(5>u^xYL4rj2NJ8@6t?Dq+X%@#>>r;!Ls*bbng{xKjypIDm%4XD;k%6XWIjjZdXsC622` zJyOk$4!Hwz33V}?VM}{*bgC*`hLtI_a>Q}o)w>^3m3Rr&kfd-#6qkc7jvnM31fSCj z{>)%Wi%mSN9(V0JpxCTLM=m*AiqBq#oKtzISL*Vqz_>zHr}kuv<4+)%Y1{WL!uaup~DI z_dj8u)EnUEpfK(iq`57$R_Ecq!Tk8H}AA4eVPl{(OkO+qF zy;0GK(Z)L7S{eA3hnBw%fg++e7_ggcJJ7$eonZkzQ_Bkk^K|{})E5Z$_{5kf5Gv5L zP%FK21g&fWDuD(;)h>75U#CsW!)e)gbi}X`549RixjiAb{^KNG)6F7}p(I`Uc>Jay zuB?e?U2*LN=51K^gVdNJU`30(*QqawLcEpS}$R&T(E{NX` zC0aqOTxS&tu4X5+Xom=c_T6+gEAm4YDo|<7P-4byRm6Wza=JCo?c;co-<@caiCkEbY15Q2>v&_ zJ*e^YGO}ucAde@d_tsV?htKP^DbcPO=+?_-`aWY|Rv~yg(MGpn^e|y=?{Q_*60IGV z2Cqrg(*uI{$68W;kE8j?T9z=FkQkuz^Nptl#!JIyp_-^>CkICi*_#_BM28QWk3~y( zbBe-tx*gkJeq&`!3?bU&Q}DmFSq z&=pvch+2DJq^c9&m{BkuInp|g?n9Wkn_Oc)&LpeAwNC^f^Rl>-C)NF)gtp(0%RSLigHuIPttOs^XeiJ!^6TW;0q)ZWzPR=;JGHlbbRvb1g3JELCFWE9jT6CkR4(%ytSV z=A;iJ;73hG4Tq;qzRzy^t&8`v5slbW8ZMfsh@(l`6OXF^{-bc&$NpQ)`cHNj;4!v; zIb{F89aL3cMk&AiY}*#{OMXjU@+g@0&@KFcb%tLKz(zveGsGfY2WmVS3HvSBFJf2W z)kNt1b)qixpfJn~hF7|*9NAieH}ujeIh1Rk#)zCUU*ii;>s<0IKQitT8ZoWgN7-M; z<=UrZ@z5{5+7YzGu4xbHpRJYjNdwE^bl1ud}X}HPl&E@9XS4{svdzn7$ z&&G;?8y|6MUn@av8_1`|5wLx%n7@{C$Ua6L7NBvYU3YU0Kuggg?FntFSwBn6&i z8noOgDn$*T7NKQI#Jz76e$ARSZ_M8>QHbSCP+~?@EYA%f`axTjcB;ySRa1lI1Fjz` zmH?RzsRIu_IBF#JZYE$dei;rYY^3`#?L2!GUNB!qnOM~|3E5VmJ&<8cLms#H{?SFB zjWT93aEf2+A-LmzJl76Ih8va(pHwE)bKon)({e6vY@=#Hi+8wlvJJMu&ZYMJ~c_L_df)lZF3d8$q6`Ch>iH!Bk}g}#r${gSEJHsRUE^qe`+G>!`#yD zV3Mq7(LH-Q&q6Y3Gn71l8wbhTNKuKbj>0Wp!lmfmN1v@1qsHobXun&}FV82tjUV7| z!1D#x{AB7a{>UKyBhUUL7?P6B1mK27T_&$i4S8Hos+ptY380qDYN{DLR7uvzSR-j! z*`z!=7B<8{|K=0Z@%sa`XHf(34ob)gV6hQ5Qzn3pl(~w1Pq&&j8uX&f|E;%&Z|x6% zck98Z_unk-^n^gOAm&1tC0|6TQE1Rvs$gwcet@J(QVS5K8LLA1tx=wrnqNb9{KEjG z1$Ojf0qAA)1NSZHI75Bf%I(K=MQytgO6{l);z$+q&@m|s+YG-fIxrdgf_lP?{#A+Y zlum?2xId7`dnLe`qrUtP`agRsNe9BMJLR@q&>ldyRx+jDk|AM{Y zzzA?R@YpN}`KLNZ*^ah5-?;h8)EJ_onV@+RO`;c9#HAjjg?Lj^0NT;Pxeh-|7FjoO zQ`@*#;Qyq7Qa?8g3`>D`qZ)N^BK*?jYTwht(W$jZVA)XX;`WX9$|A41^S>zv z50X-#?LM>hvn|_W`$wgATnK{v%_mF2(Rg@-6#w)B3~y{lNUC94vt?f|r!PumNDLb?kdh$-Xd}9joRFtw z(dWtMS00|6b46U!{i3-~sn)-#KJOIo#NX7ry2ml{j$!Rp;AvTE#v{!>4J=A%@%)o8 zf@bc?NTutYZ05x2izMO8nK<4;aKQdH;t~7_?#}0*T!}xK4`!rzkgKuaFS43?Mfoes zd0}z5_wYaN)Bh;72idh3fmcg*$a?9Wm3rfdzeaRswMIe{yxk=HLDfs73GSodKVY5I#Czod-i7`ER%>SbLW!0 zh3H*SJI;>ew0UF4RN$wNGjq9`B`(c%*S&&;H~u2+JeI~-DguHYoHN=dg$1>Xws_8s z`kv`czWS(WJiC;D&rc>aS=5o-lO;YAbH3~1ZaiR%wJv7*a3GnvA(~MLmW-&#+RXo9 zG32)$wP9dP`i`fo)lfP^zk*oXKWoPEME689R5r44(m|RDy2%Br!tjW1O&GN;@Ec=n{YNm#`-ScIAS=q5FlPuapsk7&QtrStJ4cfN{%r^u(m>V;; z;{(qayDs>RT4(I0l*e`?-sHK68pMY^vD}kP%;T*6Ixed3l84)tn^sqBGkB>LmnMgi zkMw$L9^sy56p-UDdHYJVch0IFS zGBey9ECsz<@4D%U?NcueL?u=G>B)w_lsUSq8mjBqsDC_^w=vL$JmdUtAAfZ@Y1IJv zxS8op;9LOrod?Iwa{(@-KelE`EB0~8$jJ<<2vdjc@ukNe>)*|)ADLPldMFe)oci>gX&8` zmoUYF;WJIJwrsT4{zH(D#`y~y4;)HI`bc63tRhK)4j>k4sL-$N{BPSNOXkW7f+S6J z_EZ`C#Me~&>3b+U+v8j((*7=XBPSs{_p?#EZ5y+J0vD@UX!^MXCZ&j$+3`x>$G)1G z+G@v;-V8in6gDl|KpuAwA$#nd1?wa3*5)gCd|}?(5jQl0cHv&kg4LE6wK&O6Hm$K` z`)CG49i;jGh-tfg>dCb>z-|W39{}Fim7-#TWg4>mh zLR*i%E@or8^ONwN)7Vog*ICxr^m|FMBQ{-=ud&9cFDL8XkB@XMYOSP)^&3RNaPtQU zE7!_VZJvJHkY@?{nhg@*U&Y+)w#fZud%lQ15K|R^=FJ@DXz;T|FBJy#HqI6;gKj1~J7r*Bf`B%ietwuBPVR4nJ za0`Jj@_alAgf!~2GSpqZGR@FJ0o8z!lo zJa_I~+{B!SlU|z^YPi~oi6t$Z(!XJ2>e3zBE*!0i_gcTtxL(Z|#x6)PAPY~C!~aP3+cLr_qVlj+neMt%iP zCp0xNG4S#8=l<8w)#YuNHEWi?`uX$c*&jT3(6D*4F@u@8dG7qX_wTbW*s|rzWyAdq z7DqVOmCancR+qug&#&QsdCQF(5e!1Y!m|B8KYU^bTi}L$4;>ycv1mo+Q`Qjnk%1 zWekXq=Xa>Cwr244^<_v&NvRM@ju1AU+V}nYcjgV-wy_;}`EuoB!z=r*Jb0kM5E~oI zprWEuV=Ci$X3mGjD|cs^-n(_Vc!;xZs$1yhDYc2 zX?_OLc+tXCUHPoB&; zW7aIL%s0S@^v{|(b*dCHfjg{0 zr!5W&x5vcBGG4fTo&CUz7b|8bGH9O0**jtuf2T5C+8m7t<}JCfx*+&&t;ucLK6U9Ddgz@ literal 0 HcmV?d00001 diff --git a/foundations.html b/foundations.html new file mode 100644 index 0000000..d2ff8e5 --- /dev/null +++ b/foundations.html @@ -0,0 +1,1714 @@ + + + + + + + + + +17  A Neural Net from the Foundations – Practical Deep Learning for Coders + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

+
+ +
+ +
+ + +
+ + + +
+ +
+
+

17  A Neural Net from the Foundations

+
+ + + +
+ + + + +
+ + + +
+ + +

This chapter begins a journey where we will dig deep into the internals of the models we used in the previous chapters. We will be covering many of the same things we’ve seen before, but this time around we’ll be looking much more closely at the implementation details, and much less closely at the practical issues of how and why things are as they are.

+

We will build everything from scratch, only using basic indexing into a tensor. We’ll write a neural net from the ground up, then implement backpropagation manually, so we know exactly what’s happening in PyTorch when we call loss.backward. We’ll also see how to extend PyTorch with custom autograd functions that allow us to specify our own forward and backward computations.

+
+

17.1 Building a Neural Net Layer from Scratch

+

Let’s start by refreshing our understanding of how matrix multiplication is used in a basic neural network. Since we’re building everything up from scratch, we’ll use nothing but plain Python initially (except for indexing into PyTorch tensors), and then replace the plain Python with PyTorch functionality once we’ve seen how to create it.

+
+

Modeling a Neuron

+

A neuron receives a given number of inputs and has an internal weight for each of them. It sums those weighted inputs to produce an output and adds an inner bias. In math, this can be written as:

+

\[ out = \sum_{i=1}^{n} x_{i} w_{i} + b\]

+

if we name our inputs \((x_{1},\dots,x_{n})\), our weights \((w_{1},\dots,w_{n})\), and our bias \(b\). In code this translates into:

+
output = sum([x*w for x,w in zip(inputs,weights)]) + bias
+

This output is then fed into a nonlinear function called an activation function before being sent to another neuron. In deep learning the most common of these is the rectified Linear unit, or ReLU, which, as we’ve seen, is a fancy way of saying:

+
def relu(x): return x if x >= 0 else 0
+

A deep learning model is then built by stacking a lot of those neurons in successive layers. We create a first layer with a certain number of neurons (known as hidden size) and link all the inputs to each of those neurons. Such a layer is often called a fully connected layer or a dense layer (for densely connected), or a linear layer.

+

It requires to compute, for each input in our batch and each neuron with a give weight, the dot product:

+
sum([x*w for x,w in zip(input,weight)])
+

If you have done a little bit of linear algebra, you may remember that having a lot of those dot products happens when you do a matrix multiplication. More precisely, if our inputs are in a matrix x with a size of batch_size by n_inputs, and if we have grouped the weights of our neurons in a matrix w of size n_neurons by n_inputs (each neuron must have the same number of weights as it has inputs) and all the biases in a vector b of size n_neurons, then the output of this fully connected layer is:

+
y = x @ w.t() + b
+

where @ represents the matrix product and w.t() is the transpose matrix of w. The output y is then of size batch_size by n_neurons, and in position (i,j) we have (for the mathy folks out there):

+

\[y_{i,j} = \sum_{k=1}^{n} x_{i,k} w_{k,j} + b_{j}\]

+

Or in code:

+
y[i,j] = sum([a * b for a,b in zip(x[i,:],w[j,:])]) + b[j]
+

The transpose is necessary because in the mathematical definition of the matrix product m @ n, the coefficient (i,j) is:

+
sum([a * b for a,b in zip(m[i,:],n[:,j])])
+

So the very basic operation we need is a matrix multiplication, as it’s what is hidden in the core of a neural net.

+
+
+

Matrix Multiplication from Scratch

+

Let’s write a function that computes the matrix product of two tensors, before we allow ourselves to use the PyTorch version of it. We will only use the indexing in PyTorch tensors:

+
+
import torch
+from torch import tensor
+
+

We’ll need three nested for loops: one for the row indices, one for the column indices, and one for the inner sum. ac and ar stand for number of columns of a and number of rows of a, respectively (the same convention is followed for b), and we make sure calculating the matrix product is possible by checking that a has as many columns as b has rows:

+
+
def matmul(a,b):
+    ar,ac = a.shape # n_rows * n_cols
+    br,bc = b.shape
+    assert ac==br
+    c = torch.zeros(ar, bc)
+    for i in range(ar):
+        for j in range(bc):
+            for k in range(ac): c[i,j] += a[i,k] * b[k,j]
+    return c
+
+

To test this out, we’ll pretend (using random matrices) that we’re working with a small batch of 5 MNIST images, flattened into 28×28 vectors, with linear model to turn them into 10 activations:

+
+
m1 = torch.randn(5,28*28)
+m2 = torch.randn(784,10)
+
+

Let’s time our function, using the Jupyter “magic” command %time:

+
+
%time t1=matmul(m1, m2)
+
+
CPU times: user 211 ms, sys: 504 µs, total: 212 ms
+Wall time: 211 ms
+
+
+

And see how that compares to PyTorch’s built-in @:

+
+
%timeit -n 20 t2=m1@m2
+
+
The slowest run took 9.18 times longer than the fastest. This could mean that an intermediate result is being cached.
+8.15 µs ± 9.07 µs per loop (mean ± std. dev. of 7 runs, 20 loops each)
+
+
+

As we can see, in Python three nested loops is a very bad idea! Python is a slow language, and this isn’t going to be very efficient. We see here that PyTorch is around 100,000 times faster than Python—and that’s before we even start using the GPU!

+

Where does this difference come from? PyTorch didn’t write its matrix multiplication in Python, but rather in C++ to make it fast. In general, whenever we do computations on tensors we will need to vectorize them so that we can take advantage of the speed of PyTorch, usually by using two techniques: elementwise arithmetic and broadcasting.

+
+
+

Elementwise Arithmetic

+

All the basic operators (+, -, *, /, >, <, ==) can be applied elementwise. That means if we write a+b for two tensors a and b that have the same shape, we will get a tensor composed of the sums the elements of a and b:

+
+
a = tensor([10., 6, -4])
+b = tensor([2., 8, 7])
+a + b
+
+
tensor([12., 14.,  3.])
+
+
+

The Booleans operators will return an array of Booleans:

+
+
a < b
+
+
tensor([False,  True,  True])
+
+
+

If we want to know if every element of a is less than the corresponding element in b, or if two tensors are equal, we need to combine those elementwise operations with torch.all:

+
+
(a < b).all(), (a==b).all()
+
+
(tensor(False), tensor(False))
+
+
+

Reduction operations like all(), sum() and mean() return tensors with only one element, called rank-0 tensors. If you want to convert this to a plain Python Boolean or number, you need to call .item():

+
+
(a + b).mean().item()
+
+
9.666666984558105
+
+
+

The elementwise operations work on tensors of any rank, as long as they have the same shape:

+
+
m = tensor([[1., 2, 3], [4,5,6], [7,8,9]])
+m*m
+
+
tensor([[ 1.,  4.,  9.],
+        [16., 25., 36.],
+        [49., 64., 81.]])
+
+
+

However you can’t perform elementwise operations on tensors that don’t have the same shape (unless they are broadcastable, as discussed in the next section):

+
m*tensor([[1., 2, 3], [4,5,6]])
+
---------------------------------------------------------------------------
+RuntimeError                              Traceback (most recent call last)
+Cell In [14], line 1
+----> 1 m*n
+
+RuntimeError: The size of tensor a (3) must match the size of tensor b (2) at non-singleton dimension 0
+

With elementwise arithmetic, we can remove one of our three nested loops: we can multiply the tensors that correspond to the i-th row of a and the j-th column of b before summing all the elements, which will speed things up because the inner loop will now be executed by PyTorch at C speed.

+

To access one column or row, we can simply write a[i,:] or b[:,j]. The : means take everything in that dimension. We could restrict this and take only a slice of that particular dimension by passing a range, like 1:5, instead of just :. In that case, we would take the elements in columns or rows 1 to 4 (the second number is noninclusive).

+

One simplification is that we can always omit a trailing colon, so a[i,:] can be abbreviated to a[i]. With all of that in mind, we can write a new version of our matrix multiplication:

+
+
def matmul(a,b):
+    ar,ac = a.shape
+    br,bc = b.shape
+    assert ac==br
+    c = torch.zeros(ar, bc)
+    for i in range(ar):
+        for j in range(bc): c[i,j] = (a[i] * b[:,j]).sum()
+    return c
+
+
+
%timeit -n 20 t3 = matmul(m1,m2)
+
+
257 µs ± 25.4 µs per loop (mean ± std. dev. of 7 runs, 20 loops each)
+
+
+

We’re already ~700 times faster, just by removing that inner for loop! And that’s just the beginning—with broadcasting we can remove another loop and get an even more important speed up.

+
+
+

Broadcasting

+

As we discussed in Chapter 4, broadcasting is a term introduced by the NumPy library that describes how tensors of different ranks are treated during arithmetic operations. For instance, it’s obvious there is no way to add a 3×3 matrix with a 4×5 matrix, but what if we want to add one scalar (which can be represented as a 1×1 tensor) with a matrix? Or a vector of size 3 with a 3×4 matrix? In both cases, we can find a way to make sense of this operation.

+

Broadcasting gives specific rules to codify when shapes are compatible when trying to do an elementwise operation, and how the tensor of the smaller shape is expanded to match the tensor of the bigger shape. It’s essential to master those rules if you want to be able to write code that executes quickly. In this section, we’ll expand our previous treatment of broadcasting to understand these rules.

+
+

Broadcasting with a scalar

+

Broadcasting with a scalar is the easiest type of broadcasting. When we have a tensor a and a scalar, we just imagine a tensor of the same shape as a filled with that scalar and perform the operation:

+
+
a = tensor([10., 6, -4])
+a > 0
+
+
tensor([ True,  True, False])
+
+
+

How are we able to do this comparison? 0 is being broadcast to have the same dimensions as a. Note that this is done without creating a tensor full of zeros in memory (that would be very inefficient).

+

This is very useful if you want to normalize your dataset by subtracting the mean (a scalar) from the entire data set (a matrix) and dividing by the standard deviation (another scalar):

+
+
m = tensor([[1., 2, 3], [4,5,6], [7,8,9]])
+(m - 5) / 2.73
+
+
tensor([[-1.4652, -1.0989, -0.7326],
+        [-0.3663,  0.0000,  0.3663],
+        [ 0.7326,  1.0989,  1.4652]])
+
+
+

What if have different means for each row of the matrix? in that case you will need to broadcast a vector to a matrix.

+
+
+

Broadcasting a vector to a matrix

+

We can broadcast a vector to a matrix as follows:

+
+
c = tensor([10.,20,30])
+m = tensor([[1., 2, 3], [4,5,6], [7,8,9]])
+m.shape,c.shape
+
+
(torch.Size([3, 3]), torch.Size([3]))
+
+
+
+
m + c
+
+
tensor([[11., 22., 33.],
+        [14., 25., 36.],
+        [17., 28., 39.]])
+
+
+

Here the elements of c are expanded to make three rows that match, making the operation possible. Again, PyTorch doesn’t actually create three copies of c in memory. This is done by the expand_as method behind the scenes:

+
+
c.expand_as(m)
+
+
tensor([[10., 20., 30.],
+        [10., 20., 30.],
+        [10., 20., 30.]])
+
+
+

If we look at the corresponding tensor, we can ask for its storage property (which shows the actual contents of the memory used for the tensor) to check there is no useless data stored:

+
+
t = c.expand_as(m)
+t.storage()
+
+
 10.0
+ 20.0
+ 30.0
+[torch.storage._TypedStorage(dtype=torch.float32, device=cpu) of size 3]
+
+
+

Even though the tensor officially has nine elements, only three scalars are stored in memory. This is possible thanks to the clever trick of giving that dimension a stride of 0 (which means that when PyTorch looks for the next row by adding the stride, it doesn’t move):

+
+
t.stride(), t.shape
+
+
((0, 1), torch.Size([3, 3]))
+
+
+

Since m is of size 3×3, there are two ways to do broadcasting. The fact it was done on the last dimension is a convention that comes from the rules of broadcasting and has nothing to do with the way we ordered our tensors. If instead we do this, we get the same result:

+
+
c + m
+
+
tensor([[11., 22., 33.],
+        [14., 25., 36.],
+        [17., 28., 39.]])
+
+
+

In fact, it’s only possible to broadcast a vector of size n with a matrix of size m by n:

+
+
c = tensor([10.,20,30])
+m = tensor([[1., 2, 3], [4,5,6]])
+c+m
+
+
tensor([[11., 22., 33.],
+        [14., 25., 36.]])
+
+
+

This won’t work:

+
c = tensor([10.,20])
+c+tensor([[1., 2, 3], [4,5,6]])
+
---------------------------------------------------------------------------
+RuntimeError                              Traceback (most recent call last)
+Cell In [26], line 3
+      1 c = tensor([10.,20])
+      2 m = tensor([[1., 2, 3], [4,5,6]])
+----> 3 c+m
+
+RuntimeError: The size of tensor a (2) must match the size of tensor b (3) at non-singleton dimension 1
+

If we want to broadcast in the other dimension, we have to change the shape of our vector to make it a 3×1 matrix. This is done with the unsqueeze method in PyTorch:

+
+
c = tensor([10.,20,30])
+m = tensor([[1., 2, 3], [4,5,6], [7,8,9]])
+c = c.unsqueeze(1)
+m.shape,c.shape
+
+
(torch.Size([3, 3]), torch.Size([3, 1]))
+
+
+

This time, c is expanded on the column side:

+
+
c+m
+
+
tensor([[11., 12., 13.],
+        [24., 25., 26.],
+        [37., 38., 39.]])
+
+
+

Like before, only three scalars are stored in memory:

+
+
t = c.expand_as(m)
+t.storage()
+
+
 10.0
+ 20.0
+ 30.0
+[torch.storage._TypedStorage(dtype=torch.float32, device=cpu) of size 3]
+
+
+

And the expanded tensor has the right shape because the column dimension has a stride of 0:

+
+
t.stride(), t.shape
+
+
((1, 0), torch.Size([3, 3]))
+
+
+

With broadcasting, by default if we need to add dimensions, they are added at the beginning. When we were broadcasting before, Pytorch was doing c.unsqueeze(0) behind the scenes:

+
+
c = tensor([10.,20,30])
+c.shape, c.unsqueeze(0).shape,c.unsqueeze(1).shape
+
+
(torch.Size([3]), torch.Size([1, 3]), torch.Size([3, 1]))
+
+
+

The unsqueeze command can be replaced by None indexing:

+
+
c.shape, c[None,:].shape,c[:,None].shape
+
+
(torch.Size([3]), torch.Size([1, 3]), torch.Size([3, 1]))
+
+
+

You can always omit trailing colons, and ... means all preceding dimensions:

+
+
c[None].shape,c[...,None].shape
+
+
(torch.Size([1, 3]), torch.Size([3, 1]))
+
+
+

With this, we can remove another for loop in our matrix multiplication function. Now, instead of multiplying a[i] with b[:,j], we can multiply a[i] with the whole matrix b using broadcasting, then sum the results:

+
+
def matmul(a,b):
+    ar,ac = a.shape
+    br,bc = b.shape
+    assert ac==br
+    c = torch.zeros(ar, bc)
+    for i in range(ar):
+#       c[i,j] = (a[i,:]          * b[:,j]).sum() # previous
+        c[i]   = (a[i  ].unsqueeze(-1) * b).sum(dim=0)
+    return c
+
+
+
%timeit -n 20 t4 = matmul(m1,m2)
+
+
43.9 µs ± 8.28 µs per loop (mean ± std. dev. of 7 runs, 20 loops each)
+
+
+

We’re now 3,700 times faster than our first implementation! Before we move on, let’s discuss the rules of broadcasting in a little more detail.

+
+
+

Broadcasting rules

+

When operating on two tensors, PyTorch compares their shapes elementwise. It starts with the trailing dimensions and works its way backward, adding 1 when it meets empty dimensions. Two dimensions are compatible when one of the following is true:

+
    +
  • They are equal.
  • +
  • One of them is 1, in which case that dimension is broadcast to make it the same as the other.
  • +
+

Arrays do not need to have the same number of dimensions. For example, if you have a 256×256×3 array of RGB values, and you want to scale each color in the image by a different value, you can multiply the image by a one-dimensional array with three values. Lining up the sizes of the trailing axes of these arrays according to the broadcast rules, shows that they are compatible:

+
Image  (3d tensor): 256 x 256 x 3
+Scale  (1d tensor):  (1)   (1)  3
+Result (3d tensor): 256 x 256 x 3
+

However, a 2D tensor of size 256×256 isn’t compatible with our image:

+
Image  (3d tensor): 256 x 256 x   3
+Scale  (2d tensor):  (1)  256 x 256
+Error
+

In our earlier examples we had with a 3×3 matrix and a vector of size 3, broadcasting was done on the rows:

+
Matrix (2d tensor):   3 x 3
+Vector (1d tensor): (1)   3
+Result (2d tensor):   3 x 3
+

As an exercise, try to determine what dimensions to add (and where) when you need to normalize a batch of images of size 64 x 3 x 256 x 256 with vectors of three elements (one for the mean and one for the standard deviation).

+

Another useful way of simplifying tensor manipulations is the use of Einstein summations convention.

+
+
+
+

Einstein Summation

+

Before using the PyTorch operation @ or torch.matmul, there is one last way we can implement matrix multiplication: Einstein summation (einsum). This is a compact representation for combining products and sums in a general way. We write an equation like this:

+
ik,kj -> ij
+

The lefthand side represents the operands dimensions, separated by commas. Here we have two tensors that each have two dimensions (i,k and k,j). The righthand side represents the result dimensions, so here we have a tensor with two dimensions i,j.

+

The rules of Einstein summation notation are as follows:

+
    +
  1. Repeated indices on the left side are implicitly summed over if they are not on the right side.
  2. +
  3. Each index can appear at most twice on the left side.
  4. +
  5. The unrepeated indices on the left side must appear on the right side.
  6. +
+

So in our example, since k is repeated, we sum over that index. In the end the formula represents the matrix obtained when we put in (i,j) the sum of all the coefficients (i,k) in the first tensor multiplied by the coefficients (k,j) in the second tensor… which is the matrix product! Here is how we can code this in PyTorch:

+
+
def matmul(a,b): return torch.einsum('ik,kj->ij', a, b)
+
+

Einstein summation is a very practical way of expressing operations involving indexing and sum of products. Note that you can have just one member on the lefthand side. For instance, this:

+
torch.einsum('ij->ji', a)
+

returns the transpose of the matrix a. You can also have three or more members. This:

+
torch.einsum('bi,ij,bj->b', a, b, c)
+

will return a vector of size b where the k-th coordinate is the sum of a[k,i] b[i,j] c[k,j]. This notation is particularly convenient when you have more dimensions because of batches. For example, if you have two batches of matrices and want to compute the matrix product per batch, you would could this:

+
torch.einsum('bik,bkj->bij', a, b)
+

Let’s go back to our new matmul implementation using einsum and look at its speed:

+
+
%timeit -n 20 t5 = matmul(m1,m2)
+
+
19 µs ± 13.2 µs per loop (mean ± std. dev. of 7 runs, 20 loops each)
+
+
+

As you can see, not only is it practical, but it’s very fast. einsum is often the fastest way to do custom operations in PyTorch, without diving into C++ and CUDA. (But it’s generally not as fast as carefully optimized CUDA code, as you see from the results in “Matrix Multiplication from Scratch”.)

+

Now that we know how to implement a matrix multiplication from scratch, we are ready to build our neural net—specifically its forward and backward passes—using just matrix multiplications.

+
+
+
+

17.2 The Forward and Backward Passes

+

As we saw in Chapter 4, to train a model, we will need to compute all the gradients of a given loss with respect to its parameters, which is known as the backward pass. The forward pass is where we compute the output of the model on a given input, based on the matrix products. As we define our first neural net, we will also delve into the problem of properly initializing the weights, which is crucial for making training start properly.

+
+

Defining and Initializing a Layer

+

We will take the example of a two-layer neural net first. As we’ve seen, one layer can be expressed as y = x @ w + b, with x our inputs, y our outputs, w the weights of the layer (which is of size number of inputs by number of neurons if we don’t transpose like before), and b is the bias vector:

+
+
def lin(x, w, b): return x @ w + b
+
+

We can stack the second layer on top of the first, but since mathematically the composition of two linear operations is another linear operation, this only makes sense if we put something nonlinear in the middle, called an activation function. As mentioned at the beginning of the chapter, in deep learning applications the activation function most commonly used is a ReLU, which returns the maximum of x and 0.

+

We won’t actually train our model in this chapter, so we’ll use random tensors for our inputs and targets. Let’s say our inputs are 200 vectors of size 100, which we group into one batch, and our targets are 200 random floats:

+
+
x = torch.randn(200, 100)
+y = torch.randn(200)
+
+

For our two-layer model we will need two weight matrices and two bias vectors. Let’s say we have a hidden size of 50 and the output size is 1 (for one of our inputs, the corresponding output is one float in this toy example). We initialize the weights randomly and the bias at zero:

+
+
w1 = torch.randn(100,50)
+b1 = torch.zeros(50)
+w2 = torch.randn(50,1)
+b2 = torch.zeros(1)
+
+

Then the result of our first layer is simply:

+
+
l1 = lin(x, w1, b1)
+l1.shape
+
+
torch.Size([200, 50])
+
+
+

Note that this formula works with our batch of inputs, and returns a batch of hidden state: l1 is a matrix of size 200 (our batch size) by 50 (our hidden size).

+

There is a problem with the way our model was initialized, however. To understand it, we need to look at the mean and standard deviation (std) of l1:

+
+
l1.mean(), l1.std()
+
+
(tensor(0.1381), tensor(9.8549))
+
+
+

The mean is close to zero, which is understandable since both our input and weight matrices have means close to zero. But the standard deviation, which represents how far away our activations go from the mean, went from 1 to 10. This is a really big problem because that’s with just one layer. Modern neural nets can have hundred of layers, so if each of them multiplies the scale of our activations by 10, by the end of the last layer we won’t have numbers representable by a computer.

+

Indeed, if we make just 50 multiplications between x and random matrices of size 100×100, we’ll have:

+
+
x = torch.randn(200, 100)
+for i in range(50): x = x @ torch.randn(100,100)
+x[0:5,0:5]
+
+
tensor([[nan, nan, nan, nan, nan],
+        [nan, nan, nan, nan, nan],
+        [nan, nan, nan, nan, nan],
+        [nan, nan, nan, nan, nan],
+        [nan, nan, nan, nan, nan]])
+
+
+

The result is nans everywhere. So maybe the scale of our matrix was too big, and we need to have smaller weights? But if we use too small weights, we will have the opposite problem—the scale of our activations will go from 1 to 0.1, and after 50 layers we’ll be left with zeros everywhere:

+
+
x = torch.randn(200, 100)
+for i in range(50): x = x @ (torch.randn(100,100) * 0.01)
+x[0:5,0:5]
+
+
tensor([[0., 0., 0., 0., 0.],
+        [0., 0., 0., 0., 0.],
+        [0., 0., 0., 0., 0.],
+        [0., 0., 0., 0., 0.],
+        [0., 0., 0., 0., 0.]])
+
+
+

So we have to scale our weight matrices exactly right so that the standard deviation of our activations stays at 1. We can compute the exact value to use mathematically, as illustrated by Xavier Glorot and Yoshua Bengio in “Understanding the Difficulty of Training Deep Feedforward Neural Networks”. The right scale for a given layer is \(1/\sqrt{n_{in}}\), where \(n_{in}\) represents the number of inputs.

+

In our case, if we have 100 inputs, we should scale our weight matrices by 0.1:

+
+
x = torch.randn(200, 100)
+for i in range(50): x = x @ (torch.randn(100,100) * 0.1)
+x[0:5,0:5]
+
+
tensor([[-0.1769, -0.0389,  0.5414,  0.5769,  0.1272],
+        [ 0.2133, -1.1071,  0.8511, -1.2352, -0.6003],
+        [ 0.4065, -2.1840,  2.3958, -2.3253, -0.9688],
+        [ 0.1720,  1.2012, -2.4649, -0.7765,  0.7338],
+        [-0.0977,  1.4870, -2.0249,  1.0367,  0.8047]])
+
+
+

Finally some numbers that are neither zeros nor nans! Notice how stable the scale of our activations is, even after those 50 fake layers:

+
+
x.std()
+
+
tensor(1.5285)
+
+
+

If you play a little bit with the value for scale you’ll notice that even a slight variation from 0.1 will get you either to very small or very large numbers, so initializing the weights properly is extremely important.

+

Let’s go back to our neural net. Since we messed a bit with our inputs, we need to redefine them:

+
+
x = torch.randn(200, 100)
+y = torch.randn(200)
+
+

And for our weights, we’ll use the right scale, which is known as Xavier initialization (or Glorot initialization):

+
+
from math import sqrt
+w1 = torch.randn(100,50) / sqrt(100)
+b1 = torch.zeros(50)
+w2 = torch.randn(50,1) / sqrt(50)
+b2 = torch.zeros(1)
+
+

Now if we compute the result of the first layer, we can check that the mean and standard deviation are under control:

+
+
l1 = lin(x, w1, b1)
+l1.mean(),l1.std()
+
+
(tensor(-0.0067), tensor(0.9904))
+
+
+

Very good. Now we need to go through a ReLU, so let’s define one. A ReLU removes the negatives and replaces them with zeros, which is another way of saying it clamps our tensor at zero:

+
+
def relu(x): return x.clamp_min(0.)
+
+

We pass our activations through this:

+
+
l2 = relu(l1)
+l2.mean(),l2.std()
+
+
(tensor(0.3906), tensor(0.5769))
+
+
+

And we’re back to square one: the mean of our activations has gone to 0.4 (which is understandable since we removed the negatives) and the std went down to 0.58. So like before, after a few layers we will probably wind up with zeros:

+
+
x = torch.randn(200, 100)
+for i in range(50): x = relu(x @ (torch.randn(100,100) * 0.1))
+x[0:5,0:5]
+
+
tensor([[1.7712e-08, 0.0000e+00, 1.7827e-09, 0.0000e+00, 4.7123e-09],
+        [1.6280e-08, 0.0000e+00, 3.4217e-09, 0.0000e+00, 4.2597e-09],
+        [1.7071e-08, 0.0000e+00, 5.9012e-09, 0.0000e+00, 5.1323e-09],
+        [2.7019e-08, 0.0000e+00, 2.2739e-09, 0.0000e+00, 6.4754e-09],
+        [1.7600e-08, 0.0000e+00, 2.7536e-09, 0.0000e+00, 4.0279e-09]])
+
+
+

This means our initialization wasn’t right. Why? At the time Glorot and Bengio wrote their article, the popular activation in a neural net was the hyperbolic tangent (tanh, which is the one they used), and that initialization doesn’t account for our ReLU. Fortunately, someone else has done the math for us and computed the right scale for us to use. In “Delving Deep into Rectifiers: Surpassing Human-Level Performance” (which we’ve seen before—it’s the article that introduced the ResNet), Kaiming He et al. show that we should use the following scale instead: \(\sqrt{2 / n_{in}}\), where \(n_{in}\) is the number of inputs of our model. Let’s see what this gives us:

+
+
x = torch.randn(200, 100)
+for i in range(50): x = relu(x @ (torch.randn(100,100) * sqrt(2/100)))
+x[0:5,0:5]
+
+
tensor([[0.2880, 0.2231, 0.0000, 1.4916, 2.1533],
+        [0.2511, 0.1750, 0.0000, 1.3327, 1.8034],
+        [0.2895, 0.1873, 0.0000, 0.8633, 1.2818],
+        [0.2071, 0.1811, 0.0000, 1.4611, 2.0061],
+        [0.4338, 0.3052, 0.0101, 1.4161, 2.0849]])
+
+
+

That’s better: our numbers aren’t all zeroed this time. So let’s go back to the definition of our neural net and use this initialization (which is named Kaiming initialization or He initialization):

+
+
x = torch.randn(200, 100)
+y = torch.randn(200)
+
+
+
w1 = torch.randn(100,50) * sqrt(2 / 100)
+b1 = torch.zeros(50)
+w2 = torch.randn(50,1) * sqrt(2 / 50)
+b2 = torch.zeros(1)
+
+

Let’s look at the scale of our activations after going through the first linear layer and ReLU:

+
+
l1 = lin(x, w1, b1)
+l2 = relu(l1)
+l2.mean(), l2.std()
+
+
(tensor(0.5656), tensor(0.8275))
+
+
+

Much better! Now that our weights are properly initialized, we can define our whole model:

+
+
def model(x):
+    l1 = lin(x, w1, b1)
+    l2 = relu(l1)
+    l3 = lin(l2, w2, b2)
+    return l3
+
+

This is the forward pass. Now all that’s left to do is to compare our output to the labels we have (random numbers, in this example) with a loss function. In this case, we will use the mean squared error. (It’s a toy problem, and this is the easiest loss function to use for what is next, computing the gradients.)

+

The only subtlety is that our outputs and targets don’t have exactly the same shape—after going though the model, we get an output like this:

+
+
out = model(x)
+out.shape
+
+
torch.Size([200, 1])
+
+
+

To get rid of this trailing 1 dimension, we use the squeeze function:

+
+
def mse(output, targ): return (output.squeeze(-1) - targ).pow(2).mean()
+
+

And now we are ready to compute our loss:

+
+
loss = mse(out, y)
+
+

That’s all for the forward pass—let’s now look at the gradients.

+
+
+

Gradients and the Backward Pass

+

We’ve seen that PyTorch computes all the gradients we need with a magic call to loss.backward, but let’s explore what’s happening behind the scenes.

+

Now comes the part where we need to compute the gradients of the loss with respect to all the weights of our model, so all the floats in w1, b1, w2, and b2. For this, we will need a bit of math—specifically the chain rule. This is the rule of calculus that guides how we can compute the derivative of a composed function:

+

\[(g \circ f)'(x) = g'(f(x)) f'(x)\]

+
+

j: I find this notation very hard to wrap my head around, so instead I like to think of it as: if y = g(u) and u=f(x); then dy/dx = dy/du * du/dx. The two notations mean the same thing, so use whatever works for you.

+
+

Our loss is a big composition of different functions: mean squared error (which is in turn the composition of a mean and a power of two), the second linear layer, a ReLU and the first linear layer. For instance, if we want the gradients of the loss with respect to b2 and our loss is defined by:

+
loss = mse(out,y) = mse(lin(l2, w2, b2), y)
+

The chain rule tells us that we have: \[\frac{\text{d} loss}{\text{d} b_{2}} = \frac{\text{d} loss}{\text{d} out} \times \frac{\text{d} out}{\text{d} b_{2}} = \frac{\text{d}}{\text{d} out} mse(out, y) \times \frac{\text{d}}{\text{d} b_{2}} lin(l_{2}, w_{2}, b_{2})\]

+

To compute the gradients of the loss with respect to \(b_{2}\), we first need the gradients of the loss with respect to our output \(out\). It’s the same if we want the gradients of the loss with respect to \(w_{2}\). Then, to get the gradients of the loss with respect to \(b_{1}\) or \(w_{1}\), we will need the gradients of the loss with respect to \(l_{1}\), which in turn requires the gradients of the loss with respect to \(l_{2}\), which will need the gradients of the loss with respect to \(out\).

+

So to compute all the gradients we need for the update, we need to begin from the output of the model and work our way backward, one layer after the other—which is why this step is known as backpropagation. We can automate it by having each function we implemented (relu, mse, lin) provide its backward step: that is, how to derive the gradients of the loss with respect to the input(s) from the gradients of the loss with respect to the output.

+

Here we populate those gradients in an attribute of each tensor, a bit like PyTorch does with .grad.

+

The first are the gradients of the loss with respect to the output of our model (which is the input of the loss function). We undo the squeeze we did in mse, then we use the formula that gives us the derivative of \(x^{2}\): \(2x\). The derivative of the mean is just \(1/n\) where \(n\) is the number of elements in our input:

+
+
def mse_grad(inp, targ): 
+    # grad of loss with respect to output of previous layer
+    inp.g = 2. * (inp.squeeze() - targ).unsqueeze(-1) / inp.shape[0]
+
+

For the gradients of the ReLU and our linear layer, we use the gradients of the loss with respect to the output (in out.g) and apply the chain rule to compute the gradients of the loss with respect to the input (in inp.g). The chain rule tells us that inp.g = relu'(inp) * out.g. The derivative of relu is either 0 (when inputs are negative) or 1 (when inputs are positive), so this gives us:

+
+
def relu_grad(inp, out):
+    # grad of relu with respect to input activations
+    inp.g = (inp>0).float() * out.g
+
+

The scheme is the same to compute the gradients of the loss with respect to the inputs, weights, and bias in the linear layer:

+
+
def lin_grad(inp, out, w, b):
+    # grad of matmul with respect to input
+    inp.g = out.g @ w.t()
+    w.g = inp.t() @ out.g
+    b.g = out.g.sum(0)
+
+

We won’t linger on the mathematical formulas that define them since they’re not important for our purposes, but do check out Khan Academy’s excellent calculus lessons if you’re interested in this topic.

+
+ +
+

End sidebar

+

Once we have have defined those functions, we can use them to write the backward pass. Since each gradient is automatically populated in the right tensor, we don’t need to store the results of those _grad functions anywhere—we just need to execute them in the reverse order of the forward pass, to make sure that in each function out.g exists:

+
+
def forward_and_backward(inp, targ):
+    # forward pass:
+    l1 = inp @ w1 + b1
+    l2 = relu(l1)
+    out = l2 @ w2 + b2
+    # we don't actually need the loss in backward!
+    loss = mse(out, targ)
+    
+    # backward pass:
+    mse_grad(out, targ)
+    lin_grad(l2, out, w2, b2)
+    relu_grad(l1, l2)
+    lin_grad(inp, l1, w1, b1)
+
+

And now we can access the gradients of our model parameters in w1.g, b1.g, w2.g, and b2.g.

+

We have successfully defined our model—now let’s make it a bit more like a PyTorch module.

+
+
+

Refactoring the Model

+

The three functions we used have two associated functions: a forward pass and a backward pass. Instead of writing them separately, we can create a class to wrap them together. That class can also store the inputs and outputs for the backward pass. This way, we will just have to call backward:

+
+
class Relu():
+    def __call__(self, inp):
+        self.inp = inp
+        self.out = inp.clamp_min(0.)
+        return self.out
+    
+    def backward(self): self.inp.g = (self.inp>0).float() * self.out.g
+
+

__call__ is a magic name in Python that will make our class callable. This is what will be executed when we type y = Relu()(x). We can do the same for our linear layer and the MSE loss:

+
+
class Lin():
+    def __init__(self, w, b): self.w,self.b = w,b
+        
+    def __call__(self, inp):
+        self.inp = inp
+        self.out = inp@self.w + self.b
+        return self.out
+    
+    def backward(self):
+        self.inp.g = self.out.g @ self.w.t()
+        self.w.g = self.inp.t() @ self.out.g
+        self.b.g = self.out.g.sum(0)
+
+
+
class Mse():
+    def __call__(self, inp, targ):
+        self.inp = inp
+        self.targ = targ
+        self.out = (inp.squeeze() - targ).pow(2).mean()
+        return self.out
+    
+    def backward(self):
+        x = (self.inp.squeeze()-self.targ).unsqueeze(-1)
+        self.inp.g = 2.*x/self.targ.shape[0]
+
+

Then we can put everything in a model that we initiate with our tensors w1, b1, w2, b2:

+
+
class Model():
+    def __init__(self, w1, b1, w2, b2):
+        self.layers = [Lin(w1,b1), Relu(), Lin(w2,b2)]
+        self.loss = Mse()
+        
+    def __call__(self, x, targ):
+        for l in self.layers: x = l(x)
+        return self.loss(x, targ)
+    
+    def backward(self):
+        self.loss.backward()
+        for l in reversed(self.layers): l.backward()
+
+

What is really nice about this refactoring and registering things as layers of our model is that the forward and backward passes are now really easy to write. If we want to instantiate our model, we just need to write:

+
+
model = Model(w1, b1, w2, b2)
+
+

The forward pass can then be executed with:

+
+
loss = model(x, y)
+
+

And the backward pass with:

+
+
model.backward()
+
+
+
+

Going to PyTorch

+

The Lin, Mse and Relu classes we wrote have a lot in common, so we could make them all inherit from the same base class:

+
+
class LayerFunction():
+    def __call__(self, *args):
+        self.args = args
+        self.out = self.forward(*args)
+        return self.out
+    
+    def forward(self):  raise Exception('not implemented')
+    def bwd(self):      raise Exception('not implemented')
+    def backward(self): self.bwd(self.out, *self.args)
+
+

Then we just need to implement forward and bwd in each of our subclasses:

+
+
class Relu(LayerFunction):
+    def forward(self, inp): return inp.clamp_min(0.)
+    def bwd(self, out, inp): inp.g = (inp>0).float() * out.g
+
+
+
class Lin(LayerFunction):
+    def __init__(self, w, b): self.w,self.b = w,b
+        
+    def forward(self, inp): return inp@self.w + self.b
+    
+    def bwd(self, out, inp):
+        inp.g = out.g @ self.w.t()
+        self.w.g = inp.t() @ self.out.g
+        self.b.g = out.g.sum(0)
+
+
+
class Mse(LayerFunction):
+    def forward (self, inp, targ): return (inp.squeeze() - targ).pow(2).mean()
+    def bwd(self, out, inp, targ): 
+        inp.g = 2*(inp.squeeze()-targ).unsqueeze(-1) / targ.shape[0]
+
+

The rest of our model can be the same as before. This is getting closer and closer to what PyTorch does. Each basic function we need to differentiate is written as a torch.autograd.Function object that has a forward and a backward method. PyTorch will then keep trace of any computation we do to be able to properly run the backward pass, unless we set the requires_grad attribute of our tensors to False.

+

Writing one of these is (almost) as easy as writing our original classes. The difference is that we choose what to save and what to put in a context variable (so that we make sure we don’t save anything we don’t need), and we return the gradients in the backward pass. It’s very rare to have to write your own Function but if you ever need something exotic or want to mess with the gradients of a regular function, here is how to write one:

+
+
from torch.autograd import Function
+
+class MyRelu(Function):
+    @staticmethod
+    def forward(ctx, i):
+        result = i.clamp_min(0.)
+        ctx.save_for_backward(i)
+        return result
+    
+    @staticmethod
+    def backward(ctx, grad_output):
+        i, = ctx.saved_tensors
+        return grad_output * (i>0).float()
+
+

The structure used to build a more complex model that takes advantage of those Functions is a torch.nn.Module. This is the base structure for all models, and all the neural nets you have seen up until now inherited from that class. It mostly helps to register all the trainable parameters, which as we’ve seen can be used in the training loop.

+

To implement an nn.Module you just need to:

+
    +
  • Make sure the superclass __init__ is called first when you initialize it.
  • +
  • Define any parameters of the model as attributes with nn.Parameter.
  • +
  • Define a forward function that returns the output of your model.
  • +
+

As an example, here is the linear layer from scratch:

+
+
import torch.nn as nn
+
+class LinearLayer(nn.Module):
+    def __init__(self, n_in, n_out):
+        super().__init__()
+        self.weight = nn.Parameter(torch.randn(n_out, n_in) * sqrt(2/n_in))
+        self.bias = nn.Parameter(torch.zeros(n_out))
+    
+    def forward(self, x): return x @ self.weight.t() + self.bias
+
+

As you see, this class automatically keeps track of what parameters have been defined:

+
+
lin = LinearLayer(10,2)
+p1,p2 = lin.parameters()
+p1.shape,p2.shape
+
+
(torch.Size([2, 10]), torch.Size([2]))
+
+
+

It is thanks to this feature of nn.Module that we can just say opt.step() and have an optimizer loop through the parameters and update each one.

+

Note that in PyTorch, the weights are stored as an n_out x n_in matrix, which is why we have the transpose in the forward pass.

+

By using the linear layer from PyTorch (which uses the Kaiming initialization as well), the model we have been building up during this chapter can be written like this:

+
+
class Model(nn.Module):
+    def __init__(self, n_in, nh, n_out):
+        super().__init__()
+        self.layers = nn.Sequential(
+            nn.Linear(n_in,nh), nn.ReLU(), nn.Linear(nh,n_out))
+        self.loss = mse
+        
+    def forward(self, x, targ): return self.loss(self.layers(x).squeeze(), targ)
+
+

In the last chapter, we will start from such a model and see how to build a training loop from scratch and refactor it to what we’ve been using in previous chapters.

+
+
+
+

17.3 Conclusion

+

In this chapter we explored the foundations of deep learning, beginning with matrix multiplication and moving on to implementing the forward and backward passes of a neural net from scratch. We then refactored our code to show how PyTorch works beneath the hood.

+

Here are a few things to remember:

+
    +
  • A neural net is basically a bunch of matrix multiplications with nonlinearities in between.
  • +
  • Python is slow, so to write fast code we have to vectorize it and take advantage of techniques such as elementwise arithmetic and broadcasting.
  • +
  • Two tensors are broadcastable if the dimensions starting from the end and going backward match (if they are the same, or one of them is 1). To make tensors broadcastable, we may need to add dimensions of size 1 with unsqueeze or a None index.
  • +
  • Properly initializing a neural net is crucial to get training started. Kaiming initialization should be used when we have ReLU nonlinearities.
  • +
  • The backward pass is the chain rule applied multiple times, computing the gradients from the output of our model and going back, one layer at a time.
  • +
  • When subclassing nn.Module (if not using fastai’s Module) we have to call the superclass __init__ method in our __init__ method and we have to define a forward function that takes an input and returns the desired result.
  • +
+
+
+

17.4 Questionnaire

+
    +
  1. Write the Python code to implement a single neuron.
  2. +
  3. Write the Python code to implement ReLU.
  4. +
  5. Write the Python code for a dense layer in terms of matrix multiplication.
  6. +
  7. Write the Python code for a dense layer in plain Python (that is, with list comprehensions and functionality built into Python).
  8. +
  9. What is the “hidden size” of a layer?
  10. +
  11. What does the t method do in PyTorch?
  12. +
  13. Why is matrix multiplication written in plain Python very slow?
  14. +
  15. In matmul, why is ac==br?
  16. +
  17. In Jupyter Notebook, how do you measure the time taken for a single cell to execute?
  18. +
  19. What is “elementwise arithmetic”?
  20. +
  21. Write the PyTorch code to test whether every element of a is greater than the corresponding element of b.
  22. +
  23. What is a rank-0 tensor? How do you convert it to a plain Python data type?
  24. +
  25. What does this return, and why? tensor([1,2]) + tensor([1])
  26. +
  27. What does this return, and why? tensor([1,2]) + tensor([1,2,3])
  28. +
  29. How does elementwise arithmetic help us speed up matmul?
  30. +
  31. What are the broadcasting rules?
  32. +
  33. What is expand_as? Show an example of how it can be used to match the results of broadcasting.
  34. +
  35. How does unsqueeze help us to solve certain broadcasting problems?
  36. +
  37. How can we use indexing to do the same operation as unsqueeze?
  38. +
  39. How do we show the actual contents of the memory used for a tensor?
  40. +
  41. When adding a vector of size 3 to a matrix of size 3×3, are the elements of the vector added to each row or each column of the matrix? (Be sure to check your answer by running this code in a notebook.)
  42. +
  43. Do broadcasting and expand_as result in increased memory use? Why or why not?
  44. +
  45. Implement matmul using Einstein summation.
  46. +
  47. What does a repeated index letter represent on the left-hand side of einsum?
  48. +
  49. What are the three rules of Einstein summation notation? Why?
  50. +
  51. What are the forward pass and backward pass of a neural network?
  52. +
  53. Why do we need to store some of the activations calculated for intermediate layers in the forward pass?
  54. +
  55. What is the downside of having activations with a standard deviation too far away from 1?
  56. +
  57. How can weight initialization help avoid this problem?
  58. +
  59. What is the formula to initialize weights such that we get a standard deviation of 1 for a plain linear layer, and for a linear layer followed by ReLU?
  60. +
  61. Why do we sometimes have to use the squeeze method in loss functions?
  62. +
  63. What does the argument to the squeeze method do? Why might it be important to include this argument, even though PyTorch does not require it?
  64. +
  65. What is the “chain rule”? Show the equation in either of the two forms presented in this chapter.
  66. +
  67. Show how to calculate the gradients of mse(lin(l2, w2, b2), y) using the chain rule.
  68. +
  69. What is the gradient of ReLU? Show it in math or code. (You shouldn’t need to commit this to memory—try to figure it using your knowledge of the shape of the function.)
  70. +
  71. In what order do we need to call the *_grad functions in the backward pass? Why?
  72. +
  73. What is __call__?
  74. +
  75. What methods must we implement when writing a torch.autograd.Function?
  76. +
  77. Write nn.Linear from scratch, and test it works.
  78. +
  79. What is the difference between nn.Module and fastai’s Module?
  80. +
+
+

Further Research

+
    +
  1. Implement ReLU as a torch.autograd.Function and train a model with it.
  2. +
  3. If you are mathematically inclined, find out what the gradients of a linear layer are in mathematical notation. Map that to the implementation we saw in this chapter.
  4. +
  5. Learn about the unfold method in PyTorch, and use it along with matrix multiplication to implement your own 2D convolution function. Then train a CNN that uses it.
  6. +
  7. Implement everything in this chapter using NumPy instead of PyTorch.
  8. +
+ + +
+
+ +
+ + +
+ + + + + \ No newline at end of file diff --git a/images/0_jupyter.png b/images/0_jupyter.png new file mode 100644 index 0000000000000000000000000000000000000000..200ca4a105dd0f2909ab64229d6bd5d82b3b511a GIT binary patch literal 110707 zcmb5W1yok;7B%|P2ns0O0*Z);bVvy*h=PP7-7Vc65`vTnh=58e-AK1ccXuNp-O~Ts z=lth<=Z-tZ9pipOhMzC6-@Tt_J!{Q1=UneQ`R7ts@Tl-mDAX0{Cyx|SC`@A%3cVE< z8(yKj`n&`F!nBi+eu)eJx#JoHA}`xNRIq^wI{fKMAwssAF$wk&>{^_CHd~r=dPed zA|8~?7?>!jaFta4fdbnTa_vW0=uaNFZu*g_U1#u%nvC5&D;QLqdCWM-DLC64c8zkESQ-NQYM z^H^!L$e56t?^ojL{WQ5|h0K??B_2M!Dv>B`q8$FuEs(x(z+o>iSP~4=d?GNU$C&*kT*`*LMkc1sy51&m6WFVR{=?ks6PH6r?NAe^0~2l)`?J8BCD zCHH0NQdSJ!YwvoY99v<|PZ^hQ*tvXPVi=ZjwdCF*>0}T)iP2eAWIz_?{Q9igKme0q z{mM*7#LZ^{E;~28RM@J{k5|ho%ikm?Yl?=}SP~r9Q%w9I$^WBb|AyUsKY8%SYT1oO z{rklqKi7JOsTD9RMt9FB=Mp@`CR}X$cqfWglPdD|`wjUEJ&3Fuw{E>CF&|B~Y}4Fd zFP$#5o|S-qO32F-g;Mh`77uGN-MDf1Lnv#oZQQE1Gmh761Oi|%OF2y`>s8fG+nuuV za?;n+LCHi!M0LO0KW#2k@L5gC*xGX4RWJEv&Ntm#^53v1Ec)Yfr`1%Y@9qF$R^X?~ zSnSz1&Xueh(&V_B4~Kb}1oSt*Gx~+G+p}vHSqqDPxUYM&*WpcO+r0~VgXcKLPqDFV zmbVztG0-_PSXuDKwA*_;k8thO82Piqb-8>~_0eTwRq4^ilxG?krJ$1TAzkWTca9nSza9EWm@y8=&C8DNoPw+Z#9V<3dt#KE8^XAR- z&5M3HvBt^Cv#|I2f464W#)^aC67tE9-U&^`|7QslU&ZAnncfeQHaxFj+OxdY^%i5P z%(Xu#C=A>CL3j3M=4$MlxDFlJ3h#x1y^inSaK84}$4b$AL{SZ95zAKz7%40F4R=Ur z@{?=g_F+1IRwCiC#3i?v)Ak!Bm9Kj(E?xU3E&lE6xAs{NaPb$f*h$L@1iKx+o6)Pu zVHd8jti)a4xBl|g*!VsBVoAu|yB%ai1>Hq*MeW7dgki;cJNW4fC0|lUwe(I7H*ej% ziRI)Ko9HYv*?9CgIRmay}n}Se|?wY-NH6& zPP$h3F4NxM%ccMHpJnR%dQHLrTY=<3;)*rXT?|?70wK|lB4V@>!)(jwnC!SpQl)BF zB}zZ~bSe}Lh>nC^H+GgZ>J>KmLeP~StBQ|Wp(dLvIeO-osl(}#jHz6&w#_h5IJmuY z8*M`rmz+B@nK7H}(eaf>J4$TiVGLo7$&Krc5%GS_z1q^+vv1T(FD0(Zw{(P`qLX$R z#4eCm$&)lDWqlM0|4@CRG^7*AJ$~2Z;((nC0!T9P*Lh2@NMO`Bmy6-VLdmAv*H~_g zF&>mrcf7^rgvG_hrXQyLe|NjZ;Hc^LCO^JRBS7ShPtKmNQ;*(Z#N8f!H^rbe0!4C9 z>kF(7(Y0$o52wAl2Qpq7#Rbx%{nxg!bWng{vkN*ky^T)kNs_Np@>r{0*{5xr&VJHBqk7_ck0J)JLT}d$AZO z*N4$?RJq;Jab9Wjltb9nowd-}y{ z($dniJxLGOrfU;K+z!HHVwUr-xNY6Mdp8vFP`*LyHP7RfTSIx;Rw02O)g3l=m%5A0 zhS}%l=h4)|Z}ag*Z`NMK+bwnd9$g%FfLkV@6Apa;p76cMflAm>wd+2*d2#4k^gZpc z+|?f@y*`THp9->VuC6`{AfQF5RM=htq+ z;hh$yY_;Mx700F!N|vCXxtf(IKraszNE8(nQCo+HX|HnBQ0}MO&3=ANco>VpYnt@9u7oy8R+#X+%}M#Jqg|zEl_7 z`)!9m14$06Lx=9#UQWfY2f5IjE_fgTq$#9GIyrpqs-YKNj`uounfGdjB4-L4bhY$f zSjGG$7F%3bxf#EpD?_Y4d7j;x1lL!_hm<31U(P%4YveX!Y?$PIb6~ z?jgd3v%*mHEb{J?hen6Ye&|EbRQjL4`OT&>FK%!hgPV{pjoVmWspSci{>peD)w;FC zh4z3RT8RrIx9n5gmTcB_iu^KOLK2ec2OSC?9Q+2%z}g!UI+x>`%FL^L zeaQ8{e*NmHaGGi{^>qK<1JE0qL-6dRHoj(H^sE#<^VB%ZP;pZiApC^cRmf6e$0&;S4 z!X~7XSsls=rM6d6LXyJlPk%Tm6r*&Ml$6dcF1?jbR!~-q*QRSWKi*N^X{Pt;DX~yL z-dkzdTj?Jyx4UI&X&J?)8o_1QCg5Qz&_LJW{C76M?(Uq~g?E*4cRbB1kJXg$utf>P zDZS_4dfl%=oThy@;LtsM@&xw^HQz$Z2PX50vJYXjLWSm|T=$(eWF{*dCk=~j5IA8u^zWM#F>({*jDK3>GNI*7@he1>{-Z;S{x;I72Zn1;Xs57qdA)&}G zxP^_^uljux;RXA(kplTu`{kZD@5Rnz(&AnJ&=t2Co&MbhjQjrfi`0q!vnPZlNe=^d zPItSf2QBXJdTu!pQ&PT5HSI_cOE^C}A$PEY3i8d1QSR*$)nbGvtMQ9yo-&! zQ;uc4hDLN!s9IiDmdJvak&yujG5}(Zn1bTT*ZU439q(Xg5X=F%%VmF1IaH!3l!|vQ zEy0sfMC2>{pb)0XlRsK&!R(i1e~UjB!Tr(=_V7C z?_6Urb+bNK?BCy?v}3r92`X}TTbSPWB#L8Xzq<38&qD9yV7((=gj!iyS?!0(Y@;owR3g^}Pg=^IHr4=4+WulxLa@u#({?u&s(lAKi+=gvYG+1xCzX~-&kgFCM zU9lMZ!I_$;T^nCI<%+MZtxd+J@?fd!D_WWBKC7JA8BdmSp3$$stEUhPPQRTu0{Exh zBjG|t4y&(H#+mBE86Kunk$u20%RhGx%Oj%SeI#%5dJaNJcR;g65B|qVs4jHE6%j zpM8Wk^y9P1t2-4&#SRLE?`yt|OKMl}8aPH@jkCX7wAhiOTTI$WwpB2lnzGEoj(XM8 zFaAwpOoF4_SKZ>A04)w@w8UcE`D}mqX!_#ZNoxG|%MVvyJmFPGHPZRNkbQ1gzL3aL z;^2?cZ20bIrt!KIt5a>}pm5l+{Hx1o+HbyY11{YHmB7$YLxAPN$IB@lF`T||KDZ28 zh^9OaHDTx8q?*!*xJCgkPswC`mGv<^oapsH`kUZje7A$OSvb9tBIIt~3w3WWG%6hd zX_yRU$M%NlHoWD8efu+%6Ab&Dl$2DpKcp@bFB}W-?nR!Kh#yf|S()|Df^^O4&NKaL zaxLdK>FF$S{8n9lmxz}KGKh8Bi3*);+C1Hb9M^Q<<_0pAf=j18Kg)?8`MK`@`HjR3 zHNPc_qW=5Z>DgK6%*SdsIq}sIU&e#q8!sXDD1{ueZA1X7!v#?Su6ybIR)R4G#L z9dSEQRmXp_P%>Zd58`%sumAP@JBx#kfuUOM%IkH0wDgq@4<&ZCM+}MXn@WKmk}2s# zTm|e^gWtbTgX)Zlg*6L>8-iQ_P(JDk6_3tJ-*<>g9D4c$jZ&|bzMDoJG4;#6DYWR^ zCWS~50JhO)fVNUq)UO_~@gb~^Noc~v_>S7(ap zm7!|g)~w*Eudm~Qfln(k>s5|~0tp#lN#pUuwb6%wPH^$?l3^JhJ$_sOHzNFr|8wUT5w~dA;%zwb zsPO3MCa;SV?Vmq?BKP_t?KzF8JB2r=ev<&EO;@}~a54*ls`#B(*$)(=ge!}FH8u4? zg@i;e2@N6!_T`!5{ne(^(*vtg!*()g4&UbG-2*J~yQo{#E~XYRE+Z4u_VzXd7gq!p zKAAvA_vY#NI$$&?l=DkVQc!n}W&`MHN_30WDETdEez$#W=NK*$G}*Z7Q$B|pZOd{4KY z{}t*L<*l3?>6Gm;jpLtz z*1yvxPU~a5u*lHi3CeGsJl4}=JUiY`d6}W;7ZAX0Gxv)|GgJtw=Iht2wPy#PcWEp;8fN%HlS-ye;tPljzY@yo=DQzfmkcz&<@K7*cJJ}6h-?^3RyM5;O5 z+R~CJ9m%}6K2BaVY98`sVP&Nikltwj9c)gq93){~JKk=wXd6 zrB>5nqvp(PY#qx@5yh1+51x*ziph_q<*5{)dj|&Mj+IyhH|jA!ZP?qh=aEf;NC31G z9ue^qauiKT3JYFbs?GM?V+a%qAxAc3qXq}}L>8`@$8G4j zZeBumJ^9J;c&Sx$W267YN$o{@LDi>EpL&1aJh{@fj&wvTQ`JJeW1k)h z?|JGxF*&JPXmIIX)fPIkWxI==80P+w)I25+o<7CX_Sh%wPnFegjkrlLez8{6?R+q5 z42g^oO6oV~?YST3qY>3^hl?W@LYq|$aGa4wwb*Q!FZE(c>>>#^-TmV1P%?4<`zI}Q zbN(+13JPnJmBTGDW2IK~@DCNXXyNX|bcK|_pddzQB#@H@r;!U1Kvh*0oXuau!=JiE zPdZu{@h)A`t@B26F)EuVv+*Unt7bjlbOou2pR_&S5&5udRxG&O)hf63pPA7~PDw#B znoeaZ)TdVH2UW|g8Q_1D;1p|AyMBZNWOux03dr(`4ki}A)s*>~K0K!1+qa8jgY36& zzk@10Gdo)kb+O@_bfij^bHP+b)cRPl zKBU4QX2W4<7}ylUGU7}0Gk_F$EGJ?h0YbHC-kNQ2f#st`e-82S+m}#u23AE6;NQ!1 z`8V+*ZdAPGg?5Yky!OlTkcB#M=-qWNYlgE`^*d@O&F+fDr4|@ zz$CSEb~r6md=7}l1&Tav3BO6t^_sH-b!bDo1FteYdGaI?daN&y?MmJ!Sv$=>AM(A; zcC*N2-8V|n{N7&HYQ?s!?a)k+2TuZ@#TW-fRIXNaTgHpD^cQIasQo{K2z3Ap5!(5g zAAqo_Irq(*{$GWh82x4-sWusKQSQISizrqffSu{#3B48XjDB5eGSb@{mH8^C4OVTm z)GFa2v((U9IQ#?Su;keT*nhN;&xLCMCEpUEi;0P)s4GEX#uvxI!J+PlVr6U42S{MF z#k*AwIwpLLCd#1Xg|ZbPe zKICgZJ=&!d^Av`H%2#t%icd(m6hQC!KuPJo{jzsf)}8sL(D{$bTDp+ez6iTSK;uTy zOiD>9?d&WNOm;WfYPzPJZW!rU+%~Im9sr$nwB1Y}YEBEtl;m-JdprKUd-qV#_BFs! zj$Lvo#34zQOLz|5G)g^H1+D;Of>YVzy1R!5q;WYpxvJ{w(R^JDv!QI=!;Q&-Y*k|K zrcmk^0MMaNYq0AU34oj8#+Ck(z%Zf3S3` zc6b;vscOCs8X%8kcq8xiGd8oc46B->#gg3OQ%IDbfI1CWYxWuY6SB66b4xCMAuF$D zZZ)r#54{35E*0RQOoHfFpw0_*8?X^zVQpxn-|E0dbntM$ zz*lRGtj7D|ssdPRh@)>e(GpsO$h$|0pC$m7%T_HKDYHr09?eeN-|f#<J=WV>C-W=NgER#ypU@a8sqE8rNXkaj5 zLtSCNBJqh`6VeIvR(8uh4AFPh7diIaAR9VwRv*eMeeC)wL`+KhQQsf~X&BQ2LQC5{ zQ#Lm@tqklMfnZ6MrRI_4maKi9#VTA{U#sE z)ig60G#JiN=MNZGM+lu+fASHiy8tWF#C@>|(9(K(EH{jGm|1+?>F>g+$EF*K7^v?S>-R)$>u37NXL!oe)STUz`CNB!UzkSMezm5_wk$bzqKmEgQz zhttxuHd-VNCBM6yu;t?PVt-g0SdHE!H!Wygx3{)9&T}Di(|etALMM}|oTv5Z(W5OW z!%Hrf_^uv6h61%mGq%6gKq!QH-|A4Uy&Dk!_Q3(4k9XIPeaDenjTWjIMWv5`6t>#$ z)uKx5;-aD+0VJa2GQfq(IoruUZC{}YMXoQjx^*9cXi)*_$KNL&3ZX>=){^_1J zGY`)IbWzX<{Z`WvWnp3IzATP(wiV>|lVlId!()OPGZ}cUU@phe*ti=NCnjL*jIvYJjv6lHW|z$MM1t@=#`>(a6LQuy|IVm zf->ABd#RF{naqMmM@QEr>t@Mo5k!8^(m-N_n{RD*jlZI`wUt0q37F+~kSKXy4{(Ua zkn=g)pB+2Q8+k$%bBBuSzT3&qrcu^2YcuC}SGM!q!tr2!cV~yI#-Zv{>@y(Ou+8^x z+TN)%&!bk%Q2b7_x}aptRO)~L9q3k9w_38sJI_e2UGss%mnN6c#r;<=&+G*xb)hM3 z!2Xbvnwpyf06c4XojC+h^LZP#NB2T}Yq_oSvcAfG0>uQMcfbLDAzv*=vNUEbj9#n@ zct9FFJ{(NUh4O0PO#tQwmzI`pL-%zPxSZADJnDy2I9OPM*-IN68{wgQwHIedS+jvB z(W4C?XB%`2E0y>gnk{k&`oq$V31hH1JSVI^gh1%gJ@~)?tb6QS+w${{CgfsI#Md9E&1R`lGKGP*)dQc(`I^2q-yU zq{`?56~U(VBM>SDF$u{pc;+4V9J0OR`)&tpz=#X_Y#cBy)>&wq9Z5fb-nD(-X|Xyn zAISLa-QD&NSTV)xzUo$|xS(o(0eiw{UQW`A#VQ}G^iYI4#Dm%hEOa2=U-ufvy+*ZKeP0?=Z;$z4fj zH`168R+y}kpQthy)2x=)5MkI&s&MfQzB8poCp?vi*DXedp3yEJYEIdnGZT{UbCZ_s zpqtifdZq)4ZYUj_<>!=bLG3^1I`_XFHA$+r{_< z7MXD7V8Hyuv!S5@Vht}dlZu~>-*N&;;>#75Btjjl)Cbuo?H1o|=MNgL^rqlII{F5< zV-L2#^X#}6ASSG4^TpZp1*i2)9nHhPW5Jt7o$h6kIg|M~O!+n`tr$>St|u+YNL@Diec6mR|M zkB=6@&gi6vY@lXE6f{B+QBl8O4?;Gq92poG5ULe)8X{uihX`rRq2t}pYX$Wag$a1ozL=V6 zt&K*PBeV{X<${GIMWxly+#m`u@Qge4IQ03JllMUuShKH0%B!N{HH3nNhSh#!Vw57e zF!2!IINqrev3v-!CL*28!ZTlCh&^AMX{}ZW=mu&ZKmoF++@%Giy?< zW%p;}@gH?oYF>=YgtQt+;EJoMQH7th zc8^_Q;Xg<&R}Ees8^xf6!^wT1TYIUP+yGsjo=3KSq}q-D_U+rh8XIl)|0n_O4Q2f9 zQp`|069M{KMJ`BprlW;7L8SWz^$)btrrF+HO(CEo%xQgjFhc$M0zlT0yR9Ea-G@FgH$X&G`xJ9EfaK#MeJi74` z3%lhxYmi0Z)H%vYa<;caMM8`vXD5gJT;q7$dK4pFOCX)lSjvMaY%)<+a23}a;1pDY zs*{aMp4S7oAT2>YfUJ)kV!*3Qz@Og3aJ|x86 zS+qXd=y)#p9+GaMvom$hF;jSv<8;WhlYn)Z~qZ5n}g8rcy#e!ek_$ z0ai{I+ChRhe|@Iz!JWxzXnbi{b^@W}6abZA*b=k~SO>QdOTo9w_5;;{Z0~$E?$zcI zx`PVtOmqpQ+bgSG;}~i?x)(%mc|;z5VpU&OyBTe%RN9yGnr$-6B1OH}!ak4eS!t%% zj*0(t#@x=O8=dH9=-*Pu(YY9(HHDldsn*+mt##v^fm%zwkG+1dHmV=OqF&?fq90C| zKk4;V%xh|8zuv}gCL|<8*o|=Fo!g7EeL7oaYHW_6Hs%{Q1O`UE)x~3x+BtgGszocr zz)+v0B{RfOAj?b)EcinOl9x)necy|WQlPmdgkCdOyS8hp+D#BlVSt^H7okNDU~D*| z)joLe^uYsEe0==3@87RdQzHa-3;d_hGwhiiluUt^mE4ymM-ME;(Q?Xr5ItxRdk@fE zNQnjZIvRNLl#TYv&6;+Q5FkRZ#Kpy7KNDz$9IcOb4B-^EK*y|dqgjuBsuI|rm)R;G zKs28!d)M_08eHe2-=C1=Oncw{Ixw|xMFJWD??$~OXz>wg`+4aspy_ggi!tDj!GP0* zm~g;41Hunti|F{wPY6c<`~lFqef#!}0~jO(RlQXD4ZUI$6ir+LP{*vHcmS~#WvrY9 zieSF${%hpEpk0=F^axYxJ>72*Y>@5nXAR;t>Y#u=<~by!qi(PB2EYz6!Y+lJB%C8} z4?RFc+uqqphQf*fMWA3Dp+M=x%`deUEU&WBo=b~B>@xjYu}>3-5?;aRCbex``>^Z=|w7TII*X719S$&3&&|3Zb#USr8Eu z(*m8w8qok`XtuoS11iAdQTMdtfh+jBK3+6+@^ct{JZ%DFNrlA+7MGeho90kRji_vSFWWF3BXw{h_<_>C)!l^bNxS#J!n)0td``N9_rS4y40@8W7@B1ESO|@N@8@Kts?6#sV1SMiyLizR#gc zNs0TeZHGd+BZ>gz4z*+_YWhYSu6%G38h7r#p3lBKH$W0edYNU8KfC{rxY1Cl`l<@`6Upb3(Tqh!0NiY6O_VNh0qSIsCGH2r>N# z$V~r)gaj7NiXRlh&iTL-TdNoYr0 zw7lv-ME1{?!IsYVG(qwS0>Y5es}?xJpTon-$bI87`~nDob=?zULZdrl@HOeh*{0WH z9i2qvJ>`VA{lK$D48$H8EZrP<{mOI6uU%tAV8Z++__uliAt*pa2OablP_NeyHYQi| zyP&YJpb8+H>#Koe3Fd;&Wq{6dPYO<;mOln+33RsrP%^K9wTmR}`B&C~bFY(i{_UQJ zgqN(WtQ0a7Z-QcZIp7GSA7TJGKgY+_0Z;_~OLBBtJlzDrrfdkp{Vs?uH;}!b@;tGC zxCAzY%;V&M6lxu`P!HkpU%(L*>YjI8-2WI6!3b8M8&9KH7@)zqi-Zk4`z=srLf1*` zb0)(+X}L;+pD$nDLiWj%e?=`kG&&KS<9`JVB;F>+!diOJs{-Nn0%5bLHt7N0aYqk3 zXo6i*0ofR6Ro>bDZhHrSHF#j)W!m^nKO!*DUG;Wej5W5UF$2y9N*FPC9)2Jz09A$< zm^X4{d*RNTxS*v#1l~DN0iEopZbDMa;8-iwbd%F2wV2kptyWc{!IMz-i0A88ipl+1 zsb2S=gvpK6cN%Yr(G$%{W)s~e_AA?qAR?E@X6iP?v#^@HQXe#pv}+Yc8ts;F1~>q&ha0k`mXjg5k1{h0AxFS&f?oyz zCYSjL2MENyJfXlPLlFh*JN!6AaP!~o`8VnfhF*YhvQ-LxE}uj9M-QTn0m*|Z+uwNF z?%P;kr$aNJo)g*Yc}OtnzgD{m61TFJ3l^_k%NF>wh-hiQ>MyTmpJ@Luxe5#n6IjT= zNifx7M5J2i4M3?5yo_)gKqVa?ZYJpCE&(RgD^?4=8oD-q0cJuKkT(&+d+dj)3&AHg z>5CiCTUMPNj0^8}a6g_TS)peG$uF<=JPw)>%3`~ShzJ(d!W#gm?OIUf6XvQ9r}QCpW@}Yfqn}rHez`7g$redd9Sw%GxcL{4b|BRkZiua`+0Hd z;sX4iCz=@rsubY!_|@Fp%yMj2pn`CHNbdwk)PL;N(A9^VWG8~RUzRejCdsCwF{FRL zGv1d(V*cjiI0IJz&I_eSw&-KCvN4SJ1*$8m6LVUI_M7P_Oac9WWL27jZGl$(BiMBm zVG03U7lK~r!tjk`@RAAsku#W#ZZ%+JVZnvG57|lzz=xEH2}?z;-QKbStPdEu5y2I= zW26+VWN#xspX2!#0oZiJtr^p~NTV57nA;EO6f%Zi?yCDv>n+4rZ(Dlos7@QUQ@^9JNSE6L_T#}m3;Z`2}|R8nGE z4(Dyr0CfRY3i zpc|TA=+*Rd>D?-GeEyq4I za>^zTl7C5pB@^V6JQATVlj)NguFBoyc`s)&la?vloA+5bb5U5xwp&TUft!te52iET zRyzKMZppqS|H_;dqI82lXB+6+zH&QbfWeRK?e{R8E>_)3nKf~g8Vfg`b*zdtDyCqh z2E;$OlJUV#Rrj73TDXgY;q=7!NRx5pxk48-N+tFAgMpXhuFvBWp%0J@p@3*cngY;{ z6HV2^=7b>jfti?_n**bI(`#^(1#i9d#*q!_N8kP%KE0n_MM4p1`M!~7~=#47t!4c5O+>)iZ1O&{& z!V^hCQ67S_{Q__>5w@C_mlR}D;PIaWK_8kVRrC~0+Yk`oCY#yZyvUQ*{d7JFo@i@3 zyE`1gG6;Qj-Fyq*r=TB7l=wyGz#RnM`k6a`2Yx=~bt|)$XStEj>AwrPE(TG`Q zQGUD(&m1jgqJrO$J`*0aY-O8QR**XjuvFf%h1f#|16>BMD#<*kE`Rky-}`hZ>Wpe}&O2OJ&1 zBGE>7=a@x&9emvgo*1Nq`nS-%JW`PIqS>@N1bW&Kg?r3-zt_YwpedkwljZ}C;NSOO z``~z}@{eae zq(q5F7)Im5zj6{oBLul3<891-F+cYHgZGpp>ZtaFF6P6I^54AoO2iv-HIjc$$+yF% zgMT}-%{jB(j(c$Xs*f5YW@9C0%%s9g(hnbk%3=e{TZ|u{De{Vk$0bp8_0f(1cTpZhoj>R9p zizUcn&4EyC;<#F_DWbKEMy**k_^rH#d|rIx{;`WprtKXY$&us!?`G(4o@S=b&%b6A zNoUQKlaaWqT4tgNDGV&%caX238}DFfp?Z&oy9KG>^_m>qZyfyZ5h%Mjnjxt}J=XODyes!|KG3vC*$QRICG&M~rSp;A zh6rhUG`+&G$2+MpB_7S$RHc!M2ZrDAHAvsQ55C^G_U`xWEgK6yRAbRdPSTHEUBar< zzw_@;55}#)+k7dq^-;O)?`3d9$(PkhziEz%y$Mb)vf!J|RX%`zkggn>8t+zvpCEJr zhJ|B#PwLVCJ(%zqG%*9&B0}br96_kZCZ&Z&YiN{(10NLnxi5z5H6H|_?66I!meKd@ zLu9CL7Kvu*wN+nL{J{FsT2g_8UAsmGs8j%ow{G0P9A>WO7`F6vSn6I5(39_`s~e0n z3ix&U6`xy40E@T(v?sjjZ>k-Q0 zx%!g)jQm$W5lMd{;=e`|N7|T$49q+&h+xUxD7mt7zllQEA7RlT(;{~ac)i49Dn%v= z)b_rt1A<0aAzS;6u!|q>o zkSD<^8VwmW2W!!NC@BJA55BR)eoQD5#hdoO&3};Cafate;<%Txw%TS+`QL-MQgYh} zm+F!hQ{DIbxP#Fm`a^Z?c#Za3uj;Pkr|Ym^`tyQ_3xDD#cjPStoyE;W`B-j%0x7cN zd>S?Gl+b*F(2Lu`5Q{Wk|NgTQzin#dhN<;7#4el;htei7&F9Y*(fS!B;*O-mv35IL zL5+jyCrNnd2=4g5f9w+sY4Iu_+$a3AEYtj+9>!b?(m!uMfLLY{7S_Nv{_hXoSlJX8 z7;;gvJaaW0F<;qy^1t7cjtC0RR=M+^i^4Cx^fR!Q{O4_MWZ<^W{1a0*q!q75)c>;- zK$SDz@a6uWpO=38|9XSV|1+ozX^esL%Rh3Ka;0KQq+aG4g50m_b>XHAslRjDy8MGDn#UsAe za{hlmvppfWas-v`t;G+0DTi?dkUBf;&gb8YJqN896jM|~03qUDf#K8n)zx^q=+SOgbZtAiFy&A?9?&;5Fb@a*9ERH(2wWqP~=&=_&FLz6riSu*_&jC3$) z*a>DNFw2>T9U+YZ^hI#xB7pZm_Pea+lm;b!Khy?S75MWyc3o-{=oZXavfwwtFx3M7 z5;T?^(qv&H$?hME3pI2E5l3-tPl#}!hxdUG-wI0oLcmXgdPKi z?w)}5y{l;noCM<1m!fmI(QR1hS;EqBaSFzpUhwDxaj>*S^$ZLaU}Hcm%|M1K0+Tg< zzbU&=TdJ$YQ^RS8&brooyd)I3ohUHC-7j{BT>=56Y~IfO&%o_hd0L$?aTj`M1RNs} zCnmrH4>NV5SbYLQ05n6pt1Y}M#!S0c6^f;;ZlI?X>!Y0 z_yR&IV(CTMYa&`6VrGJULu~&fk8fL3gFJ#UH8n-}>(eM$bBsVj0^jB}z%#%AERPo5 zf??VYyRT6BcOZIgU>+Gf?QliduJ$tiD)m*A`AGg7m{dT|Z^?}zpj8qBQ%wdA*^Wm@qGQ9_qkTZnEXt5bNoI1qo;!;wZZ@F~8kY4%V z;4Bi+PVUwG^#Mlpqy$6m;$-^bF95Dy2U@s4ko5~x*bvtySQZLw<|W@kU_*;aJ5+hE zKDMW)$Gvv@{FbB({(U23`#%FK?8S>yU|LEBWPs2e!0!ll2*KnENZw7d4lsHR>-D&| z11Bui^iX(=&9CltF?8RXE1nx~!30Q5Oxyt8bTABuaaOzRE_QqojD#nYul4ju6D>QP zTnC3H60tBgkyb=#8yO!T2JGv0>6!0|*gDOt3`Ku zZ5v1nUTWAr6mQ2;P$dBn{fG}|vC3=fGciU3D~I=Vw}XvfykQqNRsSSNL=o4X=>vaC7=S#Ou$20TM*asku0JV^c4=EGa4Zv|S5O0Q9_Bg`1BJ zyY3>ICm7k4S3HJ$SkfinFu=X~vbM&!PzDWuACV$i&oUi!5giAv16(hNQn?I3)qhwF zI%LPS5wt5;u3V-Qra=78R6Hgq6j1+lV9mY?T@}z+h*bHsc|+~PGZC120LOGz6%%`8 z>(UMj99vchBu!R;^X_idv^)3v!Uu{8v<+~Ef%Q1 zFiqG7d|L2&kQJtypN52Ve-Q-tIVA`H-j5isR`P_<3cc#+%IE}vGz2;30Plec=iuOY z0MtDP7=bwD?KUO^L3kzsmWP9jOX5A9NEFvC==}3NP8=UeO2VyUfF#lkRNJqPY>qQSWmc*Ak=rZ-K zTenb+UcPPj`7r7r6JDjE3CYf8`(ZIo#>~uI=5fLY#=kr4yTjUE46r`14*4Y|O;CG5 zuL=U80{r`)C=^WK1Uh|fJDwUgBt5$OJ~+4mG)7Jsn1D<`DwiPY|M4R!5XRaWkvAAw zx4bS6y^!fUSeF1O$+|Ey-dI6833mm!I8W95E0=6lsBT=K~bUgJU=o9 zj+Tj?od6U$U@smxI`aAW_z+Q2UW%20^}#8ttbC}fOpb!-B0t~`XF;ss;N{IBUNYx> z%qi>&XeD0M0}0X7y?(i;lzT`X2bskO$lt(+A=*{WS7D-q=#wCPd+ zx?ZZJr>7{WK*1pKfnZQKG(-l(pdMKhNT&WkOs0Te266oE?Cj`RScHP4M_O5#M?^;U zmi(U944@ApD@ELGv==I;0^L=Kqi1*Lm>$NkaKQQXTQ z-S(zzLo&u-VY!D4qX6-C+d=cGtZXBQd7z=-Ad1~@v%623BXz+VROWeh|HqFXJuqgcZAgp9-{Blsu7r{*NDiup3AMfPh11p}1-e+P}4pjX03b zP~&`{ctO&tA04FxJV+w83sE%(1)>3h=Xzu-GItJMIJ}{uA(b*~-GVa~F)@0Of$HIN z6Sfyxi7BY45Rn9i4pj<<2jOlCJRa0{)1%r_;z@&zbj>}-#rmJw;WM@Y-jV}T=$v>B9VWCDU z9PXgf*SM@qP2U0gsRu#=^3gK@0fGQA2Jf1Ah|d6mgXV+=`~X`A2Tib5+u%N)f&2Yq zIrgj^)(r$R3~Fj>nK+(HU0q#s2xQEOIQ2yy4|$=0fg6|sdIMPgI)pRO z3h)^U81@bhoR$*;Fl6;^5>Ihi)P%CB+w#-@DzE8rkNo&fC17J? z^B1%fqDkp9?T*?Ki!ox zpQj4_Z` zU}YQkG0@S$W9tiXhuDt5tV%2vRojEtiHy1rDv^allB{`Kv*a8t?P6adYh z8O*i6R(K->ivXwUX|MI+&9lP!oq^8cFUXjHz%WqO*4B04Mu3mH@d4{X;@H?};mc~H z#6+@CIEIk0z@)*L`nJ5Hg7MBBd>})VkKB)skHeqb=ouP%b=)_^Tv1VB(w`dYJWPiI z0qa9toZ4KMYJB%!_^c}Aqll(lSMN?#IuXJN!#f|9ht*V%E-7)Mubm5@b)DuKq7aB^Cuu-;llWH9c*5suO1Y- z)6>%^Pa3mb(WvlnlsHk_nc&8FDIs)ibx>K*NN64za#4aP5(Mt+%)6aChJe53KzeHF z>Ut}~eCL3w%}qw;`SYePf_A@zq=SC8A@&1q!;a2QB(R~${n^%**;SkH_U+sJ!oq95 z+@O_0Q{bJF!nC)ymk*|6@J(VG85xxUM1ALk)^2Am>b!LwrlLg(jJyGsh+dr9*?2;p zB%l|)43lPi8%5DPv?2NR?%lA;N?R^s>XN{fdzC2GJd#J0aYC_M##&rc|U zXeg_yZER?U-vVeXRA=jb#=+13uY7_s)UpS2-UA{`1jqpXg>M9W{P?lWlAe%GxDHxD z#Li+<0~;C5t{DVo?CYGISFgRpgd)+?*XI)&dWDOdTe}t23FW4d8r!y<21%8m$LT_3 zxVgERyng+2aF7%xV@QjF0R{HLg#5_Z7&_{k;_YvW8GVBB8tlmERbo~aK4g4InZc^p z<>H0wp?#iNU%zXF{=;&T3S8Aq5R-`a9EGK63=_7ujnWnt7V4&_=^<~v5RCDI4>l=V z6T3L|g#eoe585x_B)&&I)>Z+dSTEFK^U*>qdiO0f9$sD>(2G@6RX;lGYR5VNM%6Jl z4*>`K%>QBUEu*q*yKZ4nLO>9ZP6Y+&ZY2~@L6Gi7x=}!o5D;k)=`N9OLFo=@5Tub1 z=~C(1>-6@1-gkfFdw=XP_RoEd@jUlH@w(3IIFDnkx#pZ}op8G$Bl#2-vO(aB!XAgF zjq7*rP($g`3du@UG?p2V9@wt1ZxCYX=;~gNmMI1Q-DPraH2Cv*$ApB0HY7?sT?&hn z$U+*}cS^&;@NN(W9>j~i*h3hZX0Rf)7Q}!;mn7yzBQ7z(#LZ0z@txRi81VKS>AwEX?XsNajW0t(%oQx^K&(IsehFvC1y(>%3NMK_9ku{YjJj|eP8^x2yWrH+6bcILm{xF4;**jxdUn7@ zP0!DVp<`3?nY^!o>NSBhxrZ_7r>v?t)6gz-mG+=s< z+uk}BfY&TveFzI69$$;?ZrgvPczTDQU+pBq5{lkH7dFdGIMI$AESD~9&eR1X*FzlZ z?CjhQ=NG0(X)xA^0szj0tiKFxh(O7N!VM0{{Um-E9;l_I#T+i?w=V)!wz-wnJ^WX0 zzdVISL>8b69aUi`l)XZwShEd$=?`S0ZjB^P!-Na8%)-0&Fzz+&A? zDlROjow!=m5qAg@n?fxCfX-V8uwZ2QaepNtqF_??DAYm_V>31~f@F_axcXur+yFD5uafqMii+sIabnVtpe3eWaN!XU6Z-)~fE@r4 zBU+OU0s*{XONLZ%2_SD2bWKtm64qN>_KNXNNVI`pg_%q!ki31oy-}gFJrv#p=}3n_ z*bJcvDay0bj9iH~hzGJ{NuhJ_Do{-_P4PbgzO(JPJtUUGeO#pz_U_#c2n-9rd&yL2 zK=*eLWJn35qMWGkg|9Z2rA^${y9?#RH6|u308~I06b_in-vr0J4?qni(oFDt7(k8u zMkebL4$g}e4_>H@01kjJQPnLB)P*?+=<^>SWux4>q`(NL8MIs}7!^`_I@Q^E378pT zw`2I(4#Q$r~-hvikZmDy`Aa+Nf-Iz(73YzMJ-6h^biZdBY+0qG$$v=sO8G2bDq34 z5i-C5VK)Q?$sjttQel;hKlCX^Bp=6*pcS%oy{^I2&BN`sL<@c^ht9X zeA+aTLaw0;b&lSTWkHxMP+nnDy?PXWHz1G0^gD7w{po&2LdC z935I{62;>pm<%d492ORqEF2p@$ZE3yuA87CVE~Gz2R8^Imtz2;=zuj;{R+dIgy98| z85*&9T5WsS+1caxtVrZjZU-W04wz#yL3@KhsW_a`fQ#6xb+?Lyg3hENpu--$w{o|J z4vM%aA1f2roq2T6(_M8W_CvgbLjb#z9saV_1e%&&LzQU+CM$%qU}a_HgqASEiyqJw zi9l?aJOk}aD3p|mMoS{mSvlIOQFMt7%zJ}S@S}>C{(7IWbQ#$X;E9TO^9JcW&xAO^ z?E4g;)qIt%E7M-^Pc$c@ZX#Q|LQ!V;@R90i06WN9QLtnp2gTRPS zK@kMg0_NenW$jt9_nQ@bI;Ms`6BywER&A<@iHQdQcL2DzZA=wGUnh07$}4= z^U#}$upNdlZ4ph3$y}h`!9={cFD=JNaCTkoTB815oid`g%a8%oXQkq>} zz68V?3O-K82q`p}5N{=fQV9{BpB;06vCs!L*u`7tusKij->vK}o~oefKr-3cp1W5X zOrl_a*BR(wKouEqvw?MCuk>^c>kW#G3JJNKWr95_ugF>sf(y2;d(>WCaX0g^c9Gy` zC1{oOm!!)ryDCM;tZ-n&&c&tZP6hD|%KFkUN$8OWB`e(P{Pd%Sef!iD6`Xzqvvcqw zxEny5JNRWed3ahH&d>6BWuh|ru!$j(`$KIPNWKi|#>Dhabj-BTlP9lwdU}j9pFy+r zEp&2b;h#txO)o4AMMA?DDk>@n?S6n;qnqF?_aTWjcdXth2a3wa`IkSam{J3CzYKQd zk=QT8!><5u0bqF(9gSS(`b-@q3|~~!+J{P28frdHn8<}Ncu7Tq`WF;fFTv0})G8gl zl|)RKom8M8Hv;kQIut?xr(XN|UIZ8eCu|4OL{N8JLc%vp{ zP}Q{P6dLV-tm^uWG5q7}2t>0*#JvMsGbn*fRuWT*gRqr-=o+88oj9zyw^tn7i_H@i2ssk8cj560{tP zv&Xgo-=wCdW)9s`KzI#6vwm#Q?@@jL6-4Ev6nvJipgnR9@x33*OpK4uL1Ks4K{{IH zbuJ17UcQP#9yaNQ=H>yw z&LDrWE~cZ~(R%dLGa)Xn5w;AlJ>F1i4}I2xN*F?#H{8>f!NJm2m9?_4Ucii;{QPiI z1zIg&C0MoaP!LXZVBi-2JftehDC}KgwXgg2?D^}SloS+szt7<#nDO+212rIL*voC=;py%f& z0Sb4l#)Si__dysF$944y5NlwQ?|>S48(7SdBRA94VbE(p*}#Q%7UptKDb4lu^=lCi zfUIMXzlw$mXV^72y~b|plQ-l`-Id!C43XFQ_$pd2+setwK^@JK+=1=$vY?=Vu%x`VW! z>b%Pa)HM!NDp4;E0jZ|LMwVIP_4Cb#_OLjx=RoW8wP=~S@855j3glMnL2ZUiCIz_2 zgkg#%q2SgRYiMT|4sQ)ybkG+iW#t{%;0r){s+NUoX=+MnYiqOmrz;#((?Ry}xn=;} zH%0~wkfAhUp2M<&iI8O~D<5vaz?U!g0REKz`izWGdJPe#^#04cg?&jYkjIf3qj0(x zKzeu;6GMU!qhL_f@^TSiXP38l_NEyI4a|n-0P-bsn0Dr;XFFscBt;}8C%5f)4h|B4IephOM-yFE zRu&@GxNF0(!=#3Y0?R>D_7#Iv}#xLY1os<|7-Z(t%E*fhhD z4r9=l?gKLz0r3UW-vR(eAkzrF$RI<8z)2xj$|V9k1qSYBu*V{E4%83&9@~rncGCey z7-l&52M5bm&|F>XK3;(ni3GH^HYp~nwyrL0*zZtXDQVhCr{C@{g|V5|-|DF$FGIja zMvuX5ZrlG1$N(Yypf4J}mN$sY*MP_eJlq2380AFZ=c|m@2&AYkC_CPOc-e|_4x}ZB zDOxP|6X^5uA)>v;qYi=wcL;;naJ5J+Ze=VaC^(z!GSdWT>J1!2geV6HfDq*`eXRST z$ff7uxr*4BZ{NA&01asfB7#a54-fD8`RP6?(UT6~q6nZKLfl}87VHl5IYGGhpV0HN z0S#9KS@`}`F%D-;J%FVE2;m%Yly2J^!rg#g9Tp^qO-<=QTRs^yrHUIFWhhA;2d#oj z3#zyP2mwgvPG@&_3zTlxBObKUeLy4+U|zWl8d2gB6JfXn4MNu<9SdhPsUj|T;k05T zI9+O{$r%u$!Q1m1*1;H)y1(wT7Pvd0c32KS#mE4OP0Isw4$mbgKKNvhw=BUVxui&;@|dV30Cl%$oX1 z5AnDbLP*526{umF@$&L=!ude%IV1^52$RT|MVNFsyefJi-egX5Q#I`yq(Z3pkr|4> z$s$cAualFhk5ffd-B+b|Immpf?GW3g*Pelfwv&0EoXvfGLfHbN&7A$M@@! z?p+7k7pVLTuoePH54(+x4df!GP*F4@G)LI;Knx+-uMtWWsH#XFqpbylwa)j=KxI>vDW)sO9L9YZ7AY?C<$>_8aF)+eeTkpccf^v-@=zBg` zK2`FXc?k#x^Jk%IYCE#x05t}58fNu3Q8JMD{Q>vQ!zFMy58eHp7aSbS!arr}K|)Q9 z3yPAHK;{%;O@$ayD3ij%!Eptou{H=XJAEQsDxaS!ZB)V<{H1nRZM#_H7$TcGIxt}^ z)HVBaYT^991Wo|3?ITuJYfH-@Agd8Qgt_KyWVMH!jxJ;32PiIrz^lS{^@sm0fJzT) zLvF>mxum4ZN7(-JFqf(G^JfX5W`?J!@~(q?d;t2&4hXl*BOlWfb^(#LG&Rj-UEmRy zFpZ}(=7OXF#gNI@USs>$0RcG|prOwfl#y9DDZmWh1L6_-2(^oNpTOsrAw8PVz5TML z=0zdLqPS`{NFInV`|R1XWXixwDBHgW4h5vDrq}w8mS`hAZzB{w*ANGTj8sfu4oVH* zh^^{KArlZ6Zf{#dyP&hv6|=&T}GbrPqGf+>HoY` zHpr0Q`}0zw$1sEO8Sv6mQpL@blPqTV`p;kHT?7gl`kD$iO^3BIRE=6b#H^v&4Awk3W6-{ z-;2mYC6vH_)qEA^*#R7hh>guI;wKnn5to(40VIrk4LZ6!{FD}aMW@77Oe;1bXrL!8Xh^ z<+l7}f_@nnckqLSGHkcpq~gsz#l!8V1!VR5DzVWY&K(;(_@bOnl(P6YD5EXJ;1Wje zw7njhfg=LC&ua)Dxmgm>$`=q8)((QBYF~Ir$Sa740O_pYt&!sG?b{1*v!Z{EOxHIf zA|;@#{2KC%iQ$y$pF&?__6v$?^(&-o4yMLlpGSQ-2Z)4dF-SoJRC0pWeGdAYH?w+7 zz}kVD*18bOT(J_T_H`!~Zt1GOQ9KWz50I{6g@I#-;lJdFS#$mbB4kBM8WeeS3=HpE z4_9qzqpyf{1kD{wIcYvTwgb+}+S)oTH}~`GqdU>@@qys%1MXJUyl&#zBbK!TSy;#2 zd!@*d59Z%hR=x_*ih_c*Ni8-$kxxy?<5vVd-xML-wTv!9``0R6-QD-V3I5%&O0c)R z9Ye`tcZ=KA)fE~^S)K~%>gvMUtG##;kaPAHG@yY2gCBoxWv*&g@dwcOcOY&l#g>+o zyo`xaGZ9c+gxi7`7oem7EudQZ0@4pZ9)HcjXQa|1!g$xS4 z8Rq8Z;sELwxj_&{c?sZX0krIbJ^m3B_yeE;D~!Ct!@^!eA_5j{WI9Re zG+y;jNP-y)q6f1V0f=D2;{2H#2?K^Z7aftw@m&dP~H=02HMYs+`Mur9@UoaE^9iw;TDgqNEk@nv6ekdcsREgLg0CEBOb&~Z_ks3l7 zb8XlohWyttD6nf_U_pIcGzQVLLjp8Z_@XfPOA4;b9%kbJ^QGo$&j6$}6j!-jD7{d! zaK6~HhNe>=REj(&L`tW-s2>w7Nyo$`5`_fiJF0Fm`JY4z4@SYu0ctPe@_~vQL_Ghz zDV^kKm{bp1{~T0?jo@b51_lf%qo7zq2EPaCx_@6>M4r^~$z_WMfGsj!Cj;@0OuUCp z(l|Ow3bz-gDc>mpzp+s_6sKwW4W97q4dU#FSxT%LB`9DY(TlFkt_7I+3T8+SC)jes z5DV}}plmM>(nIf3E}OXWfloR&>6H;6@?{Yv8o7svCj>OiXis)H!GIg2EVMwFgXQoB zV5-6_NFUn`<$_+I)(tqS&A_iB7MV{D#s>!nv*6i#4MZpyVoPAyJ2K82j3g*1_wKb= zTHIGsdVAo(M3E-sam0I(S7i-Matol7Me8*HsR8pwT!|}@Y_^)me5XZ~D4b14vJy@r zGDQLszCYkVbf7?0t3C@efs_Yl&U~_x4d(h`pe&CT)54f1dc+Wcl!>vpSXhYahzNJJ zKs;{$`gPCJ(lQzYVY$O#N&+E3A>@5u`n()~3v4riVB`le0+t*cUy@1nF!O1u*0sFd zhX(|AB8~}oendFnm?l_u@LU#7tWm-^A!2A2W#ZSJMopM_gpWog{Ol6qK!kBSelX6S z47RuG&nc*MU;r$se;U-n%rNT<86CuRZv(IZQcMEJ>yJnl@cWH$YLUq$;6Atppb7p_ z2NcR+U7KXKP`CNuxF`em03b#YyAPCE>4L>T#goBvA>iLXc91%sJYv=XbKUAKxi>QTEA20>2Og% zThHSyX4uk!Ec|Cw6aPsm>!o2R6J_en@3to@y=JGmoN1!0Il_OJH zAYdzIZB)UA|Gm4r0|?U?WRkIZ4-o{^!}?tOGjSRjxoR{k4T9-O{))(0dwaV%jBp39 z_2pcZAh?`s0Or8>l@o!}@fJ|1oQZ+71VLJE-xktHfJol}FQcn#0E=^{a7|l9EEkz{36%sz2Tofsh7uSGLTAG9^$fSHQG~ zqM#5`V{d?Q>()DfeowNt)Sb-om@e?<1>N+2^$JevMO+CsHat5y zL>LJILc)wF>ibWOjC>%X%mb1~xLTl|(SfCOhpu*z=9|GmVrXs6%3co7|GMpYLIyaZ zf;}?=&dTsoR&jxPp;lJet^7Q8Y*nWwRT@MRf&C?$l$wx`H+<*5qH_9sghPQ4^a`F* z2Z|~R3e@%pufzqF3gQ-kS+qcJ{*ghzb!rUPHZml32eu)AgT1}Iwjb0`Ji_w=8WA#c zrg);cvGLCwe;7>U19W^-e}8coH%HeRaE*wCQ{{)_NU{X-sHLfT4@&5UM@+u()Q2Fp zNCcoLaiCi2Ai2+|=hKSO} zhRmZ!ub>D7UMRR%8O=P8$JZ31D@edi@a(p<%*=~vX`E$1rNbCtpszy#{;76X=58KB z;Q)qPKR}%H;FALDhX%|E09=W9Y#(GPIm82@bDf1Hc-Iu}$AizZsUxeat0b~_igB6U z%s#%iiUEFZ7F=L=A;ZGW$AyFr_`+wBo` zeZ&q7`t&_DH4<3aqaeg;9_pNOuAHxHQt_8+v)a5E1tgR&f5ju&{6tH~?e< z2?`464IyM)7obW-!M?x?qaSl)?soVE>u|vE=CMmskdloIq(_7+9)g<RJ z*s}<90m8&tAAt>vCCLJ6;e4WZB^4FuX;Zr8qON=EsA=> zkkoMKU&4Jy=0m{#H-;Jx0>3Y)qsUVzV7ic0&zqZo@tD`Me0e|vLWn(w`oO@4p;IPo zU2SdXsUCarf^Ufw2BIHEoDKqomUX=z?v_<;sCZN03*e4H48DHp0z7OE8vrcuK8BDs z5z4EqtZaCw667OFs2N++Bz#*fAbzXMYO5gqrZ5+bU5~c`$Tm2ElHi*R9pPtA!ZihB z87OZ^X)n_qLMuiCsRG1>iwac)Ze7OE=YjCGJmW}=%EIY{&>@vu2UZ=J!&4knSz7>; z4zI#qXK^uY1_QM}v{VF~dx0tmV|b8ZjQ|gj{SJmj zdQMJc1WFUAONeJ5g2)2UF$f*~(x)d2Fe&031{;|;YB6D z6B~;O?uQ)#@jr|j5NvvUTXgQIZ%QE z?w!)lp{96n@X#|dX1Df4A{cbKde=li*%165U}>x!`T*!CpeY_Iv6haG?DoklgkgkH zTiBp`_(;-uzkZE@5FS9rB4`T{S^*DS07U|5K0IK`{lmi_hmxrD_4fLKLI+q}*?6+x z60oJvog#bU1xFE0;w2!)(*0auB>=uRgGdHQaGkJ*1)?e*LL`A9hZC@YrA07Mi!cTW zaX(?0V~_IOqKG>L$6kIGHAf4qEF5>Qm56CXEeCSM0B+|2FcY$u`-t#nm}{{!d5GUX zF9tRil7tUDCne{j#QDPPEDGWQt#K|Kt6iP(N(Cx6Ev;Qu6FE>wcf;jMWKj{$8EO+w zXhi@kzY5bEh%Pru+pnM?oF`(Ihm3}b0^%BC(*%nbc~b7n_i{F^D80z2e{dByKON&t zIzHZ_7_Wzv&&tLY0g)RfTO&IFcnh#X!@u-~uLlzg27vPf!-^!Uj64*V@3!Fk|2px}D%ba<3gRWgdocqw`futV9xeneafDcFpM`$n*rr~)k1YiS@0I>rR zdVu040o*AGi<4g~2SyLLa^-}Ww{MjeCv(H4!>9tmO%_u%1+EBAXdAM$39hU2C`FM| ztl;7_wzUld1UUx>p?GLEAU*v$;6FSRBY|Rw*@3#rDo%cGBM^epAlxAO6!Hu?u$K_6 zM`wGz3XObpp2=C{>6wsqQ}mhkn=A-iDTz zPhFMw`0f#;!O%Ts5`%mjZ*oxcz#oADX83{_YerD>fej}TZ}MaZpBxP0fG~~~BvgG@j|ig>UA1_KKpFz${r0J;iPtnWeA-)y{$0-OOtJb;YK z?29~Pu>~$P3?Q(^qPYlM+Tr1$QCg{aqavsX?gb#k!wp8po8`@`@2n1vj7agkcmeN* z(YwB3#p=s_^QIIP%`}|#o&ue=YbZe26zjaFfu)LG&+_33id2%omnqCtjLhVXZU}!&1#oO~GB|ew8;E;p=%sUjW-0{N1C}o-Dajey z1EM*fO3f86+H&RUH%Jk${QO1^oY$^`c@C*dnZ%V7FYo}=g)oiyazLe4v6*z;s2DA= zndC>RV~GCzQEV3YQ|4huf;9^s^VI~UDTITZz*y~Km|TXEc|SV&vxX{ERj=WOd>UEgrHdFol+~188%I|MU@qFHp%)_g@-d)vF~#T8yAH z8~I9t4ssAS=`mY3GzQ5g37B*dA-Vj-3w#{|FtH5a0`S;PfJmX`aNZpVb7%&+bq5hY z9e}c6wy;u+&J|JAtzd=+C4>TIhs&WBbY71WTnz<97Wt}BTBxs`tuHSJfXG0M(*w4l z3N#YPTu6{Y`cx3x8}2hfkqTY>9W2#N)`M^s#R0PZSV2Rw0tSqD;n{yZEO zooji(vt0tD21Pj}S4`*!fab5f$_-*D;rO%WvWQ`!)L1i17~nc)p{1(@8nFE}zy`hyasUt!;suinz)HcjBElTJF)%bOVA5;bbcS1x*sna# zPhAiP3~+OCq8`;+klZ1iB;zx;eCf?`twq8APjsr)h#2d{fX}JzkevXm>p2_ zfR9&Y-`eQwze<7PVzj_YRx9$fN@P`$muh&kL#$E_-#lO6Db`c+CG^Z9tB-$;h!PMP8uyzh5RJPnCCuF5*EH&IR=+ zCjWjzW^D@-LvW;E4?G}7jmz+k8@j-AdE(!ziKcp`h-RR2stvH3Yo&4_Y@~;;FuHr%O|FE(C z5BK5!`}P0ng#KS!nRGXHOs?zNB~z2s$;lgr76mwgMO>^K$%F5|F>X&gUM8>@`7j-P z{SwyUw{LA^-&HzHSCcNW+R=MU{%jC?L94^MU)?clp<}MA>Q&ud^1;rRW^+cvgVkqC z=+8zS!BTP(c$qVCgUYu!TR<%}OsZ%oMCV5PdwQ-tydq4yHf()?=Y=yqBPo3Yg=L`~ z2C*)Wd#cVF&L`yVJ@2vnkXyFI8148ag6su#VCksCQKK8HV`6Bdara=0#xyRHo`E+Y z=P}Fi3>v$z&%b3TRoWPW9T;2U`P}RiCg+!o`iBi4E}XitcJO(Y{Mo@O!CX&Yucjsi zZ}0wY_ik;z>SQoFO}%+4+%m2~D#SHv&uUNVv-R%W&QsV&Yz@=y*lKJj+=9f(Cydf` zOY0R)(6j6$s&_XfXUB?A)|rW-y6fsMr50@ZTh;ey|GAuuiNGfEJQt%2?j=WV>F(sz z>d(<>?um=ZW-YqMaNM0`Oy+uSwSNA-)hK_9{O21C)&yiScCll`G8q~InJm{=*G$rVIBz_FKS5)xwP&xy#BwmJ#xP2(~FD+sR zW6QHpHp6f4F>iZ(oHdGAq^~>xor{)0NAM}*DeqU{o>uC$@zYP%1F*1OhQGKXs7-P2 zqk`h3XG;B;((ljRY`CM&Y#ofJ!lZ6`x@6kIndLPCYM6Pe%}%)WeSSe}!pHLzj`&Zl zg>JtPJTHzbV`ohkY55|6PmuMDSf-{Dr#>aw&@LB8SJzlWc)yV`|K1w~`sv_jgY9NG zF)pKrc1mv7E?iJm_w0Lk2`-xvE}K-}cx6jDVwe6x=}DyLvbEi1U0qqh{a;N*0aUXI z97%0PZPnYi-y1D{uo|m4x%yk#S~~+r*H~82#o2#gN8crLX!7zUXJ1d2pS5$%*4cNv1zoWcW2>;F zZx$3UR6e@Y&t8AH-0O>0L-@7yxl01)`)&TNox>Bx2V|xy=DNv-&1Xt6o=1~4GFyd% zan~fOs>bhrI=|Lb6w*JMb8I~~tUNM#%i(;$f%yHQEAa%W(sR<^ckq|iPR_DAI``iX`&YLB(kAE*q@hJ?w-d(#Uvm@gKl z{$vLJ@MkfFFHiG^iI3HsO%?l9?1tdM#BXd|+bXR1i(0qwqp3x;?b%rD)s^gjSiIqE z&p62f~4iuwf28}603y(&2iShO76cFZ4LOmnr=icg+p6}{!sbZqk7 z-(RdR-Q`b_PHisRls;#3XGH6uQ@JA>*dO-t<=yFGR*a_eJ>~D;-(6?C-?)HtMs~yb zV^>?&2gf%$~L`LRtq@5dp13;72q&Vkc2&t`=;h-l1~uCcLU-gV~Pd;HYz z({8JH0bYUiKL4K(lZT^$AGaEv#JfmG-QHe(lU1{lSN8=t4bLq{$o5+tztNPa-!AsJ z^1OP|xNl`GD2qTj{pcE(LJ&PUWsA~&L#3AUUi<1xGBOtSE~jK~Dio8tqz_alVlVb- zr-q#vPtK=15*|2=9EIO!&ACiCN(eLYuKkY3 zD=JJfop;Pxs|!ThonNy1%Gh`hECLidrCax@S1~dvN-uFeU=$RsNjx2#tDCOquo!QM zdxkf2t!bJK&F1>qQFKA5sA^@zlF9Nt?_0YAn{!W5E*H7f0L zbf)Q__&g9Or4=Aa*GgxTB>cfkQo%@P#*g(%DE6eFZ`4tmZOKggw(G}a;lz=jsA_f; zmwPUkDOQ_Yy;*#6u`p6BlhPohmYLs-;lOCXk@*Fc5_%$kv>s*J&qC8LKiPPx`*<~e zvzi&>|CIQ?K3+g@S1-m+OZ2CX&Gky_Jfo#=0#DElUo(l);%V{FyBwJx%?KPu(mrQm z((P<+TUl#x+xPsc+o6dAUmd=`sMiy%$T&r!Z=Lqytb{e`KSRbGDhu@<3|K65>!0J) z9}0Y%+d7+jQTr?nH;OX;-PI@4m7!>5+0$?62yEuJ`_JMV&inL#g^HD?zalBOU1Bm) z4mw@_u>P&}=Nq4mZm(v6v-#q~$*q$+=iB|o_A*ZMmGU|lQ24dO2>AG|h5X0K=qD#A z-tmrxaNm^7b$Q#-pjb*~>HI`;$0UYRJZsS$HlN^q4_rTJZ947_GJ!W%Fj`+ zb8M$MG^YH-pb6Ta!TP7Kznw32kgZ?RNRq=-=+L5)RjbryYf@yIMeE^y{6_xyy2 zk1@Jzd;S1fDtUXWcIb-~iLc2)JA-zfO;@b)Z}kv!tp$H^JGgmvmMF0qnZ)yF-`?#p zCrl#Xku?_zF2}s_%B5^$Sdjio2nimwSD`j?30)y62BQ&)4*~TSEC%(4@n<9#)*aq@_wdc-}rvTas&Q?-&uC zH*J$N-QYLUO-iU_{j#q&XRpHgR$l?iy}ZyEjUw!J^O~Cu7|{zgk4@y5%9N^~+poU$ zd7I3nVMCcIj}Z~Gz8&Uc$B7>CmU=E|kfgiRQ0AQaqYjYmbq3=X*InO}iU{B}byp_Z@LX6oo1*_-e{Y z1Twyh#vG$$hL+oC(o6VU_o0`*+bZbfZaKZUPO;2ZGY&N44>QJWmB#n@TD1vmB3B&v zGky)OscPm^W+{vWW-^z?R2I~7U^mTn8gjRfFC-;f_r)`n60qW$)P*^kPcli53RZei zc8EnUnDGRx>-D~WU$C~M(O13bt2|>J#om`^l@~ZIGFjA1K{VN4x!&a_OP;hyq(w%d zCl`3j-#L}K!YgE2&3zq02Ag(MUF z6Ow+sebs2xj%7RXx&73uWgtU55aaCncjI%9e9bz}SMz9hzBcci9_Qki-N&vSJ~MD~ zTMcH5)HW$`@o;9;4vQ_bam6>XNt&okV3Vt=nGsrHw)|T5fPa^@Mql{$hp1m?0invr zqXZNow95owiO{6>?BMf`(Xpl{Y;G0$?K?g7(TgujKKViS^~!=iz15>1KiTx;XI~Uv z=6`Y0=qNM(xlb+_YeGe9@BF142VW>b$tM~vt+3RtE^p(se1bljiQco<2LXyaeruH_ zw^^to><$_7KAub~IDX%j4c6S8>a9E`Aym0+WOk+0WSS(QEVgUrLs(Owb){dv=4OsD zr@H-#S+}P7WN)8Smf$Y`-njuaN2se8nIv8vZ|&R2U82{HNjAYA_ppLT9!z$QH27RE z@=|>McfXj;yu{}j=xFfrNNeszd9>FdtZ?vq3*+oX&Z~2p1CwYc>|+rOORq>>U-(g~ zt@E^Svr*iz?aRdmO5o-W4g@Y*)s4m&JAJ~O3bP8gVsm$!-H#O7`6hM;KkivFdD{1m zi?p~~x3`~NTPqhYGWO)%UU*wzGiCK51Qgou7pq^^$hP+yIdSvxC=5gWILS3z5;ik>N8z;lJn0z= z*53%N4-O>WYhMytL!RIiE?9RLYiQ4>JU6y_nJ}s?SX0PrCG>=Ge`89zO#_G9HUDtu z3$do%ZwJez^nzSQd6Hti2YZ{jl2P`F2{gFI+MRt1#XN3JDJuFtlHWQBNY(6ckHhWg zTW`FoEGc&`SbRejWqra`G5*D5Vz0br@hFy(_Mzb}JjNHJT@SBIu{0*3F^=}zv#__> zLQc*&nd)em+l8WiaI@+EH3HFPfI^-lhR_59+S({;nQbz3yl>FVs}0*-xEXagl_ z={XvF-)4uGpMUv0&-y3-ygCSZ1L?QQy?cC`a3K?(0rjOqmB?*cut2Ru%i&WUk=jVf zPDjJM*zhI)uYUGnGh&|tm2Dd4R}u(o@mLJnsB_YOtmyC1Ml4uY7e}oN-pjBR7!O{( zm4C%ywWA{HIrR!&?TEJk8I^Dt+lMga((r@bwa3cJs&^YV8WU#l^IPQ7-X(;Jo$*C< zUf=vBxA!iYb>>_9mY%+>YGWvIiEu5ETH)gEH!1V+s)V+t_0~GWy)C==XOZ%qF0{w= z%nj#@S0HRX`j|KpG^u^J_llR?WUidh#hU`5BS9^cX&G*8VrRQvX_eN-b9|)EZ$byE z7bNK#=5~>2Tf1_6kp<7?<=fSYlLPg0iS>02lUuAa)6(D7#gG&;X(^|_5TvDdu1o2^ z`75;CK-ulv*p}DlE2C=4ih|Fr8&?}Q*xu#sS$G~Eld;kJy#6OI1jH}Pg64Gbi!SV- zIExVFe8sapafaeIi4_fs<8}6KYd8Kb{rVvo2u;3+;NN`|?O@3l^d*qz*MjyPH#0GjrQ$#T>QaQv|b@!R+9ePJEkYeGoJ6CpXmdiZu@!Xh9JGDdj0P#4mlU%e{Zro z>gCIqr^-Zg{`dR-f9t3EZMVa-^QnFT()V8VbxYv_Did}oFP`QU*ohutidH|YIQfvA z|00m1VMu)K-TuJyL$m%l_nM2R(s^!jBb+NAW8@ox9G3*`-3URN-;O255z z>#1KT9(V3nKMb1x^rQT|_?X^P@tk18=DdxT-K&SuS?tC6J~eBnVxP}Quu#eR)xJ&F zRQ>P5x!TR|N^LRsDP#jiz8kNJ25psmPRX{?i1`&Zie<%Az%JnZkoGQpf%oWEv+MNk zBgc1}HYux$8v3pRE)#49>bH7Iv(j${%+Fqr-KY-dccR#(m3(kOQqumEC(Md)(|pe3 zq@Z8@Q?%Iy{0-HInsZ{`<5}p{XNO%=#fqFCQ_p{m+*T0F z>XLu3pcDQut<(4Fr4H50Spm&lTh5G>G>4*;?;S7cX6B29H&Tu6s`HQ=+PMVH=Mh`$ zb9&*Stu`mnyZz1DCg z`p?Bn!^J;K6p8iU!hB$KI{WSLqnKyti_LQu?DsW#nrF|(b(3nAy4@Em9}Dgd8=f70 z%dU~W%Bj+~#veq?_~u>R{f^w{+cQ1)%v$Vov57hH-7ct6DA!d4ag_Y7ulRzj~&M9jDM3pZP?!lJk3ApT@^X- ziuE8~%YJU1f7+dDc_2=cOJSPw*e52|#dujCxkNtgXBj6g)3U!9GmLEmnBC4)^ol!Vn8}7I)|<0Q&cv+c znwqDVUik7i-k2C{?Vhvk%M}jHXW;j5*1Z{R&9NKdfi+Tj(LGaC^mq01!3ExEy-A;? zRlSTnkyKw6Q)RE}_^Wx|y(>%ctCsvv9E(s4V?AGJi#z?p$YK$D z@3jv7`)4b6NS~Lb$6vK1Ol0Zgk^S-XY{Nx})Gf|@M2@`d-~1U8Ioq=&L)$P$Vlr;* zQex*Jwz1{jczzViaQ2&{p=IH0rD)O#JV`s}C&p1MXLMm3$1L>@_x$2{Q{4Slx9x`) zcGSIE7koKpUPKo+EE$}(P>!dpY>~u{3@JPzY|!X1CLnFA%Ak=BVf^+yQTL%AW_RAL zkGgZc?^_DEm1mi$%<_gcbb#U^z7o$6n*Gi2e%YHlBYrE2cSuBjm6<&p|K+-Cc!gB_ur}x&e0MwHa}+CX?|2WRu~8`;hVl9P53#kbBL1IOQyX>;hML3A-MiU zhdq17L%m4zVi|1TkMjPS`ifGz@l6q5oYn>{ICQ6`QOr;9xCxUtb!)-lydu!O!5mx0 z()`vV$M4^{D8Q!ku~X`{PKPnql^1!z+eXGS1L9~nLGuz#@9O!m`rLo$UUlKLuo3>u zKHc^!e7H=Ar_L-_j`2BbP)pWqiX+{iP-L`{vF}LrmRS(~vuBSJwvNhWVn$FXz46Wj_8G0$6MYPn{J>MEqz(@D~D5 zHw|8zh<=Oe=gt?e4Z^fj6XDoBZhur;kWYbiv|=nO7am2}c{{z!qp6@!=k|H0bkcYz z$xnmYpHF9M-`zDARI+%=93?0*lCaz&yPIGiTSKMtqE^om9rELWnFY`3@NSHq;oJKC=8E!A70uRz7gs*x07Ga z^hUDfAJFA)*r_y;%HmA&Bow=GbN2DZwimnCZ4cFI0)5qkL^}`PJR?l~s<~#?TS4KD z;eM}dvp#W3Ry}Sqz2R_xt-10`aZ~wIrCkc1wTAA~B3!aKF6Ro}CW3+|9%?hh+1-AW zmwFs@&x7v0maY-4;=Zg(9~S9qyy(fr+w3uWNu_jJ%-KS^>($wfjnx}5o?k1TdB!F3 zyU~B?>q>HXdM$EF&E#q~zPK#>&ghx@>MJr$$u~{n z8!x|n*v#2z%BVi}^u#J-uxNK-J9bAw?HBoL32e%znD=`nwOq^ln-cQSHTP4JUvlI8 z)FJ9>B>!id)pI`i-m}zY(?e77@{7$!)Za@J2j!0sG5X!l+ZlLpdAKfL&1CFyB}#FK zUzQFzA|q0-=Dd8>I>zea_4m@Tc;3xa5^q!FJrlb!-Oq9&*j`J}etpzD2hf9XBUOid z@Rc;PU5JG`iWY~iMpgcR*k;*`pWn@?kv*Ckyv^Bw$qrqZZ?5(Bap0W}WAU|K)~gNJHb`;OtW^10BK+Q3vZ7Pal#?ihKsLVo2_y(_;QV^Y~&Y(0x2l<~Jz zzj(*2Kka?w^z$g13bh!kDDbN+X}N|lT}kvi-5Ts7p?HsH)gOpHO=U_Gt|X~{p|7(2 zv1;_s*9z$8$Lb3pZ@eq<`64gTDwU9H$ki@xJQAUY&r+VKetg>}U|edpm`MKq3Wk>B zqsN2A6fdbe0@7(7%0J8FWQlqa)N?}$_FsN@GZtpwa?CuTa&V z*?-3S*9%Z%^JM#e@b+1BpfuTE*1?qGvk?9J{>AX;J5@Z^<4)uo7{N+JR~Bh-+=jZ6 zfBj42*oR*JK$alw z9+EaKIr^?n{i1(!Ex|=IZtv`LgK*rBxJqt5%iGe!0u@7HP9X&1e{W>GjC9|lkKM6{ zhnOCX9XcxBkI#a=JeIELpy;%r#vIxuroGe_-&ow>@w(B*cp|ak|M;x4q5c=<1giS2 z#EW@4u{rM>>wtT9g-L&GA$;X9HgeL0uLqrXV-inOz2*t06G;wutKGWh$ zj>0mJHQ(wtPRV`B{@%CkwYuWA*6VJ|Q3G4^0+Y%wOYWQBS#G~S)*#OoGNAu z%BNs80_}O(h7IOLgI!`8t7U_=&$d6@?$#<)yo~*3({$%Y+1E(Urr*?jN*&Ed2Lbzp zW_U{IFJslub7S~?v$L!|gbSIN#Z9hdiw8TrV`?t)wC`8@R6eh#cMJDNT!OKgiRw+p z)r4{FbG#aqAMT0aG@6_vJk*353T;<+BG;{irJcmykj~D2;nVC$nNnf4TfyGb%Uu`` zGo@Kek@6O6{dJ{hsk1-Kn>&uS{oT%Q%Hd~WkD}_Va3Hb%A#Q>owOJUCCoaMFyYq`Tx$E(?U64u@n6F5 z6{u3V{ywqK%C5FcZF0Jmrn6yFQReR*OQa_Z#K-m%-CaN?zi>NBzthbXld`zuetKq7 zyFaF0T$A+e_CCY;GX@@`Ca*|l##YjogI~Jp^;m*8X}lgj`+H?Q^iA;`wZ)~jOWd1> z?`S(0Sb`Q_%V=+p5#mjMd5m2$v2n5@mz#;t^XTV=?wRFQZI!qbrL6noBkmEeTnM&) zbPEF!g}j&h-~;;~I9vQ@!{;N3B$9_gKUFV`rZTC!O?Jl>rLr8i3ofJkB3IyO8?T^r_%155BmP*?pOG!mD=%7e|WjC z-v2Ki3E%jwh1^|tnq@YX+KB+Cab@1uHyA%ZsQ^IlM|%8PuOBe6d9)dY6)#QX^ZOUA z5`+c4Zb}8+-mE^xS~b(bOCY0krurV>MQmANH(_a*V`D8i-ilQbUhip7H1oJ%qJR0T zsQNykYAL>%fSMvV8{g?k&A3gD3st+zqor{#oo>_7*2zEGojc6~d+8o=hEOMwPoo-l z3m9m%_Z8j!<@SJeE$bhkF79A2DemYS67jkEgPiLFnj+Qh??;!NhIvpkf8DeDUzEKC zOkG{j1&S0XUfiLAyK`|U#o+=)io3hJQ{0N%#ogWAi@UqKUZnWD?f3tAl9#-^gpiyN z&e{8%*|TTXtUYVj$i7gis{M1wJ=^5GUn~wN-6nRLsir{S>lO&ne)DjxZ9W_0H^KY?EG?+r~41 z1p`d#>&a+ld2w=w`k>}#?Q<59Nnnx{HCU)V5s_s|8V&&uZ=32$Y`S`tmhD-@w!w;R;WF& zDmJG)p3nGHUapGU{`6VAV%+!zcFq!?OZ&jE_sfP!Z+VI8fNUpv z{d=YivmOr@8Vl=(u4>3MD3pmFnvN-Pss930R|J>b=P>VC;6?V@taDZEU?i7496@0S z7mf=S?;T< z9^$V-$~6htaKI@&a1Ik(klPDgVfNYp&}0nwu}w+y=NUh!-K1#BobE&VSQ1i&g(qOW zqxxsceK#>1vwfp_gol*))zWo4`uQ_La(9zOU%NedTl92mm&79WQUL zsEyltMv@d0`>m`iN9^8{qZOtR&azZ7FpVn{0SU@&n-k|p_m{hLf(Noj7?s>iS6{^= z7<+s8d;XFht zXrk;{LhsCf;StXbHLy*fMQEF?%of{lk41&A{d|%Eaj$$}R$8~@8LN;$pX$I?C3(l^ zouO9q(_<0iTEbj(6<6}o^en)>#V?81 zJw%(sZv3vg#vXAcAfTSDSnwH>W5{!UMZb-J4N*x6+_v|bD78frAVOTG)ss`a`XSD` zchrlGE`)cfJ1Do1dpho2VWvq*=@PU1uq^9*N&F3f86v+(ug&dW;K2{d4k)iAHtG-4#K` zz#Gj^-SkMfWm(1Mwk7exCxJ7TR*{nxI{msTk7|n5Kk=ULXd1T2Q%F{yrdfbD=$-Yq zg%i~{AAbnss*((M{VpIH)uy-oUv7NKU-FoZ+$X(^rX7y0~r#b?N6)Mg>iU| zwN2vYj?^g-tM_zMbYnm})t^Ca6h))AGm_rEOj!2U3NH0BF0dZkM1#LN`~*wddf;9z zhe_c^zIRUfxkBh#Qyc)6ynGySEkC3sS~ttxe5G=oVd^CP8@g`K$8HGpq3BJ!UgMPX z7H7MV`rL~13H;e^|MBqXfi^GL7IT)O_cGPct28IhvI=&q%lYX$mc>uFUk;2k0kdHs zln3Bxc-SHY@F}np6}kmtl{1_I%62r<5+bH2-`@-C)TC%3mn_(d*chPig`2Bp9#yHHRct}>NB+zoWOu(<8LMy8jUD?Fc$u-drH)$D zHyO55C>*LNc-*RQ`AcMpVp6wsfptG90=qQ|d&??|awBh?WKBy2fc_<$K4$f zUp@_=s>+aYAsoll$P-2aBiqwtyCX|@Yy9cF#B~0h@OT?8?E#1FQ^IO)p{5bBwz9;q zOk=HjQ$%~56<`(gxBw8bxs+Up2ItipxhM!g)eZ@2c(n_T+)g1|Y5s3rRfOl?yCC*vQ zZ_w&;iaOs1GM14Tb@+x-!=3otTBBV8dYv2}OQtsxMr$21=*0aXKnEJWtYv-D)o2)| zr8=9%ahhA%k+Z(EX9}up4;gXRc7&L&H^GWc<0Ou?u`&s{?bYG!ySIOp6YF2k@Slw% z{9_?vOL2b_Rn(j#FXMSLbv6Rz9z z&|JdOk&8UGqcDVHf<0CKdh`L(fUy7);_@WME|Ri>is8)lb>*S`aZVK{aqj3$`yhv` zB6Tb;>eYmcT+gzskTJ>7LBwSW$Lse^4x_M=&X=xQRARaWntRHE4u27LNx0|;iP&_!%7{Gx|ICcQh>jDZD6&iqC!iYYfo;>*16XBbTCHi zQo5Vt#Ft8*08I@+2?3}C*Ijbn<7s#XmiK>VE^ajqe^dr~oL3rMZ0eMQMJ$Vm-At7g zB{vB<^u>vIp>j*>bOPPhS@x$Ewc;1GvIJV0DHulQ&MS*4;iGnd-zMI6xcy zfkD%|J_akDmWdiEnNW)dTZvxp2?nqHhq@bG@ulT0Nm(7ht&?UT{>>uUk|>o{54Eb< z6>^j}!PyrMn^Gs6HufXh(Pl*PbUIK08(>@s1Ev4K}Lp4z2~X@i_5SA8dKE zH-tFgH)c#BSj?XhSL#x*4L&@Lc5UFn?DehuD4)(5w6aFmuJkeV17 zk`yhQ9|06HJmumk0G=xxWW0bw6|KV1B|YzD;Ich-LKQ=NftDgf`N>Ww<*-05nz^QB zU>w=Vw7qX=XFQCe*DuAQ@w3rasfCbK1FJZ#{crbM*hdCFTs53h(Wdr47qwY{pD!c@ z(1Rlvf+(l7NsRYuxdl(u@!`F8w;J{;M1NGm*J8tPGiFv4YZ`N+CmIO`qi(|kEbm4= zC=XIK%o^d{1fDdlDsJLs7Ko7sczpgQb0Kmu5fDn-&rrQ&e13)T+{=iOZ(RDbgIP_} zfqKchwRt`mTn24(={*?qskY`nvqfFAi&L=HXtj#Vc2NPUnR9N(Ql^`~O^!ldqamnm zH)o4ToVI$R9go-2G|9c@42&aTE@E=6DS&Kblj?_T*MK~TCMCmJS)P-XNviG#Y$=n8 zxC!48aFRZeQN1SsC_%wgeR3nZU65vP)TFQz1027<@Aas>rn=D5h;oAT7IN67(R%^C z*O)l%cCka-dxfG4$F2H4)FHv6z#+b3#Is8008zXwk8# zmxz6q8;anQaLH)zcHEqv#QX-nZl4}AOgJ~l$e@`;(rS# z;T~>wh=_VJgd`mud`8y665qc0Z8PPQlErtJN#aBp(RV->pD~P_1}AJa^2a za7Np-Iy!Q7q$`jsy0kDq8FD9_Wq2u@@TIy`^#v@>|0es0V*8}I@b2_qmSPR}4@8Aj zst12Q7?XOreyMc(y?gHK`-6Z>E@a9fH4Ju)+>?S&QA^T~|HY}<^NPBZr-s)>GUs@X z_yMRiUV79?7=0*_d_)6q5NYN$$u*BTYQo#cXUMkGh7<3wm{lT;W0Vb6>)4v2Na17n zlEeg@uF#T2;3@b+ZhA5IQBKc{`ghF@2<-bDG%Z0)n2 zB`xjm@Z2EpPxoF>yC+nF>NcI^)SYRxB77sq?2P0K7*1A_M`-)9**3ZrwF!b)!@Aok z=cD7nXoYal49D$|WOiX)1hZliW6Q zhL|2}praV~w4Gle4^vg;F0^{77~C|a8yQekbLMcwL4o4D0@$Dbyn=nk8Yrwb+e*Z_rvcl3}N$!|?Y6-SmW;;AD!@3oNggOA6q*TT9 z8$)Sw8k%(igg9;o5Mou(SOk%(B)Y4rsY_b)PN*&}4?QiDU~AiCGRDd9Y?7Mvm)R9q zq2k05a;VdOStZD(o9K1#Oz*}3s8Bd$s54D@<5^%M2l$m;6xCtG_;ya+-N&%d$~4`*YT`4*OWdUolf3dLbnNQp%eGysIq{IBUH+c!X2M3DhU|m^C zJJRL=DGm^bbAZm^D=rffA8d$YbQPnf~r{5-)t3r)6l2{EBGkJ}#w$EyW?? z&OEQI*&z)jaV|glYK?gP{Y&b~0J+g!fY)7pt{|ly8BjL1CUKVvNQy?xv_$I|y@gsWF$AMK5kI?eXijduG;=G=KQ}K!7&yK!UdS${MPX zg&WrfOcS-U+Sat03P*C8qsYy)XjIWr0%+ACsPJ1pFN(_Q5ONuhxe@pbcbQjX$z!Nz zy0w(Gl)|W5&DJ(yAe><~jnPuomQDZ(ffqdpSXxjhp8o%=Td;Bi`S`FMFX#K=&4Gk` zJcD1^mxn8gy3@l+@zrCFmO-QeX9+{1EOVXMCMreE4FM;4i(EvhxghCv;Vv`^QBiD7 zK<_*(LP*kR;i9#0C+5L7@t@zk8McNU@0Bh9QdL8SX3Rp>D^X*IdlDyb>y2;#)!4bf z`qr!cTd=nUawJd?tv!uIw*1@E;IZwB!s)L=z*x|dX#5I;?tRtl0kM;gs;%nB^|jG; zZt#^l#Q969tcQ~}yzW|!(>#>jjCWgbA&N8ARI*75Lwd|t3c^WIrri8V?-|;aRCo?t zO}Quah$bCS$Ni|=x3oaG-&Stx3Rj&cc2nYHTKCnXQfwGULN1#{DQAceiIO9SE(vkj zmU$9j{&P|n!5c6b7MDQL2)2I_EkRGVWW3pK!2jmKWS1k7-?Wc-r)|Sb&*nvS{~H-g zS^0=nrYoAi6xOVFUIMbdPR zA{6<7cmhxJ5kvW?7k&u;KtF|IfdA;Coh4qw#4xJluK`MWTM4MRU%T>o#(JFL@Uins z8k~r(b2S;WXZ^+0`^w3?30MsJJlrJ!Uf3(p?ZIG4Di?SA+igqw(u%#TazDJ!vV5fQ zgY;Bzub3IPD?trvYVH2ETCh)yZG+q+mcw8=*G5|4E$YwzgQ#L+;3T1 z?|f_QPW^?d=^}sc8%QPBXrFh)f2U_uF(YbM6>Ab+FxRDWbLsg?3@B4Z z7uV-_+C~vK8n><4)s28cYGZ1&;GvKV8Nyp5w?@5hZ1+o@_A-Qr26uF129K7+%HChx zzLCINePSpx8>H@k$k83K)g|N{g=1q1hiVKf*We89@zARp?>V`a*H##NBuYMt&*<3M z&ITP6U2m@lnrzIS-uIO8Bn#lVOwmH12a(J}5#f5f<&o`e#>{lAHM~Vapx>Nu7uN3F zvedk*z2+$51;prTYf56VoW@SeeS)>196H9tqv?My8?!1FQ$F#5EQyTmPa?)$@^7PB z#AOKOI%C{`Xe+nl-8apnjJbQQ2>=35wAP9tlUZ+BZzd{>k{^@G3tj8`aUd60RW*hF zfbxr)5w~{5$N$MAlOXg__<~lSn3HXm`>x!m-)Nxu?dr7e!@obIv)H>jHWn<_`oGrD19<`+@^-e2Z>r&rKTEG z##w?993maD|GL^HQON134_x{Yd%BQ6d*0#4Ip8H>_GvGL;qUDxNFg=)f0O?EizO05nEk(8{XN&^CqsDR zY+G6VQ&m==;XL;bTH2{wOAy3J2Ge*V@lstM^tsMj{PYCYQhxp~7ob}4aO5C#7%8!N zI*@Qp{Hh%*`}w@kjmzg0R#fior#v`;I8(Lx;4kDVXs@Gnw%K2xa%@10IO9K4Z2Lo! zVg=9DHrDWh=&fgG2y@)JEXUB4DZrs{V}IQk$3_9wN&1;Oj%UJ}bomPHE!CeliC@&f zlo>fdcxNh8e$5T1ZDT)o8IC$&@O(^5sk`wtW}a6wj=SWqJAus2GaK?oMui9u++|=y zNkKw@3Vmu(Z0(CR>zm8d6`R`J1;g{RPoxZ~k+n?YF%8I|NjlZUP{F?i7fo!s9kSp1 z4BKv{h+avHPAq8apXWEup-xwi2%2r$cBsRnob25a(>%W7VDo;j6XykBo^LI|k%Edq z3th)4BD$uPl%#OG+e0hxsLk!h%K1iJwdE88 zEeJkol+nl`MQoMz4-Tu@#atI*p02+{$b!zWu^|2$qIO5JxSaw;8n{x6s_)QDcc~hP zd5%eFUP?{2npfvPmKq~K_80fj?oU9BIwaL|wPJs2c98{nnFavUOV%_{T9GyDlT5%BMQYjQy>%ouG(hzn(Qkz(0SVUv9_ zj-S0mezPH$2z~%NeD+JB+x7RbW>LCDHf#tW(|U>4o{cg8*v%2#MJ|$Y6vGKb(roUb zB5VaVOeY)|dC02h!b2fLCy_vjoKXNt{kR#KmG3%U;7fV*j%tb#jG-Vrl48EVd}yje zLOZDX6g&fg3{)XvUg-WrCrdiGF#0cy|6}7^U&SCSoSwX^T{@*;MUe}>*W+kc&&z&D zetvsTT;}8YWraVELGeJs;b#XQ(+ZvEjvOkh(z287E?pdPwgINB>92!Az+e{Em-*3( zccTm?yV-VV#0#@GO0*v6Ok{vjmAUbNdx5U?&D(b}C@t(HAYmlUO`!HCYf3X4^MF|O zeJySoS~-G}i_Pk_268(uLrJt&tU^Am{~4eD_q-?a|1Zq-s0-!S>3;dTcbVVk#AT{Q zmA}{-oC76qyZBBU&z(dXIDL&A!pIfPuoLS{hGdz(>0Br41t(I1;9>JhHfGo?2kkSt zgGxIB*GSTwwXxHatJ?Nu;DQ1PC=gqbeoxyasSdw$JHWkF_&&zu!T{+&G|Kiv)`Kr#e<^7irs6nMDEr)eI zO5hWwM48-E230vL6>cS!4|NwC zeiMyKjm`?a#Z2R|93p7aWQQA`|>*=E*wq|`mVQ$^%sOj zxAfqQH>r5Ij}3tfp~N3mzD`<8O%}rzwIgn}h6=5 zyIUI{q>IX<>|`ptEtuuUx1P;&d+yt73Rd5v@2Q*IV`b{3T@4;wQ3xOJ4NqKEt8ZvKOJo=$bGDD2?D}~^ zkM?Hg-)Z*{(H7E;Hqbl7H}5Vhy^%Kp#rpC$==f{&kOjENS5w(8rd`~92PN+sIlF@7A<&Zeu^agOw(=I`Y#MSIt(^lN z%v!kUySplU@A<6qjojggl|q*f%+JGCTT=AM5#?jfmBo79{)xwj&+VjrIvUaEez1!% z!(&?!KqpWz`$B5+R{Qk{%!K9hN!W7bCE0m?a{3S1FfR*3Q@m6-n60(=rThN9&xLs1 z+0&nEf5kxJo&1uAMwmm;MNpK_7B9lT3G%YjwJxH@5@S#iC>D2;Ro@@BxUtl z^%osZ9yuPaDj*T970gk8vpaEI6j|c++@$~X^mw;o+DeeVO;HWJT~m|v960ijEEFkp zCD2rCo}(?du=?*2t0N6oj<7#feF%CW_zwssme2L2az ze0JTcoYnK*{n&5t)5(0^pn?@IW;+wLLx2~&P4PF*?OcwIdHV|!0(hN}*zY)H(T!Uy zWfM9nnNJ*TH}f2?3qGLT4yR&;f3Ilu3=(m2k~u}}rtSGGdq2UL2zoJz<4s58g&k@I zA6;=@X!_C+Q7sbm>!}THMr<2hYF+RsH(*je=U!~<3=*F46Re-94I*7o!^J_|s{|Ep zYi^>3HOJ_?*F!Cs6U~$KB)v^drYp%saCU$z%7F4hUO~h4ox#FVv%@^mj|N*a6lX7I zb1T{ZKD!Hqh#xX`pbqVXDI`+=s*N@Zg-wGkTzPmgl_K~xB;RVw3BR7=7<%?{!WcM~Q8AE-l%WM{UVf z@ig&VeADj!<0Ke>g^}7(ko9hi{lx>`DX=g$oTt#i>(n6YJ=RuxqrH#PK9D8?)66Dk zU0rcpGIv(j=`l3#V5lOeAoMX^)dJg*2hJce!QBQSbae~{g_CB_;1rcjIL6Pb|ul}R;@>!P?@B#iS>c8`;yFu zR_pA$i4rbeiPjZhWR6H7elg36nR)aWPm;nj2b)6`eX@hGiq3-STHT=W8bZoP=X8Hw zR;k$^(Mv^H)Eu)?zb}8KDdvCY<{C2$eNH17-f4jewVA8E*b7a|m%fO=AmbOhzTJu7 zbZh2dG6DHb(GyC=YhUbi3CfZ=*!%xk`Zy#fW?Qjo#>V**z!qQlEj8;&Z2&ZQXv3B? zF)i;wcOYZztIHm+6Zqu-`Op{gs(hOFF3503+Q&~X_CtDI2BiH;fs9b_P>WYW)C`88Ix=3Bjs;2lwA3Yz_MM5I2A-0a3^ z*VlxSTt^=C4+VY=6+4UA38$*DuAhZl1{Lih%ijS(-HNm^h+Gb)-M?iLLt0}*X!ub( z7-4WFL_H9>xMKIxj+ zO>Opdr~2>+7^301S#$I~&glbYrdTQm{nlT}+t>7_Gl-xA%o@-hVb8DmP0+4Jg-9j_ zFn2u#R1&)l;T8;Y@mmN`9TnH5Jh;*;nZ7p+i{_OFuL{mxou24AXm9p$3Oa3&Qi9## zX?tnnXepnNL2DKiZx`05p?YDJ=pQ;3g?Cxb!ZP=Wa35E)$|Jx35zOuSDBFE~n!+#F zDYYF}I>8MFzqO=;sT#i3Nb0sFLV9P3SW zTaYBpaB!Svh@0YX^i@3si8da~&k7RC_k@!4dtlphEGM0^Z|FK1=T%7K%Y zE=|>|Q&`w-D4K>@J~BBJGtGJKq?k>4ap+7rCK7E(san-}HMvUXD|Jg8f!LC*2jA>9 zsT?0ahsnt)I-gVI+oj2Zk+jv{U^GM)(zj>Z3m9&^(*Bh0NZAxUU=mEj-Ev6A(+d&& z05}w62Fy8(r1DWo>HvB}4WL0mpNl1^#^jc-sD7}RGofr-@CgA7dKMf~v)N__&zEcO z;?%?D{ThWQ`Zj6Apg9N(@=Uw-Qe0lXL8Zbz!_?^iNaq z2049E3@Vcp{f}MZlbEemfdGP>DHhvX2cF$xRYJuan{gnAk$Nsk<3!X7p06c#V|#)r zxny*2bB+;~xxKGzM`FVal?^2d{O^K!6V)~V1DYJ{qaxz=5u;SK-ZeZP>B_P>hkCke zIk3%-)ILBvgYN?spJvyYmRb(P4?*RJUbE(eh2kyA;4*)=P(6&Zs7Gl`JFAa)lT`{iEyT=VM9Pv@4nU`S#zXm(Puk+Ak(gAQx56v(__MxCrnpw~mE z-8hB!&**cR8nC=cgraxs2I0}OX5DH}_Vx9)9sJqA^cF11%w~lrDY7hCS+Pvxou`rv zV_*UfS;LPU_qRC1sLq>K*W1y?xb(SB?xvH`SY#m|NX89JFLgD}`sL@i`E}VfrYh}U z1DA|@g;Es*aL#_r^lk6Rw<4?@I}9)`bCotzy4ONWEm44{AafXyv@?Y8F9oG;9>$N( z%5N7-MhNt+H)_kWGGD_Co=pspt>^v&jQYMqf`bppljl4#6IcPnu5SLb(oc&o)8+R! zWG6W$8EabS^lXeK9PM6b><cQ-^7Nm-B8l`FHFga@=>5%EI9o0um}6 zm|2!EU!KIzDWfoiH}xuIwXB4AgTdT5WWBnV7}t!yyp>P-X0i^H^5QIqdtpHCI4vI-?lOd*qu_`}D#f z?u}c_CW*+A-CNHH&k_>3k zurI{`Q4!b-?iu6jKK1+SQ`J2Sy*rK|=t=e)a9sCMzHU9Erw3~vyho_`bv(1Y1>}TV zC$ddHeUf8SX!}+u!Qdf8XXs7Q=hsa0dmxm|A0S%xnI#pzRbl=6Aaw+*7k)>#d1fnP znvr(O1Q~(PF9v^>zYv?F!NRMLHzAHef`G==SlqP8x*!TWLayuyqW3;@64xZmeB1d4 z-~^4tjS3UB?v=%f#Yqf(!I57~3BH)eyX}cyYX6cJ%Q^;#&IUwR>HQ~_ZHTDI?A)A{ zBiqjpMD$(*!;lhtRc<8PoA|`B^9km^q){IlB2A(T(SvAw0YHR);{Ug=*x#EGN&5d! zm$83W694xrOc)4K&_tznU*P6)A=da`3K~)$m-7GopRxeqO8@a?VfS33&$wL6QEDcA zX^V$JqhE-+&DeM3hB-%x81S47%C2IlEk~~^pT{nkYn}+at675o>&-_5;g5W!ry0>@ zmLN}AISg72T=(%(#E-;88TeghQBE6r{v~hJ>K*ZNiVZ~@z7x-CwOWjSUNm7knu%k} z1wxvNjG3<2z?*;?scT*T6%)G?LH}5V#k$mb$oM@Iy%P&J$ zpTtDa;%`k)Qq8LB9jiNWKTfFfiP5jhuxjbDZ>8D2KJqiX1J!!;`O2cJOCytLMWt05 zV+lWs)t#D|?d*%Q*Q-MR#;_~jjS5XX{o)#wY9r;k$ch3)mwEw{<_r!=0D6S8F1afM(TiB;py_bq` zl$6Z--qG~qq<{JPcZTw_-sx9XxvPs(HAHIV&$ zoz~UmSKo~`dduSF+(eq%HNY9SX?wHDxbQ{qrQiWptjgbmigsBa+yYcoqQjTh1wJF< z1bYxy&{~2S@^^T5SNo4%b$A6YyaF* zX>}Gg^=*@U9Ap1QC#3Vm(SBS+h)J)GAD-IBDCBgwkBY&G7H6-MX&7zLS613cxFnBA zE7VASUBA9^3d5*ns|)iKfSbn9aU%%V?>n_LvDMG;WDHdJd?q`qVZltx<0yryQkW^x za=lD(wGcm1dA`I#jXLu@S-!`1HyN@1iQsxh$tHiGC_V{qX{~Oe)^lI%p|2QwQS(&o zzL>$7*h5Bsn3Yo}m`Q{YBX7uhpy+V;#nfddyZ{f7G{-!>Sp(%(v$PUtBR&=t*Y7)K zl+KYW8a`#2>XR5g7uYLr2uReNZ+<=IUHRS4(ce1;iO?b9%@5f-SP`E3k0u=;wxmby zH$+~hw>h0Fo4d8=lY`7pnWS5Tofn&{)(8eM>zC+`PdZ_zaFW%X#`cI3qBIAIzlLbz6Bhz|F6egS504fF4jQYbdDo2dhj8KSUt!ZLt>`AN?70|JNV<-J0E2PG z&!Ua3adrzVk6wE`?1ZqjoggZ*-VO7&*pm4X5LHL*^z(2 zKR#3&Zj21<3T1PZqPSKN9D_xg0G;;~!%b#YawsV!e}-rl&TnmRdLtW)8qwoYPHV~q zfl=IzWpxx3Q3|t{P4r%<8j5zoZe6~{9DbQHzr1AAcgq=w(YWPjiBpt7uAV4!yu6du z5b%d|GUtc!d=W0#u(mcwijW^ZwS3m9lhXFuE0iElqddQjLK9TyT_M8nH?8<9 zK^gGmkJq2#F1L19r8;|&u!Ah8Q209sIxmdJg+4^RGh?2c-Iz8$g_)TMuf8r1cp0vb zTlP-*KU{C4U)r3HSe(80CLT7U!rL$qFJ~Hkwb-J|ymtu3$pi-HCrG<)lAJ8tpFclz zybUk*V|Lzdq&;*wHkWR^XTEDR6S!=~^*)nxslL62s{naqa49A&8LhEQaG!mBI{ae# z18?r%R=9}$7sw=u%njdxHgU_ci25KkUtP&1(Sw&lDnr-w$h66!5~0#gYN<}=@kKAl z1LTU`WjbKZ4oeIF(V}L{mY($+U1C)_@n=?&(5vK{S$1?R>40AE*6};eYNtsu+ay@3 z{SOl;vsae%!s7>Y_a`+^#wlJ}#q46^oZonMlS#kv+P3^~hcW9}vkOaP97ls6?*3ef z9OuC`)>|8vr8+Vpze=!yUshT`1{jZd zyl67CyCZGfHll1$kgZeF8DxnlQ*SZG2`m3~%w)*8UdYe#vxG-k$N**+FI8$&ohIwJ z>d=70%cp0q)C2HLdx03`RQ>;Q0XR!$tlm-ol6+@|9v!gtF+**{kMi+OVS(#pXU+;V zbW@chK0GCs#vo;4!|&7!)Xabc*lnfIAa(9-K=IXpqfAGHRbBbNusHy8O#YcXU^-g{+lZ{glx|F_>ea*)>z zA0CwCT^W5(i|(=Krv0*V(R1+iS>-};=I!cI6s6&;?FK=Ig4f=6@ZQuHv;RO*hJRVc zsxle@%9T(AoXO}Z6-}}kYD1#B3;Ksva0>oK@CT3Wl}3dow{0~hK~k(B=mW=RA(rv5 z_eHu5DN{eehTy7_(c(vVKAc>q{_U=BvClt|?r=OO-j?qFtfH@Lw5(bgnk_0$!BNW8 z6XK7=2IEYetGekdY+E>#S*eI|_WuT`wrJwix<;_OTA2o!SRv+ejB`^d7xx?c+j1gH zkESF`cLNH)V&R691`Q5%k8a9*l7>cwH}aZiMcIe)+q`G){1--!D zCWhzNc@p{hZFt5c__H!0KU^V(a@vXCVNdD?19kI~Wrpyy162+X^%pRTV z#JSl(NMroGfp8_~)&WiR{yDk};#oWL9$R;ReWO751X0G5ma6*n%@lt5;ph+Cn0jqR z{Z+$F(c9cI8m?sR8;^sG}M?AnZi0~|fyCQ>1t=+o7`~r_{ z>kmR=4d3~Q!YA?!YidJrNlN%b{%LU&MYbSt0GLWz8#r9#h$Be2;%~e`9(}5rS-=Q{ zowjFyC5%t3%<{RiY5vpd?EPp;!ds?tlgZm9e#b`{ zdj78>i2Jddp!#8y^rd7Jg%%tBii7lHh0D~`OklZ+4(UmRV@)Gl=i^Sr511(4WQYB` zJe~5Yl8*T-H4B}JO>oMl03k0}Riot)U5(ikit^CHnzA8Gq%`*oa37eR9a-UxmuMdt zaeKZaZ=ZoqO^Gd46bJ*JkXAo7q}^E1UEJwAn}@O1KE z0ij#uy`g~iE9gi4!F@}Qc7G|BrPU@9>7+I-?6|+c$_$EAq}R6{?zWC*FCA)JVS}$J zBu?d*U{jn6`}CH?lSUTZ7T*UIL0JU7io&;`YQd-;lXkx4C+vH<%0_pp>EUQ?%`@l| z*IlyL*x-Y_$ffc5^hV5CORqM9kxNDF44(|04BkPeiS*4en~aZdRBwGY52QM0-T%3b zzZEIj0`_#Fn|UGjq>1l+zIN`u`IHDD2Nq_$Ua`Yk?zP3D`|PGEL^sVzrX$TC<>?Om zu&MVKw(@X~(v)v+-I-_g^S*h{x63Cdr+)y5u=BuIcmsp^aOldUZpztVuj*!nA`p9p zgMfERyLmLs*^D2M*yi-7h1~f@+PVqaartMGDq@jn39(;#x{1m;gn~<>_t&lA+Z9$z zQ-yPNo!wb@+y8hVMKmnba;=Kf@1(UF-SUfRSaiR`4j0|O^YRO|ghnwo$2;DZR(?Kw zV6c1{rSh+Xj`=6qN>J#J1&L2RX)R7%&jFwTpI7;h|D`Q6ZD7jhi5dKj?_QqL&!aE ziXJ^@dbKKObZo;OMO-nfamv;}Qqe3!xF(g7mD!_t1XUfI0UP;YMR4X_fx~!F6YhiB zRT)7$MgTl(aka+5uW&4l!}uhts}40col30SNd9{81~Oak*V;m5*`$cTP^J%{Dbo=* z343IjXN3dg9z%m~vB>Z8>h?SwK67wh*kj0W$`Inq6&SN~q{}GueLKrJ3CGs7A}s;i zx#!YtNNXt1sjcPemS`CgBAR{HW|Ce1I5cycj}y^tMZImd+hOHJp>jwS@oq%^c`^jRe)}b>HA>=b8qFH~qY3(M3%%>UHW^xWR79 zZUJ0BYY?JEL@Z{-<2q22K22N-fy(sChj{QV(h}}(-K(ePw{j|*Ter0#I^n4-1W?R7 z_9`2B z8<@5Dby1w2i2^*m!m%Cl{gxS@i*0{xf|`DY263XRFc|jUvWv+!wV^J`AQ@u)4ESP7 zuhq04scI-WAcw)UXLg8KHJ>2;phVWqjXJA)^~bKlP*(XByMyXW)nMR?S+2UG{%0I2 zXWBsZl>xR|HVoK2EOM|rAs;e%VMk3u_{J*C{=Mrgr;cAjv-c6sddCg!f}abM791lO zNZYTXTWX9)R&}mE^`>{>dR(jI1^z$Sd&kE*zo73oXw1g8t;V*UG`4M{4I8U*vXeBn zZQHhOJ2|`k-OqW>i~CPFFZYY=tZQGhX3c!&J8M=WU)^u28Rx3+ox*)SxhgK!_(_w; z8YcaMW9HsLE8qK*hkg1-p$LI5)_3#ZU=$Ce`bMXBb z)ARNjju%VXr~$N1sN>$fInOg3iSOQ$zyrCWpkr8}^A!W<60^|V{=bv47Fas4VZp)E zeP0TBcX=69LWi5E5Q!yN zkcc_o8sFY75pM^gx%uxBI|uIGlAos&Q(dh(v5X!k{Pf;WVEkSyBJRIwG)5%SDuLx}|yU+>*pMQKJ{z;i1%YoCFtGpjCR{b)7!%|0* zHGrk7>pD&zMB~vQ7>Y|tGt%l`I&_loz}gYq7*b1HFcf0jp#9tZ9tHduh<)DEKEzX3 zVfp`5?wdsRI$MElM|K7`aYN7SE$CoOUQolHnABCb+~4Tk%eWes(Qj=1yKs3ryL!D( znkw&T?C*RN^{xEUTNu|&wH5!BifxR5YB}LGT$ZnG=hx59C+aMoFu}YvY?8lBr?YG4 z9p6QN6Z+q>B%Fzwzv8)e3mk5Tapt&Rj!nrkPjIsYKs4heO|EjC6`H6wr?f>La zz_Jv=UnTed|LK4IC90d{o{G3iMBM8DijD~PMN$EuHiK`Eur0ZNrB6-z)MYt6^g(A@ zE*CTl%A@U+B2yIx=aQAxX+&=Q(h^#_S!Q88wCmBDK$+8Q&Mfvd`GWE?)khkx>oHSf zOoak2oYERM{)3{M@5!nQhJTW?62|}zVc6p$A?Lq}p&IZiYUI&a-c{K{q`?%b#BAxn z0_hmHTwK@hOFafv;gU|C`Oeky0h&oa{lKN)$S^51+7I8K<>FGHX8&zC5TPp-bB0OJ6>Va&EU|M6c=s-Y+iJ8$a0_Eyow zHlnw9fu?gO94?P?^FHIDq z$lh7mWhOWg-sU4q4Wh_e*filehdQ5F@BrDduf+k%FP$=&+zQCcEnYakI(D3gqg2U^ z9rvH>0k39FIE$<6fZ=7exWr*7qLzlBznbZ1{0E zzICr>9?$viFH1bW_Q%mJVH-zRK2QsP_riFce#^BM&jD`bJ}r(0ypq3a=ta@jOIj(C z%@W2#DOj30(ZD=&{8e5w@|SWis{q)MP3`Ls@3cgu+*;9fahC(lXR$dY?lRbLz9DH9 zaCE(hxQw~kE2+hDgQIr>AHsRXH>r%ddUOt_WhbS>@waa+ zOn7f*+^iFYZ_mUvdDBdngOP2FXMx@yZPrUO*SU+GNyNm%Zgrv8++4Wy_ z>R0MtGeEdkrkv>J7q390mczjQ+^#+I_VWO2Nkn(gD$IC1pcT`KNedolI*RN0B@Gm1 zY3tuuO{>$pu#KOX`KM5D`5n-RhG(&V1< zO~C7#S{(5`Sael=@`Z$q9J-nv;W(@O+LO#5=(g$QRT#89*TwT65N)YVOutUmiB$K; zJO3~aS{v|`myDP<3kgFj?k7>t^|JyNoF0fylivSeso_ZH!%%EcCvK`F z)JfoS-Q7U%Uj7DBCt7Ox%yo%(fz6>fV8?ucX441FIgU9dIyQlm^U*#U>Y^a4CdsE+ z$TC;;?dId`i!@{+O8yLIAxe4Brp|G-tVc|!13J`IBV|DrN8v0__Y1hjcMq23 zQEcgyYTv4xK-hYu^sN)DRQ>Y0s8MqpXh$=PUpce3w`+swEJ6?8T;pfBx$sUX=bW)( z#K_SJwMB@Gf*ic@R2D78Cy~C^?89(0TV|n}>d7~Q!RYfvO(Nzx5>UAC_8G@wTUec@4VudB?96w6@2g%d18DD(|L0gmEX@%{;nB z4Z37J3xqr$WbX?nVm(JXUd*hztvV5Hh})OCC{)CZjKV`c9*?fqJRIW%Cr^<0mO7#g z@3|+V^ng-4wZcy(bkMTXy9`FdvdCbMO5-Z)Blz!e_p(M{O!9_6O}I8Qh~}&-UUaco zG{DpbkF7!LU~(&`e`8u<)qyXwoH#>-K)Kv6QPkCZ=- z^eX2$z%YWzixVUK+Qgam9B>+i-qdXHl^8GncXiC()arXfK*W5xUY=_hH;sSU;H| zC83+azeLtT*_@zZjG~z|mgUfU!a_`)BnF!YS(LlrU3O($#+V84Wj$`-*;w7nueG8P^y0W~^oD$w|&w+WtHN1{iqKA8`_a1RgRKGJ# zwZse@FnMYty?>~Qnt`|~L)2L)Vt4+|c`9XA{;pcL3L;&UP+H=qYYD`&CfHJDi;lzc z^xk-h#7I00p#WtXA!%LB=DXrAs9sR?4B#at8*j|#j*8mSad^fIfpA&g#bsKf9!a!R z|ER3GyY|1$)n-2gtcY>xjH-APzD=%3SlJ`uj1g9dO=|QzMT0Hl22L*WEc@0u+v(aX z#O_YW_oei*Nqv_=m-AiqWaAI+cf(KL1$st#BmM0>NRS)t6sn)Y?Dcy;Xwr-R><+Pq z%xY65(QGi;259IBh^PQB*Z%Vpu(&R7$d({tuWWi2((r zvnc`&RZCP-fqJZyukOPt+wi*k!lUXTp^fp9s$Wmb{xG&BqB6D(woz*={N!#yIP9>U za)_$a9EsPg(D1!@UXY)&pQHFz5!6{UtUrGv3$8X)_WS{VZGyO&;mSH{+_VXjAm-Ew z=BDB3Q}^ceQqG&L==;h2&4a$qtwn-yORi4}o)TNW?>Gu+3X^Bxs03UkKlmfIylTzm zSNRLk`#Zhrq^Ev_V@D8k+WsE5)2GX4MAvQ69=+&=Z@-1p-2Lit)1}_iJC*=t1QSAC z@{K8DC19kd)?67}O%{s+o7*#LBuawY51(Z@J3ivqoQ$e2?g6*=tesOOx!lXLv5 zU6XKtn?7NG$RVd4^z6!p^c?dqcl5=9y4lDOvSR(Bs$KC_H4XgSN5Fyt%APv;hQ?wLaedUn7W-(%)796f+$7{YaAMOZOR1W)U-zAb%G- zBZ$>Xj^9vX0;m0-M)8p)fAmJ<#wmXRu6KML=U<7-30*I4P;#HSy&B3Y_|IL}CaA-& zZAHx~=cw1TJhLY-gND_=N-_B8h{5&uB#|feVpT6&5hobg)%g5N!! z5#!nw@HKCl?dD0$DBAWmXn+u*_FmfdtnxSUKYL@C_TOrF0($x$k*1je#O`upYPBX5 zMqdWjBrJjPfTj@Ae45l_m1gn1ncKzD; zz9OE4T0V-YCw59b7r{xW#cf{>+LwoWQp)euqrBi?Hhl9bkHtOfTHWg>)YZNqR8uow zzlAMWY2L;N9RBj`!j+=@L6%zxnVO=4LZo1nZA6(b9I)i@HEKLethL5TJqAvMS)P;S zk#}Cl4xuzE>6&hnP28z0Xk(#D6j|b5koeb&Nl|g0>y`LpnHjN&aW?tUx-g>S1-IMplx-{vaic9s-uMTCE#!2`KGHyW zwTj)o{~)!`FkP71h8&~9NJl^_+t79J;ZBD%tu036epRYoZih+G(1sQ~a4OLgiPFGX zS3;l)U4NDxY~$3zSvxGGbO^T~MF7VEKh!q7n?V*n#9XHa|+4i0ZDZ$KFVT+|iD!3*AvAJi-H2ANas-i6Nd=T`rc~-94Ef zS^(F==zK|v+8>a<<>;l=K9^?y8)Bs?sc*?peGEC~-OBZtf;49SBX!POYX)+MW(?(U z3$KSu_8RR_q9Lc<#d_MI+mf;1m}2~jis#Wl;9U}oQHTwTJs=(uMk#x@S8!RWrg5iP z@moH2?9}p#)9#jq|6elioiH9f@bJ7(Yoh7Hf1MakXV$BT1@Pl+MmXU5mbWIcnU zMx>g!>jdqjDS^+{W3Zrp%v?1~#~_1^)Inn_j1@XDg>q z4_!}N>?^*jmUfjS#wmMGQ{K*vow^LOWRwz>GxbpM-L`cvjnnB%0r}@R91nHMYnP5M zORkZ|YIs&1F%KQ(8m*NxyE;u;3X|S-%S0O;nZBk>H8b z7iK-i6f4p0YINO9+YxtFg`9$=0?dc$e&5hdIrT@oF$POob{nR-Vcw^a2i-XgmX#3y zDCQ4db@QDyK2F^XmEDB&-tizMU9RF*%BfF`FwH*PF+ccg#1u#eZpUGeL~TGoKH?H# z?kZa2)#rrnqH`4P9Ffcz5zQ}4JM<^0)-4IJ_6>jbgI2oEezfz?;9yR^Z&-p6>MSly zs$v!R+LJ~_MX_DLC4db;rHyuSTya(3AO;o_-CLV4*w7 z?7_|Cob>CR>3y=9$;8N|fsk0;;VXB?)P1c((G2T&rfQmRE%v!+dS4r%?msKR*ESzxMBG1Phmi zad%1|y%7Pv$r(~3TbJ~HKiU@V@m@9W{pFfuH~41qWi<@%>!VZr6oZ@^>XY?D+#P^; zw)RM;q*a++Sz(kI^WFh`fCw+@u|SS|`~3`nkJ6 z={>W9JNeG?T#{Fkb2Sk&uS>n8!G8w{7a8zEi5@`%-Zd`3^FWy-PbPvIfW?s zP}X>DYdNsQ?guk36<7ekPd0>ds56$LmE%cV8z_7O%eH(x+S`nM2hho)A5H6S|@jZ>XMF2mi*dqO(Doi znAg*-2B;38P)pDAx3sh`akOyVDq|yrNMZBhIgjZ6<3+%N6L0a zRFdEp1HJ~mSVaHs;3eJXLSoofg@EW`4)jE=pGn}}c%Ebqw3is;&(v1QYG|sER*qlA z6vq*AimOh@r{axbe-BEd%;6e}>So!)>LMky-#9!Ql2%cpny`@}K6B|&RNVOC*PrH> zQAViCGrW`f-^ba7l3RYYrj>48)J1x0onF<=_2FA$Ry3?~nv+#Y^KB(^JMx!RyOHl^ zLhXji4J8Lrt}6{DO1+5u}HRaT&tI6e?JLQe|pX6P-v63ZI>rPwFQ89|&b4;f>Fkbg~&jX6~QDE1xNRQJQMPnf| zs-d+}TA?k%SyjrQCrBy$(&@@!^C2s4Rwl-9V^#^i@2H+A_ZYh775_E zR=GAF*xHTqOWX>*Se{$gwz`PMjq)hPC%<>$nkY?8G|iN?i3EOsU1TWKa6o!VI4`;Y z+4kAJ!y3%ad_*`f0Aw=YnOwBVoAcyzY=LWyor(?Nkm+w@H9#~h4tOugPcTdg|JPsuNh z?E(cp<+3(zD4Kx2Hf6hX4ClYrm7!#Qxqv!D@NQg)j2p4_#hC2tbN^BiotZc_=T5Km{{S|InyI@K@& zlya+3yYinpb7V*Ti^qN7i2IzE&d(JtdcR?pjGl258SsV z$+_Y`Q-3l>tJzok%G!yXj)6YV#vr=B1;O4Uvk3L%nVv<)`RMIOp#(eL;sX9i9Ec1L zpBbWUrcBjL3!--V94hDt2GX>If>J(1lC{1kmj1B+2!S?}0!_HwT<<>D~x z83z1&qsM}0qs45AK-Dc!xlPiB@2|NvR4Tco?2&l1GWZldjt#qrvh8E?>s?>+s%;V2 zN{>z*7xEDZZ0MOTVQT>JDv~C@%++BiDv|9A4mDTrY5_hIBBT7x^-N*j%sQ1d9*_gr z*6m+nx7wyFWG|uueJ0o-%qAZDpm72>PL2cT#&^H${n+rUq>Nkk~I&TAObZ4&*9Gmrg zQ*qB~+*&7rMJb7LKTn5Q2H>!eO zJQChSQ>dWD)!|YDBn236WXKc_y;D9t-l$X$F-(4%X>q+mD6Iv`JsJj~DU2lu&hR}+ z@H1>MBpzTv;}jhP4lwW9BLveNZ(2M}SlMb?r7|*O18Qesx-eA7wqVT&NgX9P6mybp zMjl6c5}`MdL$W-*=9V33So@=R=gwn;H%jp)VNCo*p2jwC@)34z7^5gn2rM+Z)F(2k zCCJ}<2^gQYtzdt>wwSRx%Jy(rTWO>H`JY=UC7nt8LI^+ZlnAg5*_vV;jK}EvghWrZ z!GMY6o?l2;M*v&>oay~sJm88+k4OWp8h)pO(`+yl5^4Y);|kB zl!l7SX+hw>;5R$n`nJ4M-!`P_H5zZy8!(}FA5P7>_;ZI6533!QaC6~@@1IUP69{Zv zb}>jY6U`92Ln}m`{$7WWsJ$tNscz1u5wAo=n|J1A8b#TXAqa$lMS@V37Y4G$GANatZIJ&vmNE*}dQI&{wDO+;H|tLDv#)1S|JQ z`P2La@sD&ZjaKGn41Lnxi|C#u2-gj*36Jg>_!h-SK_UWn`&yif-eC=2MYNc|H`cQq z*&j81uc;3ZsgLpKh{5w2Dw)lzV~O&eiLxh_<<;JgqRr5U3{9wgD^0HcCaIC#`LR7T zZQ3n7+4jZ@Zq5nomD1ZD)vlMHD8M==maq@1?u)9S*h4 zjV#@T?)>~p;P!~$d}leB3sG@*n`;D#Qd&<-v16-l25Yl6f8|HV@WwW z@d9TxJ(}O@^4aKK%EgLkMjv9&55A$c0Bog7?2ssI{x+#~AHb0nmN0)9)8uW1NlUyu zi3!dU#SXc}z2bYihk2l3$*tj&Vyc_oWd_6E=JNUple?=jr6ENioDaSR_ZM-vTWb7r`*)>LUwHlUYDpwgrh zcoglH`lg4uc&IQe9)h?=h496QQ6|Et1LngPP#78{eH_=igQ%#4euSTmi&q=9F$2n@ z0)E?;T0So1zi5718>i$;tg8P@vPOiSeKb=xTA21t>vj*HxuSd%d$B_gzX*}ag$&P* z!+el;9X=j{vzi|vcXS?)8CD)@%8CWpnRj$llm-r{pW?~zRlxjv5D5}_D0~IJY$V9S z$>8!nT$X5h_v}W z;5ylM`%RgtF5#2eDwK-|9xWsRLObW_X|RK<4D86$4QBFEtq*z^0sIo-88r(pXj2(bCSDQVkNlP;Fp z0=P7VYsJb%I$7nDJ!}fx45oO8Uc5LaBE%TN)Ft*puO>R$ovaM)dW^#TmzjSWlZjP$ z+WolC9}uj-ms6`m+&eF2k6EX>nvMJcTkuJNVA{b6v<)KWePMTp-dQJVNYwwi5Qm7b zaX=RWx%?TsU#!`neh_zO%B!5k9Lj{kf~q zgiOG%6G|?`?c1b!@o3)(Npjh?GqC+BPx|$TkQ&q&ce83ZpWrnEDz|3D1DK8d__-xb{^%b5+kaSEm3cVTuvZZAn?Tu^Je84 zZR1V={42i&qy-^(l?W!#G-SR&%K?Kwr&rjI^Z8s?){gQ((Lm}0)<UvPpFSr%w!SBc3F!0(EjFVf0MaL`TDy^<;kw}NT=amT>!J~`$W^7 zS3B0XG_!g%1M7)#KM(9qm4aC-vAs zcgyOLj?^&<4mj)kykbU@x#eXN?-WDi-8p_oCuxQ%I|E5-{TyMnS*pcBL% z?osMIMu=(t8JS& zVP1|T7|;BIRAr!|s?$9wHQ4(UP0d>>nq_A!in51Fi$(@9@11pS8x}RWAWq}KDI7D* zPTF_-^}^Jv>r1JAon*`F;kG=6r)*G^a6n>PU(f;N%O3H1JrAjjIH4*F84YDt{Z^J1 zdA9VAz^hr^Jkdy1{sC#s-_%H@t5OT0B{Pxs*4X+jLk(!e00m@b^g6}(^Hj83ZOTbk z9qpJ4LZZ@{W8?GNL+zwfC*NH>dZ)CP>4Wj1CkiCa~$EEEMrO zg09aVO=qpsHiWLO>4W9uD8ckbiPXHKQVs9e{MxNXDXDp1*L{B)lM0o@k|eRlp`j=H zCvH&*kq-AdIRs?xAlC1NCacr@7b&NYSH7Qo?|hkWB?uC9z}D;V8NR!_Yb6LV_!5;e zV(y7Kx$5b2>BR&Ls(VEgSW9i0@9)qxH*Fo_;QpDwQ>^Fx33`^_%W)Lpp@hIo+*HO_ z=r4=G^7Vc{`j2;Eg>Zmg(1AIc>692QSoK4;oaui8wa2e<3uMU96+r;Rs;a^otPG+0 zI|~fPTxi%gYJaUk*26Zpr5K zE#sG}*+%_l2XRU0MJ!C_??@Li-YL)TliqK^^Lv-pBn@-kHvUSqG0aQUD)xWA$yU%} z0(yfd=-|I>^uNQ(4kw3;^gmDaUmhWNg&@Rf{-3G;=gyI#H;92IkL-hLk?){w3KksU zLe;T6XGEjUCHkz3v`0Tvoc}M!F4rhmUprQ6q2;!0M7Jga-V!yRS4Cuu-?nL$Nv7QT z>=+|Dxl>yzTGD8qi7CROPA_kqF<=&zLc_}Agt&o<<5-tlZ_s~&TW=;mHH^yXe4Z&p zA7WLH`a+>w7Qi8{&|0kpz8Czb?(g&1{kJ3#7b{QYVz6>|zSzbPsoYqS#LBP|dVA5R z@qDP?a*U^|3LZCmFvCBbhWW|bPFv3|E^1zzF;}A^o$+KxaMOWJ-HlXE-s7i=PPI6$ z(@WthKKhsqIA*UAx^C`SRlN5VP`62z--iokepmK4n*I4?5;yQh;UYEuW7VxjO93!1c-=njtQd>65T#*U60b7J0C$ek07P~>h=~#^74Bw8^Heyr!Up# zg9?hkQr<(WGD*KK%M4XK?AS*=67r{g!w2b&{g^3Ai)L1~R&kUAfVRxfp} zJBS3BEm%<^hix^CF4ZGHYo#uok=5{qF{|367C;h~RBa8aY%UKNi`;}5@A;NLm=P-P zPKoQ+S4%Gn}0ST{~?ap)_eC3a{z;bLLZJ67`0&BrQ!y>((3;N^xZkmT%6lL(JwNd&x4J4RKqIplJ+ci88EmF>aTpDiA&*U zUVWJYDoFm+%J4L43h;GZW_8=*I-moo+RbzV<$e|DSdNuZVMKvzO8s4~Vak<>Mhe zB!GSX&Hzx(@&NqtR9!{uhEvYR7Q!Y0ya>CZ=@ADeq7JgBjK*kmN(-N%{IQ;4l=6+1Uo?bD^$|(slIOyOiTAKVw)q#1*NC<%n@58{0O7 zX?hEZLO7uK-avHgA(0XqT1p&z+`9Up{D4@UlRA$jD4zp^360rzWfUiupujX6KHd>~ zDwu(hEny~*-{G2_8Mdo-!uo~mFG2ijNp7>czyY@}N;J8?6C8D$*s=JaTej)@o1 za46h#w4{h2lONp6<0vhIlRLVUB{nm3CPNJ4Gdtw{TU&7L%S8O0T}c&A9DqLa)xuaU zqf$7^Tc?4Vaq_D^_h*u|+{KZaI&~wfcF8q}!i6Z~xIz73Uy(t?UPiqU9P?+}1f3PsH_rNJqB zbEiYp`(ICi4JNO2?is6%0G7CfxVD+S<2Ik%x0N z9Uld!HK$Wl$ePu=uzY04_B9D3aZQ-L_cWtao_MV)#sPGRUZKBsDM)|feYt4yxZ1)N zmd+J>Cns7-q8$47l`^lRCB@<{$!Q!nPv2)@=nK1(zAC_fYn z@M?Wsx9{FlBUN?k1J9muM+OKQzl%F`y*76k`CnZ-UY?gpUltzyCI}1sU_OiG;oulv zuW47WuhC!;wDeuKb~*Gh*RybbMBdqHLa%k~{m&ynT9<9Ao_HvM1mprk~hB(Hivt3uH}c%Yo#uc^o&H}ixjr<67Y zoFh%nABZhrE`<)By!J)RB>2nI$~76Y69ML~nGTA=6(*WiUp%l7w(YRbe%G*RPfdQi ziuHMheXSn8&1n)KkE70pdVRS3%`yCq{B5;$FEEhRO>>HWb!RE2b$8_eWvB$V5q3#h z1H^PBaFBI`&5f-Qf67v)7w{)hlXP}Qqq3dItLYN{S;=>{jLb>YH`J0>PTCu?VT)aX zLl21#k1yBQm#`fwx)@G90EMg_|3aU%WMucAW|kJ$=9@6tHxTU42U_8WoG5#$UotaI z3FC@VFVG`8e)w+QO@NDde4PxT(1|_eU}13H+#3}~f=Dn<7rT!2yY@ zqCKJRKQR(V_%XhtT~0?C%C71_wuY}(2uln?nsb`tn6OK`WS+KBAudP^#gJZ6%OuJW zTz*-3w~hb#QC7SxF<0t7WS8Wj0sm0RT03&E!U})rtJk(9$kPTX{PoZIL>#NM`nrc| zmvT=)&>w&!UsTvLDmW@kKgsO#Ds*i=%Sk8Q?VT|ME?;EU9mk7(-{LnG|M{Spi`uv0 zbXQk~a+G~=xQ+8dvcOPCcvLw8d$R=;QMVQk!bPeO#L7Hm{{Hbopy#>3gjpW64+WSz zAN~m2XQV1v51b_UOJkqRC-aXKKl}n-29b*8q_5nKJI-yFwf=^hmwY7UQbZoBOT15^ z943fJ8`Ku6Czbv%NoRw2tRMxv!K0upe)l?1=XM4b;Ke)2^ae*6k#`*oW9_i_fB^gH zTP-T}8{`{;%41`7IMo)|k1C{LHfAU!HUR?dWG~Y);XaPYAfp6Om~=TX&p($_HOp1g z`ObI2`urCupiKCjne0=KF~XPW`P{k@$zq>V6f$r-0!rHl?^WZRbyVnSTUsX5*Dt)X zDg(QV*=qToE}$B*^akvsyZLsmF5DWid$$~A7|E9@w=);le;ftdUtZGU&naJ+gj|a? zydYoH7}3&`x2ArY7D7ScN7gDkli}6?2k3F{S4?(&-9in|xcfg^fQni|YUke=Gc-yT zS`NW&gBcARM(Gh#r)TGZtVe|5$hEr&&76~oUd$?E9wF3?1xH26Z9zK^BJSuo4@bFE|N;;m#(*9DI}O<|tD4VSaGY~?3KkRt0IDx5 z0Y&{~W$gPkTImMocUVq5OiiIb5~aK}e8=CS%uNw(2$J4MrrNvvn0F0Jz89{v>G0Hc zNPt6Z{&`(8SGZa-pR9Z;{5*Vi-XRQ6WA2pxy4v_Ptv&MSNxSY}pu6EMx(9SI4NAXJ z_e0R}SneR@<3GNCu-Cf;h*pUDc8)r%w2GY@_Mn&SXjCnSs)Uh|!5KVMXaMewA{&H| zpj0S(oY3x{zH5sJWJd_uU64AFzErzz^ibRj=aJ^h{6mneG0TdKg}?00irEm45ETGM zhzB)+hFIB4TzYs?LTUz0cayJ%>5fyD$Aa!rn;#aoeWwg7x{#PZ(&rHb`mZqD`G=Xe zowl7kq3IY<=PC%8iD)THq^RA{;Mg8k@ebls%Smv<Zdx!9D3l@Ap;?r`< z%ZAG-WtSSm7vwu<&k6};wg8Uu_3yTlb79}$pOPRtY(bA#Q7~l3D#`Ia-(UouG$a~Y z5O9WN7N#9fTKr_ULyu2-bYeI6t^<$WHe0{yX!q(SI^2<{%0fp z&FSA+~<3&7cIkGxanE{v)r}JkM=GCY`3_ZW6wO1hRiL zBev5gf4C>!+X_s4>`kwwnU{ObgLg6=H}-X9&~u2RP!80x#%dj{4$O04Rb-Z zLBzIK<6R@4ERTe?KNqwKji`@&7>EFyh?t|8yi-eou}J#XThKHXB_*O2Ns1wys{HezlkH;r-0C+;ox(aS8DIWtuGG!ris2ktJ{!ipNo-#uiw&L zy3dj*9qiOBNqiltQ!ti5xCgVeeRRN8J@oLvf?D_zTUCmJH;|;aWT!K*m{IN5+?7t>Q%T z*R_wEq!{~RU>9^8BYYhnI7WoMSf<>QcC}hyj{4Pqe`-BGq@wb>;7DcGC1vehvE&N~5JpT|@Z!pEe*+A^uY2&;h?3m4+J#}pT z7Mbfvw!HqO#|~_p>c|u90{v#0Mk?m=DGpDClWuBhk!zA`cK(&5Mq=@Ih4Gyr_FJ2s zx;quNN*TYu7ugYP_F|=N1V4cnDn49^TgPts?85N_-4fmdhYFF>`!;cA6H}iGOvQ$Ldb{Qnxa1lRa z!c^VcuQNVDf23CWk+arma?dWc2V`~EaLW_bcSz$P;iBR z7=CNDWTDh!{di;bd!01*c&i)@f^2q6uD$=JH~NoPSAI=n1?yfd(9TixYcFTA=J}1F z*beAUW^vAAF>8&@aS3rAAX&~{%=e8FF!*k4S5R2koZQ(m5cNN(T2((QUNc{j&yOUY z^4Fl5;u1|HRp?5AuN5Z6KOnu)R(Jc&I2v|x3eKc-kfU0@6Hfc`Nh@0^yT<>mJh^e4 zN7ONUN@$bt8x?w|d-#T4i0pY?6p%Gf)o>^j4pT)7!7f3+N;9bl=q!J zmJ!WDgDv1=SH5C&Ra{(&&bRu213PWKe+-Qcj$BJZp`m#1)E;ZzNO7aMT~98PC0H6W zVl?#DVYU+DnwGC56)g(2aPv4a#ZgmepzkQ!;~XW8)n{-}mk007A@pQ16u*w@O%C60 zc5ppL!F}_?Fhh}AbkAO^Q2)!*D;=DFn&4--1X?F%(-K$7VKWEccpcA!_^@$GVWzX2 zTCbbYLtQpuzBWk$AD>_CI)6*YfUW!8@~w?WbSWB5Zx-LK^~4gs6kt+7;N$8^=|}PA z>cO)Q%4H7pjH#_}`C`pq$g*Mn-`P_wXle_%`d}fDNqAF_2H$5G&K*Ie@!R~O-HZhn z$4(q0Tc}5*GNptjZs&5wfT>~=7nWC5$z4rssG{41Z-3=|*fnh6iMlN3{mX-@U&k)& z$6ag{+{rRp{zjM!0+%4mv8kJB*reHL8H1N1lf``LZ)rIlg-$Z>vX`)+gZZl8PJKo+ zrFsxjH96etIt@2f#T*t#zPedS8{qJ1^E4<1)trj!(K7Gx$2Z>9=V;K3RH7m{%B|A; zDg%migLNh*n<7b>roehZ?46oVjS#U~7w2>CMZT@GZb}_4!b2-~ddiRKJUqp&7y;e_skyItHooT6#A(tHqYXS;{q(Wgw7O!b5py|{4lkJrxkFDhsCS0mNv8C?-6fOJCaDG#4p`sj3)EHzk3h{57!24?RZF?w<1cX1 zbivrvcm14XaKC`z|LOLlK9|kpK>N}#O}|Fk;MCHbbE z{=m#N3DdWzMyj+$B&SvS-16$Fy?eW-_>Rg(R1#IV{%0QNwMBAy@FCHj9@#DL;7n)W zygz&JbuN7Br$z5+6bsFdiq}VUz=a(zplR7a-ndc zm~*9Y@fp#wpR^)QC;kJ`v_bgum_c-=;-sw-OJxep6F$PGyF9OX@m=Zq`!2RmLa4J3 zgmz~`Prc564$A+(Gh|oez_D#qomaR!R#9h^SDq3E&sQPQfii-ZqDP##TUyUZ_!iao zCiY?lpI!XESZvuZuQo~gE8vm`CnKx#4@PqdfmDQ9Efl-J_EtLDa?<}+P*4bP{9g+S z&|xSNN6gD+K_2`)?XpNI2KNyd!!iXQY%FkV!+7v~#<3~sr=OPEd!9TImniSUKiMV; zy93AJtz`_-oxZM6?UYY23(#SaS=#XW!_qQ4g`vaNpnmq!A;~zGW&Vn7DYLDB3hWud zC%~IE9%2$$L^^5oXnd~mFmetTe>*mgO#G5spZ~$F;~%DgZ-Zg_zt#tEPh^al_efM2 zsx+7Wtk&jm>IO9?ltGDm^Wk-ynxTBX$w%y-I%2O87$+r{q5Im+WUBgkXj2$UQ@JE! zgNd+Ugw3uF__@{?DibED03*od6+tsf9`;v6 z^od7j_OZgFQPg4gAn6unHpGYSJ#epUg!IkS`q}(?WcL3Kugk3_29Q)CY|ldqE64Hw_&R)|&qkJo?UuQhi{h<>w8yT zm4Ufb%xw(@pa1TCh2`P3T&2PP!`)W~#qq4~La-1lKyY^m?hYYX@IY{PcUhdp2?_4* z8r*DSXi@S3-`JMAWb#LAC{nqUdTeVxgGd(@;yz)HHbO&~1Iqc}{E^rur%-qot zu-jwaxw|`?kOIlaRtoM8(_8PiFC@ivPca;=6`qqj{%-n8Wu2LevAi>U6&{GEL*OwR zQeRy8%m%{qp@kYT{66UEd6(Hi4#pI2(1RD`AHGTnl6!lj9(nxvJjcVXw` zf3|sqgpP}@(%LJrVE;Yin=Z0HHSqhi&+oP?m+1R{0wd}lAM(jQcb)?+!pyy%TqBH$R-U9pA;$X7mX<3op6Ua= zgTai0i{Xw6gC0)^;?^&sKH1-{0fq{z~{mHkInk%agiQ zG;VV;|3e_z6F~AP|J#ULH7AKb2JjEV1bd3~`G5NkL0<{{|1cqT;U5iJuu5FcqC`Ke zRrUjBLuL*smf91bbIi>2B0-kD>G(S2x0Xq@7Y3#@J0h8_d9aQNL}(P&i57FeA+uWOW!Vo03NPM6-3+qqAoX$D^8drb z{ncl@UB#E*1a;`Ux+eC!(yU(VOXS>- zD@(55|6!O`bXkW0@zx*Z?q?rZn2fsdQ)SR-Q*~z>GS9XLF=L>27{kuJenk%&p=y*^ zOQxfsGat4Va#k=&1t{kP+T4?MVX~>GcQD7i)IgmaOC90SJF0f8$$xtu3}x~_c?U%A zyR}oHW@mFW#W+?V-|pZ8syMeJv)}itmM*-VL9bW}Q1t)sWqZsuCUQys?>u)MOT2x9 z1Z#(a7qS!%V;*N`HYht-zEKZT;AiLuUdD7iG)ZZ^6TqXoI#G73fODdybsd9!c`O;B9cNF8 zLxQV6Ij-t>hRJ9T*Btu8E`8<(rlC9kpmS{Q>qh^)Ftdn(=2Nupc!&5Lf#TCDxgji| ze`0sL@Jur4#_$X{Ch1duxTOB}+Vk@@lfUx%rnuIzRG@gO`PM%?QgY>#AnzAk*d;uT zySlD()No!=x#@Y@brtLX+&+AWiWZXSy<3q-t0Y}oz5W90@9JwY-sL|ESb{)DsI4XF z@!WnjOELyn&lq^Hg__1?Esnl{xR;XBh-xt2De$#ycV>3Tl#B_9sTzE3Ooim$O zKJ5{P&RWgYJvqd!ydKElyI$r2fdS#b`#2oe)2%1**by{oirimUreTC+39p0q6x04b z1z{Kq7xxabTlJWK?cLtbz`v^JWadm>&j%{YUQK@3K7 zUOf^8l(oeL5CR2YToUFzDMzcald^3&mL*|aoyo-doP~N+brI?kxGUR{F6brD*zs3% z%*G(Dh&-rXhuiDum9<7@H1{SCqOhLIj*fh9uV9#HV%#!x^f}ECT<795(X!6Esg24R zFg7j2N&u0K)k@)&sPqXHvl9IH=7VXJ%J}X)=;djU4KO1|ny_~r!(xH;EfB_bda#SI z#1?yVXAAvn8Bfa0kC_KVdaSG$Ukh*%Zxdo)RkoCaL6(d&O*ga-U^iqHb0Bm6NVm1T z#DHJbHA(%Gcmhpwcw(^$&Q}w>7VI4Rh4)o5^Od;xX~Sj^-sk*iHL750m&NW-v!_v&MIyvO&80YQ(g>| zyuZVPRPzzAu-K9DTSH#YgUC|S$xysrA?N;co&tyUo_9ZI`Pg{c!5Ts-1u@_^4R+MR z$15A7#Ht|x6YJWozT( zWWR_&2V&dnG!GHc6g@`8@z(P*ZTZj5L{4Gid>Kf!Cp>Ds4EPs|&iKcVH-^^&zU*if zb&2Q5V+CRFXh+m7P@5jZMH^`{GAhX+rgc5$C1z(VQ96M_nwChtKdh~06K0tB6!wo? zh)yyk%d>-2$ve}kWEc;2P02Sna}?T1=fMUa$QgDhRWm8ihkbj4x16cF-1gmPxt>dD zGB3xg6>J%0H+7NcN;aZiP-o^D{K6tOQ7-LgLap(Yku=zLSfFR1UvGgT_rMn}y-cT~ zNNzcy$J5A68Ty)@#pH}+)ZQ}zdMbjK8A?UD-_xne@31~Tz_*tehbEyYIXO|{W3Xq_ zN+rILNLLc-9y5F^2hUP$rljnl>tFJd2P;`#5Hve0Ahg9>S6Yz?*m_&@9298_%KMN? zW5iUGj+)b%Iy$HxW+aLTdSGfPX=|6C(8Sx@6VC~7(1f1AIc85L~8P6k`Zb^8f)J`C=9z(oG*hPk>ztGXTZIG_=QSSGLgqNXP8< z{;+CJD;bMe*_yVS+B!cu)%%l7)9}T^$HVpZCbkmMGB>{TYK{EW8rH3*z`Gd*RCAai zJKZdtt2&VugoM*yglO0t#m}T72Q9Z2PZ8mVdOFUZup*~Em+NK+Mbvzp^@$;pP+`)EotUTy1c=XglE?_zVF7fOQhh&iJ{Kxi z6j;m-JfpJ}TA9zY@A$GWkw=wBkxtY`27{eOjF!PYdbCf+AT)$A3B?fu7Jqk%^$z8X z@T7`>jy%~ru9vJI_Wiqx$)=b$Ct#@c1Vg_F zBHyV?t4DoRMk59t01`FlFrkShM9ssonsfG}+TbC51;L+^f8|2vK`Az4R zfcFJEr;AMux6$+sUC!%R-2TH=!Dt1&9sOeN%C$fnGWbZ@`5yuOI^|o8AJ%D*1gO_W zEj!mJpoT)|2tOnHF;?RzW(mN475MpSUv-|EMCz-W>U~Z^k06U2?Y_UlX;pMFI^Tw` z6_^qE1L06(`2p%q$4C1!8yv-JuMl}pVbPsEF0YQgz4@~1(;9(0`q*)jAcrulEpqma zsO&|e6yOviueyYXILMNeFzJuhi4*#5{>5pHesYoPBo#dclQx1z7y z-LRDA0`yM$mr+;rNxNVaKcl{GWoCuCK@?sy+qb;|b_1|6qTM2hTb*NZ9hmtVY?%5=^g`Mr6U0VV>JmtGd_B7lTq5F+u4(<1B-mR_W zU29oncul$*hX)*0id4w-`(Cyd{ZFjt{~PO7CkqnfqXy!OPF)XB+6)yvlUU+x*Yyv3 zP~{XMB6Ai#-<9nwlTQsjZ3;s84h%>UC+Ea=f?NcJEjb>-^AX(9z19bkqa$uao0zUoftM)5s!7!Na`Rj+ajW zi#LUkV{REauufOha;^V%vGKDbfn%1dx^pAyD3ff^)u;H@8-*1NBaQs*%LL!l6gd#S z4+3lpLNsM0Y&EyO2$_ouDUz3Ut;4l+5(xt?Z30Y^5qfAIm~99Mp`bfj z*3B|Z1n0(P(C?>@qfZ@c+1%HGG_S|JYK9fkr5~~%(oKG>ArbLs+&855xFAe;c1_6F z)!=eZo=T(p{VTL0{b47TKmXsT37K22`B^!J>bAC#p5i&Gqq%4BO`Sux)~<}jSXd;* zU0k1RxT8g+biNpG>beHC%ykm#IOh}{Mn;R|;4V#uc0Z>Hn4jVXV_7OqtMXQG=McQ; z*t&3RG@TT|1jpa*9H2IA@-hD1j$`!aO}r-AWE$ZC%t|M?Q9QUrNJVW&`dub9Dzm^owTTMG4f5QnX{!=lq!b+E^2_XSllknVGLwPw(hK z>nE}Oh1W*#Bc-R+LQZ@p@-ak(X{kR9Vc_MDE?c>TnJTYn(9FG`cw1IG7b4;-w2Wnt zjC~Hb&fDhl>k)Ek9-jqP)}*&y!?}(#p_~uAP{y+_x44eiDve0a%Sxw?{d@hq{6H{mgNH>HJBU1RRg~uE?(s%d8VB|Fm>->{p&CBNbOr=EvWQou6`~Y2^oZ+uJ6l* z$H|LQ)j7CNsxtX?! z4v=S_lZ0$kk~Sqz2l;%V4I^1P;s4{&Nt6*LRG{Z^sHO%9hih5n}o!BUjgg3RZVsA-2vZdh~V5Jn~ zm0j6#jv=b0u2!bt zYhCzx6_h3Wi>*&iyR9zXfPCst7nRM2d1_M87KB1rJx1)b)>u4E?^u^=Ly+||?5oKk zD^m2$sq+RckhaHVZ9o)Q-b$jDzAG~0CfUhyio}YGEi1$h)`bX(`7$*g9?wu`E&0(;NJbynGs~iQ{<=S#B1Pn+R$bjeHruQ%q8IE+C%xp_JVaJErG$%=Am!D~bxMwCPH%f|Nwwr5lPAD*?8PAV zj9&k3Px1C;%vX#|r;JMh5HAQ3GzYpQq_7t@$+`Qt79auXk)k%OypKe1Xo8PB&yZm` zgObpJHR>*I7wZ|3c~k@;*Jy9KLVzk5sLJbHmaqu-$$zhtUY#biWq-*-5g@6NV1JaW`RATNQ27X^k4xEO|!5q&7G zRHTNr_)`uE9@Sa7kMpuD>%CGx%*~^!@&fdo^tG<{ED5sAS~FH}EDuc=EpB*8n?AW& z!-L{A9@_LzZ2HXj`_8htM#|x}dqTrdF}^CLi?1lbVFp|ZZ{l^5wBexqq&v=EQG{wR+rP;t{*)LZL(2arE3XJv*El(9}(}; zl8W6wcXuz>%}uJbIMKK?04f_^adQJOox?fxQ&5nRrrN&-4I|`~-ukofG@=mAStUS-MT6S%_EW zK@7!8?+ds9Jfvv2=W#$NXAp<5f45BzLqE&qFv-F-%BaWuoV(==On_~HNi<^~g*iUb zxm;=$$vVYcl_B2Jer5fwp?^w6EVc+Z#sRwaV=?ujP7vVdcvh!%PC%E#h7|Kvo!Do; zNrHthNWQt6r*U&C>tL8~RheC8urT1((p%#sY|W$wz{< zj=-Z@T?Lky4hv*EoQ49Ot6NkIzPV9zctTX}jAo{X#aRLcLnTj+@6Y2rnCJ4UeOBLk zUY%^sw|=jXVV{%>Ox`f-I6sNo`fXj2Z012@Y$2Bst6mkB-L>mA90z^h6E!&D^Vcq2 zx-(^R7Dh)$cL&6)CzxRIW0GsJa&t?Hi;Gv)kX`&vf^0xYy}dEH+`|oy2a~6!6!vS$ zHQJ`!`yDf@w$ih)JF9ZMKTa~Kw+a}P4mzPBCnwjcZ*2TxVzN`7xi`$*F`dFrPF@|2 z+mK5qy)-si+8HL`+Uk4_Cl#4aaTV6~gAW~_QjFbOk{h-0Uv|92;V9AW0QnI6+W<>b zguJ<&W@5%Nn~+T+`e&JBT2ln)`_&)Wx#ZT9qsS+n!Zw0NSGA4a?>B!|`(*V+0HwJ? z9P;11r2pecsk3R2EB)KtMQC{_AcOtWl*HbRK^~yL?L)LbWW4`0@x1l0fBpOgo$mje z?gLH~LQ10$mT;h~0R2gz7Q<93_J$;{Tb3%1LiX|>`B zLSJ=;FYW4=Mj>4Wc3XaYvVPxjkZ&gR?I`X0_W`FbU3l)cJpMRI%`QK+<`g#Q0j9=@ zZu?C_y=7VrjkO)M^U3Z7RG-_B`(Un|-5Zkq51Vn7YK)LkgWa^vc{!b;Z-OmbP2@)e zJz3Iie=Wg>_HavaPs%T32p-XajZOQVo;i$@&`{WTxMY6KYed^c@n8l7gpE)FsCjP{ z$7ZSUPEe{u>3%?bAmok-a3dGu07*ZQuJ;`m}@{LTj3z_RA@taY}NcPGQ?sHiDtB~$Bf+;CkBxk!H}P$ z?_J8JsKo-B5MI{>s=jigtg^{Y^=RxCI+5#T&6BhL-^`*om)#?i$FGJ=D=k>kBjw;m>|77k3Rrv?fukfq?{|xR9LZmz? zcLEhq@AJAQF19myDUc~~Pn{S?cBG%cyPmY4hO+QGLN!=yUe#Bz`6zdChF-6))Px9n zzN8t&e!AkoLYu>OnrdqXYIi!h9W>Q?3Fe2-rb&%x=e3Q=Bqv)9uQqeRtAQwnN7!dI zLK;SlLByD5$%%*c8CamEGQkR@Hob;3YuX}PQgpm+U*LlK5>xd_Y1ZeA5G|!ITJkJT zRk1KLtJn0zoVkDC70zl%jD7tVMr9~jxIkg7H<2Qk8;dGW&%1x%--J##$-TSGAkNnTZ= zkOjoWgmOviw5}@LlU>zj0b9cRXL)7jsO0p5sWz?yC)2aeGZSB^){{2>BD1xtzYY2=f-a$9Z*ZIU3z39}eYT%)1}zlUu`Q-mjQ zm`Bs_xSy!8K;eGJWQZUpg#fW0=O~2;hX>BGO(ThuFxBV&B4P9{-KDNikw2Y{<1o|D zk1KYflk*$OgA6PW_FDo$Bk%Q+$OuDOgvX!GX4g~(6(fkG6&F{#OBDiVRy4n8G3^Uojb9Ib7+qi(tdd6!PfcrH zl}v}$@76t0|F$ekF2a^dg&E1VC_L~6aC54oGlgdgy2b#c8@6|ijqH!9+y-Nte!smQ zH@kB3*oO*lH+_I#M7&0wVqX@y^d+G^OKDteVpEaiOC?)g8L;1_Rb%4Xf~s6_C~L`^ zGzA%)c0WX*kZktAM<@4)5zH`VMl+!~)>a@jB$H#~nYnR5sui`D`*_2gwrC>*{;mk< z=2rORyEn1fQq)_|)4YC1!W)Syz#-rRbENQ`@O>9>14#6A8ZzvtYwE=HS4m6)f)Qe zLTEE8RAikEbW5oBLO?&&C^*&WX<{I;5#b*EVH6fII_pq{!TuGoN{r=;Z5>_E?@uDv~G&Yra@j&IA2KS(2G-`yxjP%cDyOT zFYpxm5+|{M9DHUgOZfRCHyA$@|2o7zP2C+aj#mXOy1GJ%#`(%azYhc(S6_nb zwT>Ize%K|_*{oZu5v<h_{}gyY zs`z*9dWm%V3s3}ea{g5>tS9_8PS3M%T})3}MeGuWM03-ST+a^{U$5SI65IAl*d#;2 zIQ`^N6Q~5+-_aisp`zQJjI0pIbNdt$46H+KGLiUo@CcwoC)McZ(HjH%JcqG=6(Lf z=97k>XuNNx86Sxz?A;xr$(v>@s9rB$`_W$3kh@TP>IE#R*+pq%`iPHmyszhi3YD*{csD$CtCA1M-4_wv0>shZi|}d7yI~TVNfo_1h=^pl2bOwdp|mnKlL&6 z@AbO6-a}ACB z_9#x6TCG~(W0O*%V>#M=cF#aF5!?o&I(sA!)kJHC;id>34p+>P>Sx&+?7RBjwxc3<~W1 zy;7hWc~;~e!|2Lm0SqQTAOsONsQ~fdgGD_+uHI;B&z@{oG%%Ly4Uvx3q~<*^0A&h3 zIcQ+3@b~-+ze>mIoqHRHrKzXOw}Be6y(*X3P&T|#!wMUU%2Ky6eR^oE6m#R15G4^% zH{(JUV?Yxd3rv*5#`!#%kLxff^LRBR*upS|EPa~3PF&1*&wM+q)jsC@F;9w3^A!Ue ze$h}!i~d!+9RNsQIJb!9_fx;@-LEm6=nbK!nhZA>iRNxKXj{taBy zzq%8?H#<{kh|y;oduC|#I`MZjoDau(+jggntq&r>&`L7 z&~?mk`Kc3Pm3L6yqia-!l8-@;W)LJ-_k?PLIDTz!9zgm=;(6NNf;vBzBI*-GCw zmTY6It+0qFy-ekYa{DWALe-1V^5 zECFZjj?NcOL3)_(W=3_l^Sog3|tEdVoTTO^RN@Vr)ct4+&l%vvhD zBL-(LUBvUzcA~-c7>-qTu3M3!s!QU~GuAEg#$hLi<`w_uF^rf`Y@hW2e>XOPhGc=> zW@jiqH?CX|X3PaAtcvm4m3zIDgDh6QjO1h~US=cjWK-a$B!#TJJVvPO`@`q3iH*0J z%XqmP7Gen2ebnOgS)(w)4Y31;Fzg$MpG?H&4BUx6tN3G|YkesML4}>NkXV`;p4XESEgZx&qZ#P1}4~#*olnhaV*WCk%o7>~U zYaw}sw`w&u?L(v)K4^TQ8-6rC-?v4%b%W>8j$71c!>8y*1rjuOJGu{7+rs|d=rRf5 zKz(`%Z|-32>%%5>3j*ULGRvo#IIDHAaMHOXzaQ1Vd{|h}pkWf&i3(q%Lbc+5jc`nZ z>_4VvI~tCmz837#7B;0Nnc5IhUk;6dX`@^hh?gNdFc=Tg8{-Q$2#vx za=UYq#hRPHW63PbS zHhoM34#b=MQoxJ0Iy76igPVQ1*QR1(#t0Upc8KMU9t#QE63;Llcj zg=QF(7lPBWfb?AU%djvzr^9~vrEpG&Z%1(fOm1{xRj9&|#xK4sc>(-Zj(x4Yp6h^V zbsUe@3}MI^8ha{(p*@pzqm`?2F>g^YS9d0kR(DAwoRc=9=TmHwd-#4bvn^Js~dHJBh&@VCvKg-r}>d>q{q85k(u$$alzJ*OSzuj zi&Ic8ai^}#8qFLYZ!?!V$JB9QPL6*9XE<=r1|o-w?6jRHjrZ~Zk=e0}NG2q2i0rDV zczmoAz)7x~(k5ckZfXi^0@@jjCYQ~PqOy8TKUn9{^e1TmBE;O%l1qv7(#;a(wHrB) zF-eIHjdvYD_%Ktx&L8i^I?zfNJD-l-X|FfF*+XC`K$OJTfYX4C(|FguI(Gb&%HVh4nsgEEP!i+&uB*!#}8Er^9y?tZr?~;!k4sgn17t!jZ z#6n>u{IO+UIohjnS96nDgxh-LCZae-BrY~Qk4dYK##qQ6UF zU_G1ls0xxiH~~y4f;(A`8U=l{wFt+eLqY5$pfYBxpJslPNbKymzN5Rpk3k*eOKp8%jo#Jj}4}W!ck8jLyKsv8IPu`}W z%FW*^rKLa+aGgu|i+lg@t-gW;?g?7#dD^CR<@}auCr)Xv5OL14Z$LR0vxH%A)y7+? zkZ_k(0#vuRcSm8to(IH(@15~*gOLa+%O1ol0pEfL!sXE>w&Z`HeYq_dZd}A` zs{Z78`<4b31qL-jp3|Q7b*XyecyqS)=gX?d=e=gUQQz*3zHf8ldP_J#MacC-7Q%`q?22K!LXKEAUy z%hB=sq}!xbN4x3$Ue7w|ad;Dy|6ZH8DZh?y>az|JCFCvVSR}C+i^@a@Zl%9|q><9l zKq;>q78JxVA5hCJoK6*p)IvRc+tD-dnMTkky%yQbPl>O<5ZSsaL_pZfH)Z2-SV(G8 zOE2@Wq%9sCDk)-a){Q&W;B|Eq$+r54Cq)?NaXaZV+hF}8GI5rRq&xck-e=Lg8UP_N z$*~&zzUPrv2v_|~^8%g3I{DO`PTD?E!RtKFyv#ZL+ScZ$z1WUtON1m8oF*S=`AmY{ z9$BleS(!bcBhtjCH`$P zq=e{{W*Dyik&YN$mXw;Bo0F3>zwq9@ApbK$(f)|NgROtz^c<7AX-;@`!V+u+Gh4N( zapVVa!?5NbMwCm1No$t1qT4~yVgx2*FoCmW+y39kCRKxL z$ixf_*{J`5{%bstp=A(6tiu&7TT~~%Z3`E*=9_tLiZRG}d@riVEs0S66#~-HQ4@`cHDHFXX?Hr@AupM5L$8IJ{%fuVpj8t# zuAwT0oF2`BgV!1rwf+_P5Z9#DY!)+Nn-_Ta>A!bkTgpN+cEE{D?js6ds@*|f0`Td_ z-~@}ssSm!kRYMAJwzmxE9eMw3r2VA!eD%tl$=3GzA>*~a^DO<0@7t(0tX7*bIYl66 zgVdkHZ3jWH_tq@79tuIiBES~Mtv=t1azi9bs%DddwPDl^yzmJd%`P!!;S$I%W8fjz zksPumb=(9mCe5T16fil|A|=ipt@5g1Ka?w0aMhNYT#)cAacA<1i-o79El38#$mO0B zfRCrp{k)MP2|g)>EDM-3s$EYFGMY^bMcG_4nq*-cR`=wzEey3tP+Y;&EF1}%Ht^fQ zbyto6RoerL4i$ArxyVa~H;xT_c6h1pfTXJyxcfk$eWlykg&cyBkyBoO6DjaKz^ub3C6EADdkWMdehQBh~;` z>9C1;66}ZZ@px=}qZT6ChyzJD-jAKL%BRU-5H^loO}`!OLvCYS8L>8sW{GgK{ez;ynFZ+mko*Z$w%qRRS!I)CnXumk**vYVkxg*4 z(3^NO_m~i0122QF6cvd<(!Q9``>4*(=(XB$`LL^@_bS1}@v?brWKu_OH1sRBUO!YK z6UzAE5B6mxIWyz*l2#T`4y%4ldz_5O*A&WVxTS{W`MIT&oAoNQ&@r(F^-uqBYsBV| z9Q8bpdj9~m`$Zv%$Z7zAWzl@eYQ2nC5}21>#RtQJsH>4T+QiT^F&hRtQ(|Wu+5WV$ z*sCvvIqb~pU4mrib0(Hm?!LpMfl!7cVSf3>4R1e{bec!XocPTPV?ysi->EYUULSI0 zlK?Dn?DvD4Ems&kgg#UHi#w0T$@mI_TXFetHG94fWD~0qnDt*nw3tI+zPEV6zOkBf zTBv?=$j9a7zmb&KzF^Uuu*qm6vh0FI2qwxeDgU`+kR&D`fq}pzxv?X&Ok{e|F<<97Ilx?90@IGiPl{>S@(n8VYeapX;@dyE%FD%(&gV##7(y9g-t6)@AiI1Kun z%YU>RcOE+#4O53!a0|no5!ra-CTS#6d|Ih)4A{8XBp1JUsk!u_Q#f8V$+gvP9I}ZD z6Hbe%iRWYZB?sn{;HiabSJl*s9Eu)Hg7w$^K3Z96c_z!33@=L>WPIfF zL{NGjlZ;1`#!$HRQ0UBPnlrrX4i9QIFdRuhQ!A0qxA5FUn|zf-6P~Oclpw zfBzh*fo4iIwbR%2=6qX%A{`@;nt6;tM?CkfUGX(628294BYzrc)<;%O=FxgxEI0k+Y*k_5zI1y8AQO zvxP~95rLC*WjfOrQNiO5b{_mz`MFFi78S*f$nL)p1 z>%zmq#-u6r4cHzm0P6*i=x%e4G=AHRjNBbWv+l#Q(oayD>ujF1ngEzA6HGMn5X zJZB`QhCEtT!nh`9UDe^h&FuR}tF^ulnTSqvyScflu_=FNKo`R1Ly9%h@ms`Gsz`_O zSKJMT%3BOHavL<7?8g6+Qs+xTik$yjN=?jdxrv8$Tv&C^p1?dsAf%{(>#M|f(t|s{ znOcJMtDBMCg1AwvwkGkbD^jjTXMHBPnDsCLaGtp{&hHqo8AU$9!xVsFJjM?x1&KLB^ZB=a8EweL_@WTova$m$;nAsS@{D$!Nup)e@isV zBp-IE1{8wBofJi8g-l<)RQ>Xk)NBSEcqRle@qr;#h|HF{~(|$m71b=%# zaw2l2KZW<-miHZUihnhYzUtCK4Ui|EU zk4p;2X;iaQs0g6~+16Y#0>pcfz$c@sn!n>BCkJK!>C>pq^m3)}>O2R!-bvK^_#cS} z!=IG5fHU-8@{bR({|~D|2BzYgN7`dBq(>m@gNI+S(5*)P$s=3w zhvMm2u4bAsxMJlWk_+R4e>%G?nh5=*Ei)s&F-*!GRzy+%_(R__&oHjZf#g`$-N^< zf9CkZ<{t(c-5p*feQ#{}-f(ZTNzvhg+KC2YH11VAylyTL0lj0vf4ho792{JX{$W6X za(pswaA=Jq2~7oKOe)-&x#nQ|rJ8%&P^dwYvNF;3ld_=(KHZ6zeP9Y3W^PZXy=wL8 zwhDG4$oz}!c~{rRAz7GiXC=i;zQny*c~og_eo?t(KLeg(>jz(c1s>r3*dW`>1&srg z>FceUL%R@MC|WTcU3SkspPF4pVR3a>z?|cbn>r2^6|O0s3Igb|vZ$nh)1;hp=f>(G zD%I>}XINEYbkJ(q(_etbHe*j;1+O4_Skz<+&z4EyY*lWILq*9HKMt3AY>0YHyG62K z{CLSRB-W&)FkpGh%LI{%iW(Ax!2;P++3wEL`Tk@R zmt>9Bp+Rpfo^Y>J;frn1$3IW8MhMk~|J`+}?l649%91&e(5m4*k-B~ZzOawJ#_ZfI zGrkSBzCn!!pkeKz<@g@xS?20vrIB!b-OW+i!~pbe+i}^BsG0*B3l60Bdi1Bhj_BBN zs`BAIp`y zYqf;y^+Hun^?AaC?hJmrEoKIASO4|BmwVYmpF|0to~q|Cb7=*nw6?9?u7{k^+XOPc z4)c-3CDR2W+u>8!oqD5&Lt&q&3xeZZVN~nus>fQ3vg+{1qg4i7 zZ`Q++raG38o@ywD5 zE^M%1niE{>v)Q?w#UUZ8U)DD$sb77%a{}M$+3Btl-L4~naqRA#=GHuyANDWTH1#T) zB-<-j?RQSumxj#H<{4Us?e29V7uWanv>-Ez)6`twRC<`OHM`-_U;;C|>pk^w9lL_@ z$A46hoci4I%RuB}tX|&TmQ_XucC|t;A72-6?6&z-PPohTn32Zje*rC@SF0I@J@mbo zlh6RI=Rqdk*GMH3!En0Z(fo|TKNsOyZgjU>!3YKugg6m3g`{^?l!4G%h+URR;LV6# zC_5gCgyxDbUZ*`K%a@eicV?o!5kMYWuRL6P{q1q)a+22Za$r!BpWo{toEcIfES!N9 z$FTG0(1kbWU{##i?#$GG4r+*N(DvQ*yPi7KCe8AotC&5#%-p$rz3x|SLqSSi^SJzp zFgurEBG`By;qr9n08S@B<63($#!9Y;ye(T}rtf$@LjhZXZ)f}awMr8bTrWf@haZml zSFxb$!vokm>Q>Lo4@+Nfyoc>P{nuroZ%ro-ou=wg5TM zWoth1uUB%eOgxi!4()B*Z@&4OSUt@@99A9J?6U4Hm6my3E0%{ZplNZxV>m5uoQOe6 zo8CLrw}G;w<1uQ`^od?FI%xM+PpAM!5A*wg3(*+Bx2K+J@N{JrrICkD$Mxq18-IfB zw$$^9Ye&r=N*eigS6vq70Q@v6L-i+eTqFvU!Q0zKdk*gsC=*%dAVbl}N!}R1Y&!kS z!!Ar3esdB)SUkdfbZEUfAVl!q$d;+Mt%-Nix1=EW9Tc)9(^_{mn`~RVwS$fp)#EQm zizFIR47Ua8l!=qjIjZyQ=_Q87bz)2Uex(w9EfrpWx9M3n?+ z>&wxvPO_sWejibZ8HRzXeO(kPO=YgwT}3&?L#PWHtIxy2{m!b6XO8|u1+i(%d&^#r zu|<5JW08_N`bNcq`R7iedgZ6O@R5gj?z-F~rt=y-@`8un(Zs(3gn;_c@zE(pmgtqo zTVK8jWnv)=;&^+$Yvlf^nyF>(8DEiUpqD&2WD={xkuH#=C(GNrsf}Ez=#&?#U5@-Q zlCTHKc<-b%slC?6BUQtv-KI94F|L8K?hm069rFklM{Cn9u3VJzSzO-MY8vv zw~tMZajiWa?eTEc3}Y*vhrBot|LC4!A)*h7dHC*o0Tjxm`(?bv9Qw8gnc(YfuKg88 zn?3>8N0LDWcD%A-;{2oq#vmO>^X8~+vsJq)?*9a|C9oa&RjRzlFtK``~ zUvbr3crDq|6U5yn*Vtwdd+!UrpxYg5-4D^^=2)xM{K*P0awY~K&wreXk^zDe-p~!_ z#Pqb-xA?)fV!DEpeAO$t6K!41dCuO^l5fV)t|nBb;#l!qq=5Kgr+az*L+ZrBYTutj z(y`S)-W`4Nvi$gp;uBmvH_U<@>z$a$%+T7xh5CWf@p4x{Lz__G6}p0?G@GGrU}~7? z6C5WN*E*_N#mX=c5LuGwgw(F8s$$5XyY-Ze)|m2Z^J#_-`>LaKeN$zcHda#%p_0VyYZRLbU|Gxm{O>-B~d>PZP@UE{rD4H_f~;_*F_W6~R* zduX%LZmZc)B%uFay}fl*Tu-+q+(3Zff#4b>xVtwbXo9=D1b6q~9w0abcX#&yfyOmx zBf;Gp|C;>Xx!+wg>#kXA=Dkz@(Ccuzs?M(Jz4x=9z3Z&4=4)KF1UEMEB@BP!`DVI* z-tZulZg{+?iVLH?H5Jy7S)14xUzJ0`bTVh^X8)jTs#?j-A@Tk`E$xftqNL_Fy0WsH zl*x~N+61WQ^NS}LN<&5V6t9mQ*j9FUMN+EXH*1>K^14JXG>cxz>zm)^M;~5F(=${m zSui@93nN{7j%Ad;s{6`8v$E{%_QTDJzC~GCVt)*~MR#?>*BVD-Mm7-Jf3xat(C(DYtR3k;&usog0GY^z%y~>C|b23kP9AjlPayR3{#DX*d(5 zHl7B{V0QFQmv0w92;cN`VSI!Y*Z22@&0JaVk|^de-$l(L(#hIE&etDp^{jHIMyh$a zByowJd{ptbsh6@iBNHXRICg>BE-rrB+d~XwnPvN=Q{f5|)cKSWa)(olE%}kK`TNTv zC=qoZ4rv@J$x8Ci`;gh4rhiV!e^alsnD$B#E9Je?6j@sO@Fj9M!EO?=4z_>1!=z_m zQ8rzLeqREY$F6-gsKoF8UZ2rj;Qk4gp4cPMY zmpxA9YCk(8vF+@9XmcgHI`RG`>J%psNibX*doh`5MeMLWRm>0UAHC5&O-DM`>FTF2 zo#{GbbE_m7s!%poaq!(oIN|hUJC=30kb^aUB=Yv&p+|HBa(~=9u$$ay?0ev1mKU;R zj2h~}sB&CB>6IE`OD4bI}Z=q1ingU*U+FH=Z2e^Mtfb@r1e)C+uUGU#nkeJDh&+S$+;eT)gN;1&Qet>~NlIq5lno{BV zop$}N+u;X>K(ZTU58uxR5$zLLWJ-04x=G&^T+iu7g}n5N@H1XX3 z^!WwQ{?qw#5{^M4w|Bf04CDb!%Pwi63F+_a81vce{id=?~;U)fk=QDj(`?;)QPaci?)e?AniNW`pt+igCS`Ok&sS5T9h6WlEOOs}ImZ*Rww0WUc z&>mSX&KauCAAM+E_b1KH6z-igR?L}a46Wjp>iMKX?+-qiBR2c8=l_THes0F}$sEi} z_q)B52Q*$d$O28+nsH2-{GBkbL>|xak+|}f89EnwFxV|>GI-|gVHP>5uQCMF%$S$khsOQB(0J#EPfxC#oaXlqF1Xz#fB$jE$5Yi2P2(C97&^#v(p^B!=k~z4 zS>`(Ob2A_GoCM;rwclJH_j*MFpre*Q+_e9lePzybYqSsBuxFU26{5L+VwaJHonTjQ z@0pWPr(OivxcK}qfx9g=ZQ-ce;BnVxQ+CzDI`aVpevj1dmcY{4Jh1cwe7k*oGn{V9!uLq2yJNk80JmK zXhS-1M`e$NZv}#|KG@H}y#RbGG};+R4q1P1>+6tkW0`=;G|TY~mBb7jz65>1pz*He zA+JvSXUS=Y51$=s&y0zQwOZwPJgT@yA?rz@gTQzy?>p8VYIX6ZMy(%TO;h+*e#TXc z9*o;L9(`b1=n{|tEk?y@;%`9Cx{M9`E;ph`Z8vmAlC6w+SQOHq1kjJ~Z*I987ygku zThcG54Gcd>AJ68_07k{hZ@oI-^Q|d!KRewgt8`Pa-|XF>uFy^Loc#4-`N_lSK;DJ- znQ__jwa~$lzR-3G3$Tf~>z>l;`Q{MUd+=_3hoR|t|L8=sv8%P+xAXbQd`^GiaPFzh zuZyuGOViJkp~3gk1LpR2&}z=NZDrB#h>VQnxvZ(;WMR01%uiA3uI;gI_U>W%PO)Uv z^JoRkcz=j;Fu28C_Asbl?iItr^4y?$x41M{gFha4YEQ2OyOt~k>fs~! zK#>Xz<2?>}Ca)v6)Y~oN&MEo++pQH;*Vxc07jAIu%HXl1;WzTSyY$O@wqxaCE7FTe zb94++_4qHGdLq7`7M`!=A(K`Er9n0+jj&T-8|}(*RPNB&?D2-fI;CawUncVeA>UGS zZouI8kkwfG9pGYhC(5t!kUdGSbx_<@sxy`y5f4*((>jcwcPyxdo@4xWv_JVJ+^uo~(}^)eGR};P!pS;*E^vv~tT<+AU=detG4*z@ z+kcZD&=e@Mym%D4zuDBn-?)Upo|$B%uImjXkZM`!`iJ+8z(Ws|biA=mv*wq^dMkgS z_>~kcUh%_bUWP5-n7IVQ^KsS14yPb-hkXD_@~T;vl}q1mOAqAaa2n~2?wa%UfIup@ zS2HKjqTayR&+PO|gsCE!nUL_rdrEYH|QQvvF}O_`0nIb-WiU8rQmTt}Y4 zt0W=yaVPhiekgcm$H#%GD`Y7T*BI1ZWGROMme&}T*8x`O)@+DcBN&X^weUjqDlAO1 zVBGQ>W~PErp~bI$HhW5K&TR0apYhWA;mppyYTm!&!?onbvt+ENMiHXM^CTj>c)rNr9Bye77$%4jMiNt-wmw6af)Jw#BXd&thaw>u%aJEVYA}wUJaxccG^Ef!+r6=GK#( z;|-j8Ja>%A>#dg+t0#Jq6^FPYz?kWo+QtUXN+BodB1S_sr?*>TRsP1JoWQ@dee@xb z|H1IguljtGjx$ZAxD^eNMZcd7-1=$7n};H6k4;83XmyI1 zSli$q)Jb8E1)1?%3ETgX3m`%tyd2I_(x76NCdYT;&iR&cpHRuesc7z-6bx5m#~ndC zf(sY&RLP-$`XxW{Gjmu$*8|2=E!MyhM+2*pNOVOZ#9iqkCFR#McJ-<|wxs3!n-%Y# z0oSACrKO)7T+wf{TI_`SVcW>aCat;RZH)|Bg>~r~5~CUV%dd zxjtrAUxKc`;NIx3wh?Hg#C))^mRNBmI!;;)+vbNuspG36(d!HiZqV{x&F=DOto@z4?~UwP61`SMqYhPwnl_NF)N45)1)1Xi2kXf2cibyxsD_p;`A^%JHz4%DYL&gN0H>1A>T}FFCJ*(prlj7_0c07-TWY5t7Xn%Xi{e0OkKo9(ZpB9(n%#?{KgZ3w^zBa;%9zD$dm%Xn-s$`8l?nBra z(Z0+bug9)DHrG{0{X7?>mUG@Lbig-{(E?~F#+FfU|UcBX<^m#k5Uga>O)az~? zYF~eh8PYax$e(8O?94*Vo#yaRT@nNpX6TvBxX}jb#Ijyw!!9f?t{&55Mv?B+jTz=F z;bgN5S;RowFZT$Ws{LvW#;PPj5@eNKY7|COpL~>R5@6tfe(0otV62!C!Sv%}O1ELg zf_IIyB`Hs+osqEWr$-55A-%|5vNi`>PZ&_R>4<#Bz+Sr57eQZqTtEY^!P5iMrMzU_ z2|a&+#k7OBj|L)CD@rnIK(=31j!MKyiLrTA5Ixo*FUBUjM&qtzH5HKlOm#(@-jUyw z;|%!OE1U6T2GdX^ms{zh_uiV#+Ftm05f(@p- zOr9mkG^1bRju&lSbL5m%#PbKGKtj$|Xxmil$B54Nj}2+G3i)>;Z8}I>QC8b2DtTHl zqu({2``@Ov%rK)h%;wUjsmybOlGQ)(vH8$DB`kg zVic*<@i_lLs%J^-E)1LIy~m>0xx)KG;}$!|k^z(GG2@W`1chBM>p$Pkf5Hd|3j?&@ zta>Gq!a|YUBsiKz{)fHR+ZR{|ZHn*N_&&ZUU1(Dgg<7e9E@P^`N#OYBs+btg&p)XD zx~vHQ@40;fsOkw2^V;gTSuMMK^RHloYn1%|tMUJPpYH#l_j|gdz_wCk)mFR!$9lW` zIJqK2{5ETvwO~EfVEQJEJs|@8H^+6krKQL*lMvDdNR!n;Cob3x&NnuqlpcrFj}DO~ zMo|){w6uH|@}_48B0%|Hl%Ov7t9!JbJq8)X|q*nfc| zQMS00b?HD+-!4?O>QDE}>J?)@tL(wNnFPPvdD9!0^C@-65{kmMW-n5dTmN za^v%(T{iDGSH}YQ1E0aMhQ~;-Lu}2Zr3$9UJt_vTNkeh;{LFxQ1G%NhrMAJ-0zt`b zt)^ND>o+F*9s_Ui?agmSk=3)v&UB;r2=KqoTLf2{4XmA_zWcUhAm|Sh3#XCvIrZ> zLiP*L$K%Kl(jLocQtEBdjB|%w()SXn9*in2rEiu9JiTf*a6=;xd5v(WT3lLd{BBJ$ zYYAQQ+8>_{cqfRSGCRUsA;%)&R5{&ygmY2&)Yzg1T_ja@D?EBm{w0CG=B#vc`U@NX(QW%=6#@`ql*a9X76;KaGKEET>61muR9 zS;bSQCq24#pfZPtm3LXgMTn?T z(P-CgmL|_Na$5`?m(4k-|A-75aW)y&9^7gPD+k+vj+-dbhNxv_lVtcfEi!eOEWC5{ zA_3p-;u1&P&H4M|ZTjY>?i^8BU4}=TFyjiW8F6arou$krBQ>yJ8^oRrY zHsm||H4Z@ucv(GeYHW14-|5~;-lS6Ct$f1!3;h|4;dsVjP3^)TbZsn!$9!?K(iR-1 zRjGHl7B&llcs4A9n#~=#d5pio*Ym>>K?4H)2(Q26@(J+KFdX#XxQ$nY{IRuD-iFM( zfgsEA+gbYQkN)YsTk@8^^ZSI9h zA}kMI^+oL03M}S4Co*a@1+t)J{2#j5npt}z%fC9>33QTMOAq|gWAxJ zWamwrnrzdh{R^$J)=V7{s4Ym4hW0%R$NLX5rzR)KDHqtv$6d^^-luQ+DmxBLF{R(^ zrTe6|?znO`%6v6at!y&Ef?-NGPE0&(J%r5D6sQJ>Sj5-msA}TH&8CX(9Umw4q|R<^ zwV{}BlTy~k*F9_PM3sXgWL({(BnJ(+!>MXHHL{WomW280r~Wt19J&!s*71B1^rfPaHFVu0SGX`kzQ=9I2xE^V0Q}a!6r*`PEhtmOa>t%;8cpBA5 zi0&9%D+I~Lb&R2z*58}EOxdR6q%-Qxj7~ja?Kt@Iqz6}IqDL>Tw>rzgqfsQXjy|d; zruo7^X}WRKb}pxt#*Ssa7oE3Q@gn;ouE{oXQc-KP?!{QhJO)%c!kZQmH%-ma-6#!HeZ288bV%&h=?YoX9`iGX+*`Nx5h6Gi-gdkQAAs`Y2F8~k; z2H}N<1sKSWfn0D9m&as?T2~@Q?)jt7WxXbJb`P9-%gyebFQeAK&WA%%5Sc@9%x=)A zK7EmJXs&5FPz%KYte%4uFkev;0WwZKD;8YT+}kozr|eM`GEaHA3^vD`FBhIeY+bt# zKKHKgeau?YY4_&I&^^@vJZwn5vv_xiVGKtosE4Pbu}(trA(C>9cDe z*4Mb0cldDG&68V0G1JH5uJd3yq#d*Vjg~;G@ktIqld9yCRRYuLrAHl$vK%F@CPH@i z?3SpR3O%u|-VEIDu%L@V7988El;x+@4XuTqC$$g~ImvC77~8Q2^*RA|zbX|DZm^~e zzQi{Ft7`AP=@DNQAAj(3J&XZdjg&W7@&!s>#zwKcDs+o1K?}^&t=?IwNL^P5__Ym0 zSsAi%a%$G5p0N(@&rNGw9x$DyV^A0S#J}iyX zr}48G7|bA9nE#OS-OG{ngMTXYbLh4gM`K<63)0EHNx zM6Hd4&|i!-tV9Lh;yncq{&pM0Cyn{&*)N57&?7b`WT?KGrFh^bW9JszCVR&j?NOop8qy`YdKpqx~2Om?A?b>Fq zKk@P?mbf3UEi%Z3_8G!e2V{?D37MmbJt&94C=jR1mmei&>M$(4KH7UaULGJ7_S>;H z%e5#*Zx$kT7qr!gX8qd38b1IwN_ugOcTezMypF*AUXfU|r_aC~(4Ith2_^33<~R}# z)4bO=0Sn{J9bw)>W&2{bAU|msEe3=;Vt?B~ku0=;&s}Trpnz&ngfnlLOd`sz6QHyM zL#T17`4ZICxA(f&RE`3o3`?X%)aoiQTljrtM40Z)1)9Mx;UE~v94#}AQRLIlu*Q0L z8|ZLx-B~pV0Et#_<+5{)^^Udvi4)uP9Y3e;W4E3()Quv2Zh$f(LTkA{rkKGcmhUS5 z$L^DWk34TsB&uQHWo>CxI;3uGLw9$-4!R;G``*HXSaYTihU-hx47p%{MTHYvpZZE9 z-aPQZXV1{-$vJy4H9NcyAZsJGk6JJk^Bp)}WF9E>iujQ(Rmkvm9ILW}B)@TOx6Qw? z#;-pX=-RV>+EX%!`QSl7RGoA4718sI+BG}KN_;kl0WkL!fB#IB>?-M@$xOb4-x*MH zihn0jfxlmO+$vq>2C%_$WZF0XgEjTA#Nu_FA+d@Q#@Pm&!%=^Ig2Y$p(zT8%+U z;@^VuwDy``dqfJsc72WsXjGkN!wT@rYH+`;T$r3S1wB*^WoAyj5^*v9<%Y|Ii?gTk z%Ao^Md44GypmA~khBhr*ah(|1ptcE3)(o!39<|h*II!YV4O(Qq=AY$q4Z+VH*Pl$T zjpzl#SJedG+#>-)5+>65S=sS^7CTkFMR>2nP>KTQ!&FU6_aL|>x%_+cktwkb5l_oz zA_{11X?Y_b1M}-AKX1%2E)Lr>b|D4AAqiy)N^DO@lO`)vDdf88C5A~AAd0F$Q=v&o zo_8d(k8BBjG5m1;Dg4Sk_kz9)J}ZO#MT0P)X30N@@u`xP@8dJ8 zUc0;E-+#PJ>*eoD`!_;Z6{K*@j05|PgjnI;!K_w?yD|1CpFQ5_-O;!9es^rb zce`(!`9s;V7IhzI9$5KTvNkp`fW3obayr^l$$CHZx<}>kgl~60dP61$Au~RNZb?p* zaovY4=)AzEH)OsLOkoEXBVIc||1ij==*;^)8!$Q;)}<-d9J#KK#NPK@ky_8@F-7i> zO0Nz0V=F$5Orq%Et@q{M&R}`+mTt5?A34qLm+bH4j$;VJV}40!nR(!`8$ zU&_{qVVb^aNR~5BEWz8xQMBP_R9VsC1j5o;|^~)>xZ&`C3<4>z3Wx zQHJ{_nr6+N#3k{f;QTjXcLHF@L-TTT)CEaLid?eNj{$2t#Jju(h$ns6#IhT2p-diV zI(Ae+EL33P%m+D3AN?Kn`KHkdd*@lbp?gdHx#N&EZlF@KlCabLKgZWw(-x%b%=Y?><qd@I(H-kWe!{fx4W~`bbh8Oc=V?hX&_DqF|pu|hdS>0Q*hBZ zT_3H#=gXe?H59+mu(YY!sUZw0Rr|hJMRi#VCb+HDirZ$8cU6C0N4w2!)hgxs6_D)U zL7Pm7UBbtg?9?IjEfVp&b!L&{W~9t*S)-$|w)MRX83zyZ@DPioILx2!enhXgWkt%4 zQqzCFo$P^JFseAilze2&YM*@x)8ZNQedy3;-_RbhtLBeR?E@295*n0rb(tdOn4ho) zKD`8-3cMa5HBjFs*Qe3j55}q?bkcfJCvWp2Fq#$jIPrnuMw<=So~3jHdO?9_ewIY6 z?)vq`4T_+nLj9A^$STLgvhS&C%VL;vliemXD)+$yZIMNvUs=mZ7Gi1xGkLfv zPZTa0R#{S9Q5LL}9X=z=v+4(qPA{3-hZFJaBwLwAYxcZ#`hFqvk}%_$3=PNCk1K)b zx=p^)nP(1}z$zi-52q??d?q*i!kX%6S0z)O;;*j^U#N>+mi1{(z3iY| zG43uSKKK;I7WE+HgrQfIiL|W2h4pu!K4{K`{^meQg)|}wH3`J!c0R*}PSCSHB)S1x zX+qKM4=?(BiHIeP8?|k2R~`|tSn`Z4ROY=khDb%-g;Bs#%iYIB*;@wNTgGRU#Y#~!hWId@b%7SfM-YFa+|MUzWD7^6Iu8`*lrFX2$k zBY3D~x?UI^AI&+=}H6P0LVDwG1X0`{n z916%i?Ov}fvPUHEKwNxb!M*|k3zCHUgp9#{XIVmsP4|LWh*fJF>+>gAk%=cQnFDn} z*Ae|7*9Z2P)Z_KT6W>6;+fnn~C(-^%26Khoo}~GWzk)*GMirSqcl$6qbC}|$2M+u3 zafb`dui1e(X}+X)hcD_TOmGr90al`I%6!< zXixI%9)*7!qsJFG&cv@W8#J(~e&%vSxt#IKciFwo{qWj7Np`z~*DCfL=#r`RS(HmN z`>5X65(XvqiO6sN4zKE8YM5xjQjXS3Ed_JnZa_dDDI;2$%f-1J884&`Zw<@4)R ze)Q=9LX}8(LadZbDC;@W;`>GtWBwgZv{}{CQ6mf4YFdSw2cL%< zzehjFp0dBr1O{Qjh`ML$dIr9{qC66$W%k6WWfPmqpoJb}`Ia46G?#nGe1 zOSXM0N<@=7<_3n`J9J@NUK$!@{X1yzz9%ed`Zi)t6#=`C8J7`fuW!g;xLlGpw)XCu zU0cb3e^xgM=%|$Z3-1sWgV-5 zR7$9r8b9)C-MsEw*;`0V0PC-o5pLWxpMV^&dWP=ANiiC? zc9Fg1jp8_37!*~yXy)^Ndr_jaU&gA*SpA2Q3-Fx~g%Ov8-d_ua)$i%mT~VG!%-Dw3 z4w6iI%;rHKzdt{*kWo)B4~@MIcZ3*4#DdkzZkFnV?}Gu-QgWQ<8}mgjnJi$mz~n0| z6ds4WboiMc{NV!|+HioVT@q9buxNeIXR+Cf%`Y4!3aU8N>G0H@#4p8iU+h%xyjGzE zQGX$2Wn<#tZ;pSV)VBsx0VGrsamIO}`uT#`v?)dHJaFLH&hbqli#qY6xW> z9+_6(!eE|5{{E3&)#wqA<;U=HLB{#E@rKuF`QSb`Z?H8iyO42Mp3|euT|KrFSiW2Gao>1)Ee#x4NL6|-FgDC;6}IQ-GLH(8Td;=r-2Q_L1lmFUCUjcIwW&VX`;u@aU53#ky#8mZ8;Bq_ zc!(vx5lU=M=5Kf7IkKM+GS&Lng3%&~n;`}#MpuUc%aB@8OKd1lsn*H6mrN79f7^vE zYvFga?B!UX>2KCj>(XvloTXo+%UPlO@ILA#bw2FV4dl$Y1Pil7L@w;h_~TWTU&RYh zdfn}H(xLtjLV8?rhXTO=1d*`*TUoyUiU)gCE@Pq0GW#!skbgVN_%eRt z_n2<7u%6#t=$HftUqQAZmD=l<=;SHOvX8v5aHPB=P|hZFcCUXToshE^|J3wPXDb#~rYRUq`b z7e>g4Gh=M8QcAE_h*e!Rhu+S?kWmw=1=yPPmblxRy?+siYf=S%Jms&Lc;T*?qr@9e zYBYQ(j|cq+k=iOhH1SVvfx5;TS>!2rzdL0R+g{#odM!R{a~P%UJM+O{&M9IwF2j)JTt=qRUs7e#275^po`nNbFFizNbhOcaj!fU`U;(`VSVr8c ztNuErs+4>eduVY2NS4I$rbUYGOe4!0r+UTDqX>&s^-X&t=#tZK*4mO z^z<()L}$ASon&0`xWZLwB&M+;_aY{99XrM6+YD!I>>6h%>(KumDcUVeyhiF~*;9I} zY_lS_Lr^Z#@y0sgOUurc?Y*DX0sFiSX3C<8iLK%X4)X$W<@~2B6uCJ(ul_=pUn@%5 z%qo6DR2{hDj5d_)bL=`O=L4cnrn^G@wby|O7RJ~`iunZtZ3-`Kk(=zNELwKVMgiP$L6we9G+La2+u zCXL!Aq3X$~T*nTpe}>5^T^09a_^K{*%H*pE-H(igM&Dv}#!rz^I}ZV#!mAV!bGNlX zsC+0EJN}_FFpmV_hM*BJjrD3Ph3kqX)~}d2%uR3ixA{Yfn1wae*@;HvBRz!g9<*YUZiNvbrU*ISU>>2 zU>@{*J*?QKBne*P(Bt#&I1c96w_&d+;n7WN?ks{H4R>uZ^p29yZ@!T!>t2ssFD1dn zR4PWf@;M5OW>~ehB0ipcVDt}L_a7|i(lK@MFpv$!3^yMnh$W9#Gj#in{A42?({f(e zYNHK4?CJgu|HnC*kF+%c*8FdV#1Sl1a1F)xg z@#6a4S#Js4UKp9OG2E$V=(lUscTTZZp+%s8d^o3>_eRi+gk#L5d)Or?#up|hXJaO<_{M@b7%Ta;TnSX^5cMkfq}IHCtR8A-7!*B z^y}`DWCig42l-?aHT*F6LRRh>_;C@`$^c>Brn#4MU2=5|9Yc0?4e?pCKg>F*?@y?9 zOX0fDn1o&>1i&=wK##Z?Wc@Q_jZJpYE8+=IhKtdCoFc`zW98rf_^z;Ty}r{Lw8{}d z>h$LMripCR&+mcG*H2q~{x@LwhdjWQbeu^qGTHE5M_l(2IdH^B`L!f0zT;2(o~?o1 zq-0vW7)h)%s%)(`Rvi7oyNmY_Ap~zdj1Y?7iuY3Y4u&)SZrvy(TS*?nlJgfBX{BWg z_$T$ggwn=vUCa0%MqFT&*I6In)PlTpPUYSQ6v!HlCRH6tO)!ki49;8$$rvJ7Yugl6F z!1!&3K@F%}Ss!g=*$r2;0;3*_k*9~#!v>5O2RZSEzKQzzO-8N<=SfHqZe3{C4=+wh z^GQO26Mp16zsZP=D&4if_C|ZK+v^$3%J;e@F0qEq(1YLiRukw4t)!s>1?~W}x=& zfS&8Cjt{@i|B#@m!p9FepSfe31oxG`%ap;hdoJKD^fvt6)^6%MKT^i_dsKu!$*alkU8>v% zE^QRS7Ul9z0yW)$S=;diwb4U2_861Nb6!|s{U`Gk7oJu@Tq;UTDz}yACFP1#IvI~p zhEy?rflS+~0!rmmct;>iW$)@NJR-$wJD)`;9Um6v`eKRPg7V472~xD z1!)?jeVDwHmT__Eu_F=Z1daOnA7#Gbq28NtO;}TbvFp zSxy(BY>`|-v%lkJmZ+eWu{Ni-x z_eMu{5%+93HF+T8{-=p`XRSC?#52oX!&hJZ`&7U1>(tzt@n)F)q>RfD3k#6qMbJ2^ z#$}T41x^IQ_}LP^k2VoR+vUI1z3D%aCzJMqZ`d$P^?tX%fH&;57T?Swh%0zFUjBoh}?IRtIaNv%QCi@^Tz zkDKhgjyGFH2~8Ex-a1-1vWu1D(zMva+PLZ{-f6eD&Gq!!!UY``K1y1NOj%P&?+GlF z#H{!k-0+f3OfBRF1Z;A@RIqo_Q`Az-YjY~@x0wpoQ!#udZ}DoB<}A=dxY<%(6o@iM zI@8Lu#*wv(Umg0!$P}!1eDcSV?(8??N#c-#TuaHvV>9{cqowf}k9JjT6e?jYeXoeszG~7e~ zr7MAhV%+r1Gjt{$TM;|q_acHRbJ0bCXu606s6}+C@X4r310WjE@7gHhYBD%PfT@`o zS7&o&q=c==nebbSf9uX@%s-1|_-YKdCbfP9lEx2pxKyvl(Kj@e+JAihLRHj}WSgop z+!D!*8#~KKuxB0T8A%;s7I!zd`fwE4z;eJoofAIA-4eU=XL|y%V6-qCR$S(a#8HUH zi*=rfIwjw$^5-2zEx(hRmJPKcwyexmg`=yP_}phEef_whRkfN_=)7eauPUYlTE2HZ zGQW6!pV?OzsBpzG#p|T4PNJ{{H^JXBG&@!)L?U&-t&>FiK#XW9$pmpuam;>`gu)oi zh564frH;EKr~krEGs*%ldgrB`)Iu{QPc#1`4KnfHp9c9~0i=IVlI8zJ@0ZVTv+oRL U(AA$s0njEbE+_dgI4MinnH^wd%LLoxgD@(SqgkkJ^_9FYf zPGd0kvHPB(@qB;Y@7Mbe_}*^sUwU@y$>W@Jo$FlJ{kmWGa{{y=N+*vqA3t*B$VnCD zf9@YSLScL42$>T#CHNO>)?W{f9N|2o^3N@8m!q>oh>to`#e~J>k*)a2*w}MsrULgu zm_?lf7~Js;+*cAWy}5L^j_kN|E+y^VJO5PqQSj#`Ql3d>x~h8S^yzbHm&(3X5H_<|L_O*6@{fjaw^{kxBuhUkCH17FR}mUk&lwAYQ31WrlC8Y`uabA zoI130O7?#lnEFHFk;Z|utmhy!|I5TVU7Owimr0$za_eXqid*7J?AiagDr!!JrAPvC zQd+0T%lCHOJqbeygS^K9DH<^;zrHG2{Rq9-*z@ta*-h7_$F0$#Y6;%E#XRaC6Vo1~ zT4FnrR~7u!{`q%o1%ndjtVlt_6yb{P`xEu=)W#=I$!}|2Rto;z@=0X1j>+U%N0Lgk zguUrm5n-butqf?kA01fLj}oxNQhLWDU>6eC$smJB{qH<95+!h4N}=_@%v+JRpP$U* z)0%}Vj9_S|dkJ!$D}#>h*lt7Hu2-kzK62Rwc~8e4{VyxrV6q!u``#|siOa4)(y>W# zZ83j&W zAKUVcy9pjk0hFiMGf&B_E8r{k$|>nsKW_IS%KcBWq%2M}Sk=G1pz`Efco>rJ$v{qJ zx=zMT#Jo}2&f0*=_}aIx!5!BdSi`w&g-d4ho-M6`>2xb`cqZNZdKa6KT^>d-cmLO6 zeKxsAEg$d-vW0}ON$V>5(?v`;HO%hLCrvkSc*km|y7Ba&M!XCe7tv-$4NZt)*HmV4 zn@mMI$$ymCT_4|cjd3fI>gn0RrY78YmF2Y)F=~0{zZmw%oyvd#7TeN$sd3KH!Ln<; zTn`<-{PLDttflYD)E9v{wu-tfHS&g6zTq-$bz*xcy|}Ybb1Fk6oJVSF_WSDkM2OYT z#9J!&#k$3+0tVEC%e0w{T|N)HV%S;}nhd;(hXtqC9A}F?uFFBdoWB zAzkQ%U8z@_B<9a1E?YDGLEI0cT+=&Ym4d4{gc>=o4a@>pL|7ZJ?E#z2Y8?~0zZTCC zPXc$s1JxZjNqO?qS2%z#Pl@QpUL{+-UFoSO8{r*eUHA)GGM^62t?AF^{4rQ=^A8uN z%5+hcBb-{rOi-4M47Nn6MCz;?uga70jT(h$9HB?%Oo|SVy?6= zSr$`E?)b7);8A+uzla;w&(~)AR5*=WuP$001{9y;^vdQA#hjIbg);8Vca8?Pvt^X1 zc8zFCVUs2aa|5Uz;CB4k**VXCeR)=DZ~_URc$Q7`D@B7P&TS@5rDe9AIry{LK&+(W z%5;n^&)hkP{EidMW3jGr^K5R>%(%4-?UUYHUzVUTfTwB zNpa8dZf{0E=d!i>QtL>HkUmWecC z(p3+-HzPWR8k#x_jYLP;kq=TK8U~c>A8j~B@iwPMeUCE==q-eInL&|8SE-(Qy@P&) z%kxuxMsg{e;Q7e++I+0Lu#X_fO=gcli_R48Y)9{$l_EKLy!&vetGtDh)@sr4-fJ5A zuw7HR`8Q`ShvAT$XeX_Xo>S+qDTog_J?Ids>g;cm-`h@FeQknYw%75=&bG`({_av) zp*+d_tbq-o{&FSC*zKxC!e|!)wlj-cTFt$97__w`Uxdd(O3_)BWrX3F+EE*;>Dt*& zP5HRmlwbdJ?+H-RPq>7#Qw>R8!Dg;_aX~R< z_hzXzb@#cH-29#=cH8*&lV0&=c&BAK)(L4{0*0cYd{^?_Sf{7V=AW-Bt2yS;#px1) zmlktNN4V7@xv~lHqLJ(g+w7jP-odO!g96Kl7H!8Vn-F$cFFjOE&sh8Q=ODo;SW_qu zck2fCTzsKmOwRgGvGwh)N$cqC71JlEA?KKAaa&}??rJuA%#S5Z;ir#Y4-yvcRYb?= ziP{Ff0eN{BN|A3ppo=fxvI$FaN}PJp+F3RzS4n%eD6FRe?#)kSXnd{p))RCx;x~ue zpU;m~KV*1$&Vs`&;~HmzKhjNeAIeq4+*@UiPHr@(`Z9!us~KY~o~Fh+sNPqZU0yCP zQ;2C79_mIIq2!8|n)t()ozHe}Ww@2&%6H$14=cBI&G8lvyIENm_C4))9U9%XSxvnQrsI)ZokW;6|YO~4i4GZ)4LZd(Po~W(P_KBzjOJ94cc$m4q z2^{6sft?VFSoB!|R1|M_`QWjsa2m=FnH>dD10K#kseFxs8)s=r|V z=Sz@~YM_+S$50--&K;?F#9O>5$F^%#Znn3xz{5(>b@0r>=u;)_ zx^ddc&Vvrj&1X&5(7IrFGKGn|Lonyt%XD>YC~W5Vs_ zjyN)2H(26mZEncKC2C&dICc2hzTEr?7jH=+=M(tXx%8#OP;~NKMd6@BGnW_Pl9e12 zuV<$)uf18LA+Mk3iHhk+LmL$tR#bSYM)F4R5weZ5oUSp#`fEW)$O_JW6LO6yWVO@D zaDTP|DWs30n~!~{9*#ottZMU8*&)k4=L&kl{z-o&2(6L&v&@$V@!DK1|2hI<`y}1o za=Uy&CLazQw-j&u<81o0`1q;GtYhsUSzng)J0?G}K`^DHdm5*`2J@zJDzBM$bVz=2 zOiwe_!Sr`PkJD;DlZnT5l`C7Uo=hV&M!c^*jYj%RM(hcF<_VLranDw(spEI2u0Dr! zNabXqldb7l^U>H% zhlq#?ETCv8^(fjg^NaCa&;p-Vr?vzoG0FiL(=_VUAULW+nbinAUC8{ zW(#TjIlNpP-r=lbMjsc@N`ic1W{xuaYJHop6#)=q6hMp~jd>>Ir@uugM3=6pcQ%d_Zb&&&fcWzJ zRup}5e99E(PZe!wkrcI)!XM*e;EXgQanAi$X$;~d*6d-6Gx51}M{LVhyE)uotGFIv z8cR02&28Al(LmTp8e$wy1PTQ{sgWBJkQ45U{sXoZFt0gu13V87Vm>4#uDI;wF+F@w z<0F%p3RW&CDj9=+{hcu7XqWiO#=_k%y>Vb=@#Y`6>0p3a!WP>4Vh3iC?O!aFN6w0K zi;Ob+ElU^_Nz;Nq|I;fnr&LnT?@ZQ}b(Ym#+8!s-6VRUjqPkI!5Ue52BrL%QfA4Fi z3;iYK2S4g(=EQVqebsocIyY|u+OXlZorM}!9UpLVj%^p8^Ngv_jd`A@ayDq|Jfs$_ zT;)q=!5Zg9m)2h{C|j|zd^fsOL*A-({Ljj&hY|>wmi(X)Ds(6XxP9qTD5b`HBYJDT zgts%3RiW76w;*L~K70Was83~K{IL0!A+vh%r5?mYS$Y|i{+@0!w%6%W7Xm*NRvE;c)TjyVMw?bLWZJwNB~L%5Skc|6i{e-)M*F@z zb{}PImt5`GE*q7vw6Gz)?i7mYSs#?iYH7Dm&cRPhrx~plS@-9^ckh-uI?I*IBnvF8 zD^~jwv$Cx+JUwOI3^{b|K!yd=()gWeIFk|Am>7l7n_jK)?(@OlVY8!_dhLOZz;5>% z79pc4bM4zk_-2tQ)>kFmeM5*5LE$2t^GOJqbRnXn+sdHmc6Y$=%{GMk-0kD-uN`CY zuQQIBao8`tkax3mtzInVWj|z3kUPgE}Bo=9y zJHwS4j;0fk6>RP*n@@}3k&iQ4EiM{~2q~VQPHcaGj5UJ1D)-*OnW%JSx&M)RG&>=6 z9rpq;Buo|414FevY_ZPf|JTqYr#RYT5<$t?Q9 z-~fCHzC4Mu#=gwVy8&y{I@&up*KG85OwViPcbW=3)6Ax!I=Bj^JZ5Rkq?pN~RL@)qxrb(&Pr!vrW9UUV;Fs{wtbQ8htTV9=;Q>&4hgTxAMaJjBs`5bU0*c~Xuk%5 zUh4{gzrJD965y|weQrKW?-v`ZIVG=t_G|fN{Nr?YQ$fSRS%0j7#kDD{9^@tZR8)8Y zHge4dK4JiELkm`Kfhw&A*NG{HSJMiYhR)V7lwxOcES8p+nuRs{`HD;*dS=wS-Mb|;A-;z095nUv;$*22X?7r zKN=izgiQX-8ww41*Ci?Wq(;LL8bnums;cXzHag<=Quon`lo%T{NTaC;Nj>;dpWsJI}r0Pe9h$7>Y-?sac>dnH@c3y@Hqa{be{uc)NSlq zyOHDUyeZowhyGg+etFWn(h^@pofykZ`$#h3NEaWX5AzwbqE@ z`4F7%FQb4M8;e-)4i#SRtmab4>z-U?vp?_(>3DWgOYQruIKBRe647^NX25Hg^-KoH zv+KsJ>@NCcw=T-CfTArl0wknNuD(-b)Q>Nnrj1UQR)$w;Z+Z~w;da=P&GO6MAT4Gi zs&3#hfVR+>U&rJ<{KTZLhp5WS538h&EY6Nh^)H^Otcq{1YKPyJggt8s;&$Oco?auf zG=AM$5yTDa#07bV%<)E+!h>iuHJ5MRM8zxfUodT$vj4X_U1C(8&~A8T!#^$2kCQK= z@R=}zPD^#KErYNeLxGZ9o(K*oo30tz+eMsYzIny9g*H^u0(V?L8#C%D+2{`HbFQpr zR`HTM258CmxYx*pkz6yS)tN4Si-1rez3JmaE39S8pUk`xG|^MiAYc{Jij{tg<`0BP z&XU6oBxB>LMnHh|=_i(gS*+QLM|?`DC;44*TxqW)sNT_?fKlK|w%X;ko`=10s{Y-T zlwH1=9(~gyY-JR1F^(O!%>msvH?Z9l(sTI_@=jOF?=FTsp6RLfrJb5g<$u1zOqCzM zG$p;@)p9H8RsD2p4DS|v0V`)L7k|u%DhASxZhgh{^rMVx-qW_&PuoJWHt;e_D=F&S zo!T(eyyUE0x$%+ep1GuzO-8qG*o_65|6;h)%HdxjU)(gPgps(u$Gh{sRi!_W^eIB> z0K-@*xZJyuee4&gF+^bHN#9Nj|A?^dbqW|tY=Ee|7JEx!1!cY#0 zT%7bGgt=t1GALd0BkQ$?3J$2@05j;+rn#`{G@su}Q5|I1ZSzwGTWn>4J}4c-D0sHF zE{HtcHuP1TAp$TGKx{f~=bN_Gg|_S#X&S6g1Xa6=Z(w4F8%{=7BD3`4vWhxBlCIo2kiFyAs5BY% z@4J9(wf^mLl8ky%gL4F=(4g`d{AjxMK%vTusntC>1cgC716G1M$wgUe#(Xp<0Gv!lQ)AA9`k*ULP>T@z2Eyf1i`}Fla^Oq z89`YD`;Z^7V1BG5$@dgwG>;hd3y9#uP}11{2$}1d1(=m)0D3%-KkP+YL>?ruzVPaU zly6o&$o=Y{JT1I3zFHgZxPY-IyBGRtD`Jk91>y?&pbm-cos!0ORJpkwm zX?K?r%GPghZUO?C2Qz>CMS4arlEn$oa$i-#y4wL@x&=cY$7_fWeb63B>4_^8aakYp z4^PSouRuDr!h_}-8mAuB_;E9wjIW+fvq|vU#Gdk3Nqq&VuEd+NwqYpw(~DFj?@KhM zmJo8voHM0vsIegHp;6jL+kN7F_mw`*3U z-Z>xaA9vo_os8Eyj!PD}Tlj0F`}k&&&8zs1E*vFyI0Fj6AjbAPAlT6+bq33bHtl3}H1+iQ zl>Ll4#zzH%*hqa_fi0vPG7Crn%5DiVF17BI*FC~E=z1NQo~;S$!x!)Z>#eo9@WP{J z^=~)ERzY339)DlAz?4%KnL%0VZIY0HpFk(fj#j-24}4fL4B#aWvV|yK>Jnu2u%>(A zIApq&8$n-0=QNa8Rh6pI*%~rXiy70U!Mb*eU1S&s=i;ELp(PK9*`JHKW(Lr4v}|Ri z&#~~L?(eOvno>w7bzJRJ1Gv@2y}sPs@LaDlvq$)vfPs??*6T%H? zH>AYFFkBXB=YOP_gSXfwq-|CW7$Jk3>pG}jOz26^;RVqR`-UbghBhIl;u$C?qd`H* z2?g+_IB?MeRBTaXI3C+}`8|&zhi1XX@e`|OUj^MgBx6XSBFLs&{$ju+V{9^20PiFm%zwAy%~F=0*3g?vh0d6|fZLs#jil>&C4lj$OMXXQMrT$Fnr?9rU%6q9Y+`rD=}K zZdo#OmgOjU9wXT6f-775)X}$hM;4tABF$gpmXm$rvhDPB8GN|yL&dJF3zfl_F8>C^ z5SI@QZ|u{NAs|(ZtMlkaq0KgKI7|ajhb42IZuu2sTmES<7L7xeOzPN_>5&l;1vsU? zr#Xj(Uf*aq>?^5ia)wXNMT=TZGW?GFST_2S_IJL;17d#GU;LGEw;W_7%N}H$Q1Rs1 z)jz*3>oas@M1Loq_o+)c4pXY&6ct_z=h09-i)xM%7LMw~$n1xuCL>^y7OK!rVu80G z+AXh!sw{QuB@BbMQPO5% zB&MaAlo-HwzCp=q2UabMiuFhbc9hBokRjP+YtaxXEEkawcLN74|8e8lEaNgM{n8d$ zTUf+EmZA7bb{RcdMuGJ)uJvOi&m|Tl+QOkcwgIRN@$oaHZzi6lxS=wf(pj`gz-NQr zQ#x={H-NQP0nBQwaNoqHc7a%wWPKZSjl!-rKxX&j-yxp_RxWK*D?*yKkLtM}T&{-j zqZH6yG#TN?<&fW?Pef4U_YG!~=Gn1{D*`6O4bm6DtR4#~l*UP3l|Jl*HQgp| z6Jf+V8^C+r2Px{mzJ|y}Yxl-GG+mV%e{<9}xkCe>F; zWxD9h(>M^p51j$ju)5ozu|p#_@L*V&2i%=p7`f2MoA4)Cdj4l}lyN$dRRN8~yr=E) zFzZP}m=@Oer}Ln_(j3UPjiA}0lII#e`sOlexkMvr4Y`lzcS1UaN@l~j>^vRgvLwj# z>jrB3wqe=xc&Q3ZS=GK7_bn7ivJdPI?mm_`!Q+0EiC3`=8k>?dK)OuE1@_6Da?k^_4bvPDWevu+mkw?OU%XvG0}G@5P8&I}O2mxB&%e zGn8P}ovA<5nW}l;6IYG`eaXZWNL;kzBu@OE8&jqCf1$O1WFJ|CdU;x*2_6jtZyhz1 zUjAG1^&PJr&ruIUnRxFMfF9=826lIKjp&>AaNSv=PJezrzITJyPJUl!7`hzNSiCGjPpBEi~YF*C!_z9uu=_Z#m=9v zAx?nu;HDV_{)?Uc-X2*YZaZuQHcw-7XbnGN0)p^+CfE;n5KJApHL>yU;bvjv-0jcN z{LJ2pC~cKsvgDGaBL$>|2R?eNkt$1KvPt22#3O`u!hQk$>fO+yvW05eE>JlUv0~%x zC&oWo%IrXjW(vpcy2z1!|3#%A#hVJT*$01=mKnh8ec4rl0UkRTo1FM8|i< z#%B_n@gNE`rq_PG`>tbsaU#6?cypv+hR%3*6n)8g%75uXPQ#<)+0SKhXp~1C*mRhZ zU(aFIETDf=_Xs3RD@35Ex6Z7oWjSwr0BJ~0Eqd^q(N`k&9M5BxI24hjWYF{gSn_?T zV7vWPCJDy+yriyu+4wS+oT{Be1F|Jahu%K{(R%W63c_O^CSY|%15v^ zf!+YS#M0x}+FYleU`UfwC?Ly~csprb;3RWs9ZoQbGwCOe))(KXf1g3ZI!nZj;j(SE zRhKj)d3WMNvfPJx4|%J7miQ_qFcDF4hx^zC4%M|VR9D9$$uyv&2Mqk}{|rq1e+DM` z#Q%BlUrYR7h&Tv8|33&3C30v{tE9T1&rhyNk`&po*ylQit7TX0)-oi)ORKVQEX)NmBuF8gw9Ma_sf*^?VZ;s=B z)m?8}eU?+KP0Bl0_w$akXN{;u7(g5y`sOMPte0VKX)C{!ItU}#_`YqT;B7zbf7A2P zyQZJZWZW+F)*fkotZnMj-)(B7KEP%`{uHO1WdLk}v8sMe!+hPeR2+sg6CNXNz}sBFiO!++3W4eL)-F_Q3O@Y1ejY3J1RB~2#f<*T6nnz zcjyIZngbJeX-t43t7!1X*e@lHuFwAL(H@}PZWawVa#8yn4exd@ zp}Pw;@89fq_(^)7mvttqwIaCY7QW%9vESJ*to=KlIv8&Xv=nFh1L%2Y(o*9)fP(VV zN)?-oi(Oa|d{qHyNJQ}_1?@of*+?@uR-;%qC%2{Sju$Mj5q!sbb;JHpnV85<+_H44 z$c>^}P+itba(u0kJKVA&aB7;ZmbyKyheit3qJ%8_@{*;TXTJe)WJ5bT+PqdMB|55W zw+ERA9~lUTggFmrNG+>dj4D{PGN&;%V)_%Pvk!4%;AO3a^$dw9{X(Ty;-Z?@1Sa)k}(KIZwB|Qzow~2E9H5 zb>~tb8kFU4=2P1=iH>^XAGg`-*bcR195URGj@#AHT+f+=2qkGVVf=!IJgo`B8&8XD zZ@3@TL%B7X-4Hi;^VDvkd4i{N zo>m_aAI4}82`&2v|Cp}LGT8#M%?zL@`0iM09RDv+Pgf8aZc|(8MyxOi8GQq72pCXy1wueuCy9{7q^*Zb zfB!@G#;xQGy}^NQ6YR}8c!d)3mH(krwUEaq#fb(@T0c#kD*M`BPc%T3xV$;&eI9Ji zV;-#!lXK&BL88vHdO*?j0LXqKg-RE0pJWjeP#Hw4au!DXc0%6N$AzyY$cp|lvA8Yn zd|l>nhL10fuGi2QwUd3ZzRmdMNm&SS3tJ{MZcfZJ*}~LUl6ns}%7bQoI@gw&2}|kl zYdqV-RriP2_h6!*xtiHsAo-ay(a(gf=~L7{g$Zam*D*l<)U(+B7HOCH`pH=PYcM#f zGeui7Ci8M-ohd5WrI!k<`FG}QJ6LRArv)KjJUSGzEpd<5W^FAr;IS<`dlP)dH~1M&3Ubj3wd6O#?#=`R;p^+1UH4N(X8c=0-+ zCmqLF@)12>(ck0FZ7xhbUU!R5MynrTlBULFv2JHER{j6vmpF>p{MFe6`-vo&ndH|_lxJ5&%EYuMh?FWUeYrzXA^9LNWBS@( zv*aB8TLT9e5`HmD*d+qFbF6^w+IWz#B@o;gyualOmVmwfZntPO3c|mcf=0lD6i5ip;VGZgT}%=azmdc6_@h&tpgHB*jYkH-H2RgJN_ktdvdE@Pzn-&~==S^gGhLNe`J$;VCLU{ccqlFrvR zrh72xypMV(g#zQL)YqAZz@Y+SS>)+1oq5XyYk1rzYv0c;xPce02{`jB*2q@Q^3skB?zu=NQR} zv^@3^nOM|y07cw3Ez;n)pM=6kio|f%E`N$<&}gmB@i6S1q$v_lN!8n1PWU|2Z5`7l zp@`n|vS|8nvg}4@gK5>{6e=_GJM<4@Y5&1T(m-JhPnUK!d*pd+cQ8O3hhA#>sry+W zwdT>^(+{pP?3e#SW;eaPKBoMcF(kweJYmAF4J3b7O!lR9?4t)wqrdJXCXnM~q1@q& z7ZQDTIt5xX(@o3j>bps14LAUW)T&2I0)PX!ATd} zPhbwcp_Nb*6`S_oxnJ{Z=sM<0{L=^QCvM-F_cM+eGs}H=qed||;}Re^D5?p}%;pJf z$8W6-2oHYjdoF_Y-sR=8J0)-AHpO63^)j?l@TZ0Sc@iX!-$&Ik&Amn0S@cEtGF}j< zoqk*lfTPbMd)S)R>*xd2b9oTx*D56 zUGO@^POlpyjS9B_|p0R0pUS7QNJ;C=e&^dSHTXf_-p^&&r=kwR4>p->y z?26-si&RFCQAjiwe2#C(DSVP|@SI1lCOG3Y{+*G6?TXd& z2cC6>;ed`3y9|Kp{GG1sgvoLpKngMx6P3FAlT^?pqvusc4Kb$ZiCc2PXSh7K?RDL= z7rlVjy+hQ}s~Hf7T}TpHH}-}teQDU+8TtHWI09vSqVN0W;4#G3TrwS7HRc2gLdpiD z&9_=+T+qJ5YsaP~XmIW?IDa|4s?NjMqw!5W?B)N=jN-4Qm#>+}KZ!uLRKXY6t-T9m(?x9;zP z6%x-K6l3VO9sLELnYwyR{0nJ&r>V*Kb(Kv#&h(4AzR%N?kBAf! zEP?n6*VC;XZyLgd%RWlwkkf4uO;lAP#HQ#7aCg%Pp~4C z!AGn}X!V=RfvtsXj|yM9=83-fRQ->;;b>O^&SBgS1dj{cn- zbko&g)3Tg|P$>XH1-u;mf=Bk+>>Vn%)v);rlbIpum5QupIafhaF<|Qx!JjPYnAG>Z zriFb(KWtg!sj^l&Ts0=Z$A5$!zQEWV2fjO z4yBV;pXt4~^u?FtK3aQ%l%ybsKgB z3HyDLjhC7uw|QR(s?em)@tg~^*V-<;(jAJ+cm~sO9}no@*yWrn`s%c^+To7(H7-*0 zSJjAqeW%5_?~Y~P4ed$Yp;Pjth1Y>{YJcHND&a}e_zw^{$w6*{Hm`RtUq^mD+UR)p z-$3VciPnPe2Z@pq>#okz~?IgdK3eeXyYgNfwRPgH&aQRb7w?pE72VKb0F ziSlHU$qt_fqHFGV+Sqr+=+Yreev9Q+ZWP2$ROoM~lv=xVKg<|LpM2&icrE32*@zq zg-da+Dfv^8VO#y1_+sxU8^Heb7+o$tIbiEW?>4^n=azKgZ~wn{2(&>bVt*o42+nD8 zB>sbmo5i{vdfZ!gpMa%?5Kgn3&63L;#|J0_{%Fx&v6ZTIDTu3lb82o zB#PsRu`iK~V!w|dK)KVYne0CQo>}yG7pj4S!%bVzM96c?no;Q?2dO$pBMW92478|x zq4f#XEYvaPuf`^=imc~fVx;8>@^E97yA0g)@{bwkiOIQQj9;Juw5z1ad8lGU#9UQV zmb>8jRqL{X{8q91F=CJG9}9=IkYF*xK|AH?^%WD3i)EXZf9_#aFL(pdCq-jW(0a{z zk{@wu#l0}|%`QKlTXWI>btFxE-SVHW9p(u-g!Gp?a*XPXv;RnF8B?6clrE{hqEbsu zVCS=h!Q2O|J8A>u*`4N%(!9N~n>fYmKc2?;Vi0qD#mUD>-_}0x(U`iQ?iY`0!ac@m zurFzoDs}|5hr>!+Z%26^G#%_C)c7f2T4JWano z&0ViV}z5 z&MskW!+JpVs}gjG|1gYG9E5TGlZD5Gyn!$@dj+%NuG{cPp5%-AWI!{14|gZP$Vb{H zHvi!*<-y3x)={u_{a5$Av;FMbI(yq=cqK2!tmOf>PqUx+$zIj9inG}ry!QBwQ@8$S z@p-Q;l_=QVsX6rBZJ?e4%l0{bZXch0XLa(fG$>GY2%YXS8=@jCx7VEecJ^Cr; zCQ|Oam#A*DS^u(8if>`*?3stL%QsIO_pV1klhlMG3Ws$2E&0>#&|({TlP`$u?j!=z zsld9%j~KSC`?XxR@T%Jf^_x%N*}r4j@Y-P7qbTVk&om1w@4D@=m0 z2%nXd>)Vao>V2OaOO&E7JL)FT7bP~_G%yWLv=6Lv~hWu4hwJcWHL!i7@r zwO7LWvE1gTXz$KIYs6jwSNWW(X*$*h{P8 zJTbnv7Kf<5O%4*3sKr^`koX%@4VXpVzmryYxHg-Uw=IZL&NA?g|7h0WcSlR@iVq7d z&xIev2JG_9;BX!l#PC%%_ssl8o(^P*UtQB6dzH9Vx{cQ^4B?wJ$7rZb#eSZV4Lj&h z(gKJ$ed+PNbO>bZ4}eUh;`}KCpg;G0rfKhBH~j(^$X`vyRc>f}o1;Fj)alSXlE>9Q za>D0XpW-&pVb{#v6Yj;#bOg>(ixrpUfwB)=>9fQFeR{QAPfM zp;tyu0dY`=C&Aa7No+{F-%%4g=FiOwj}q7*V3t`(d+&a*Q@D$3{({1~-ML?#*2g*$ z_5?&Nxyts+0g$P6O3ke6<2bPB6z{0Zqgv{;Cu+oeaEy+cmbsWY`}J9r-#d!%DgX8h z*_toxjT2NUD;!13XeDFwce=8ZJlEd45h8&CK^M7AIHn%M7*_C(#b1neSHQkgW9)nF zX1~Dp7W+C7wC)GP51$SKRmf5J9-3V?X}Yy0Jr7(h8>0Ys%DXv|rY2Z>c}YK;@`8!i zkz&ZuRt138O@nx+FsBB#&uCJwa6vUMR%w)f(l#w=Y@6_Gf85U)H=6ypOc2*!GEAEw4t ztL7p`*!Z3^3N|&I={uZE(2G=6_ofxI5S6WY{<$1Q<+k;^_)L9n1OrH^laP<}=@CaJ zjQ9)JgYLcy6DrkOGJgrm`(TONGd-FHxtH<{Gtg8_?(2)7(s{>5D3iqrq`4DvDj#)W zmPsD{q3o}5z<%8j)|#FfSW)cbj(S~3sk)%3FGqc78STrXF{Q^Sw_U;!sG(}IJ2n1l zv`o6oU&eQUVHoi(5)Q=k9T|L4bDy9Eti`!;|J?hd#7Gwd@Af4KDBXxzKI zGJADrO8C)x5!Azyd8x*r1kz<>g}+#QgV{k?Y`n5X78xwXr;b=+TWJhmhW|snr?~G& z$wHw*&->FJe3YB3djpY|)gDJ0=!DV6fY^GU7qe~2Qz_BYaus7<{AC#T(4{I5fZT0_ zx1x%ku-)v;K$J;j?Ck0#bNAVcFt1`zWVQKYC`egi^WYH6HT*=ha(Ek|S9P(&?#WQ& z_vP!C5|kc~kbW*5JoVtUm37l4$7!wak!pU1P27jYFL%3i#u+x;{(D;AFF%xRLL9ai zJ6grn=y|j~yF=u+Mvn5@4H3E-P{fLuV2$hkd~LG9e2EmazMVcezX`|Y%Hib$M9S&Q z)7jpfyytQujpZabc9Q}Wl2+Uel-B*q4eb0dJD-(>8o(nYyS6!OwZ7k{&!^!bid zN~%2@V5e5KElTE+UeO(=egBRHHTG&_lR`cXY=)2W%t{^7=I+`U{^)-@YDfw!s?r_`3i?VyAD?b%GzPGD#cwK2tFp0*f zFBLv+;KtDhc|QBG>9YFN+csY@BI~S-r(3sxMO|PR z95hO~-N$3~AixsLc}sC+gmWsA#l=iuy=ZmZ{EMGj`7i>nrI$Rv#rD1 zC|4x+Enj$AF;aIF^66~4l?<%o;FS#`2L5J31{p=_Ul!EAkvGgna@<>+XTi zU8L;fXfe`XZueFN5y)*oBl?_NX)&2UsWZq2<;*IA6$%I#Nx3^K_is+yT&O(?qK^X= z(hGKBBG!L#ZDeP6C;8Q>$ldlmnk;%F4P1JEub5XUAjX`2-yv8VMD2Sa~I z+du7wZ+v!^)BuM9o<_N54OFN(FEjaVj67>dXgh*Gv`{lz4(7J1gRNsq4w0w(Zr7Cf z?mp;d5Bg-7KCI9jrFq!5u1nS1@N=4to7 zMss^kxKAIp4@^l*7tk0kv|`eY9&*%7GZeR2n!IM6cN$Z9odhi<$oQdtb!spl#9YCn zf(_Jg*weNTk;1}ll2dlS0sl~gbg`r%vH+)oZTm9~7>MnnV?zFs_^{jgm#Rl{?^2gKG6n-X7z7VC3FBHhA{lZ0(vDoE{Yyru`U z?o5>3dfIq4jZyqNttZ737H`0g#FAx5tOMo0oivIy`B2i7oHwQW$tnh({wj32Nf0Lu}<6bWw6a;1^ot#76L;pGueIJ|Y*r1^@&_N9;Yw&xlM#)R=t=G7xRCVNub zI~C){EoOVyt9UfR=Fw_W^F=?!s_HlhgO}g23%dR?JLC}0gU|)km(D(%Y@QSmOf`>lkrfNctvQbo@dM(^w-h-tX3KT5MV158*l8-iH8?5+x1%nvfh zlWUUbe}~hc#v$HF7&ZjgN`4XB*WgJP98eVh3caY9|FDWIIRr>=4ZvjpO#^p_yO9#JdcLr#k?@eW%6fJ#JU$5T#3!#rMy$phD!?!^A;5VRP7xxnOHFvQc+! z5&B7@0V47)bzjn&d*;WY{oW3OtlO96B(t*j_E&(>{~+eNsd8HbMuy9{p)3?R4?KB__{sVN^8vR_QK-RAUuGAXZ(n(Z+TeFXE ziO7%0W6%+vT3F7uDuZm}N4aM;y&Z%zjvh;LU3Qon-5?#-CNivsp|I3sx+LiMC9C~G z6hFInHDN=uEo*inJHbd}V>cA<5@X-CUN#orZR0sQqtEo*CHFQ;(|yYt0PAt87!f76 zWex01hGLgj^fvrPuek3a2sQ-?R*xqF1^Fptkgp8sjkmAAAO)@#t!^*3<0eAnyZ`+9 z8lJ5QSUwT+Hg&flseqEtlUW2zAWZnV7*P9fT-pXdtqEfLT`6#7OK)yEeap9dv;jM14ldK~ud0i-2)(v}soC2onLX<^40=W?pKe%2oulQ+ zpc;KIK#>=S;umXcJ1ZUJ>8cxN-UHembLAzI-pA%kA27?6KDDoqXIU4ioQ zB!_F#dD_bF+zb+Ve8@gsBFlA=29hAdixStjI@E;Ih%Z8cTX*ojCsEu%kp4}$B|ljrBZ8af-I?E?7iOI-rO ziyoxBJ~F=ty%IGfYG3_#qjJ1_E{G)YCY)#-P&{?=K?)U}K#8v^=)P8DFO_7Bo@ScS!`5vdL>x5?Kux?*=u85&*dY>Hyc;z}2pB#>O|@lj~6TkZ|$aDlDxkh`sN{ke^N2U!n+k1cR- znF?p(l>-J2^PXVwEvTR#=SgNRP_govmkrkmqF#@`+gP4xSjLc}bR1WA0lCFueXbu_ zy!w*g?GT><@7lj70p9m{wlvu|^XscWozx%BIq=jF@d-0y?;W@&kjfKP3O3~%Pl=a5 zXF8JAmX^T<27N(?I!%m2ShtFyce2U=+#9LuM@0ez&&dawtAGk3?}9iaT1MZ2qvgf` zz}=rErb-JN9M!^CJP^aWvmR_k` zt>8Tj4%ZJnW)7s(o8XZgqBsMHGSvBO!Bc9D9DL7V7F)ISnq1cBjNT0tSV1)wsXnoy zfPk&2WL#br=G%>Em)&XX!Y_o9#@=M{Vfd zTZCQ+xkJ1vAvq!LZ?E8S7e2u*5NGeVf{|APpc_7` zJn%ZYcailVcQ+{?=*eJ!AC!q`rWvSz$HGe+D5+lpYL&;2ZV1O{eY);^T@s)3QP}RzA}==L@2oYR`-x>A_f{pZju=Ld^b z$Pj<8w{%dU!1B;QixNiB=D_flcr}B6bD38iv`Av@UIJ(dx&vdchNDF<`WUXzPyR(U z;NiZbBeAO|XK>l4Xrfqbeq?nBrM_aAZe(EcX7CeS{yMoofA%~lKUg?V2cV<|Y&p(m z?`*2f`x|yzuRKe$HpIR-#ziRK85l_lkxR#BxU!Sz6dwR^o4H(Lq|{?2?t$0%N(Orh z-3jw<;0c>Bisn+gJ~qVQXRGWoUBnO^+F|?%=v1)HmfNz<*F}f_KepZisLJpA9)?S| zfOHCiAl)UQl$0Q-bV+x2UKLSV=>}<~q%O@h0O{@)q`RB<5c>K4{`1b2POs!iZpOegJQ=w_@W#6aNd$JLz(U2YJ^lAU2 zLZ;6_^rh7f*eDJ+6Y3NGp8Sy@yE2zX!gl66`arLQ*xib{-ChOI1F$p`b11qJoQZi3 zPNMFC#!3vq(QJExiT^g|gxkcFhpc1QShDNK{b9-FUTJbZ`Ryo$zqAQ7=;M$&9x=P5 zf+WO_;qn|Wz;9M%v(<`i4N%uPeSW{V{6Y8?HDg1|td3PmVV&@S&5^nK9lkCDl?@;f z{#^MUFi^KV<+nl1%BC$ZvU+QO_6%TKgLwGV-^Ahi+vTVP&Mt|71yKfKiiK?t8Bjpx48I8`<;Je_=r@qK9S|KkMS@*=TX&h zMTqzu(L^-iOSy+8&t+upmrLdRE?J>|Ds_t3^IjmC%nl?7-Q&bK*x-;ot zS!WlOlbBrASueBhnyCQ!Q#5LHD?L^{ot@WJ3u_(=a%0x?fHC)`2g(E6LzOhvKL+^b zav1^F)th`I`Ge|YPQzE;oA~rH=KZ-($wgfAFG(fnJ;?}sY<7P+Sx@T5WW|&>ecjeu z=hd(2Br!RfpaUeYg=&v-_|4N_9*4?Sj-~cuRkWIP9qZ26u3E?hW#(uWr{Sj-qUFDT z7xn(`II_MnVF}?izSRdQ)JHEp8t>xWu_<{#(17^@ls!hjSRW3Ei!HZ~VX>p95+>E| zoda&!62Mu0_+W1~?C5VzFDmHzH4-<1!*mtv!&8sWsqB3YbmPSSEUDlw>p;DFq-WgL zlVw$6ghXymN7AZ6cQ2fZ5d7B4K_x3N1|uhx9fy>*D!lHZfupYgJR&z$pm!=TCVwp^ zVXs{mUIKN^Pyt-7^FCz-P^K!-czQXy1!nVAA1`7XqJYi#{7AXQM(b1)`Zx1v)w@!) z+4gUpAf@I!pYZiseE%ofJX~DQbEUvuJtZxFnEvP1H76J@_9rY&QJNKt($kz|BTOo; z+HNhrUrWO=oA~vsf#VOs2U_ev{b-{9)2aM z`(YCuogD{!9@7~-e|!+R-?;~AzBmk=n=2kG`X>pFTt7k<=TA_W4JD)BTOwTVc3UF2 z4?L45!q1pP@D{FZDDbz)rx%BdJ-wm_kDuh99(ASrd>^w@(Dx}%SC44~HlPw#_E(W1 zpg{lh(|F4C9!qUlz)YHfMRq{0_#cu*|jHy;E3^&bRlF4wf?=+dQ~s~*kfRdq4IHl{C(b&w5#2T zsECBwNqMb9AhuI5<0Y|Fd-Us@CQ>Tzuk|VB&}#9+D&6mgTX!UCX2Xgd%Sm{4UNZgT zjlvMC!8aGF6WhPk5?OXlt$-mX8F5B&nGOii(srUnE_Y-yWO_Gz@1314^cn`rA))3k zy#Jt|WupnIC;Jlu&nAUER*cvC^FEO5aQ+S0udfv;`HV$8XnoE3dJQ;|5kR}q%8~_i z8`F;aSv-GqZWtz9;Kjt)U~p*ly(~hWb#47SM6e}<=2tDd9^M>wK#iQ;qPP@(`&C?4 z=GO3K-)Op2Q8zVG0SA*^9Rrnj@ue^|+hhop0(}lFw?UtS%VjLDdW}U{hT1hRw5p#i z4{_wb0PTT$x0)4_MJ`qB@xX7YpB8Q&;+N+1PFL1KN~CR#(sI9?BcA*{wa1h5iY-{c zZhF$Ka>~P6%5%6Wxde!t{)N_Y(Z$Cw;m@u%gx(|P0*yX);X*Q?8>UK+*Tq?H6tl_O z?@KqH7x?kD1iY6=wBm-_o&_$|wDfiV~i2Zup;xQ{bo;HW| zzP|^&PWNIKGoor}T> z?NQ00R2&cz3M)U+*%1%K1cLUam$|Y^=gkrfTVEaN1^$#+T}EJS0+zkrA9#U-80+u< zE&oPB`wKY^mHpMybhNB7N-7G>Emlt>R@)*7~AfID23U#!E$w2n6} za0>{>AAKvhZCP_vURb#YF~8I~GT-w$o7)^T{XKG$26E5KqoV}m`7}=$bP@hcdNIJ1 zHg|IY{}z~vnr}avu{ga(9nd0%w%Ggw@5?vf2oW%%UMTCkCHFV@X%y$9=R|c$f(nf{ zb)pZ+6HxvgK0Z6hq7TPDvlSR+V%3|MZnvxv^6&yR-y&azs*gj@>s<2Y3f4R}g>UHb zFP*Ce*^%_%HC3S&Lq{sjXFEI*#Zg<4rFNbyG-?CGSJ>_&DA()2g<$iMNu8HMfp%cy z>-`bg_R19LY! zAnL~dr26CeA7j&wkH9fmy~e);a0pn^8I=ov;k|ucm_&0;N|;0u@7bysVq-+|bfWVZ zjSuE3#BN?VEhRfJngMZ#M+jYnx%x8n-4eVsNA+eW$`^jD+iFrN*B|>4LdkqtzseC0 zsK7v@x?6Wr_$*x@)Uxg8%}QjFy{^kd$+{dlTFff~8+jI&QRb!ll9l-n&;0l`9Omjk z`K<18+&?bzlVj6*tS5T@mLhXVFS7pd)5{_e5D`{E;Kwpb;-R!xpRT#T-z_PbwYrp} zpj$I&vxW&8t?sSc*2p!SX7v}R?;fuZjTJKd=rK^g#)GIEw_dAc982zM<6keplP>41 z@Qc-=je0EobDqD`cKZpuWvnrnK^;Ef6b=lTh7M0*LfacG&X;)PIkLB20w&_^gU}(L z$c5?Gk_}^~9hsmk-X-?s>|s-Aq_8u3ftK$MMGF>#*g?|nfV!cK#M(hS%U@0C*EKYJ zKx6Ve0RG*3=n$nT^Mxp~Y`0)A<3tX!UDY zRw20laye|Zxx1&(%|yFLZ~^m(xdGFLQ|@sSx99(8!<;f)K=tgRz)RuyV$O5Wh#Q;^ z!b=e)Q3V+Ac=>67F;mFl zTY|qM8+CK;9anPY=i0s0$6XKTll|(Qd!$txd=(?_2Y#KUyc(reeOlezb_}wET9*rt zd*;h6fQqhQNH*#-&L;KT@`@R+^|(BIak5VF**N?GcbTTc9ta0TuV=a-dS%wYHjwOw z8%$o4YxM2a=z8=GCi_cZTze!LI3M?@+0)d0HTp5J4}A37Lv;thmlTNip@(V{`3AOf z%i%#pz4@9SNwBw{nHSM*ptL^VtEMjF0%WY*^-ll;18{%wQZBvvQRgY=wZ;Iv9_iqu zk-#q9&+>`!G2m;-v?_{r9ey}!ac^lp5eOR*^Ib)2dLC4NnF2UKf9VT^yuK}p;%Dxx zT$huI8+`k8Nx8R?Bv9n|oU`R`0pf_zo@fGCVx?Qj1!915Q%m|G=e`J3dj@!j^Ecay z1Y(=Pv-B6XyU}RDBT+$Qoyh}p*Q)44ZAUo27u!dP zRY}PYPrjVuuH5}%*6gxGaNKKKBKK}=BGq+!Zd5;<#nY@k!gC+HbW_J?<-SfAs{MZp z?0?q6Ts~nXutR`a_{l2a`W(#s4h{uzwl!$hANXPJW<@-O7X%kp-&gc;Z5#uPDzCLn ziK)3~F6j&YJ0J7hd6U!X&;BP}p3oU>JDdWX+R8W*vX#;2+nBlX8>6Y9*gS|KOGEXdq~Km3zf;8TylW)s z*M(z6SGj!9W~|ix4oG+)^?e}1hEk{>oW-_KUuu~;s5xZ7Cq^&9=QE4}l-#9$=4Z=x zUjzE*F21@=K2?3DJ9M$)HKi^GdF4+_hK!7e@zDuYjzG#$M%wZA?OV}lQbZ3UDDR?w z{BW0+b1un=AcEJJvhl27;=qEMlGHN$i||Ix3y!zT)v)FBb;Y42r>>D4L{3{u``=R5 zvL4&DxlI1jA!K{{ndlLWp+`E$>mpvWVjc`s_=xzou0ESwh%6$Co!T@U?+V(!3buBM zBk5L?8bwIosy{*9;e(OZZM=#^N}9Z43SY?-zD%a}P0Arj01oE9&djN=T@ zk1Q;cskDAi`JoYWpjNx^d?Q}!MeImGWHpc(K~km&rsqC(ZNyA-cc8UURl~|~v)j>y z_c;tGBTGqKec&6&`Kz2lc4zfc4wZ<)=JC}nWnWH@l+q#OZ+UN7FnxaSkN)oJBPcsP z%128FA$>4xu3l2@b#V?aYJeC%qy5zy=Zsq^vwaV-pj2{KQ_+20C(Xx;R*jL?NJeeW zevox~RkMrZ(R*HDd$IxTPskCpPzPL?1(NmD`cdUFGlY)z>ND*IdEpwD1oPGZBsh*x zzIQ17aY>am=Ft+er8y1_E~O}WAk_Ku&BMI&XF!x`QA)-vvqVwRFR?e=@e?-Cc)+BX z5Y0u#NczY(LCY*K=CGa2;MjSm>cgGaN2`m&_;KP>_55s9l~E4N&oSST;5|+pysc`i zi~Vn`p=k^TCV?#;6p9K8uS1W$#&s8LeWUL;ab`My-H-GV7)erL4BH+D#zqHfh?1>b;9!?8soh^zkg1bGt#2 zY_?V@zISobcGB8UC-nOD!JpFtHzS};j>pl?5y^|GY2n&VYS2mPk4nKZ_TN+t-pkT1Ys)y@;LLI85By*%@Oe7706vRRuTRQ3jx7X?{9riBTV{u*juci+|5^{IT>}a(HM04SF&heg zglHBd3_=J;EyA+`%+0ujzY{9aO;B9&W3CpbDJwLHyJ>1~1->@c_l=!XExZ3P$ zJ3wjaCD7LYv>{}S6SE@3u%lGiARVsal$x3-z9kEbNG=>4NzXFDpJ7n&U!PF&34);b zw?rzfio{0HW6jFje&4Nj-BmCb~G!iO+_7vrl=x z&4hGmQwU9s{$}e*@IvrtAkNdO3GWg!oX58{;`msMxZCaDtU8x>;<6^KUrEoR43cl)eFo1LW~eEtxTD5mXiRlo2-P$+ur0e2C^+Itl0{ zs(UE0vU+P^wi%pfKwR$U!X2cO4nbw#vt{-%h1pEmQvN8aw{*5sh=vRnqTH@EjLkm| zzQL0zbd3>1$H`+G3(88MGQKE6Ma4yykK$~^GHpkAlFW^(gT|hI=LV%{t=uZ=8ynoAh!&%TTG zaf~uMyVY%}_x`^dq58gDPhn4f6>`!W9NMduu|B^)OQ~1?z}iIjfiB}7;dNYqO3+=S z&*LvdLtZnuV!?DO>cKU~@jOUM2?&IY2=|nmTzHfJZrK?n|E_)%EPvYxfA1sz?LSZ< zCxjQ_>T_&bFk2k*7|V1y__BhedFLor>8DK1u?hqe9D=*{V%#y(K{?83TIJjc)gkad z3onc_c}lSLBtG4_nQ;l^6eX}eoccYycIK5R1?>^=@$rXCOt30!CxSpr)hfN(58!^M zX&|?E)z6yMTJgo3IpcJ|D!saXGqb9yz}PoOtq_8Vcb8FCCkuA-x^-MS-7SRX?(YCYdZoDKnEq+65FmG=rIlqWV(8G99UvAWsG=)#vMmeHv#YzwLc;h=E^ zS}28pOsQ!{cddt0ne_-kfmZoc;8&Jp8aGrP|^87hl}67gvVaqG-YRpTbZu<333w3LrU;3x8N&O&uAj|GdgEhE7EV zzkKYGbd%o;=sYvMSv;NEZV$Nv-!^A~{T3~wE}+d%Yo}+>PCDIv2QCv4q6W)xxLM#5 z$iJUlk9m#9j%oiFb-XIaKaa{S2dIVY|I~(_d~eJ{V<4!%pf(>Letb{m5df!AXgHxv zGV2w7-^xbTKs;~4F=!!BJB@q_v#UeFCO4*}GYo1JwYdi7Jsd>4k+Dl`=AeV5nYu3b zOVqkEvV=V(dcx=S?RUKobag~&8r4eAdKe*hK0qysFYFSU-_RhA{>ZIDP3djOQ=D$=2suyUmxudnO+FBjJNN(i#2)islxjyl%s1}0IarqnqnsBKcD!3` z75n~IXqA~pE&T~gam>iSC+n8oMKo6&q-mWhbad}9f z7o#~`#Dyr7{(27Ckr$PP9lkG?hErjc+2P%0$Btq_3n4|cSKD45uuq?Xd1(Db%-T(T zKg845M!RfScb|Ph-QBPY%KzoDLTir0aQ(YJB8O3(o zxJUXgLwd)CIOvl$>pCu&_MF9EnqSjCvWs*1Gt3%8F$FtGjA{(uB_$9rN}D1s;*)1na8-JM1fMy*132cufs5ypX9Wnb+31wZ zGHK3oFh@cfrhL56z&O4tA!8gX)VQTRcFp(99|dk@!55K2x0|&B@GQ z*WACS(s8^xt?hjK_eKhuWS_?hj+gez>bI8<3fcw>BuY&gU%vM&i{dqC%~K17a)#7r zF$(l)Mczfkyv61KP)ynfHAE1GnkR#_`-;go0it)S&+R16*acMWS|Q zWFFFK62+e3LRQ`;w|RN#QGcEq8feJqM)WW^y#_ZDp~3zmS3p)(#&>bvzYF6Q^d3gH zyKX6J93R%>m2BnB8gqVpUM!4KzQZ=W}R4L8;DXrBD zT8EdVPX#Rq;09=>ez_h2{?T=7xjQkq>M}^D+ie_$OxowQu4`KA{WhS7=_a^5&FK8} zNYMARvJFbn7b1k4;Y?Q0mV0^KS&g1E=0aO69%znl-@^5?Uwk#Z&q3iwn4bm-d)y}z z=js1=_X9cquv^0RT`7DV!nPiY9n$dDxZ8|?L0H+fb?$F__CSx%Pv+a$>5Y$`rUDV(Unn(0Bn6NRJx~QDQXx=@& zh+^)o-~0Vhb7U+`*e>JKr(0xXOP*V1GDF<0u0P)5m`~My@d@TRy8;f3qP;#=dsUsE(sjG*F zs?bSz#cGbO3?Y?UBKAKCr-jad7qRu_hA;AsWo-axsnu35QDU5MO|YeIVX9)Swh z-m6!E&7{^OXsc;ZDud%s@j5@b%ujrC4JI*Jix3>!^Ztv{qayY=u-4w~#5~a=|LAvd z23z^#I$j-4Bjkt-SdkRyQor>lR{tev5Y**7*(CMTlACJ}t7bOm2_oS=^3VcxeLfK; zr};SfS09zpYxL2SG_L1}9Gc5CJ+DM4%IRAxhi6p%b&lW@l=~w3Z0{MXnD}DFmpYRx zr0Z2m^cQyVSB!6uojjQ2d8&wub73BbL*f7VIil~(ljv5R$e|a138fjnLAuxSL@#P* zEZ*a|Tfb7M?8S>TINp~>#&8I9>I&QC6?K~7rixnX-MK`&-?dq#F*Sz=>l03O)DPUJ z9p|gVcNj@s+90N&XDlDsEP>(=n2=xckrmy-ZhF`PHdvazc!vJ>>p76YzLjh-xws96$+1BXpQ-r^vI zQF3v=be`V!XfoGnW#nwj&=Dex|H4{s*0Xmg$|BN^zra>*V>eM90Q#FjNiv&kq@>=g z?19e0hNEQ`=Ad=<7lV=2kx~b6h1<}PLvr+h@o!?^A_9HXebvf{8kjV&nJBt{e4A@^-4I zOg^6U1uFTZ#pd`DeuP;h{gjvb1ehn2Og4Ipp(6co-?QU%UjiCmp7T= zEi8y45rrsun#^5#+}r~`yA)%>mlF3*z;+Z9TeZ22Q{At`)@x1faM=kx&yyX76}^A+ zGHdgAFUw=4o51oapGLQUG?B5t< zYTSqO8E0pT(?>$nSI0kWbR#n9kp7B9b6aT$?%Rnq+W4w4?0Sk>kyQJ3EvIM}9*`*L zcScROA$@1rj))hlLm&Mn6+!UkcYGa*U*RoQ64$*_lvp+&N`YuO^SO9|uz?9oqr~r6 zq{#|cdFOsiG(WG+(yuHQ{O7gE=e}ap>kUb$>Xt*z=>cDoU@$x?2r3Tu2Q}>eTus91 zg@1y^gHVJugVCy}VZ$vh`Ss#kngv=it~=je`;C2DHwYXphxX?wRg9XY#+%^;C*%pq zU$Xz79xH>>)t-Czaj74?1DTenr_Dq)QH|@`_pe6HI$>ic{FtVIHa&Gr=N#Ueg$qm} zY}C$T28bu0C@HQzxLsGT2PHNd%;-5pFH0$*IwPTm*HSGMALwMZEn)}cS>fJH^CmK) zn<*w1C+G7Jizm?C!Maupz=>V?R;oPY$%&%LTl~#zF-v%Q|?X?N5OcJUw|K z76`7<3E69${GNuWmJEZ%?;j7SGq#0|RukPvSQ%X6X`kf&476HYA$aaVNJA+ma80NGv_?y$iXmhP@|f~UcbImeb|z!#KJiV6kEWV`w=<~jRGJV{ zv`(*4Na!*{XUnb=l$cyI+m&DR+rBk~^hF-qa>Ws<&=hwgO zzT+A8n-sJsf>N-4$v?S$l@Y$2RYlj*RE^+nx+1wW=5ilmB~yeEDv7j ztgMa**U;NqNGgX5hK@+)Oj{R1D$m5bW~6>Ui%W(POxm1;?(Fjiv*VIMp5;MQv}5(* zRa}h{WW)(i|DtR&24_i3M66T6tl_7+b^mu<~aAdMowKr##)o06w# zxKDY%8=vA@akYWt>=p_Xjl-c+u0|JT^bVrxdP$EH$kn#hn@`Hczb9@e%N(aDMC2W) z)=t`?$m8e+SE#{iC@X`&e~cbDy9Pyfsp;R+1|!^QX3B&QBSc`#!xHi76ao*(xhaJ; z$s%Xqw3PF?F8kKe6ZkOa@ruL}98q!7_jU1(HAyhp$n2)F2hmS6j+hqK){xNr&(EN$ zS^je^9V9EjLpHHC!u>h+YC6RbN2_aG5q|{M81v~ivgak&TN2qHZAb2yHIY+Qvb>0U ztP7Ls>P|-xxHWJEQ7s-TOzUv+)$h^T8pSi{**Nh*JR7&U04j74W!DNFsC5m16 z_8a7~&J;Fs8`IHF(S=o+_-|jjGruhiAIpPlDW(=278}dr;$Zjh3s4;~nSbZ<8e6Mn z(;XGG+xdgk6fV%Ca#~Wrc$H%SMU&7VhOD$>w1STSomHcWNy{>~blOKTl)MUuJWd!t zYVqjMh+crW??`wZ|5~*RFGiKkL0X{aGB~H^CF8_fqrjC~NvL~T)q+0f=f_>*e6;jo zhhI0mk^S{Y{K_bmG*tHBxW8cxyquu>t;1clG*6c_l{;w`Y6d@0v&ghrOQN|fdUWm3 zFo2M5h9#XCU*R+`(?I8!Ds8UnhES2+0!_T2z&nY|X+9K~e3X@)Fi>kXAb*kV3M+M>{73S;?wUVV>Y<4I%FS5kpcJ~~1vKHVxSF-K2Q(Z%tS07X zlRc5P6tZ6l#_;02F!>dDr;$8ev5hO-+OB!k#y2ID%4!!)lP#&ySmW8-Mw2+DwEt#m zxRxyUQU@S-904~@E6_A@?oEAO?AAt{W+(~Lg33(d#a~&H>K#w7)$Fj}xcT2Mqk+sU zeMI@t%i7Vsd&XBhrist#~s>InNxu_y85I3uRMB76?uIeadC6_E7EW!z5((h zW8?pyml3zMGg~_*oV45}YML*4e>5U*AT@Jru3dKzvtD57!`WI~ozFZrrx9v*c4!`H z3UlO0)XO{M&k+x-xds$2NyMXggwl@t>Zk+^5IuLqTrDDv25R@1*_a2uCmrUK+*+~Z zE9I7CBEnIcM~1f7g%OS0`ntU~ioJJMxNp~V%BJl1J8dpXsaSs{ga)GtYRlrJjwL;n_h|}Cx92Ql| zvBd5V;j&roJB)zwjyAfuI&R2?Mix5IfQN23^2j>!Vp$g8tuUm6t&2br zn&2aCvPj~IJ=cg^-NIfKDz;vU<@Ag2jzJ4tOxVdc6C)CLzmhhG#JrVPvYpz^t7|Ok zioE@BDBP+DF;5Mt+zKf}2C+HJgP&}V;3`<4i$a{o&$rM((xFmW{Jys11CslOXk@4< zpOMUDi5_x>OR5(xlN##bp8Co=-7gM%=MC2y_Boci`B}5B1XTK$xeBp`Ko1cHri486F$=sjO z3?TbXJ{lPb1BuLPI{mlDKwuyFELsAS?Vi*NW1S$THEX8P-FKpzlN4%pIM5LKTpJ#{mMVPbsWeO zf&^P2P-mpHag<$M^E&XyBJp49Q~I+>qK_Oz%qQJ;NS5;#9PZkmKLGU;cpwb~DCQP@ zkWdOF@zYx(@l>edyf&CBDS^EhjX{W@sf=&?%oO`o0X7hd)@%Ra;1eK8ce7=a9**UW z^%Qr7FY4Eb_y&_kRIBmzT9!v6Z`uiN;#Y7c!@og&ChlVdKwv&2XogE zqAd2P9Nm&vTJ1AtWB9A+_xS~KNPTMT(~rCrVz8N1kq;N?OCSCjaqho@4k_AxbV^an z)hTj5|5$z05;HWhb5e~`)JpFW&x&@vjGvG!Vgg2FbLCRO`GGI+R6nhQA+oPGwFQ=t zZyu`sQ+T>hhR+s4k=&-slotD~2A(;b6k+ zxc$bv*6ccDR@`$xrhkX_lzlT}npl%nNeH>5B*HK4YD^5{s^!lf`rhGC#|3e5divr2 z#4uU^j~Ej*iL9Y_<@`YgB^MbIMT&K(#aDAy&@^-cB&N%vvEgR$?=bX3j}>O@69*nf zXNs^$A*|_#waAq*oXk&R^53kf5gTl@h~M&9cu0Dy=k~P%{U`;2uaeZ|?pkY6jb`coTTqgp)yTcij=H1^?m>7P3fx>NyeE&H_>;#ney%h2$FC+0SE#x?d!EBreHVTOaHc%b& zf=i$-4{Gt*qL&Doj+Dq8@GDcRQAR$|ZH>$mdUREs8^mviioO$}oBm!dBIvk(|4FCz zE0KZEvoi`DGhOZ&_BoFobW*v{K9I1}FQ+8Ipmhn=BGvg+-Jgj-7RK0` z=3-^g#~As$F_*7g10QH4Mttv{V7h~O@>00%vLR-h((op+&-Bjc>BP!ZF?x1>yFjDa zY{QM1*9L|>%d^5MGfj`U_m&ZboX8h!F3!KQNEq2wFSA|Ir(3MZxte47@fgMiF*1A0 z@M@Q@9D=T^q@13-DmDBO!sQ>77l-fwW~$v5)DT2I^tlqTQ4b-WfA%XSd&^lOIA|gS zxi*hi;KhdU&SZEfgKe6ZX~hCBVGv{8Pq3KjQHsoCRInMbpafC0k1 zUA44Zc=eih3e=9f)PT zp1i?(EC{x#K`{i0q_U;?rAd_|BKRk-t@RivsD_I}fKtgCp05c7h{oPmS&0;Rp9szY>wjptO!Q-A;HFwetAW9}9D|QI zo|eh44v;6l`Q3PKu0eA2)cRO!-0oQD()Ta|ur7XjY@{3!w5{@^N*8k~ZcM^~_VG?9 z@kjHpC>;dIGRD0ON|?_Iv5ViuUsre}+zAcf5EEyaQ0`t~Z+4H8yvJil^GfuxFUpuA z?!0z@?07Wi+w#d?KdJC5p~q1a0apH5%Oa7Jviq7x??XO>iNi+KfZLTNn4HIH^ z;8QopJ(PdY3rUiS$`g;__*AVrtwFWzLjStdn3PrAR&} z30)a&u{OBpA?vmaY{A_>gUvp_D}5L8?@`m94Sx@iSm7v z>Qx(>yP*paKnr#LSZtuO^;;t7HZT=1w)&SyIF5UkErNh1`}(sQ9RKoxKQ3BiIZyg- zV-&jYqZrM@afe=` zDc!Zv$!<1lt#)B_N`(3W2_eyW9nHf!N}0+j`M$(f`fXa$r}QDQ#^Rtj>3HCM0U?hYqUh7<k`<-TqhIH(vYcp3wBw;U>2kXHd$A|Lpvj<~!W9Eu6EM{eOnSa)Qz0x9!4AYT%eVBX+S_GR;zjSXO4s-c0eU4=( zV=iepFA+NAsdjP-f|8u7rm&L1<);bnC0HZL3*}xb6>siAr+j(%Xe+I{Y%AR3rf^*F3_ zbfx|Xgr-X>-Dly$(f6Bp+^q5hs>*$n{>{kxcTu4(aiu|@!dfDcKmpf!bWR9M*piI& z+b`|b-DjVTyU13LlHV9BUlPc%2%UYwCqYZPNT>)Vt#RVZ)+7F6KK{?YD9*$R;^y@I zHPPfC$9=AKO~18 zuW4)7YE7~>xQrC%Db=O^oGFg%KfJ;JSuD4I7 znS%=MjNErev6&NS4*#)nAU## zF0dDN=i$6{rye+gBYKz1;3kn;UDQ9I&&&WSmc zSc1_WHETvCzQg1vQ)fq<8!tX}TcuQp?Fs-us>2QOUbi>0J9Q`QkKoN?elb{@gWxBee(^%yH1NOqyCiJbl=)Ze6qT*>6&t&D? zZh&p-J1YXQL*DZ?sh=h8WNX%Te9NP%Q?A3Dr4Ef81E2sReu1r1IbHC@Qs+7mmte3z z=H)cO?5-7x5UXqX1r7{N=cKNh7_W|^IIp75wHTdBO9#c7b#x>)K`C+{yqc@O@_oKG zzT@MVI4)-~F?!o`=81g0H!$=eP4Wx-a0}^5T@5tt9C|mGf|9IE91)x4E=;31M^BW{ zYe$LU6|J(pt9DgkEhem$ocjt^?A&C&+097*tD}~MA0vNfA%aOEC?_F9y zaDc7NV})&$T>bJlLsAhktYpJ@6W`^jC5F~1cAzI$wL=Ywl7#;}04wnm??hu#Z+M(QkdNsFeo@{1jG;T#4294;SN(w$zj^HkO-?RQ5kRk+d#J zxU$*2ljtTiF#R>8kL0q95W;F;Ny@VHB-xU#=aug(C@>2fadWP#x*5g->}7n|S_V8i z*p%k{k(2I7qyn9bSe|P9&|cFh!HiSQt>4+^^uYqE_0UGj8@}{C7+_8IzGU=$8E)uB zp(c`jX;&D3L5+m{Y?H)j*}Ue#h?z{iA|IpmMVRKL#bi{5@)1(^rcuvp%~Hi>U^ZCk?=A0NM~FKQ4VrP&bVX=^r^)d9g-msid7TT(-E30yNRVG3%}~4G?PHiH z+i-{I(Z1a_a!yMTL>#X&a@sU=&Ut`MRry673E*WY>tKOFkBl$zKTv~;dR-dYRI@^C zR@tSLn+vGqzAmD0$D44QM|{BkKjhJ z;m?IvYTR*A2%n6}f=8VqBPgP2{H$LwA7Vc%1)c_A4ILz&ytTF(MrnXZx}IH(j_qgq zCi0v~(z%C^?ef*p=^!6IAh1lTZp08xsAX|$(gDK|r4WG>Ax4-sFlD|rBCb|o0fWl& zhyQ@qDrPX>{Q#QT>2oLe2G`{ATrrVl1{{z6I@u>4vPVf*i z#`csR7%zh6*NCT8e`VciWr(*-NAjh!%D4qG*NKBoW%;Q+v+B=bs|H{;`YK4r0hhbW z6-I2(m2w#&IVyO}APpC`m_Z|ylO-a-Sz8LidkvbfS5MU+WZ&>FYGfv>VjmH>0qSUz z^JM)VF{gDL&o>;uGZRaBRvq)CAHY4~vI3d%#iA6arVgnSRJf9zIKJbJrjyxr=~Bpy zz9_O)E!v(#94$ix(ytWWV+Bt0SakvR%k280g1;&{FXh2Hir87d;QhtBhC~yM!T2tJ z?$gn4Oao<3(0+!oBDFq@?Osup-f4XEq262_lhoN6r#aW*anq$DGZkLAKy|sib@C2i z4jCV)zvxmJK;wWRRoFkubIUa&^hr(f@e~FD0uc*jWytH~Gr9gX?5m)29!GzCNhOky zJM6rKAir3-H)Jzu_N-r@T|~t3+e;}T=AZ_B#kXkEK{KGAx?rtm>8f?2_Z3LnKyX{u zdjblN8snJrSYN?!dB{9CqB~=`J7cMO4ItEnX|plU$EvChJ4Iv$11+>e;1eZ{CMxTq zUQ|1-Ns<=oJ?rJwC0$KfNj)VS=TZi2zu2^2~qfCmP~%PZ%|hJrb9TWiy`z{l@wGI;kKQS@(hL0Ex&vOI6rFKOm+w8#FuXY0Cbi}&vCM~CZ8rQj=XUpl9+6nMI zWMmQaM*dBhAYt&1L~wN)JdTTzAs!!P;Paj3;D_(V%kfUSWM6vzB-@RvL5r3xlr8jS ziKseI9SRoTA)T5PdZ3P9`BmExpu20vV!p(^OS<}~UEau0UuL@G*TzUGV_m;G%5Ba3 ztqHdd5?5h6g;-SIvw``{{u^VDIeIbmPgxo=xz|7sy$l8-gO3@~p2D$huAg2RlZ1~Js<@PN<9OF^Dq&j-o<7%XoQb+Krq%Y-w{0F? z%z7_bTVGJRB;ZCS+kER;wz+ycmRB>UVs2&{bM@s=>}w1aB4K@Xa`9y5(1>4RG+sy!7pA;22B*^Y6+W7JQ*t!C7#_Pp{nu@U*Lqq z5@7bjpL_9x$h64Sk!j|J-PB(VkRiUtRC)euUa#CG|dp6bPVcNnD9w8fBls84a{!9CJoVTl8 z9R=$puTu~DP!T0RT;4X^0*-IQav-rHTkixr<*!>`7Z)WEY2^q&ArqWafv-u04bTeT znD@*vHmlUiKW~lL6NaPsc(j{l6exnCCXdZx^#<;@QS2l86~7e8xr?SB9PyZG`!$lr zW@B@guHp`llP>X#OM|%}aEpV^jZn}5aTX-vl|LTQQ}cgmaTm<5*2FhB^jR5{h+)n4 zERY;!ei1uxa=l#Xrs?c2#O$}|HfO^bQ9{DBWr#SdfdFbP?t)X010Z9ZyJUaMd@Sdz z-6hJy|NXlq%#g-GAq z!U21x7!&q4;wgUL_OxQMB39zY=7B|x%$~(-jHOeXJPMCS>?i1s#A*ENR+-fhu5PvS zH;^mn;OcZ`Lo}3{z^SdSSMZ(;_^%HV1zPYn4y2_%BsOjG*PHER!JVGhNs$DyH9@5_ zhDH^^Vqf#^F2$Jk+eV8M6vH(n+E4VPGq&&xzZ-|-yHJF4owYe>{0i{_wNcZZ`9}>k zt3_}vqmdD4Id%B@{C5=4C@>9JR-ZAeJqQ_r)c4k9DT(=1E1->MVRWL8Gpiv`n>{PO zQKHNV?A!KPbuCMJ!FHX{MxExm)dlAIv@-eZ#jIi6jusiE!bkGv$l4GOA$e%?xGQYc zy31dCWDK~lCmZ}|V%c@SgU(@~(64ZtLywZ^{xb>SqWcQ`!d<2iAv;l2GZ?*EePwVT zj3a^`4c;0MfJHIe-{d)3$F_HwxB@;x2pN~6S2^2r3sOH7cq zFKq&7VN^)AQ~SM{eEC;^*u)3l5Kqfkp^BKkNY5^xq})HwEi0EGxl z*X;IJJ}o>3FFGA_2i+@^VEl5|Z>m@CO$M%U|CakSqx*+avpe==YPDXL|V_`Tzkszp?hr(1c&rU`GA-oAyoQd!|+?lMg!Vnf1S@5gU_bB zu)5+C?E{A_r$!rTpx9Q1W|yuJfbbQY7JHm3jG~x?&T9e5R6vVj#mLv373mnW8d7{X z^YFD|Pssxh|EC!`BN*>OcK^>S>Y1ky#IkZjCuU&(joSr=o zDew__tFiC7ZMlz;z}_|wYxDKs(I?_%w~ z@V@&U6q&)#2JuccG3xW&S_H-oh*DHtHH4 zhAxqiR6>-H?k*Kj8c{li?(PN=0SQ5o5Rg*3yBR_0ZWv+&=~N^HgzuWs`+1*tt#7UO z4^Za%U2)FYXYYL?GW>Rg4SqehygL`CxKF?U3uxO)NiCMdp>mEH8=p+HcQ;V>aj%5o}~KE$9-Qb|!7@YB|IMI-3lPqHRPYRk+BJdjPyjtf^msdF)W zt_@o<9RHsKMwVJ#s)ro56aiV;I+UE{>Q`=qYKHQjI1O`S;D7R!qHfS%g-tG~^7 z7lnp||8dl~=U*8Y<3l_R_rP!W0SVolbzEJ*vnZ;`GYe+vAt9ljELJeHOxLmiP->SFi|JyD1 z6Yvj%m@oulmFSvU+_(q|YeHX5P%__!KYFg322mj6eHB6%0kkOrM>kx)_v98TEJk-M zx+kR2yW%+JJ9#^IEa(5n1rW0~xl)%mqSoaH2UMr%JtkB1LTqg9o^+U>3{(Th}&xd~L2AQr?c?TIkVNLh@=CSo(iOGT? z9Sl?n1qRbS#~SV#G-LAj+wrpU|hL_i{ zShJ?%sea3kA7mEWjU%E?GJ4z+h&AWrzcgoCL(u;G0_=N7>zz%0ZB6#C)_`bSu6&=V zYzQH9bwQ32bN~lzIG-qf8?Z538yj+5Y!Rz-L|Bo>Hg%`MJ0l>(odEh}H;rkr9Hq{) z;H#3It9Ml>`o~99XF>)o?#$a(Nu>l0Y;8^!V*-I!OwXUgVOH@bW=ysSSz<#eMF;%;nGJ@pM#6q@3N4W#%ZS@G_GdAHJdXEfrk_4%4@%Lk z3P^DO0|H#b@W!IaxL#|Q+96RgzgS9F5!ejmy}lHsjm($@gI|{kO5&PVzYG1XBecFa z3c65UfwG&cY1=UkybuVijpDsTmaKJWk&j@4(XJ^rb>4hWbX_21HV@&3UkguJpW{zvoCJHv=o5(znS;>y)!KX?Wo23Pi!cJI#5a>pX zi3>eHNt2bqwV-YBUI~?|LLdL*fmDGM=|FLD&#f13t9{uT+4l>yOKE}SW;nr(ds(p0 z&wEn%ayjhkfNy1rxMvZNmynD1vV3{SA{%%3`d#+#FdWb}hmK7U#D|YMqC$aeM0_z{%(5#mt@M>L4cN`Vd>)Wp`CBW3s7vN-O14B-3BYmZtK3grZwxob9 zt|fEJI|V|R{DZ`6inF@&fhre)d36&L@gy$EFU4(MH)2*4JYgya&p2-W%QM(2?z+zP z6fZ>(U(}PJ!JU;;18eM#W$p$^`Q0JAmtYCoTyd$*sYy1GaHFpG+f zv`iq^5^^)JIP-7OH;-50!y~{kFXzdw1%1bnw%j(a@=H6nGo>x7&QaCtrsov9r-BS= zZs?>W=odIkEVr}_v7e&m zy1!L45(>QOeGgRW>d2M%4Qf(EozAcu;c<;|$Sxueitd>NysIajxxMI8B`;Ddj5$#j>3?bClTLLZCT zNW!B4-v{t}{_tf6JN>e0-F$6IdE5~WS*5A6z(`>d@h-di;LlW51VUnZJs?5^rQ&$I z2VIcbOb@;2*Amb6^MuXtB6~>N=ihMOLmiUa*S}y5rDNm)$#K2#C?-$4!v~Je2)cZy z>*`!7&I^4hL~D)Mhpqj-bg*I&?l9?6QoB?zrXmj3lGju6hAHN7h+~XJGwLn-sP(E- zhNk~2azl}KWQ`EqMlnNN)m#Ps66P-x8Z7c^>S;yT*x$+y8Yrc={?3a!UUjt^K{r|# zkBbhEk9QF$YKnG=Zm4PJOVjxVS5epH7mDPjte~WntPuB82vOKtY=v)(%C-ft)C$>a z=W0D_y`R@!G?!)V@RzsQkpRhLFPSiI;Em^`iI_0NhkK_QchXF1?&|J}862T_@u4ov zviZ>Q!0k!Ql(VmqeA*S3FC)CbTw4U=d4Kt-c}v624)y5iIi)h92js9j6&7_@-TZg?NCr^;?(0boT*Zm=BHnQUK7=iZ}6HJ=hMN^&k4 z2w(8UXFubxYn#0}5w_>_`(@lM)z6BQZ&C$tPgh9ZDs6v`-@5(x8p(pzfTaglv?l*{ zDxGJ*@vnW7o1(}+bge-Pl1ptDWIlg98P(}w6Kv+yTKZZj1_X*3M{oKpKbSO&uZJXV zSXzMTkfJp2xQ|2zcnL_03vKO3M7B_cA5QOo15%lppfhoR2dw?YTO}jb|4W(iF}A(| zQF6<98K10xHO^cOpF9<{eBPQ4iezEptVZP>gM!YLC^@#L1}X4X*0d0H@VHyTxUv2x z?K~H8%`!Y43u;CO-btJd$s8m@BsAfjbY8IGZ1<}AmAI!;C_s#{0*^QP`7DKUGW3&j zT5J=GY6w30T1@O}@R1_8ZD+^x3`&xtqCs}n{RZ3p9lqTK6{iVJEt zEu2sf`i6ZGobL}ZJ#@q^Pd-F{0UDT*;BOcxNla{);(zeuxBof=ruSi2L7*KMgYjON zO9Mb;t~oJqh+YuDEoGgw>P_FGmL}^xxeuff;Nd=5Jd8d(-b+0cl?bFCs&jhXOvC>z zU@Io&>e!!p%p2MiT(5szH)yGi?hzeGU`$cwJiL3?EoJjFvXR>;B%Bb#%EYI+(Vl@% z!+Ax4*|iHsDDHW8c!e(zjq1G~Em~>E8X3+hK#>2=KFT(#f zpnP?^=LwJLkr>1+~uBTF*V(o42CM6gQr~X`!F;-UJ^sJ%U=rjOO`Jy#cn( zmfeZona@OKHcRv~jpJ)smHT@`E)tddqEo?Ax6-!jKTitMxbVB)iy79rwYwD%<7Q;t zvlu7!Bm?c=6Z$x0ED?Z%fWZS@XEW&Kv=M(&sJOkWutehMBkp>2F@CYVd)s#LgBB#l z8EvowiKgJMciE!g^{rx$hc7T}W&YZW?a8Dx+pp{7{(r*COowUNQK&`2$MGAOajk{~ z3%fW2^zyIq28gSbVBZ zeokZ$z4y$e%{zD?t#aci{xXDDMd7Iz&!Q|t3DYL7h8tcY7nYB zD;yNSXe54<&4lpJxtiN2TfU|wwKcKbr`o~vlrvc>KkO{)QA{N~)`qgP)|@g(xctnzj* zjz>&1YCG?El>cHn{@4>!Jj~kBrQ`OkIA=e{A==r}84+62hR#3muqp02 zE~W1veDSNW|XF(K2TyL|26xFm=`D9@5aQ+v%|>0)D}hE$<0En`EQ3YlCT6EyG54A z&zafzVY-`n1&Hq)-#2*=6Gk_@rWCG{N9#E)rfdRUY)4;dm46CDeSAhJ#she1ZBL?+ zLeOX^eAuP!zYn2OE$#|U5gmP4$hXQ7=$EC*3_G;a!jhZQ!>Dcp++O&6fzuaC5GlC= zWGy~M)mUOE1ch2!VSr2P+8LACsOQh6FjaOqTA&vE@Z(UZ!PU9swf0j2mi5BteX5Gm zRh^d3=QgGuG$?$y;xW?1>v;H_FK7Qm^umux(r3^2VVCj?fx8@L-2-2*YO5WMhpQyQ zj&+}=$oT_RdpIHHLNn&!I_CPYf!8#?IxAWbaqi(HZWjS*k9S{R&F~J`WAWppQpJ5pc|T; z3cc>k>gjS59bdaf%oD1<_o{y8*B-R2#I6kim5mC{#Nd{dBuXMdow2zQ_b_LT!6Y&0 zhbc}d!Z)q)gzV#fCEn5E@0)Zcy-|p({VNyoQRP!UYrUuTk{1cLxcw1pe#On`@;6l$ z;L|5N89x3!1Rf5j>|S|+#PwI}V(E|5$>@}yc7IH8zqGerivH<@#hp>FshOvMeV2~k z0-|5T`xAen{r@@%saW#~xIj7M`xAK#Iya*hr~3)_Qe;n=l_D4Q<9PkiZ-8>MVMIBz3XAIuit~M^&6<%N{72hE>I2i&WmY1 z;xQ3s&z*nKGaQ4KL-^p{>~u&k_lFBJN$IN*cT&0mDbTvUQ0-9&8E)sG6?7~`(ZenPy?A0FRbXhn#+ zI9{Ve?2Wd6pLV{ut8IM`c~94Cw-HM>p^?!}=;lv0=KIH94!v8FsJnka5(+@hN-y$} z+9$ZEz`jn#(%t)|@F1{l%SNx5grH64YprWHvE~X18`D-lpu5G4ro;eL6!(!C@7EuU5!vIqB|f>5Lo8}h{XfXfE!RZkBFc7l zX9Olw(SK7NI=Z_v#?{_Qb@x3?^-RQtJ&0^4m>u)%om04ys^V?y2tDpAf=}+coGF2= zivR($n}7fr5pWA?J0lQv`?8%(JV^*7`Jmj{>cj15DKq4o^uoP{<+k?FVl24=Sb(b( zAux`b)hfAdRvfc;Wnmxv!KVgHZiS)E`bh8hqT;Z zm180Hs&oWGyB;P889?Dv(xDv>}53U4!Z9;hkP>R#QJ1CkXq7uUGmp}-i;eG-1E zBYl0%^GaHFu>AL7X#L{-r!Qk71Gq%$p7~QfkjZ#HMJ}8@+Avr~LbZ2|uO;)0)BlDm z9bR!h`V(L%Lq}u#Hiq<1uEvjaU;J92S}s-StP>rKXjLqLVo6^AlJbUI^f z?RQfU|7MHoYUCe{Rw99WTwSBp1zCSjZn{`31yS{IO8DB!S{(e3W3PfkK)Hw)65I8!i-H4MQl*T$cf4D6Z<$0nS?+0< zN`rBcAMC`RT z*L6SqRy9;lCkoCB!UmvnF7e}T$EQzW>cTPmLm6CuPse=2Oct*sNwoQwr#lEFhT07+-Di|qfD^0*^khCW~e z`siF8Hovv7gh1y@n*2Ra2AfK(>jVq0&pE>fV@=>M38N(w_8$Rdpw(j_hh>2nnq*X(78W4D4|mPb!?Cs^42 z;Pv;qc);xZm4LaNe421OAd?JS)<8djrj%(s!0F7foZJO$O5kMktX{7rMtKa|K;eFmoGcZQ+~qBqvo z*uwX2$jFWguNc*dI3Az`rrq;W+_pE5kNj4w7;iO91XzDF6?Zxc_(9!_7O-^NO!7@( zU0#sGUhD$f+)v7wpb?)~HC2j{m!hd3N=En(8kLiWmzIi3EfdYDE$s2rHg4~GEn96= zQtSC~-~TGSa^TxIrTZ?InmgYIn@x`l9eQyZ{6z}ZZpMiKTIfsWw;JiyKxjm%(3+k^u-T6kX@tBa{i=5u-- zm?uq}gzDFZfN~Mgy84nuZglBQ#QbM{6qC6$&n{10b2G?q5i8hWdKu7&Va2uO-CgP={Hb%A!Ln?P%TwbX>>|wJk12jwT0*SeO?)xRjsyRz(p&~Q0Rrj^Ajy^bUiG?rJ`%> z1xP~%B0z-(NJGfl=@4}pZ0bUnRVCfqqaRUf2}TM$$yY=(uGfHliR?BzV$>!8>wS!F z_;H{$5^=WRD)`6VC*}6tOLqN%XJ5wd=93e=B?%J)$%1JJBWGR#cs>WVr!W9vmqy_I z7Q(z6n#g^iBN0rWBEzsT@_8aX3lq5UU0F$;Znt?Dq4I<4p`xTd70xnczb>(K2$H{q zee88%Qf1*Rn5KVlu6qBZ(%!J{1Yk%3bgun0yt4aS&j2#X+}pW6B*oAp^d-vpARTa) zfM>9zJeG6Ue)J7@+?XaSi+GLJ$-6$MCeEdp(dX`^pAr@rsj} zFR{V&4tyx6)1~E!&ps4{5q2=iWa6%W3X0)QhF z6BiYcpJRto8ACu_Kr4cyo1H8nlBoNiSjq`H(YCz)dniLTUoB79a_l3^$}(WM3)zSC zCx`jRnR=XnijF!PZ?n)Y!;yQx%t*F74shS#K#srs6~5n&xH+NV?fn@>i8u5X7wFNM zg{WBK{^J7Z9nV_BKZgn9XzQRi3?q{)D=bletMCcNkCn98j%URo1#DMm>eT5Xz%Q&_ z23Rim9&i3${!#w&f1V5=5cqZuAU-pRSDiQT`V!YZ5Ysvb-d9SNJVAVQW z4`D3^jL$4w)LW}--H`OE9@G2#@?GA6hv3;2jR(Ks&Hj=3wA3zcbn)1_l6R{~YpK=O z-F)S6$q{k!n4_TF5q*dz`sqH34EMYskr906On#UD>e{WMt$Mkp^d?8t+I^k_SL8g6 z;TQM{>*<=%60aeZ=t#UP+V|@7CD+i>-qN$}KS-2{q*3hxItYy+(ndzhoF6J50mn#S zZK<3D0ln~=Mm^`}KP?Ad{kMM((2JYxo`kwJcx=Y=4;S(tV*<90!|d{vzl zpBBT{o|ZfD7ySvgmh;6$gRgRpC2~RIdt3GMsoC5!fRGk5K+6Y3;)eX=g}IQ6y5pos z-?CYl>sk4zVtX40ha{=X_j*|gfUsU@jd95U#`SM@jb*<`;4pmuw*>90lR^J)RKa;u zNu0KAzqHCq^aRLxNv9h(1O9IO5*dsa>kspU#&Gg5Mc{h7Q4^%u`~2AWgO|`&zLsK! zo19)1wL#|B4Rmi1T*_@yZOC*7PwAyX0I8DJnR*4ks}Q(Md=_P0ID8B05Ow~jNz(exB+ar!CD7)C zRq_UH<{eHfIWCB2Ip~Fq332LoqNx{+J8dzBI-&*GF|ppbI7 zI+jfd-?NnFJ?C~ug6|sq**2Q6DNe1H2=N#@5cWW3Rn)s-Wqt?b)ue;fOD^^ShsvCU z^*|YU(9cl|*@Pc?udMUclF@L=0bS{0#cAxn4TF&*-M^C7I(JGn5PUF5e^>o=(49qunvpT9NHxV|F* zEzlX}FX~UK&G};7BmG!7jcsV(3iU~_pYD<|Ly3-@r-zs!oJHrVCKxRE zDk!-iTY&;iM?DD#aiqhgGp}idc0Rv%vvgbRdRrHVmbO z4Xc#EfkzoXOPGq`@*m0LLLPZw>OR(X*>ocpjJ#9M-daEqsRqX?wEkhh5HWv}^;}N& z@aC#ymFVn`6&AuyGp+$apWl{1E$!U%g;#g^_d3_3=h*!XDJ-)u*jNpkQOpThD89p- z#bv_zK1#Zl=GR5kyne9wcIUX0BuQ_&rLmXg;IjL6DyzCai*eQYdi7y5+E3QuKIWv6 zUD)oNWwDTEfubI+j90w3Ek;?|Vb9JX{HyC=`0^y15vIt;!q|7R?A80u8>$$s_ zoYsxv@dnfn?s`=dM=plJIv5j9ahes}eG8=0d8zkHdBwe3H8z-jCfJgoUW-RkP{BJi z-{h?wH^*c{p?Q{S5je5UTKP|2KbBS4u~NaYNMV;D8gx%I!RY&1Av?>O3E>=jqhbS-u{t0g+FK-9_=5C&MKanL)v*#{> z!@N&nE7_H_r?>TBRnUTG@}$6f@kvU-#)`uKeJC2P!yZDk>^Po6+*Yd!!kHdG^6*_I z75+-*;Rr0<7cpwDfbVz&*R6WP!2JpQnF={IsPpg#`~CTt$J3ZLm?qapBo)O}TP`ba zi$?SFgP)4qavXTsC}KhGwTA_)=x`ysJN%ZMrO)KZG}RisP<3IbC=gq`ePR(~_i0=> zI4DGqyd~-I{ocE-+rNsnF_;yhTn2Nk&OglL7Zt>0oKRgu&F7O&e0M6WNqB=KM`{X< zQgl_atyEzf8X@oe|DE6#)ew$-kEgu1Lue>~)amNgw3qS9WPmChT)89U#P4=|n-5nC zq_aE&_p&&N%DulvrybS-0oBk=_bmmlni=Q89t5Dz_Pr|&xpV%=myYs%Hh1SzQu+XWMO5&4YooA)rybyWS6O?_JL^58|U{sQ_dD(h;o7cNcB)wkkJJ+_- zybrU+M?BD&FB?u6tg1svyhFc`!k8+qE~lYPKi6tI_JG+$V$w&I*ZPe3=u?a1HWw(& zmOs*IorysriORYSJ#T0fzM*L=(%z`Xf94I6-zP6aa(in%3ZL;>-<|L0skhsH%QCwK zY)StAK5LCuswp5JthHFK$(`&0+kar7E$>z0<1iRmK+0T_hh<65wms5V?QL;una}E$ z77C2KP=T`xK3;k>RRYiOhVHkMI3RE?enw|1=C$QNfDfW(0^IUBWBZI%klfK>`TOT= zrwq@NiME9*Y*E+SpEE``QTJ9B%Mf3b)EcDLCyRuJUNrGsX|^0s4wX{L%kchGgr@Or zM(`E9-op|c-izUG!mc&nWc;+o!0fC?I7-r)MCwsGUd zmMZ$r@?%()3E7%q^9ooC)1}Gt(Rglu%EF_3W*(gK_zw`2TKdf>VlT-bVY^iWbBkDl zVy{<(7RZ;ODEoP8O{*=;MTX8#nq%2wrc(%_r9>Myv3}r z9vIuccs@JN^(Nj(!*>~p*#7(BD(6W}hA|Ydr)9SrmLWzFXxy9)e}u1pAo7Eh>d&<~ zd#<8ldBX9{9OGntM!W`^x1rP@anL^)nh%>T(Swu+1EhLDVWy_{o|B^QOvvi9s-1Sr$7Q{ET<ZSyq@f;!(IJs(OvsGhls@a9p8sPH=C?Eq$5x|Cs z&WRVZ+T!tepalV6ta`2Nbr%5^Ouk3N_lFQR?U+Q|NX#8zsbW8+3&#+0*%Xv=XPL|G za%x`+uJ5qr4ARPZG5HQTtd_y~;I^0bSi;{^#(y7qp>nP7z@pdei6rOuHZMnoxSN@Q zw+2sstY9eMYTb{;j$zN}iZrZ^#A}#E@VTQIF@Vv7Rp-1!&wr_1s*l~KU1k{Nxjkjt z9e3*#@DYDV5J$45Az(R@C0>VQ7~)veUcqh0y9?f!oi9^g_LaB$71nP>qqg=V3kI!y zOo^q(ESQVBEsR`(&YCQyB7No%@2&R-+*SOSMU!cI<@M;cSf3=i||(J z-(~u}o*8V`pTxC+sOLdhJcAM6xqzuu06fS)`0t6e91ckU9=3K*C>6lfOx9t zD8GbL8_mYds0G7moBl(r`JIXsQRm?di3kDfAs84j?Q=LN@*obO5KD_A`4Q&`l2%iMf1R(c0Pt3QI^TJf@W0R-@39TpvKF9<&T z7iiu*2oaB(Q2yv-R_7plc|rO0=tsA{h4N6$m!p!Z_T^V1J7L|3#VN@MsT)*IJ=V0+ zaC&JXAbZykUfa+thVOpr;3uSnkVsinSuHv)-RWhGW#OS==N5ca2bp|_DBWwEQE zr&np&bp-F#TlMZ;pg63ugdco^Fw_(VD!0na)fn4OFqS;+<-hCp9Ri#SzPB9p?G!Me zb`v)JUB4E>U7@-BQoetKJbNYS>p;uYOuk7FhHgcSUwvQ7&} z*{{u!=pjSa`!Fz4n~6OfIN-wuQuvsBvA0$f=H_w8H-FT$cH;*e5`%dkaP!xCPpNo} zCv+0s;Vb0%dm!3kB|)f$sWpWI#ev<2%Svq0n0$ttI0khnK*ivy?K?dCDz=j7#T*Xc zPCFtXlvwt26hID0Z=qK+pd78op$+leN|{hanQyE1`O>X^v=>2ziAW|4oV?Ml4AyHxuom__+M?vTxmr=1hI(isWn=I}Ka*w#;>?5b8asGfi^sd$ zgZC|mDr`>#&XTbEe4MjC_;tR#vRDyAY+CE0FPymZEHiClOwmG}BOO~RZ}4RR5reek z(}oh@1&yL1Tab6W7k8vkBFSp&2YRvIH*jK+6m6Z?^bq0^0qZ-NS>;ivzkTO9BvwEH zTcbbWC!Xqi-7k(mmf;fnDJ##f5!K3)q26#Yo7W`w=#T5x#QGlRPjOkcp8cwXg-PsV zEe0>;xYE4ae%G~u6j_9P@PV@FUN11D$x3`qxzNJ@U@HQwtcc8oU({zGDfMEmau;Ec zM`!8VGVeo@ohNQjQ3$NH!-J;?b(|Ig@4n364`)1`)kM>$pa|S zzO6=$WHyt11Z*1nNz*H-0;Rebxi}Nh#~|nveb17TEby5{ykBQy&6ul;rqnZCKsaIU zH4#z^5BMk41GzR4JrVD6Qqv1gQL*5*?@l@CUc2ZJ%Et_kF;^n-*ut83BXl|61Oc}&g2j3<&4t(Ko_T~{DVxP|f$K~fc6d{_r!klZs- z64M==@3%+%a^(?vBXfC*89~C(b+Q!9a4)1w?m)7fEPC zYwZX10G*J)n~ICz*S2+Gv&y&svu5s(eB{qH>q#VGn}!}5k|*g#(Ki}zm|Q-VZc5`z z{l52Uesf&hnYp&!(z^SUqw{vNNiZ?5Kn!VVi*V3s_DNCLxbOL*KS(E)oC=@h4Hm;9 zse_q3MA7#x9y|p7bnKtR|>}Q*AOb2F+8h;@N_X%>2HPkAsCpPMNIO%HYunVEnX06 zD8(Q{Z!<*%`@+R=k?MDT4C27D5^V)6V+L&Vl+7Q$_c1dFqWJiXTb;gZnD?Rw0HmQ` zHG!G`oyyXx;b8Th!aC%rZ}Vmr19#ykJQOyh5#g3z}z2amTpR_IR3jRYZ%gC1sh zvI#U_{rmyTSVADMYDL~>+K=98M#sP16ba|y{e{_TYuBv_b})^A|N9Ha$)Xz|dQ-h> zlM1>x{helf&>Yi8=(0g#7sW@BDQ={~)UZt8PG8aVd+d{TY65%fzqUo?U8K#z7`6F5 zs-y1m#xB89aSsR>h}BZ|^@hQ1c3(jebN;*8J~kr>bBL;Hb4lNTN2?Exqj~0PD|Pw$ zpPYWfMSkz4&g8_5Ks1iODtcCE#%}?*EY7W#Zla2D7D)Kq-$oPTJ!oRo$CbBa7OQ=F zNqkh(Y;sw!uLbdEzN{kt5@kaM3fLoA7C)-I0ZIjChIE3y8K3M|r zMQy6LK}s@$FuGuX6#g+7TO zsRBgi%;04p2{B;>x@6Qw1$M{BO&%V~CldA3f;|7U`wlgSTJhUtB&^>0aNN zm7Okw5GGZ^`oBc2UH|jvgpGtYVqrt&1OL~WzQc7~xAnRrq+5|!D|wA2_6Q<%qraLiQt#?$&}%^P=CsWXJ?dU(=kI=~xp^!6V5Z{G$-^K03w%3|Al; z0$iI{H$p|0u-M-G^T57t0JUYVEdvh3zch`!&6Q^l72p0@jb(pT-&zVloevp3h-72v zUd#9^akURSQiJV4z5qNH{Z52g1+?6sJ-FTXc-jfIjO&`viT|XVES^4ElHR1y9fd6 z3#N@-k-e>Q5Ph~tVGp@H8^CBeVC^08<(ZD&UC%rmfj$-6I`+fXc(B02xPJ?LO^>Zz z%KsQj>G_dfG~;8*z8qqLW00Lqz@xxuywJorj|k=Wa|`d^EsbJA&ddTRz1BW0kys!) zwed4dsN6QMS<{s97UmYMFcz&~#m3uevp|}%G0-dcpoyy1V@ndOb_&%`9q4;I>oho*S zqa3sY>rWaOuYW!1v!<9pH?SgQK)llnyolxr0d+=M8*NV_egmL1w_nxXwlr44jgv`8 zlnz53(cr(Si+1VMEsTY@Sp%-|xT-hDc=w3RrI$IsJsmwW4WlKI%N~cjsrjZRj=pgjsiTPTo zwL$IVrK^%&pRbldU^_FECPE_RfBZ04A@=??196wl9x&a2>kLe21CM6DLBW8d@jT8- zUAr_19+20TZix}zAIXMO)PmSjY7okHy9x8Yd?!f!u7}Q$ikfU6mo=9>(rXKl%~jA& zHPo-KG~W$l?!Elkb>}Op5b!tuurfs`{$^7n&pd?Cl~elhu0dY{pPTMKXG%V-jq0rZ z=h86}dk|_*<=z)bV5-&c9|kKqmS7B77|Gl+Y&@J9+WLEI_qF~5C=v?i!$u4hPK)-Mu_WRJ8o-iUy` z3jK$$cj4_U5CR~+#?EqjW@k3k`U4;HA;MX}%VBp{0vHgq@LB$-s}~wxOj&O@dLHfM zfgH+oZffC_eSGV1YqIpzd0wpq^RKa_p)BwsLgv0!F=N!>hF4ZE`I8*vX6!y((pgfkc-w-%3ptr9JDFS&d;{OwTZVG&pCwh3{cp#M3phv{XmHd zd#Z!&@(>*Xih^$C-+WVXJ@0RzGQqu^f2%gbb66w-k+*4uvjZ4;j1(td5xf(tN$;?4 zspsWrQo98vK&@;2A$l8v2J=!FYf~feMk-}-xq0x2hOIrjpx7$RFRv{~`R}-sc;m+9ve_C;AyxQ^$|(Zf9yir9kH2aFGCL_qU(LN)Zn38VBuaD4S_;Rm zODz@pYa2J6L-b%m6o;m4u%%r+xU<|>vVBwZTfH<3{L@pLU&12|I&i%teKyK~p^1US`L)Mo@ zI=2i=j^D@_b}%Pym-zAkvpB59`i8 zopFox3rshJFz^_4;5(>8pg3%wlsjj&5b26&T<=&?_iWM{EB#Rf24;yqcXaYQPJ9i* zWck5=ZX~yv;dYzM3J~D(Ye>QI1Z!i#zzsh^lW2a*smlV1lb(Y)2CAALCH1_f9Wt6v zJzjDf+MHDx2V7r&aGd6>|LkDCk!yK-ySx>##Fj6QZbyWywoJ>bAp0; z^rFaf8)6lLiz!v4E%dm*o1tD_Zr%M4QS{%9*QKsaV8y@qfeY+H!O$SvMe#W!&_V|` zOdfkrB2@le-$1C^9f(dZqK2>Vg?%~pUh{A|8BlJf-#=3v&BwTls*^ot*hM%&k*u}H z={H$QSaG0|$`8pcY5_v>>$6Lmxg{Fcs5bZ7mv+{cf-o;H1eEap?)*deJBWag^ws?H zK{kL%SJ6vBxU+7Fe{X8G7CGIM=$|V#S$e)j?aRS+6q(4Bu=u;P$WA5Ta>PLZn7h)#_jSh|2p^JQM^t zC32V-$iTGmQo{R`l5x6X53i1v_RTv3E;jg zRK=7+s`wxR3P{qvKOq3}lxN75G@SQV_HPA^A)ggu4y=I~;eUZ+2GoBq^VREbZv&%m zIkJI?(?8zhk6-WVk$cx<1`9VbQtkx&kSF|zXfql@;8~+js_^}+x%n_GV5zPv20kin zR_X(557qy;00NlUgizp}U_a$k(Yf^oRmA$l!1GkWSRr`p33P(QT98s_*w%tx6j?b` zBoV~|jsr`RjJQbvp3R5c?`OO9c{-04Is$&HJV<(9Z|qoNb-9{+95QGo<{>I#3yooL z){imXtv^H0Q4G2Z53gM9S9MOu?z6EUHyJHSl`r6L9vs#z%2x;b%ugOZOo1Z*Tc9CG z(3?_tp+)EaCZzg}kmGy#C4MtbWy*>*? z%aO!D{CD`y)4mS;yTWG5AvCm|FZEt345fo|A2n#1vqeoY|2-ZApjO{oCa1q#Vcpy{ zD6PBqVe+LzLA9#nmg{Q~i_T3qAO=HGA7!b(wRPHV%m@(|( z#J+M9V9~n%m@%RRB!&9kpxty0tLPaffCE9^2pi2|BS{KbP|JW8`1jkbPc&POJm`G` zv2-u!F8HUomw?6;7}XN^9P9NvG+(%ZQGP&6!=-!*V3-VL#h*gx?x}%^dbxNo1_rBR zsh_92^t?}Qsm*BC)T=4%f?ohs05eJPM6q$+3)fEQQQpfnHV3}WQ>D-EK$%bt9A50d z@9D=wuMtKN6y#q)N~&5tY!h*n;ZBC}=er`XHI@FVta<9<4+4<;ZszzYkPPrxGg{)g zR61M*!ImFpsn7tEtG6n!y3P{4q(5DpqU|D!I&5#@mHccL{giJtVaEcPyAvG%kwdko zDHR;Q6GB|=nRN_J-2_Nvhyu>oT{hxtI<)>sxGkP8#Pl8tPnJuwWPtDwT?)llY z4XV2kP~(v@hwQhXT#9z=X6Jso+-nw|0txNqxe3Q}-=7u@ijRNqqJO>CB?lQJWJvx^ zv2=?Ipwv)3Ds$4*dO2D@mWV&{!k!HjBAO_7xhg!+;iBNMiZjR?tXdWw4}7;qAvDLh zw*exA>p-C>3y2WaU^FD2yw0d;Gf=}h{n4=W|6!K(LA;k7*$GrE-S6cKJX0Yf_?+q-3mjG%-JqP>0+s{^7l&Y28W=Pv z8%qoK-^Z9B(IF2##Oo>arjLPK75QE}_-^cA)1Q>86*>w7V?h_iZV{_|dzTTwXXdAl z>dJL6%Nn^VZSi&_g){laTFN2yYaJ3|X5n)2$}Tn|zRhOX2Wx5Cf|th#Rl*Mm-9*%y zgs8Zi*Mq3wwPQ9Rg?*vc3IdPyhJiRs1N6&%qLR!0X!d`lZ~QB)Q;i`rC{HVv{`h-`-nCq2=J24HPn>+2<4(qZO_(dsh-PWG3#u4wV~) z4Tv(`l0*H{9At^yhC0sahGt~RLoKc+dx@YP2+{u@2#1c>GWv;=akt<=4I4Cank#kDL74Q(YxP~y zS|1!Yui;(~Qy)(lD&=})3ym{`5<;sX2j;Ia>KE;%b?lb-n?vQS$ITUKtoXDNV)bM#>7JyiLJzDk_AndNE#Tifre~kMUf}#B}T)1GG zPRLKsVmFEvvc;FgW{Mgu2e~!&uRcv6g~eli>Sa-{dt`v~IFXyU#>p|2SdI%%CBu7B z>*Y1 zF`5Z{21#n0*|DO?lO238e|z;aSp(gzff5`wJ-)3E^WRhQF^QS!D@mHdA=VgGoXAefz;3{%g|xz>O>YLmVzj_JgUn|H7oD@J06vqKL&<{*ARX098F{R1t)$V`k9BC z;0ORmQ#Bl03ctXv2^nzi%E_`a2Ajl7%EwDmdvPoV?Zzzj+novhs|=ATD{+EV^s?r12ixTK4cF%=EEs;Z#{DTN!-d`LHs1veF58<~5mED560C_ki z6v~qqqzMA=v%|eVG9?b;tt~&SHJstso#|$`y8Nl@JEcDLXj2w!i$S!mCq>5Rta2Sa zTBwS^1a;zzwPZv#iE5z{a$YQ$n9%nmEa!B6rFUWY>w8ZJ!3&zJ4+vb3J~E~JdXPZ` z2Hi7!{2D?oXKU{#?C+byZ()}+;icYbzzbo3Pv=Lxy}ASadmI2U@n#sG#>c_yu5@S}ReJ zc*R<9>lcG^Cdd|i+&(_7O>_Ac{>Jvc`rXi%fCw%|yv^53O`e#${+Eof7QVsrUxsDS z6dL-7ymZe0j5DOV_kKiz6ceUF#cmEPsb58is#(slvoDG&-S;WM4LoGUYqtUghJ-eN zCSw|703ScW3yAijcaW!0P2?DUzYFtdPBUN9Q|j&*M6Uy!A9w=j@b{t~ih#{r?hg`4 z=KQOOoPW0yY5AvY0}#O+{ssKI!5ASyY zWbT^cVT?maC~u99>Qn!)+op0YVJ=s4Ja=Zb0pV#RU>j z5IlCl-=7rz_vgmRQS+CAe_D@t`f9b=K2n>7hgj;$`_zXXbZu`AboC_k=DHM*_niM% z?aiqU4Gd#cfwlxVjmE|r+Hh%{`)_IhT5#z{Wb{GFYdQEQ3tu=cM0FRm_XxT@qi4Ey?_+G=>7bVB?UGyb$=!xC_gUx|9Cuv zC4d6@eoBo11Isi)IiHG0yIm}^kG0vi&%X6TBdEXG@fNf_uAsvp$kmDhm!(96uh9t< zdG3iQ4PSHtCwNhqDGS^hzGySi!JM@6k4)N*sKsnhW|9N`%)kC%8|`{K4}We3Sz%o~OPB_T6$yZ|^1aqzQ*dsc?jR))fIETVZ_5nyZIXfy z$8>#L_f2J1S!k@`uV@e~UZmZB;*?V3I_u;`lO28$_hhDq?-OyW_tzzfkmwYE=scIE z@y~AW!M}C<*PTIsk%k5Z=I00*B+b71j6Dz(Xn`6B`MV(;QU2#!78Fp{pLpOD9%6v) zkTBvWTZ7nIjUqhYUw=5EHMS&*`!NtZ3sg2_xAE2aNq}d|OQ-s!W+soc^O!sA4DjvE zetF`054|i8A$gt7tyDc9I;$xFs&=u(OjNDf?y(8FWf1B|QnRU&5K)^g1@BYsrSe9o z<5vN(Mst~}My=EDTgbif*aB}@Cx5j_aNB=q-H%YZ-M&8>n0$gg{yxGp>+B9eD;x7& z>(kLc-)}7Y&MDAB7@rubG|CEgG7D*F7b7-H!S1WIG!*jVjXK504z5QxtKF8b9#cK? zgr8)^GW1gnKfzJl3c$~0L*lOamU-$I&oZL^m?=%Y+iLZYJq&!RARAA=9%|A&^SkTA z2xG=`cx@ss2ZawBP(b7!41GI|&oBtbNO?^)3&;PinZrBZqAPfH?sl8);{qrWuwp5M zaHgudwY0X@hVIwi*XL}a?gGy>o#MgH!Q3>aD)-|u4|}r_+Fs@#5#M8hHPCx>hzI?M zqQ!3#lEUOJ?c7kJaq~9$0>AuR%@p)AM9B!S@Jl&`6C?b?tOE0Q4-(@$fV&{SotZwl z(V^owDo6@5TWon#JMIEjnf|>4vK^lm4ivu*xW|Fmjs!N_Ap96kr?DSV2*(CnpeLm_ zoVRM4b9{DtwPzwNlBtvYG~MDME!rA!HTTwk45 z^K-f^FXU8c#=+)m-)m*eZpJWbZUg?j~euA)vOjLXH?KpayrLv%}v% zsvIX=jOy_~QWBVp*WdasMKV9CB6zkg3b(U)fUyek+sH ztLrxwLY8B93=`;z@SW})#)_wOiTF!Bo1cX7`}Nq=opEC+jFC^^n{`#hL6T`LeQO|D z#NT_rk4pL_*$>Y<62C=#Z9a=@rS=1%lY5K~HYEZM$N~V0m$nNh3=fqwv3Rq=>sy<~VauY{L$4r9}r7{NKH5d#QZo z^?K`NGI9;A!kL=bNpY~j2g5(cPP&?CwEK^dQ1qp~c3PM#n3{vuFJ-+ZHRp1ph(Rp- zEB%%xIn|>Dx(%oHLTP4rC54X2%wn;o3?d7%^>~)HOE~y)q)~u&4l7xsEFFvaWgBF? zX)ukXNPm1kvPt2~|2mpkMv#F*7FZ`5_mq_LVp9~zabrsxmr1 zHL6(gPcAElcR5-Gi2qoJl2O$q5I9cs{O-IK#5ujs^2lXe>S5%r-^ouZz4!%si>rz1 zMyTFAjls7_PkL8n`x(Y=NEM$~(!+eEe||v(UVCD%<$V(p<`?dpsMf9IhG)f7re!;yjzoW==$Y~k_w@)73B0zRmlh- zivhs_28Sez1_uT3$zHEd8fx;b>QhMR10}Tml}_L+n8+!Q#>uw-T>Ys%KI=vP$a^^$ zGyKLut-IJ#&@I>P6iZn{^G(dR#(;hlw$Qu|d-pKz-!NbiZ>kpCdxxX3U}L~O*6=U#_D>|qs{u&M zrjSOXFrqyB>-`56dSnbqPj097>HgoxHir<7+vH$uR~=de+??w4?7kCvi4xnsHug?+ znd@yhCxjXtjiav@m%o~K9O~}PT(H@yUw>G8{F3YWL&sDv*vzy_rS%=gu9z=o_p^+) zl&TGJK?KikE>J`%wZ_QYsAhqJG(a-xI>A1d-QVwc@K&8*z6y<0j2QF)fm;=@4PQE) zM3jH-mh&$+FIX8G_6B6C1G~5{IyLR@bWI}pe2$mB*BqwK|B6k0v!l{Ekc=W~j14up zHumyLxj4LC-T&BDyt^qq_kW+fC5LB)xH$_hq9X?q7*1bPfaDr~N_hqn0zo zswPz=6z9~qBCa3joiY});6L(Bta7uuiqvs>qGIx!Dye>kIK7}mFxBfNf8ubxw}`8n zhFb07;u{w0B}(<(pH}xC$IpJ4z3O%A4>G&QuWg8(&vu1xM;N9q*6~zty%Bv?^@5o4 zbn}J|*K$bSBxPi*W3?4oEpU0`er`ghsyoT~-`55fMv%?ZAB|PACunc+2V?r1J|Zo7 zdE@J}Cg~V+Zt_@7x0u+~?F^k0iwAlU1VIQ7h5h~zs^3)5Fn7mxr}(KXPuyL-5%!oS zx)6VZF;O;y^t$?r^mPkA0TCLzY@rebxAP_S%LQ8;Be^BiLoECax(2e3Zj#M7S+wvX z?&-LXVT(8nqqe{{K!ur z&Kug>{>hXCE1HF%xH6drQogBx2-a-{yXD#BjWbhdRNhGw23q6%d7VMzd-QsGIx_k5 zgh<5wnYZmv!v9Zyq8g;<;`A5$52q!#Y9UWrDZ@cyik#h`V!abFpu zHmT!O7VceC^YZ$$Atix_I1K+Q_Y<4_KnD%Q5+AKn(pcTHpm$$!+v{;{bEcPk=nPW@ zJzL7F-Zvf(j6}Eg51s7}{QYM6Z(zGIl+lsGXX|>hsrhoTh01ZVyc6J26#$I@fYHO9 z$*7{wxBsl||^h@ZR{aV@q!>tidp^1Sv|#Y7N^ zM~Dfxd_f74YHIM%}<6vorNK*SAeFMg= z$Mx2ng(8k-w;um6>eaKUN=v#3r`Et5xTicnI9UM#F4ydPI#O;d_JB&15Q~@{Flc%C zJA%n}aV0mhOAt60f7mW#+2mvhOz)#x%JlF_B`KHWGI8b}2r@qeHxT*G(S}^2<_FS0 z_vzo$LWb^K+8NgGY+q)kTrtLKmqZ3MxU|*o950UtTaVQLiDp@_Aar(qa_O?+RIbh^ zJ&M>=>+1G)^d`YplORYDz2`P6ROh<(-93L|v7cO1^NJDVt^tH%q=xNqs}R-_ph?Nz z+b9gy?TwRV!}Tj#6=HYQai%kU_xRzj+&2i%$|O1 zF^Bys(wyRTVf2kL4v#uuN0-PNS5irvahnl+Vr^S^`F+ey%nlD$y0$+Lx{Wst$tgB^ zk$=bkp+%$BF<*?U?eGDnNc3uM%-*n2ooWKC+R3^5utY>#2%04zATDms7v0Wwr{9tR zqF@Ed0S#X<4pwdql9$7E7Gb&A6TE=qC4I6GT5tc`CY$H)yI30e4iLTf*<4r%X`@i* zgcm`-F-j^1J-i4$i3BDq4Q2p%mUB6jJ-6EvazT+i^emj`|7YTl|8u!HY;?Vr%{C6Ti z_Ow;ok4tOTf;H*@p3poF6D$*7O=$*G1v&uwa|HfvIAy*0yQQXgbExhM1%I`XdDWLT zHO+oL&UP^c)3EW|@25K1`h0#_BzF&lUCC~`ScK&}cpj^>`I2Svg68>(8tqoR_{5s; z8c{l%E{<(^fB3t}^-jn0$?lIeSGkI5M@jsgJ^|)IC^|jHl{<<}JX;rt3~=n9fEJAXT=l4;#S+KyGp9Myo-7(TE_7}Z%~W8#oA+fIEYr0lz^oPN;mb5&W{J87$j8&| z8}|%04TQ}xl#6S3V3=5Xab`O~Rx54=qAgky#((($f33R~e#c)3U^ttvVo3LlcfOt{ za*^dt#>~Gr%if4tJsrrn(JCD$Id|t9NdOuIsc9f(tnfav03;N`u=w!YiI3ZgE*^TixXxBVJ51$W`$}kT)R*#4EBD%muKXBf+<-{`DI%ck zNUrvt19EOW&Ymo-Pyu4xyuY3K5venhZi?0N{gj>2kEjkeE^+ z9x$-kn?(W|ZhngtgQMN5M2AY-XWt_f4`k*E$MW)qWnpRXU*CbbRAp-@svA!)oWhEA zW;Gb}EGkjq(~L_PWnF`qdgJF~oh_q;M#cJvs^hi~D3GuPBfj7|8ouH4* zK~=Ug4=pjjMXmT%dU1?=`6RcH$ciL>*W~tYMWeVrI*p2$U}G;IHr8VmHQD!x?dhPQ zs7rSo4b2B#v(L_-0f!k+{cJW`N)LH6Tf&qeg5)n~)8&Bq73^(2{)77W|6u`G_|vUl zgv*&yL_!PEABlg62xp3B;e8mT35gSjSoMb!=$b|kGE&1Le$M1t?BIVeKANa|`2JQfZ}>OLt-y9xAf)AQU(_I&k%RVJK1m!YIJoX+ z=-OO_=PucM*@YKq$oAyY(z*I1OHJcEtCE%)7P6Kyb!c*W+zH&=8+&`km&c;h`!tje z#kW1^UGX7qRaGe*{l0?!1#dR#+~-Vy@-G+paJvK+jFRYf)hgNfGtxia4Q-tRT%FG; zUGHuR=u~eE0VPQcCgSV>#}##s1Elm=Lz!kCDgXv!L1hpgm8Pjq_dl-(JEUo9T=??~ zNZ0_MZ7o({XB6zS5^C#Q5FP3V{#ML> ziZtGkznUmocb%5vl%Om={DkQBWq7u_U|tfLQ-6`+!V}W4emkR@3LpnFcXL}1eT5N$ zL)AW(uX42DcaY;e|J`o906US(l=`ubyndL9Kp|}hAnxOU>vnL+k|QAbKp@Lwz+%4D zHqzE62$IEH!hFI=sPk12aX%PkFsL6(5?fwW8;3fkp4nhDnl!}=FX%IYV*PO<4uXka zdVA!=dfz83<}czQg9HVZ?ZJC?x1)XU-4nxbFAtR>%2un_{5<9aDXPd<6A#+Dn!DR9 z@EqvzFyNDt50>_`Q}}OxEhJ`8<%zgrE>^$>wVvsJ)*Q~%oDJjI*6zZUNlOarC5`No zlbLBQr5t*^t141poF21o*ILCr*W^>sq0+5V{2T!bb7RO!J*7QN=76f<0Fj;RjJAvD z4J4pXK)SzMELXWq$kp_tIm_WSbI(sVUquHNT~N~bF&!ka(+^m*SC7I)R}Y`ju6qdv zs2jaE_)cgyPY(37AD{j{&6US)jP<|TYegkLZ@0e_wUk=OZsG8BE`F_IAGJQ{^puab zBl?_sZg;O<*d?WA`jJUZ z`YW*1UoLOlmj;KWjQWzw-q&+E+I3{RqT55H!^OK9ITjZaC>!7!Hz!!XJdOhEf62ZD zrN?^>f!D4;N z)yTDGHZ6{Af6%=6wSL31-A}p(RxAu|uXhmwZ%$3o?b*hIRAy5I`JL>ir|;TN4utAq3X44< zxDYVyR!cL$>uar>5F-Jt3776UpMDnLqZS9R*^+^RH&w_b79@0702LRAt&!QRiat3G zuCsb!0+o5=9fnX-lbkE?GTHdhp8fgV*{H%`vUnh+8KHc#8k?_q@R$w#5*-91I(efe zG)!V+05Q`CwI_uD$QbN0?*k~K6J95B}F3*Yi8R~bB%Fcm1CG@b*p~)Bu%!mTZj=!q;H~*djciqFu z=JS=W{+F(tD#Ym*t^G%P+CmmH9Qh-+@q*r;+oa}>uHR^$tWEc6G)z!#2H-1l2PMx; zH-)>>z0>~&%xI%E^s5XGiAW0Sr8-qZJc#qsLHRIk9*9rs(Y`?_**K!mo_mn+TmwGi zZ>G}P;J{Xr|LF`aXd$TB(pP7Dqd78YO;`JkdQ~=RJ#KzX4>l6V8roA0of7OI*ZX5Z zSErLwADL>uJwtP@w16$O>2L?(%yFmboU|k755g;#hr~R?5!&RR4q6;>^F8MNn13p6 z7%z;VteaSWRnD+Wf^8zt&b=1Hbvtx^LH6#M+??-b^zW*2(CC+>h&^ab)ATd+@``DJ zsFUA?VyrhcuMtNJ=f(tQF}P5PtG6xKX5A>nE`8Ef{RUOv@fH%*w)5k|PTH_8!;nX? z?I#`!REVX7eSBtME+9I>dR*ZzQt>Lkx#fbM(ABNn(=na(Ibk8MbsN{+Ymqan7UF1k z!mjtve;%n;(G{JXiF@2yHS@k$k;oElK@WXOYvUzI^=;tc(&_42634@Yzw-mB`SK$9 zy53YO-ERH+eM2~wV?&FfGwl=f2Qx%=v&6tY-o-9IYf%CBZXdk96Fyh7F0JP9@F5_j z%zSfusqq8&A{=iF;}WsLsAmzzk}U?V65*iOfY) zz`Ev^zmtU#AgABy7HDWHB-$tPOs3}3^+wp3XcZB8j;ozjC=Wi}W_6xk!64q2-NpmD zfU<_zq<`f>N^GM`77=Tn3=~LW!g(#}qYTjTGbL`*s-VNym+QjT9*$?bOu7I=am9bv zlkC~!_T3f#Bbf_GC;hoh#?$SwLE(bD-!f}O3G~09sPHcIY_FKwsC5FcA@5MN4~}hL zLT7`xk1JC@k?>L0fL>Z7_kzzC4wC>+h~$j}pWwa(liEeHS}x8b$SD5XlngaiWRpTY z**{0!Y9wihx({G0?dquz>(Nskznf@;hF5g&upDRte!n5h0qU+67jO^)T{JJI8BiS1 z`Gk^~`s0@w*2y0%G*{Y<<^ly4c|Dnvb4c&zQB5m)s2o%%Btt9+;Pf_9A&FbBN(&Tu zJjjndmcpk&KZS|Ki3vhYyL8>!rH0h+V+XAI1@c(VhS6+9Q5XCP^lAtAi6vmt#)?#M zkezSxs2YIm_(R9NA9ZlePwe{JEk@aizk!Bp^k&qdYvyeFDoB{mE!t!sOrNGV)jwg* z{MlhIGoD!BMW0uj8AxvSgOaN5^4Jg+ld1=c1fn`>eKOZ+MG36mF4jn{YhH5=l^I94 z(*%UJI{a*J2u6{?nX}Y23ZV*%vUIFEo2s*8jJ@+Bx4lhZYT9Ut*w#>nuiqf_vBQku zOFJw_^$Mbl2LISXm#EPjhe}4Na*w5NI(P>(1JVssry{ks*aM^gq|JBN$Iq^T0ue6s zovC$-?xyy8@Uui$0lb$-)3#aWKfh?_OoDB-!evo1UDyq>+{64i1EsF*^SsHMXelFf z;UOaOPpTb&t{aC~K1C}K9?!O}hI=GQnPCXWBl1kbUZo>W5Ltaj5Fpe~2#bfraIVxa zKDf+*1y900z^}W{EADna-&g2&(wVmu_8DnL0|yH?SsrsI=V!Nt9)Y)K6jEg9#98K= z-14o@TO#lq*r$k9HqbI^V+m36al>&0x}D!8Lqq{YeVoC?AE#-9_U!WCi}UFG>b>Tk&uK zkFU5B7o5?<_ijND#a1bB8;w_?qAKtyzE=%H3CQr=%cgIx0OC;AE>v@qu81h9$9oeU zJF6$jj^-84U!nK#{SA>y>L?A{eb1@AA;jk@=v7mlP zigrn=KQ2|hbsvIOfgUkB6=S7?$J}%0V1opZ{Tj^R&1H2$nNh3y+Q!pcQsECU9}1sM z7U{mU5Oq1-W>S(x<6PrR72reTWQ>N-xj(4WI*0)ni}Mx)FmP8yVewCNmp|`(FEbX{vwD?TteMB9<=87+QZ%kKJ9 z8+JNrSWWrPfIM570R8q{ih(dl4{r(S5TreRVAR2{^Y@{3G2s&@WBs8#tI6)$mFp-P z4xjDPCy+v7j|ENOeYbWWz`Ra!0_GK%-vJp<(`llT9hD^Ia+`RQ2wPa4qb>eR_RL;r zSW7_A&yu~CPow2x_;sq4)(KoxOZm!(4X;vU($z^8&@4f_&2Q_PN_d2_zHZ*;!vk@e z?s{)GMF+ay)kB;0)ve(5SV2F0lZGYwz=Krq0VwBtQpUfbcn9bVzWp%}mWML@m(nAb zZA^rI|G!?4)!e5_O32EO*ug}!KZ)zkkn`y`4E(_q!80sG@-&a7z?+(RT1tuXT)80U z`CzSzcCO=`z$j=I1{jl~jXw=xpLrWQD;)+!#b(Ehj5X|KyzmJRn12n%my;pKnj5Q5 zE{>TD*SsUBR-c(jc2lBE^H8}hkfm&G-~X=K%%+ySrm;o$oFZ%ZdwWIPOHNn&#%W)6 zZp>}AzH)2Z#C`Ayer2hVdO_2(F8Z;guz^ijzPM(de1WbiMP__UOm0CeXPqW!+#lis z;KrW0>h^(??aXMBsq^GV$$;RxqV=CC=J>-$peN=$|1$#|$VJBZ_DUdGEYA zd{!{nezivcvPF>|aoSWVGz+E$erM<&p^bja-1EOzr+iMYi2KZ6IBU!dKS}eDK3G^s z&zV3#BAThLlv6thwy^T#UyVu#sRa?DJ;I2EwC01UOi5B@ zvuM=ZWW@6OY{`#TV>(2FSDOOX$qWfs=_x(Of42V*^!*5qUD2ZvbApK*-yX<+O8GOu zf+A{7TJz5m*B-<5C}K-C1kG@pi6OQq!?=N$+fsfPtNpV?>n(8*H~jlGr<6{+fI`=& z(LN@`aPlgDs^w&eY3NamM4V{=EuIAaxBO$t-MO6f45q+g@Vi$t_sUrt8e)OSo6}Ds z9jgL1vC-;Y%ES_PO(M?vQ$-&3AGtA8ujQJAx9jQOt3s}6YzmO5LfOT8He5J4iC7Ro z_&FFzRghK~Sb#XlaN<%baL;;LSS(Tyj2C6mI2BYtU45CP)Ke;U{#6wvB<{vIp%*QAloa#wL zg@f52xdZDrTqk3B57Fb8;?cYAB@u-!!sxn}8<=cALA1Hc-)Q8@3+Bnx(biQ+#~PDC!k@Y<_EsBvxB?%tgBrpPJJm_P+T zJ(Cu8!lA=p8${d! z)fTeOf^PBsCP(HBPkm!s;#}`3&$d#_t!RaF2GNm(%bfk*uID06S2z{g;a=1`;iF!{ z^t~yJH$*IUnoUMcR&5osvU3F)HVe^79DFILeOaSNGKEMXJnKU!$#ev`)8W-OBa7ha z;t7`Maq~{d*gNeEZ|@cY#YSp5D!iOLeCOiNrTv7FH=C@vfzw)I{!?br=*E)&%{jaU z8kG6^b77{h)6vx9wb{L!Ka2SMeKtE6FR7ob3eNqi86}fJ+uxnGIUGIA<6Dmv8z8kN z4EjxA#N&X3uZRKh*RztF6I!fp$86Hk$l9swE>&g&5h6%02oQ1M(4WMJoF^SBfFbau zKd&Z^7HJg#cMW*^$bDV!g*_fab2`My)E|-G-hvm&$hFjf2&BmYNxS>fEv}`3SmWSZ zM(>zj<=( z%~nF;y}$+L2b7u1)mf}!T`M6?)Xy>=H-uUZ5U;roalwoV9sqaw^iA`ju=`0P&>-r& zq6^0(q@7cB*RT1F*pH#Upsc_PGffG(Hnt5jxz0E^;&bkB>WGDTj%C}weNGbN%N0{f z!HYaqJ9tu)T#yemFYkSkFItD`g%b41L_s1b2m(ydH>XS9pJ%N4;Jb)990zO)POcFq z+A6^0zoY$RSY9E{;Az?IjT%!lzC43Ms!USse72wi`B*`jW``AO5zll^NIuI~gD}1) zyPZcJ-A9AC3fw-UUMFN#r0;yy<;!eBM!zTvJ$S5-P4R85dl<|*=XI?*&O7^;x=H+& zFE-rW*1JP`^W<+Xfwi#mCrEkA%u8?4;_f)Kvt1>VRu3ESiM=5(Tkqg%MF8;^38t(D z6O?rcbgOsl3{tGc*@=3Pgo2?iJof;^I|c4~YrXjy!gn*Ux<_IfwD`t&kvvP&hV^MC$LDH!Q^HH> z!t3k_AKvUDrT*JzPipAJ68LicAz1qrUMTsa!d~#F{f+O+JH;~orN&+*sU`H0DXY_2 zVvgOQq;HSa(jdULPF3z_pT|;xI64y0vxRWWze9u<8yt!h#Xjfru($Ya&n7*26}^X3 zfo|hxUpjM=DfO$R%-)Z<-B|OnH+Aztdm=8KwWSRe%>ABpg?rmOE?wPqpJWRElxgJu zqNxA6<(jZ9P8N5bM$(c&wag#Z+(6)8X@xOTUuoSn;?rNWUAOQp_XqG<2DhC@aR_(M z?AgBRAy&V%zspLXv8-j=a}>o5DH6#PUy091iB1J~--Bi}ei!HG{Opv>KvqI|PvpW8 z>|j~5)BU`h6|0FFYpcD>(OQzLj9FJhVxH9&b0K1iT%_}=;Q@Plvgy{jxZq#L5N22Q^3QS@LJ7>-aW2V&MGti0S{c*s{6JFx2l~_D zPPXdlMMs}ZJT44S*x;yooGj@3=kv~f%Ocdizx4ROZGJ;m!yBNMA~H(hEz%8M&aW(=Ul zRL5|%`EM*8tVw4%1N`7B;wEEoqW0L zvW7f`e)I~9<$mMo znlR$*sq7*8x&^mW-b*%*#~d;&G{d7xjV3X~ulk~WJC-ACxgf)xg53&UO`bq<=g>*Dd7W{(B zjS-0jwBRBnY9I_!-AH_8X{5Id=?DBIFtL0&?@)Z%=d8AHEqso`>HKG*;`LXQ5*`bK z;}ub^`*N-vz2@l%`lA7#9q6iDbgH;2TjQk-AEY>1{vCAz5%-L`Iz>ccV3bq^=wL-` z8LE=`0!TSt0lM>5s5f*Ylh2r?z#Cl4Bj7S+>izHEiQ&*baz#CBM%{$&?pWvZ-DncD zu6Iah2hYl?jhXe#k8J?tOX)C2iAC*AzPeu?+QwLtqdP5cXS{{-qWqL8s+Kw~ovP3j zPZ;0xy=>?>(b;-+ufBh>yI~o*ln+D87u`BVN1MT7yysKGH96=%LZJ+k(hbPO`0NIR z_1ll5zvs7r^BrzTBk~F7Ard4u=5u;2ej8vvfFUG$p&$+Z%+t3i+8Rx5rRi9`f2LrmA+7DtdK<& z%sY%D*SpT3Sv~0e`;B=Y3J?T*m*aRw%+(TGz_jP?F#pX2C4U&`Gxld=u0QVTH*N0J z)4RHXw_TPPw^R?Lrls&94ZO@h^ZLS(YMlN-Xu)$I!w7vf`W#JeK3qWPzw7j;^mymN z*7oKiY|m8N9Apaih{j=2Qa~#?VgWs}n>_A_%Ybw<1I0&Rp4?^pGT*q@HJ+R<`Ed z8DeVc5o4|%rS1Ss!Kv~1=Y?7j{fq`R9@dgq$n7&|;*na7XuX(9V{p`(e8#b8$&XOC zTnj!{`JbF?KN`S=4J3n&(i>0YLP|1ZVR^`7hSm1>cu943g8J`Kj2Cr7%%CdBY%L2s z=K?QhsJntKgho|gyHTAgTMlb!=PSpWWY}882Mb#TVNY|Xp#hO?lHb=a~H>Ah>fLAM0yn<%8u&@Cf#QKNC2JA{gE!T?NxkY zzrFbF%iecSU?rzXVRKXGrqx83)NPbcsXZ|k7! z*^M-yw3k&yv}-QSK)(&x{;f~sjdO)D#C)&;KP;d;O^iGZ7#)Ic*KuMBpMWF8G_W|8 zs2rgt2>k~Xs)Z1J=RT1!6yNa(y_iSRH9IrQ5-MB};mZ5`dChxURP*m}J(>+(h1WSv z5TEUESb9a;c?wdJW(^z#T-IHO{&c>)za@>j^*h%|j;kG}SUfWwZD43LW40-th5h2g^5`K~=$JAQA=voH;Tz=sTDi;9!4% zE=(d)lKLMOAleE<>n3nI#TwqyJdgJM#g65#ysR2QiWj>_2NZXhVqOQ%--!Ls$OJGi zZvE`TBAx;)1=!s_csuhb89BWNp^xq)xfVrD{;Pb(a=*;|ctt;)!Fhbe9n;8T$L4Qc zX+nxbW7#&JZwQgICxNnx+M8&=@oVfvvdYBZ+0Bu%=#4}@)}Rj)tphcmQScM_Jd-G? zw*XjYRc)iq_QB~A_q8Tes;aWYHoNiyviBh6Po$9Wvn3mKfgr!vzd^KtX3fe0N62oc}R6uN`M?UTa|ZTDwux;ehtV;hvuD5 zw6>BZT`#u$by#XcD-+Jq$!vZSvAx_1?^oQ-JaxJF0Qwb44(Wf@aUK3306J(dK8sFO`E{O~SbYD9+2`;EoFrm_F0XbXTfZuzsN)ws0d#1bvl znstYjcm^B1uB{W%QgF3-fFUfu{(%uhbla2~y^+u;B^@cmt+2y~{j?LnKcoX==&=Zy z=Sf`PQ}@Sb*=m;S=3sn9O4NnYsGb4X8mDDroVk;p%N@Rj#VuHd5N?st^yB&QAj5LX z!)e=ZlQ#ls+hwLeThi!PXI;kQ_wJ8noP-Vjq2pxgYT{j*!vek3U1t;#jKT#0n8MX9 z;yfTnez{O8J!n3VaDVG1#jA-#{}G0O?MK|0ZGwxHEb-^9_P2acRG7f7FPXl=C_Yj{ zR(MfFi{M-3-4imW<Eq)>R~`HI2=BC*a(9!BPm@r2PN+F_5Z!VB65n&MphapsyAR zx(9}{c>LDGNZ28VQEVVxmp#P!)M5Pl`SH}mYy3lUc(6k=nS*CxV1GU6eh zfXlPLfE9|+g5A0Quaa!5 z5AaLuOY}qXK6X^j!~_<^IoA-SMAu5y8U~9FVG{*&?*8wdiSf^?SzshpS{Kw$v{aJ* z2^YU#oaCTCf+7fvC#w(sloJgEF0LSTJ&Hug_C2Q;Mlv#Rs>po=>nolROXo%eQkC@D ziQm54tkA#S{!^CQNvY@;$>0OnTFoim*#PqEEHs96)7N{Da9p(QiOQE)HpbkJ%0siR zo0l#W@(E@7ma%Vv_7x~C#)1v&P?NjLe9jlszjQA!fcz8rUx9xxGyvV5U63vUe5xu3 zP$h**m}1V?2eFS(OQB9sK#(xUoFVP<3=oaV(;UO+Sy%|<8 zEr&B!Wpg}bW_{kZJu^p=p4;4T}l%IV-1_2^uR^!X#v~U4W=Syyd?lSrf z281ta&G#j@Mb^*49{9&>bq0pKBRO6-w#)k4yx*Xo47f44L&9<9inY|JS+$thlnwHu zh_rJhxX_%rH%#)BDT8RjkC z*Wh|QqJz=y^JvU&qCC2?QAY;A36 zZ9I>GYFYdLVpmCN23n0TCG41mj=CV9VZ2nGhn?J+8-8xLQF?B_QwGO&y8BVAc6Ey9 z(*{cUNDd>?<)_sR2k08Z@naZ5iw`ueYE{Xq7Rj`|)?*IB^Khb}w&<=$A)09k53M*z zQTf*TP$tS8gn_#q;$a>b-C10T+U3w)ncGj^RF`1g*{zJY$(UG6XJ0c>u!` zK(6TOap1QfgSSQ6TmgZ0jKfoF;S(IVgpXCAg*KfH9SQLw<^=1s*hGQm3Et0Ez(ee@dt zm-zjX|C=B{Fe(o5+4yz7SasqhbG|xgMqqpSCr3(qhd`K2^b`7Ly2FjE#4{PCP@#p2 z9&h=caW}*7{D&*iu&#H?8LA;_Z~msiKY@eM;&U9t!73U0fh>=OZyMG$4#Z)Xn|ZKY zIrII}L4OrcyP8e&M&np9dZOxcJ34ngFswh_gH5=>hb;vY?&ek#EZJ5{?sL3<5)suB z@-&whAE~Q{78WpMsvAl2@lXV*`}7)zq5w-qP(}cA3Pt3HicmIf-~#h_LE;=Cg)gmu zxP%m!+^X~8KWkb=aYXW@3DA9}_Flm-Gy_OC6xY>bozoQOuuUDTJiK-MU_?X9mnC%r zy)diu@zuG|1_Vp{)o8%c3Oa7?V1NQFUhVIRR*9C|xSG!A6JVVqI`SInd4wDc30ZF` zsn&D6072l#*XCc3luQDrgXw=?AHyDnjiPkBso07!>+a9D(@iByTu0%gUlJxU5qqSKt;x{FX~+EH(8OR zO;(uGey1jYkB)~Zath&3*?J&%oQ{(o9q=Peyx{ox-AT(8aCI5*YMiR|?qRIUuLtyD=H0K_<0UnHE-- z2)q&Ce$827PvCl(-Fy(I`KT=E{syF!MxLRE%=r{5#3Sm8ONp>PfT(v}B!w6av$j%L z?MjqvN0$zXveHFS6xuUd1P! z1%oXgDu&qIatr7NvqB?UBnB2aLFaT#uSSBCU&I5d7nin6(OfUhtK_lAk!@{2QLwOG zg66jhpG@quDQP9i(#k?hbUc>Svv5G87<@q#`N;SVTxnq`+@X=xrAm7`?^dZgaZ9?Hz`MBuj|MOO0~hfhSQH-|FrzaLAp zOTU#|m>U&`kE#<$?T*G&bOsXS)Zn<^9EPw#-2gj>&cN=DxDWfRM<=Fr%6IsKpO{`> zFmRg(bG+mUPEB2^vYEbG*e=@u(R}ddZeZ1lkX?F%oL-IO@Z|_H1wh}cqi}hdcu~hi ze@ptMS4-QD43HxR*c}(K=2C~x{C6gE>29aXKg9NOkp#VrKjK>tA*)g#q9B|QJ z7m<#cILt$OeHYlMFyiL7eP?^n-0`_+tnRKg@Zc)o+;Pb92h?0!W3sd;x$|vFF8W&x z9$QUfUGA@B?l37lW0V(<-XanbJ(XfiK_OHvdW-16GuOH^K1@t2#`jZVoNs*IbJFuv zZam=2_o0mmk0+j48*{_K5Zsk@YZa(9j2)vuW6LH@=?4m7S>vs5B!;mIlNn?S8Sig6 zE^a^a!%x3V#P;1?8r3X8HF*~hsN3aU2y(|Uf$wx$SMHHyt!cX#H8Jh{dbU`d{`mK(xk3w_2+ z-D71XR+&2*-bG`CihOZJs~LGUMdAD&=ZUyZ%6|1nkDuD+_;1lS%bL)+iz6l4VL_D! zq(^6S?v`Pg1Q`nskKPkU=r@(&XD#vvJ*0(3FhTY|D^*%GS}NEd59aAT-}!YE5>dZ1 zh^(4@f!tHtR)>+32z|JGR?$JfO3V<*i;CynoFaunpoqo9R=<<7o!Tv;)v-79>l4C} z2!vBVo$1U|Nj)@at@nNtCvep%bI#MH~e7NR@W(L+2KF zN)3;jSr?hod25nl`*9YSdZq0wW`3--0j156AW;rQvQ#9V8FBR5w9q^uHE&7j!~VKT zjf=_F&t!a${6m^jpcoSwQY#`74lmGaBB;s95DA%{_Q;LMO`Y06$Y|datJ)wuW%|D9 z#_5{Osx07c^I|NMyNxXe^M@|a;L+NT=aISA{pb!FOeS@45nts{{1<1yvaGwmK~<@!O>N{l*B_#(6JIkx%RtwsXHS zD&sT+k;j62ziqvJRxJ;q-XK4^K2Jlho6_~%d+fRW$k@jkgwxNDeSN`;7?t96z*+N> zEG#UtKawi*jmfL!Z_3m@=VhG8cy`5$!N%?1ca#Uyx?gYhbE%jHXeTlFEp|P6Z}kF~ z>ha$9lIrDfb1{Wn5P!tKp7N>Fwy@Kj*rnfsG~feM1u`Q0L+2(fV#sr4b%~;{ zW38F2kbDc?V3-9uKv3`$F-MyID8G0I_-YpEvCokcwPhZ|5@QN9KCD)Viu2Xi7@tu- zt}V)(BY+6#vYXf&Pl(G8Qe`9OmN~ADmD7%r)EB5YALRQ; z%7%$eu9CU~6Ytr?C*4G^SvB92Q5J-)_PA4Fgj4@bVA0-)^%}Ny9qh#`_zpyaei7JDH@`TruBita)Vx zNY@)XH&i@s*x`(PKyix--sNy~@X%z^nxn?2!X&~?*VIOV4IU#;iCwT{bu|Z%ni-=H z7yLS^+%MPi1W{DN7QORwzi$sEOJ!hyR~UJ;@ipO{T)nX+cBCjLR}(GW+=u3^GI5Nh z<9AYbbMACKUt0r9@oYX}mT3P!n}s56@zCXZ+VdpN+A%Tv#BKu?|K9ikzxle+yR=)i{Wf=#Rf(CA+TGem1ZI7NTl4AsY+H8O@F_H{vW>HIxMR2Ya4}OP(nHsknUEHknS2nP`U&LkS^)&1_2pBQjqRO zS|p{UyM~fxK)TKzfA9Bx*ZW@Qoa=)BXFq#CYu)R<@3mIn*Wh0@6h_&OOUTD_6>h%Z zB0;_sc@UyOK0czYzjf0c?cuG%9Ni}lqF(F{%~FLT9p5wjJh}L|)E}XPHLfa?xs4>$ zmdwh8`ZcGc#u=_Hrz7KxDIt&T$44Gu%&6^q{q37sJAd+|JKO%y4WJL6kdM|04#Dk= zo-Or*m10ngV=hqaQD-l$7AN1WQ(oiM};{bB-~VU7s3r;82iiYJ68bRneKl zsZ?vSN8X!e$|dg7raOuE^-vr6^4UvRrXeD<8zFHx&e%|=h&!^5VuqNjxE zON(L@U19&G*;%o77$k zN`l1*A3HPIDt3T5v+6ZV$VVetiaLRFj=Hm2dmB`u*t!JV@iY>|j`?I(eZ zHX3EMs%0@|#V=&Nbn4fK!6h`vha9&wwd-#A5lk=bJEfUVq8%gUk0<`zujpP_@k8=M z$K>h{p|t_#{28NYFd3ow|N2UmQN}P)pPo8&Gs3cMYZNh>Qaj8*YWeyL%%6{GVE4t0 zX($mjnK!C$2KVFvL5*O(XzxY2KjQad@OEpjcimUJIp`{(vfrr+_!)B+i(P~6EskAP z;Ky;rwSk`fYSAX82h%gMX$m0o)hvt6KDK{@{79YXmyNuN>mKeCWaSot5y=t}B$GZP z87y6sZ7p>@q=-(f_52iuW#E7{@ry16g?D(nIO&$fAIR8A@a+ZWS(w@`DXKYjrAm12 z^F4$>hlSZ;AL1ROWiuPeF~9Yg$dWj0k7ic_om)C@3zWy2oYr4i45co19JQXtwLje7 zkgL7Q7MKu98hyFg3ucQ$5qHCALVK*#_nb&K*kiTkdFUqA?Hj+Ve9=ZW`&Ehp>C0Ku za0x9=xGmj$#f*6b%!g*<1o(mn#rE}UC?H;`C_nrdFqs;c_2|}NN@K)1J5!J@H23A! z#Dg%kAuxGRzSouZ^98keKkuE(b?s?@ zAKj_sa9}co5?)f6c}^D>$|WzHO(&f%Y15$rn#kw}*ybw#z2e)5C*u0H1pO7V-|T8W zJ4Qzg+O*13%-7)E!1iI#3YXJZhgX9}tk>a=-m@m-t}}}3ec_IKUH**1F=EwWw5yk; zCW3{&QS1A!q;PJ(FJW*7>&P)@;KL3S3RwlB%0c#D`5&PXG#r9x3St1}gHio?vx4)SwVIr-um_D7< z;i+b8rkHOt;9V8Vbm}FuUTUt_tNZX3*v_E`^dL^|$?C{`o=$s5ZvP&Xtc>!YA7%M> z?HjRg70 zLN#hbzpKr8|A#xyb`y=yQy**uv^r58Hl*QsrHEm@m?;TbXEd`9iOUw zteWgg$4m_v4^pJJ1}v+!6k#sQ*+J%-5BK9F+A^{SEr*F>w=a&Cma3#MThFv6zjn6U z)=zb5tj7u4{(SfKr{Rpfra?yAEBqR6UDPO1P}-kcmHnFNkBFXe3Wuhu^YK=;&4(oB zzGr4hfsZ6>o^+)B1GdOle76=({TKMR9{;BJy)Q3btb{&ZWE^f6E4?A0lG6{?fl0`j zWQ(mWDE8?4vA8es`3Vv@rs0^)2};2Ph>8LwWYLoij);%xbAXxHyT57eOYrRnV%D~z zP$mW&t()j>wMda5M;AK&%-1br>Di>s<qULIOQ92DdLL_8+<{)kvsp;OsI}`L z@_!R=E6jdnIi~P^#_P}CzeJf0D^N;{M}Ar z_FrHxHjly=YejTa2nm{eD9=@Du1f1q;|R%<>Nq6Kdnz z*^qcK^3r9Pv61ySgVqfV)T#VZsJKqO($$}hX~gIYijzPR$;Bd3(o+WIHwrEC@m2VU zl^^5XYx zn?)COaB_Dfi57-8QyHI6CiLc7r{sc!z><5aaM8b*)9G}$8k%*@&XL`*L1=Y(oVs}2 zW~n*Jw#}!-+hD_NSF18BShJhZEb^ZVtp8t?DHhEO7mLf4EN3MSLml8QI2B(4W}UT% zNW3C{8TR+U6$|ymCbd2(^YrrA@7rB;mr~8JTlVdyBM>04^Tb($@z;hgPQlj|7HP>;=JT)hN-sFjt~P?3J|>rv_^)islz`4yP*>Qd5h$v zJcFqyBBw*gAOAw%CvQEPI=g##m=#H0iLspqTFHu$1ymm{gz{=U-_rIj&v8MJD#7a!K>KYPyF#Egi=n;SwdR3hQTy1yxka79Sz@4$c%&0H5@t&uUFA{ zc>=}pSy}{d@GKv)AMoG4jflBX((KLm z9X6|*fWL@t^pyBWL{x+U8v01LdcS9^kDI* z6~+FB(tYu-gEL;%Dfv;dOfTosc5ej5x4d{5{~SZe0^iJ&(brKhPfr^JHz9SkDe`@h zEFcIEQhOE%$(~_#B)XV0H>`-slu^3JNOdJKr*yMkGbn{i z%mFDSPr9k+lwz#H#nP&F_}eBdiGRi5x=)-d8h66L5cB&iPRr#;RA+)w#JT& zljqyO7zDUo7R}NSm@Nz?ce=b$$!qFfNkm;OaMVpQ)Cro=liA|04ISwY_SSELTnj~YR^GRi># z!d8iYFFN}8fgf#Mw#TvXY`rV9J@miXBkjPcZmTch>Yj5lM9^Sy7* zi*>X3Q107IcO`}h-)pP;8_PO#y;j3_2)Fy&t1quz3VP$IE7yL8?=|mLOaNp{Ij~R; z_<=_=z^c5jI}?S-JV@F@h_y5>^!5*8aT&}52?!wM<^nH9bK`Q;!5a75TL6ZUc2%Q$ zf5CwhZgEb>S{ujAd;c>WNE77f1IKP#&AscuJa$IQMc7=<^+!l3P=t&>!|a>Oe~BAC z0z$x2BiVMn4_OTzB{5v1$uA=@S+wfT4mmSDOm$!ftu7G;9>E䗰^P(pD`rYg1 zN=$if%LcL$G9P>P!s6$N4EC05WKnPelUefQA(idq1H8nwr&{!ZbsjB6aLz6}pexb! z2l~@LfAZp|xmxyfU8i;B_sScy0IpIE3D92?T-47P4PrL&WqFb~6u1^d8Qvyhrb@Vi zfpI>l7vHz(=vO<@r2k0m(?Jj?gX>JtwJv2T0rDFB>OCtp02RYidV9TpslQCVIW%xnFv&I>t>MxNT5C^6zhQP`W zTttxKhQ)9f+UF_B?iFLe)d>+72t1(=a1^#wWdN&#Db`2_!L6N1UTi>G7$imgiw0h- zY)`zzm1)}K`wwEZX@T$Y&N==kt}wup#7b`hkQA7J=v5tp>i>qv z@!?uKlFq`Wj9?4yzC_X^(0Sl{{`-vM$vbnXk;Y zlhAl^ZAYX)4}7i#2S*pt(li7Pl$KA!Ei>b#BuSYtl7cv%8g2|N2uYWBqJ1)iY|$F! zD05ZT#!WWYe;ni-zd6!=AHI~YOdyd;!7JCi^(8e!#{}Ifn)BO)TFPZy9gcAUSGa7Z z`J%3sTFtYSz=mO+kb(l{|I`-H*E8P~laMRO+D?A4lZ$$NJVfl4R?hQ(El4==X8NrI zzSNNI^xb9MnKjFg6~IMxFRy37a$KG0iRb1m^&#-)4b-3sa2z~~AnB@~2~z>-u17j9 zROh|=@Co}kxl8Bj`L8Sqy%)OYlpIO8f+JkjfqFGx&c$xJ87?;l7~K-ZGUb?$2e}E; z!e@mNzP61k5iU3OQBy;PDel0&Af`7EP&b_TYx54%PSwwEt~1H}OYekkY$NH+FSEvb z_0KT?0`E4ow{wGpPtl-?>rCiB2)iIlg_7c%Ye8K2#UaxtL(pv%&yD|r-T2GC?nEwF z+wuE3$Y>V9dw>9t!QZ8Z?;EklF1b{Q$}D_$VYE;5K8sRnAZA<-i^!?=^#;;jKA!mB z`uW-Q&CyB>P+SL_>9e=OYfh@NfBPQYKB~5k@sE{G7f=#-6^O;$iMRilTE<+Vh7_?W)!HM4DlSkGYASetcR{hQ;C#3hG(#P`+PltTih#`{a3Ql?d> ziZ77*N_f5B!<|Mv6;RpB-pUlD0TomfiqjyOWk_c|JZijQL1{M0>uE<8`Cvm}|cG+R1d!aMI^N+a@XoBatoR-!b1#TB{%-*WJ(F$BX({s94pl zCsBX@P9zwDd23=@(% zsri_7d?mtOi#09RsGxj>?FG}hO-}ComLwP8T2MauBaq1*Opia6bhdCaHzZ ziR5yE=1NMH7VMsi$ze1Bk1%OI_9s)eiIF#y!n~$);L*crHjvQSP+Ra|RynE!VX4fqthb@7q`Db>V~~IRMFby3cQ>Kps=E0C0SAicFaQfB$TT zfbW8XqoX3cY^;^v3uMs84jNPJn`kYxzMDAF)+!rO;Y{x^tOJWF;a}*15kN(-?sdrlu1<8i!*L0}~tB}9yr)tD`L3|&vPYCE; zwUB}uuS4L}MF?yWt{VbTQws0KbI##z!iN}K~Rx4W5k>=TLg1y2$0t-Vuey)xu};J488Mr>5l!0}M00C(2n!%OIw0SN*UfwCCP_?> z4D9Z^VS$8~SGT9tJR3{y(%qcLFYL2kf;e7_BV??8;^dpB#7@cFU5CC1lh`Vk#DwyX zjHEc%bfK)d_2cj4MlZjOI5QStLX1;bcagL!sf zx<^;ry%#afdYE7uM~)sV@2&e1<664RbP}@0^I`^4|MU&!B^r51K;L(Xp<7&ajwBMr z%WL%rtZZ@M@)HHBiO1?(FS^hN6A;AgVNj0&teBNrhqep|y>G5^cydyA#d`VH-)4=Q z4AIE6cMhyy4n^f-j`%r1TKN8jSfl$gYui-;U_g<5PDWiqhtc}bj)V>g^1T<&I}&tk zJW3NJ{=HN=AAnIrvPaM@*Xxg%)Qb>q9K3X(5;^Y5zXaXq;fXSg^@g2A|DM`XOvDUe zS@?bgu5b1G{KcL6Yiu*_#Pw6WVNs8fe-tvz_mREx+n;Blc+YF=_sWPs_Ko&VKcyRp zy2?wvX12yp#F*Z^K*|QIXkOuo46DGs)HyyfJ0pM}(1vqx&AweVSrjn?Cqg5{e7_mG z$L6X%evW_t3A*WJgO7Y}-`>47ZSnEXX~s6oc;br0ljR%Ul-FTur}_@E2SgQ`yDBt` zhqdt^=gh00P_4nPiIW%i?qI$#Eof z1ugb;vD!?|*VIaAm}By3y}pRI{^qjXe0}1NI&_5YV_PjvQ%dT@PhdB*$0Gv~!*}+K z|HoT!md2tWT8srE#BE6x!p!6gPOvW%DU| zJ>KbD;chdRxqf)=t{$>|Q-6f%{$~|eVCUFvX0OQXp}66oazfT}v83<*>QjNpD~Z!A zDk|A@)>jwsXvBLFT~aZ71B|Thy6&8zylLThTel9TSAAHgu>ml`0DpU`!3aDWb(vlX~o z@dv@~vyysN`IjbY7Bei4{7$AAb`|XzPv;pa)c?O#hhe#Z{#Y!C3Zi;bE|r4`h~&*_ z&o6IQq?;J?DD=^d)y#QY#m0UiodH^M+)LPiXgJfE`m&m#PPdljkJmvxQuj?A*yjmEW7aAu50_X|5Hy)#D~T;uE)5GeL9gImRP^Y&~j4{gwt7=x=g%fjIZTE$E9f^MX~_m0HPLHTRFeQ)x%!?yz^2?Ew$;Aeh!0wiJXGYU zrRZzAXx-QP8F?F8mDkf58CsC-_&*4=zK=Bi{&e2UW+x{&ca`fxN==lco?PJ_%~j|P zbI7QMlAHoh7r{~$vl$5^`hddkA6>TFnfa=jxe{apz-|OEkUsPFi42HqTA$jmy28^6jugiyg5&(^|kK32jPW6uTTDC|3mL z%&D(*u+V4S@0%LkZ9|-lt5pxh&dEO(8@eY3#W-Mlr{j#1~OhiP*&eoWI zWMepr#GzV2!Kd!HD*px94E79GD1Pb^v;JBXyQxObBo9#{>PZLFCtBorg}r(AQCoBb z9hdta7EaA&*Y0^6jR9=SK&R>+=7j`I$&|6t{UjJ&=w7FeSBR4FWamPKt8uU@U;z6n zeZ7y+y!Ha<&$hA!rZa#;p?>Ii7@P6eGot412rDRS2<)wB`)*|5Pl2=GVR>gW*yef> zC;unvPIan{*{C4CqJy6B$%wdk&0AK3h@&&Vn;s<@tvEzm)nT&|ecHofDL!M6v92j^-$D~9WTrzl7M%)bot9WiQq1i{9#zcIOpV9Y+k&vXZ$tcf_o zbZ0miFN{Xs5e|rcBsS@tu3f_idGSij8Tj`Ni&Zp>&ZkmuAX*?vh8axW#`~|82t7nP z)0-7!^0>bDq3$rj0N~$7j7M}IV^SQnc*(;|S>vh4Gl5YSR5(Ql4p>Bs0wBPc2lLDF3Ixd{*N_7f$Y0l?NF+g^0%v|l}*wZ4G-9{&2zJH=Tz@xicW(Tg^lgkPWy-M_ z5*v>1E3VprhwvMBN8OT+Ar}E$?T}liVR*N5J3Ia|NvBp8`>tk9?%L^R?AcCOx=mM@ z{!Veneucifn4Tr&$G~&ZdpA4J^St>#LCo0PPlhy{;D**gH2vp)2;lpOK6yFz3)zUK z(n_jO&#M%Mry)jI7h+f6URl2*_VqhzE28Ln8O`X$nDofNcrhCAu+1{Oj}35roP;r( zif9WX8H(l>T5sT*G10nEVS>oT#dHW0y7Y6&PoDYu*K5oEgLrx${eA-8KrOJ&R$M@| z*k(TD#5lyEC$O5(#cw{oYl4(A8XS zY?Z6#ng0#*oo$5j2gy`mf_{tn=7Np@TBp9VObi`=L{Pf|in8KtpzTw!hyXN^PSq@M9G!xg_ZYOev+nyfM zlSVcvz8J6pRHJ|DU!FsZc-j<)`g$L^(|I=$y`x;6dD>3kW2L8t#AHkcXi#}TLe?Y_+5!Ec%n`m}=I{6K9K7D|{j{YN?u~?ZMvdz(eH5-+Hj~J6rI0o2zrw-Wy zdQ(1x0ElcwmP4PJ)KVi-)6R!KlGn!%C=|HEWV-;r>@X$#<$YV@GWm*~Pal9n=kYta z))0MWnpkODE&GJiQ3ffuoF1i#|0!RTZ2iW7Z+irsickfMSY%>~=#Yk)i2oP>c$(oa zJ^Ng9-$zALh#ZN=5}%Ay1s4{-&BnA|v9bN<$7@R@VBLFCvWv#><7{${b~RCRp=A35 z-=3J1N(=7bzp5tO5weg-P>)GUaCp=%T*92>6zlt_i!+c-_pt#HhcIIv${H;H71AlH z6o;feotgKEN=T5twpn~7d;xs5%Nc=ubkN7s=cqn31RMA^NuUa7cnuq7bw$5^Pv0Cy z3PvMCc&B3@<#M%j}8$FF0x`2%!cQ^;{WFt{KPTXOCGVp6GCQ6 z1^im{K$K);CTE`B`(Y3j94H zpApk$+~7nd8agY^;?o4xz~jp_c)lQ#Wd-llZs&@e_*b5mX*?GfBP8c)7vwP}&~Trn z)hebHOu7v?dp>|yt`~~3)L@5E{Wpo>S+@a?_2VZI%J%mwwS^yt`4Y?_ytM%-=N!BDhoIG~G+j^&Iy$wb>rpq=xGVoV+w;p7 zccxDQfnGR97^?jWl4WLc7hx3lkjWchD(zjXKfB7VM_9$7a|-U!eMm#gM}@0d@PF21RhLuqG{k+hL1;7y3^2wn(pXyHIg zL7(+Syg33HB)SZEPGOOQ)c${+e}f1tiaqO{&V4J3C(z7X*Uj-hXhdu2Rb791jVh30 z7x_%yLVyVDx|lf1tuI_rcTc}qGmeLi73FU-DyzlX#VJ-3p#Z(7J>*h9Yad&;m4UX4 zM?^EL;p(Gl(bov!*r4+`4>U9C!@4XmDlW$fjp_GID?63smg!yG3o~=uF&blyJy)_sZw8}EM*W=96Yeze^G`WRFMH&pSMf{$!koU!z^SKa4i}u|K^^~$ z;J(*iB#5s@`GtbcuE+w}o2o zodjRuKWzp2J2&Q95z1o}4xgD+pEy;fex5@MXH;~iqtxYUO%%=#Qg$901FeSg2EEyF_1l;s zJ06>Xs!(*@KIm+sOagRYLm|raL&O}ztOswPDdGF^NX=Ab{1;Z8-Joeo*)K6{Tg9;P z>VGU){wqDPr$isXARIBG>#Cnn~o4{*f%P^j1k7_0|Z{*|YUSpB|sajGtirsFfEaWpRc1jKF@N zVaa6_-wv^%m;1tyKBHWG9EjgA*-1p^ADjb@C3cSSe>-gwAr+0U!WMKy9}@Ct{V5@ zwjuKS&HYV`>L}HO`urR%LLVc7%!x@i9EijhHC7_Z2^?Q*Gexj`=eIHz*mkk7M@&RG?-TC*FX^W-aiDJCfw?rtg=)uKF7XkOfqJzO-esGU7x;94jHI zD!Bad+?qiO(xf}NdF(!`F!|4U5c}%IJrKf3K(YKp+3$igUnw>t`xUb3Ib*fS4(|XX+@r+-&H@T^KGfC&CbbSo+BBF!`uvD<&&5r00{8G3Td%5Hh?QG z?bf)9R+dPb>T{qTtULP7%+{&h5xz1&6X>(P&pG0&e3SVxrJ2&PptrImbgQzZ-A^

F^)52s30!2h8J z)AUcSaXJdQ3>D`L;#hgDL%n(tZOMgK^Kqaoe;VT)`$fRh8-QF2qmh^vY@jYv`r+@@ zasYR5?u|JPcZhId`8le9OenCmoa@gjIjLYJb0)uC;o8Z&`99ZQ2@k(?~TEPgfhl&ZUaoZxgt_~98|sf_7EM= zch&J}@)iW=oR&~Fg0HQVro8g?8os$)8X{nMHL`rO(c)@080Y0WL3wsIzb9W7YHUN< zM#nDK+OrM|YSaOgPCDGRLPY{@aPE41{N`Ll8pCrW-u>VKQs#QG6H>nXHC#!ani3r? z>B(`JcwWtA_rJyl-6wf!EOu7y1)k^#JS z%&-4@@W7F$mSQM-R5mYDSvF%3Z@Z+lgeN91TDhNhv67|hA5h~51sPi$BMgMMpBHPE z9&<`nZHBp~+rbNx&3zXQj-`i{#pfE5Kks}x+v~g=eFZ=lo(V^`qEmn9pAll?>Gpy652>t8^q-G*({0xcUx>aWi-$Ia#*$+lICz(I79DM8Z ziYnmS00&B~?^|q(6$Gm`OKTs_=sHwZf2}*8Ut5{4wTys4p0|7|1o&HLPMzMwhipHr zM;?nBWzkKaJ30*AlShQP!H0l>!|(n({wsSMAS2s?lr!GP_Wx2jWG1jj{MdAuJ*S)+ z|EEj;2fgxReEy|;JC07tzjyNaOZMr93WYfWyGqR&U)8Ck^n(I-EnPL22TR?%WB-S5 zquM$u#IC9cVAA(e2-$gFpzZ+wkAWgc$5%{d7LmRSCpkjtO zG%Nra73XfdsrU>Y+yWXBmj}U0smSV}tMKqGdjJqcP;_pm*R~sP4ih{Vs@F}$J3zSW z1;}?Kn10zPn}XV0W#_J9T@zZj=u8lt=@|6N&!;?)lhQH?aC2X9Rw9g$ts8(%lw8mW zHrqHRAd@{RmQ?gzqCl8rUy(%uSPGg3SGa7UTTE0~MfL?EFpdQx0M(gmu0e!wZTcc= zDh~30xq%wVoOc%RZBCt{f!eK|wQA~8mle$KIn~JCkPUcY{mxZz-Ke7bF7@M#Vo71j z688qHub%0)6`}q{yxlTvgM{7c2UpE|fIOY2fST4cbaHo@7a|Yy=eYM!{~4^T@AoE+ ztcPkX&GK8iePW!j>bx_=3TXGL1Ni5B&ISx){Te%~pDH0K9k&U^0H`7X8Z=YOI=L)s zAXM8T;h8I{_R7W{CegZylKbv&BAa?MN^tfW~`n81l>3^q%#2Ghw%&6v&brLcp@(1hq}1q0xpSVGTjE>-Xc-(nkXw@VpFEViHKR-;{V$pVrTk{l&*EC? zPVxFMg+VGgTZwStU=o5e+T;i-I4h=4;E5?vvW4mGtyD-YN! zWz6+UW_U_>pFB3!WO_4(#7j|!K4C)JP9rW=S9c6qH0_<1L=WyYbT@yiJ<^%GIQU96 zGwv?+$v>{VAGUYToh;K;{+48NJ?am%^@X)*2I7}S*QUEte=RT!-=q>@K4*F)-^9oS zI0aYa79w~NmA*TS08OI6LBr3u#ca_t9}R~pY8mHc7KzUy1w&Lor?F?P6SUHpWqMOK zbg>?duX)DsFXE8!bpV~5bZ@MA5d&9M%BBCqD|&k(>9A9rvOK*YZ9M5dvqbEM2{h5k z*7ZNh|3n(d1tD9gPXcfNwUEW0vEOSyk^cTnUS^P}eOFBtqfrB|rBV{J{IMF1$cH!3 zu`Ivlx>2$5t#o;b7>|~->GAd(IZ`fxClL*o^Yai6Z0(qv4}hWzI5eZlfkos*$Aa6h zeIh+>c1x?_mZPHi6^8kM=TPkK)o5^&t`-J^)4@3Vpa!pz@s}b`fhD$jD|&TH6o(l) z;$Fx|VY6WRZ2AScC@|bMq=V1)`=x%%`8-P^q?fbwM})4!_xx#7H?0csiwQ7!D9T0D z?SX2>vx~Jhuh4qhjs)nc*Z-g_YNT@}E#OI~v~L6REj&Wi_X8h~77pKQWsh8`uK4oH zW3TwC0kGlN@L)!*8IBd19}Vrg-Q*tcr3g<2`cTJ>ycMAv8oyVwyiFfbL(nZAu^V>g z`$K2rD45RO(#fJJ$kEh(Vy^{CUPK=SMw&=bAj5RY|HX0+xIOu`B%shA)|gO@;J7F+_YeH;LY|b1AM1aRYJvL%ETw6ejN#0P z2@}>wY4z{C+gCw=tYfucM<4xpQt>WXK{>Ge#3U_)f=2!0Y2I7OPehnVQc6I7dE^41Dpu25+<$)?x zyZ?9SW5_hJNf`lY9res zex%B*ICK;tBo^H|QPmf|j<55U5ia}bHy^d@sK~Eq8}i8jx_WXLUOeO6T+8Q0Ga?pW z(275I+iBd#8AGQd70Tq&N?319WJvD#kz`(m$-mgF9@ax`4a%3#v9*Aw$fXPox%})t zc_IU`&t);{j0a0`l3|yYlY+SJn=YXycvTasYn#7#Ufmj1<4YWOljkh9)+Pqwa>z@5 zVwz=q8%SqAtF+&21DyhvIJp|}2;$pU%XLb}?9*bkB@Bp|N4+xZHC>xdYk(NL-gjU^ zqmU2J`ix{zH{Jy`7_y(hfz4>45LNvG0W_KeO^S{gncc1tlx1vYxtY)qz+427K&E`) zMWv;F+d{!ZlW^I^ILDir4yD2@@*Y zKkkNdP8p`-+a5f$w5Hn+fEvd!)0q-Cq>trT-rgMI01W27ukhZd&2)uL)>;xDk-wB8 z=VOCGO$0h?II-xez~I2o`3V@kXPIBqp_h(H{lm0B*t*zi(;_B0CN?C)IJa;5=@T?# zK0pHE)ySm|cm_jsAjSl>)p9fw=NT@hirBghe9z6rVzNgf#+ zQ@8HyBsG}Vg_}vI5{1h};Ry!Kvft&`5TFyzMDa`4Zip9qnI1xmG4LN`O`g5YMV4z1VO7$I@o0zarW6tr`tT%gTk$3bnSBJ>0 z^J6?%Z#*7B3Pt1fP@SZ5J~#B7W}0xw6vt_pZ*9f<7pr<*xpeq()slG%hT{NNfpMgS z%2({=pMx+Eo|*`4>~k_(u`7leTg+6>Mc7^b5pJqPHPYhVb1y<&=>$;uryE(yCC)Ct zj+oi~n#f#94n$C!btS?0Jgl>>QG(7)#})kbC~5{sUJF$D!!=!n6N%0zCws!W@Xvu02@JQ-AI5IY4{s zG8`CMeMAu=&IM;CMZ@?y{3UcX8V5~wv_Ht>(!^@E>XMeOO71tK^wR{AAE^&X_0c4# zqn-?DHMfHg#a)q_XjWW}<(O~r}oXg3*AG{ll1arpOd+Yoh09}#Qn)c4TCW&H# zIXh;Gy&L5=n?eg9CY3=0V6ho;_5vMA*$jD(h;5!3x*6zqhrhwIpHtI3Qb?fPO@Gh+ zP{A^(E(ZQA6NpQk z3Cd2BMfa)wSPGiE>=F+&+J5Z9Oqh~rU`s32!F?|((SRn!MaOE&1!p-&i|7EF8*dW6 zMmI&HqxI3+q}Xa_(UaD0l)f#zOo5wR4r{!Rr85!XYJFiO%^>%Y5zV7J?nNFvIxE!~?k zEXGx*k)&tm7|^+sg==&0Y`57ZnX0qofxf6dy=e7>t3G-R;adbdba#tdpwcQN5Y1&e?^~L0e z#1>cR4`4O{Bi$?y%{d`-y*9f4mrX>+?V!z&%t>Ca<$kT&?cfRFyrXT%`X&q;8!Xa6 zh)5lp2bws1$28!b~bqY6)VXs&am^$89QO+YUH02?-)h23_gpWIvm4l7-F! zq?H(xoBafnQQk2DqPe{7m+NQWWnFrSmy$Ai?X^wDOVA{iZ^KcVyN&-#458r#6CMfG zkYZ3F%F|!-^0*A3bn4t)Z8Q2buvo}xu|uZ%qkw4}RhwHlKVTdN0PpgIP~5P4CZ8I5 z%0$)%9j&O>s*``dmB>4r*cfR5acBAM3wOXk7(v{!&McqWOm$E_8+ z0gxj$bRTu=>|P2Y(0yE7%Bm^NqNep9#x%tt7Go5vL#x^Uf8;-gGdL=Bp4 zb5y&VHFN413YoathNy{i0`tf3d@RtP^Ks&`mw4O^a(Dc>IqH}JHo5Y7o2Geo5OE z4tsq57}`nY-wO1gtw9D)_-m{YS>?NuYjtS2pY$4WO<;_vvuy9H12#cM^*ZeD3mwm< z#@jBG6o0&u(X-&+t9`F`2EB~~BDoxf;5}P;U`3_J!g|KGApJ5S(Ua%T;G6>a+gTKl zSuqLK zfxSp&BO<5DOUTBa`>SmikbSb{m%eDL%z<@$!0QYgNGK6dJa#gCkbA+{a<=52Kai9s zNcM0dvB-!9GsOmH083Aqsl?ySzI=DKDmt&eA3|rYsLp%Oc$y-wF&Q(Y7i3_MJ8-QS zqHjr0ELN}#=*~0_fP?--Zi)tH4_F0+1mFz0K4+R`{U+$Ra87p9RGoUDT#*rAPn9q| zl{N5~w=&tR9}%jC@AXp9hjj}y7&I^hQ#yrzdkoVwBkKLdw<})-KUj~am;B*m|2?K; zbOIcN5-Gb_XzJOeq)wQvGyKc94BK1FI~h4PfXD%8oOTD+96`_?<4$g-7*`OfiKxp{ zd48L(v&sXSmsJb1{k&8=Glg7B{H}MH@ARUTtLsMIL4G&@$^XCqCZm8}8$FZKl+0b; ze-8mQ!u`U`B2fAiMD6!Xtg7r7aOfLhL&|Rsu}!{BhN_O>(SCvZMZDHFpjGcfjjpbr zfdQsrw#gO=-8KU;u_DY@7^wFnV>eZZbqBJ+ry^^LA$06B`pJM7wJJ9P=@v%SJ3RUua9)wpLbrLz6+Jyko)PhxC5UY7In z?e8`MYUF?aSxa^zv^jI8esY~rI(TQCK7ZA%AHodtVh+`*;wKlHH1Y$6E!GO*OFZ#B zRoQ{*=YAmLBktGg5erN<&NrH6AE3#4K`Zj2ct-;DeTY6schOEK8-J^#p<^TN(fao`aD?C|C*reSLSGdRjvUnK_oO4-U{PtK{wWx>fE6@o`F6PtJe!a^+oGorl z#H>2$xt*CZ*n2Qh7|*2g<(p^GA-cU)ChM`Iy*=_f{I9=HQoygr%6a6~(!OqoMBzJZ z^PWM@wO+IV&w}u!a31+E0N{H65pw#>rO8f`+PACIz0JI6=QpncSl{Lzlgs+CE<&h1 zRP7#no06i};+cXNC26YVe^|2+INDT${-4&~0x0V3{U1j}1?f;PC{hB_N-CWaONpeU z(g-X_gMc6*Ap+7ZEh#LpG^m6KEFmE*A)xfqCHXt=<$CWY?)NkEpZPnCqch8U&-W|jj=>)v@w^D|=TnThd@`=v) zv(0YL{e`@3J+6W-phV8N?=$_i(aQ7>@UHpBwmA&D)nh6IiSfljTpyY#=HbKufL{Hp#;?SQR+a4s9VuFe8@Fp%pCl#t~!zaaL z_Q**ifc{+gHJ6oepY~$P@XkPeI#4K41Z%shuP)mlLHh&0i_PB0H-1aSN&twid%p$D z<2w?xOzcI%jZKH>(2M?4U_Q49KKe}dPUY%C^VuAbz%lZZKeCwc zV_D6?au|DVn@@- z5u7|DI#mSNu0De6RN^8VpP5`f60lkw?ybWxKTm*r^Or`VN``#U<(|#;0+4=jM?1O> zKHKz(wY^sk?_m7V=G^ti0Z=?E9+}PgK1oV(r6V0t7krYg>Gz7FaUkqwC%_8B{DA&s9)!r%fS6n zSG1kexxTdl2q5&=6<2S<`V2?TbYcw8-SxwvSCOuWJ7G*>_|B-r5D_({&}R3J>p`jc zZoNJ=`S*vi_%*AIWcP;j)jrC{Eu)j+aT8u@nJT9C%1=c%!w0g02g=RykyNZpV|t8) zuR};Ji-czJe<4&dj`8caqAOM#Z`a7i9T~bQR_gj0`?Bgjlvf2T4U7|)%fpxYVLXGt zXueCbrM#vYHzfB1aT|!0p9aJGwc$yA_y_6kv^vSJ;zz2W7B^VEF!|#;Xsn;eBDQNd zWiYK>yG{MePz@;F(tjVtlhYCY4`T*w7B+!7&5 zD+OG91b+25HxrmcuM|Vfaye}8wve_TeE=Ht0ine8M?EYFrsCQ^T!0-N$hY0{<(p6f zwsSd}CSpT^`l5%%fYTe5?5v1TMV4|*gBBl?0AI!X#u-V^Qpy9VtN4?(J`l@!N z>b%6sAp#849Zr$^2*?z2OAPB4XOrPWUxD8jnsBKW=-=L%ng;BRkn|u^;60OzO3Mpw z_bK8&%koaEr_W}{J0QuGHV)gK4qnvdyuC+wX-|0t0dU7&t-o76b;lmO2mQ7=Y!9RZ z7QeC{%1In)J_Lj4UsNX&P$lB*;DPpA-;=tn;ie$5Ge*^%57O?GP4PN(0BAaxmX!md zZr8E<5A6i3y9Jo|_Ch(P;TM`F+NzvyZji-nPF=H%-<*$Kt7+N@b^go{<>=c&{%B6) zg|`jCZnl&v7w}rayZ`oD33=)>02{P+`!%QVAX2)L(#CxyFiCZ|C4|yt!eefsg;Gru zG~jLz>BB>o{iGqa2b!Hv)!t1~(3gUfX$!z(0~`DIZ6>?}1Q&&smyAXEe|Hxx5shv9 zVVrIbNIF3m?aYHy&FH8a_kxt>#?;gFS@PCsg_Is z2k9YPuOPfqT88Qt=y0Q$8h9Whd#~CMw4LUqUbe(_x_;R{O!&}6EMaE3mSXEzi^6?- zaE~NYfuSi@XyOkJ?E>57D_^m$P1DJ79Z-Hk4S-0k7L2hQC^MBGcWkGn5q8eM7jf-f zqxZpV0Q#${h)NH*&f+JBPDcSkntu8ZEia0uBm-&!pp9Y(&ivo47+8V!0!GZHrzF8^ z=+qil+$@ouCDTH5IE+0eT=>Gl%p2ag&;I8zOHQ{Q?x6cChubuM0!K~oo22m0H!_Eg zW@f+8<@Lw*&jgQqID>QXN7(Wd(Dod~wKits(cYk^y#Gn*h*5UJSeQE}pxX#okl|u^ zo=TX>)%2!VA2w{r+HkNky?eAw`lna-jPcCRB0U7ZNi)v&d>@l#x z0M>77jz8_>O5!zFQmt-PecQ`b%oljQ2Loynz{&XX0w?hE8lv^G-||D*Q5F~h@?|xa ztqU-NV2L9}p>y?eZJj`fV_l`JK!w0zjMy&cWq4_=65}U)Is-V=-b;3Wt}ALS(MO=lGgqcuTQ7ZD-N{YPE;F4OGx%0oRuVxY zG3@C2%Kgy7j^Ng#7sGZ4i+)gd9X6m8U#}E13S5l`o|H;`;Eda(cb@gvT(O$x=!eFPd%L|v;%n&`)1J%X#70z$uW$bAPzmNVzObj5Dm*VjfjE>6270YZVRt>>v{O8;!aWiH0EO=Q#mbrq=vEu_;tB(&wb` z(@l26H9~2*1&R9;3_$sOJ@kxcQ$HifO*x5@mF6l(0mi3M&m}TA+sBRlrOWV5*?9|M z$>&|Vcn0MybRM$8n_Zv7LGub|V!09e5&*8uB2CZwXK1|noP>`wIB4*K8P>{HVNfD4 zP_w&gcLM|3&n7(jO}Vh_Sz z=Vu#YQCG42qbp&MBT3KH{5l~o*RnRJIhH3cUZ{l9%lJw$10uxPlib4 zeGsUB%Ue6>c=B&`8LX#$lNtAaL&dQmBn*^0u9PU>e^L1t$vuj1veU$5@SjW= z)J~m0lzXgbl@{#CM`=Zd8zO`O1Q3KgvXyQD!+f8a~k&-ozyZ7eNTyYU}X$z;=)8D9Q z7l2TyNn!IHJE)wKDpuAasw2aJ-%X3md#p7Wzduti}zpfWj5^^xrbbL4A??8wemiF=CJ+=*q_2`_mHup5=>LbMajW1J)FsX9cHMxNt-ARc2^%;3!zf#$%c%CL8@p?dB zBV~sl87N_;{*CC70BAXjN;FP3H8)Ae3i)|%TsMGy2Bsmk`J=IKXUO{pmch?q+IIg% zSox95j^N%YDD1z^16NtIw{50Mhi9Sj;6_}m?{Q6Qp(uH+9ur`WjqpBlF>4Y#DB9|k zxnE5r64azYRznx9J%{+?M4>O#xe&PPs=4mr+f$uV$q;FF-Xyr!bdBF- zkxvRzj93izTsV5PcN_GM3P3oL#fC$h8gfY8Jm!=+S#QtJcqK8P3|Hd3)UF@13rGO& zl6|LXQ+l*DPv!{F>0~-PAO?3*v)&z_@zav-jDwu!_G?Ur?r*o6&-NFV23Z{(tp4oP zPd7~iw{(u+OZNs-^XklqWxHF4eVrm;H)u-yg-NZ^#==Xx3@KLLV{H_V-#^d=-JPj= z*8a`X$PQgZuP4s99XIgw5PTL25AyDv z{{`cbTQ84dV!lqrJLC5m76kIe6|67fIi2B`=;hCF)fl$@T-5`atfpipkn$I}Ofvh)ThSYz#@QZ&vm zTwkYWF`T17!_9*8KIusSc*mw!R_I+bPs7~KJ0q@LRoKll!F|kyUi*fyZ*w~ zA3$(v5;N+03kw#|FQ4f7J6**q39uhsIR47ceIQqQi>aS+Z2FgC8SkOQq&rhw6j1XX zpkoYL1hkHi1oRU|PeVXV*H0p%z?ypF6`k=^YKiwQc1tQPm&E>M(bHI_CQ^DP+ASbF zy}Hcm0q3TwT%JIg4L}ioA%;;MaxYGQvO#Z({rHWG4ED%W=fm~>rP5?&fzw9u!RMQu zKww8$OgOooZZ&}Lif!8$(e9cnd*p(W2&(((a4?b_+ zvbVt1WBGnZq%&)^(J}}pkc_8J*=CU4heO0Uvh7u;@-8993S0bD&$I^*jwHZ^$b^6B zZSp%zb8i13s*<{|tbSl*>V##d0?p>wC1+?r?-o0{TD08>w(TVtKD_mX1E9pXFT+@h1Ys}GMto3KOO%kUEhb;6w@Yp_>Z1Fb(>RVk#v6)%6C`sW$SFs0lOEd{S z?B}-stO9C-*3|#aS6j^IfbeXso@7z~1zo!@tdXFy2(*lnOhH^g2{v^n4n?(L&18!SGV#bUjDy z%0AZyZkdW7XBpymtz`5$slGur4p?m(NHO*ACl4M&R>7kM4Qy?#8~9S-RWzTapuWeg z8wYNDC;OT95j|RuU6D6I2l9V1E2`Q1Sl!;n+CO_A!Y6g9s0_* zx;g3_YiKwH?n;kD``M|u;d&?lhq&;W1)HpZv}xgjyhisW)=$H6U8BqhyFyRZtD_n% z;s5+?^7YfZIdMZQ0B}~O z&kkI0UdVg32pXjY{nwx0fV-PG_h_uB1u9ux%YZjVwME1NztCpFC|f@4-RE988>e1C6m&vao>CkHg&A0Oo)C*vAVj2?&NpK<`+L6uy7HF?YL z3sZAw43tPTtx@GLK=Rr254lSLPp zdKm|%CxfjHCcG#{s<~UDStW%!c_Bf(?!7DKgeShQP`f*!`?mbUc?ea+)0l9V=$Gpq zNGy_h6p`Q*KI8d~I9;*&-U6ojm_$D`l3>@VC}LmLH_Fnb#!@CjqX(Mt*k3^&tMyU0 zjW4hX5r?Zy@ z)ss1w$w;WgR;~ohsJ8sX5$c8?HD5LmT47hBb=TeToGV6=hhBO=f1VCnIPK^A%W{9d+Yu2 z#!7@&+K8>OZtiDBXzQ=J?A}G-fjhIm6RRqE|Dmt9HF7+AE^TwwT;Pf<)&S5r_>2I# zLE}Yt;VhGR5~by;db8wvmzLFB=<#^9o8p*^S!!tz^5Z0fcy5~M3B4h+_C=TZyNige zt|qFj2R_OlB5l!hoHQpj)`eHD0^Yu=eX^kk|4gWt#sK00D?tw!yPIv9rdR)vndy%W zj0N0xwu>bG`$paXPkNZ zun`BX!*eiTU~3uCU+)p65(91(_+n-7#c}eJ-aSNqYT{AXy)_rd^hOg zUiZ1veLtUKEch=;{7Aq>%vV4Jg$?b1!4*R4q3+7tjB0`uqjhh_T4Rm_Ag}sexUe4L z1mhiY00WxfsKTiE73;O{H@ALu@~~7;VPQ2Gjpjq+zdj8#ODkk6TDgvjQn1&)VFZ!G znih!?_X0T6lcuAgM95V9>A?_@ecz4l=tiJ6R?V+}!rt-jvzf_2_5b-JsSO!my`LJ^ zM^K3~b1aD12dBuC>?<$?)z!Gf9%um9z_0nl^F zi7rj5K+jd)UiLkL31cc+2NA(UQ9g%#So7b7b+PEr;*nXCJNO<6$m+A)Np;l6G-It_ zq1>F%UtSpa2M_|vKZSsNeWy=82bFpy3@HajYjO@;-oQ{FBf8Kz)4w8#IN=e z*k9<=>g!;8!7LHbZe+dMVEWOi`T2WwdX8Z<9X=MzeDb{W1S)O({?P^fw6|)^^d)$V zu@}yM>SKP=QR@{@=24{cy#|xy8k;5P{nPR0mHOVvlM}_nG_%9w8&!o?^_*t_c`(q- zffsNnk_efm?(`h}zspsUvrxd0cvj;rEp$EJ>oU=QpLPUU|NHsj7f1g-#mkfleDa>_ za__v{pgcysH^{H;JA>*B8<%Gs^w>X1XZ{k9I2Pa@aF0)%@Tg&zP3#r$YcmJl6#JRI z+|4-cJ5WE+XF+L}3~ubHSbMku`J&p8%lV0vne%1+kslUXwL@BcNcZ<{-11|F?lY`v zdvgQAF*z**w4@TCqJT=Vy3|l1lvT8P0RU{dFwN4HA+kdTjP_f>y z+Tm^E(T=`17_Ocq>QQdwg%Nmle1aC)q+=@(AUa{b_v5K=^ADSP9ZHH)iU!KWLV6Pu z-Fug*|A;a)BM758*WiEVzN{?$^9-49vT^V8Gn(Ib5z*5pmy_auVH7E!ciT)WQ%|C< z&8w@8TgZ!6f@`^`O2AVWODBcrM4k*KToiL%PB5%>?y#RfB` zdYm)(lHW;jTa2gDE=skc=TkCKd1}dkBwj#o}Kou2+`@sBPsFf2|Bm* z**15KPk590J8V~t5SsupInz((3Di!g={l<~buNcP-9dND@1))@zTjNEXbg z=1Z2s!T!S2fahIk;;UW9yAlZB!%xfUCq=bWHC{rqb^>{l*cI$-EqtwVoVk|_ARXH) z+uA(@mpi#dl}Yn($mw+uV6U+U1Jj6>;NcB^#K9 zv4nl%<%OGfeaSGab1ml5D{pBFr#9_Q7DD>_<0cC{xjbuU7xP#jU-I;Y=*gsTJN!HF zwQE$h*sxzLYPYj0bTH3^_$ZCo-|pVnC}1&DbaWGZak|tWcxMuk=H?bz^2y_F=_6-J z6BZn3vSpg`VVC=v0hcDQl!_qT z$7ZMop?5!O#Q&TH&4;J!k4gL#FomaYE2KQu=d`c=YW)*zHO!| zz1}VA?fv!!AFQ}dCzivFwNQ<&m@XRrTTl91Y`c@F+$>JN?zv`^8{+U;7n-WC?DRZ;koise3LRjO>{&aDT71Pq_6ZB# zacF$7pSR#}nYOEc-4-w>$z>}pU+#noHqZVwoUd0FJF{m~<*un6fdolX9sAxH2X$ONYE-&v#rHMTm9=Nps zy0z3~V{x$174&+ExUXfr;~Z2hWRdckO|&dB?~D_4n(azn^-AB=ZDpel-q?5=KP_#| zy(K!b^DK>KIOEP+EjMQwq-M{hs?Ak{x8uJ)Y24N+)GjV^nnQ7mZ%vC|e?wY{=TPXrZ(V5ht(P5Kl*gkL=xOT`3F@cEGbhHqO(F9^_EPCiF*;MC z1Rj)oln7vh_4D$4tu4yvx~obdXt^K{NqPy4R0|^u1R_)hfyV_Bw&TU&ppWWRw;|?@>?7u~`L3`-d{+2$73- zar1^h6JETy{5JUd)55e*x5XkJIm$G-FZ@hp1;05_(`@Q6hl@ec4b>*{%(#Ag|7fMn z8^Z~!+QF9{uV+T>4^|qp7px6^d_F}8n+83CH+@M^oo~eZE?eDAK8rN@apeUVXgjNl{->!D@bDbl7 z(rQ3M9(!l{3m>zG@+--KuPkJi2VafqpNIl75)V%U#L-Lp`8bSI_{^kFMBj?NB}MQi z-uU4l7j#tU0cq3^{a>+y3?7QMQ3PiU@#{tIdZH+JaObb^G}Mn~Cd)G#y`I0!(?Ibg z%qK+F-S7%N8N6Lau0&$Jm#r*rK2G7r_0m4B>%xPYu&u%n<%&spq{;S&dg3^@8%kMG za?(K+9DY95S%fa~&V-kIM+39;N9P&KnD*tQ&$CbQo$1m~_p?}VFz_wM6YLC@Lvo%) z^-uM2!A#BybMBwR8=ZUH+ijVlND?3A;e{C$5PCEc#U!un_XA9h7*jvYRY@LwNzOEu zZLu^|%=dGzU;TER6($Ia&I(KQhbcfbd+fiK0F;jp^D8 ztP~nffB)H1o4eM$ji;!gkBf8TI3~>J*nw#O=KN*O_3$nhryq1TV`ixQT_4knO z^O_I1`bt@N>*-i=ThNXgOFgwukAA(8OG$gHpE9tID4E}34Z9;Q({!i6!hYpOzvKD5 z)Y4hIu*+PW5)zY1{ML^FQW4>b8P)4a6T1z6@s%$px(YsNFB3%MSeS-r3B%cMh4GYD z&Cf=?9A>I*g_X99W*Re+8?{GCW_rNtX-O~D9Jl=AlKOn;#{CCbnKlI-|Io3vepjrA zXe(BVe-8{LXd)oArt}}=x3<1Odc6YFZELi8^rq!-j;3?sb@ZJ#6nE*Ed85QZL^xIJXHY|U84ArqXvzTJhr;CF>JL56m z%1o=gcI}1A#(=yQ6%};}!Y6FeRdxt4w+RqU&n>sTy1E1K$#Yc6cb@5iN-{uxe1pWC zPt5+?`wuFYb?@Jwa&B;5i2lk=GMU3Yybfd$(93&>cy8r?Rm5~9cdZB0`Mgi}+3$dW zF}30J+LJ1n*|n)pRi^DEZ?wOVmdG2j<}ktd2>_k}p8I4vk_QFP}n7no99Ru|5^L?IFldg9Mv`2FGvX zxMy}YdnAy^3C~W?on>n+k}|=n@yzx*_Vhu>`gLK%GQAS0{-yCcWP=9D%>o=8 zVsAxRDb3vpuN{Eb6+SC8_E4i%Ua}1Xkh(T9!6YujEr44;k^ifUhH$y;o9DZ%`a#g% zkHa6va~q}v0Vr?z@zDVq(3~$P!y9i?S93!4xLoD=9T9W@!t2@e^76*^(tOK^PZZJ4 zofh@0&~nbxI8M3mA9}7HI8&L#UA_t{Yx6 zp{`<*kEoD(aeidJFKc{`W}};e3%B+w=L>C%)@Wv!ZCAqWp?VJ|j+-|faz$tDsy*2< z26`#BBed0a08$f0E#I$%Q590Hb;T?aja}l<{1@`@|&bN9^4&qvkehG~O9TRYt;zU{5En>6JhG^>kFwb}&Yu6aw?3m%b5}1@PExF0HRaCKhEsuCFcD!+y*eoZ{La@+L9?2e7cj9Q^MQgn zV{pcHBjx6<8$T2u2onONin{%FTdZQf=vSLy&MAsW3mQ9mv5Eq&cSwG)2emgi3_n%J zWEl?2ZqKT}cFQ^JBc|G>0A5jQonNNWs*=Fw(e5N)<_&61@n9T0UPj53RPx4NHx?9$ zp}&as^E(F-?u;kkbbc@wRQb1{2OkqGt8}58)#Xd+c|O$n!vtihkq-yXs*Ak=D#Vhf zaWC@~jldUbzrKU>HHJ(-8MIBOxzkTmfS0%o6={{7Z&bD4z8VCdJVX z(f(KDKefH*Qr!$*@6!1m-lmD|nR@8%dwzgPQmCAtS1O2Z)~-VBA{_UeA?4ssy#dCk zCxuJDYV0XOmNJ1Yoq-UAi=L312=OtW_UvO6rb>O4Ew z#XRr4acz&F72?QC^8-Gv<2%KeEGOVGx`JU+$?2On3~+hRxG=#!tqM@nLqeCWU+b?- zysq(u(2&lBNsh9gt-;@Ou^iIW_+XNgYj4XD+v_`Mx(FZIz&mK3=&9?$?ji=qKC!Cx zm@6G3bQd;vP|u!jJou>;>xeEjmhjr_7P6bD_pryeQT_O`FP}$)A)BqCV71<67r; z$z#e5-}Rsn8xPVwR@28Z@+lZn`KAcz6tD`1*E03A+`dgptP?w7KT==6@bIz}FWVdF zq|VC7%*_0_eM^HUD`^OWMvCxh{}PDh{-E!?uG!cOj{hSukJho~_IXYo9weV7$~}2~ zp6^W47E}I~UIGzm-lJUzK&_I*-=U(L+i|iL+^s(_6qC0Hgb>Lf6I9L5td!GCL5z#{ zrmvS_{Gs~-#Q@20sWBYD@+%@}MINS$dmHRiEEF=7VKrwo`5K2R6H4`-ut@qr4xOW` z>z3kfe#^*0bl8wj3%ajAtE!S=qJ*ogtE#=eJKXrjjyAjj(nS(ECKhR>gQ{*Bz#WE|TGlh=M8oMZLnYDkWHEa#SfmcEA!dwr=p+H;ArE4Td}g za_UZjT{4NhFW40niF{L%5;LkKM7e%~bs{3(D5R2kLiI-U_;3Pp)o2gxpQ^Vm#=gx-%NUd^4Ina?4<^ zMzex+9j|HI*RuTALl9W$p`Sp-n7AKM!Y}k(-xPG8ZH!M?aG>8Vigg6|X-z1B0?bLR zDAH?pr4pEu10!P+cMdzyQbW<+jMPyYB$r=0>KgnE28b{Y^cFTWW&K!g2i*MHd#X|GA0~bW` z^fz%^Mx>%ha<5G$Fj0Im&3iD`RW-DZvA20(V4!{O0f?zbI^M8i z07kJSb$fMk5?E(jkgnkt%JU?D|9gQdTw7i)^Suo5*B|YzO%2t#!LNcYoMOYeA!_6o zzs`SJ>P1J_g6zx&+I3*D-j%oloqnHSR;&wca!0;ACQJVH=;5zTLmxEg$m&W1`P+E6 z2VyaTw%<%HY5?!wJT^Ag_1DHv1)pGpl9-@l_R<;PCZ=ff;(*w+2>9pr{?}EMK+G*1 zFRvxjrt8m~K_@tlb6Zo}FE;3WMdVxdNgd2YQ2?kO4=VwE#QkndI0 zi32o;P$C8_q^iDN)C)wP0*|sybW)6yVZuX?h(A2#XN*82jEouDmk8TgG*8ekOYCAgZzQH9ImKnL;W3TO%9J2Tgn zI72k1`|RDdg6wd8Yh4YE>8^{^%EUDM?>)B{^|C;44>F4OLE9meti0sf3Uh(Du<^qL zA$VHD&ghd8!%CaMFTjA9Lf#uC8*s@`)JnYev8sN|z?Rs%Fv$khb%B;xpKmL*OWbv! zHvNR(>;9HeBz)DgddVWh z^M}pL92UMee~N%Ua8eL*f(bJemKQ$VeWURb!T0vcN@ELpYC{d_JdJVg_=TXGEta@u z>Or+#KzsXfz*SW7^<-XlAfKcq+Q4#mCjFuLrKr27$IU_xVbPsZlJtxOc;K|=WF0p* zJZm@t{kv}bjE{2!-lCF-#NSxtv_QSu~c ziafYTZ%Bx)d@^UB;ND~n0-C6>P)U%ygq(hh|LOFX(21OjOOjP=_*@Ye8#{i@NNF@c z{iotX_h|=i;wwf7i&y%w+)}kRFLwcCd(2@v`-0hvBC<$Tnf%pgyp?r;dKhXV7v?z`YWgSUk?j_;Xol0q)z{jFcD0rOh67k zo>KY0K7fNeMFA3t@e(;Q|FDMB=jO-Z%-U7zx>Np@xBbs=ldQ)3|6@!1PR?#O@@jgw S4s7FqKZp(e1&^wlTgwtZRdD|N{8PJqvLA>7T-?Jk)p{0!SdP+7LaI9daoLRbo2nTf?17Q%Yh&=%B#c%wmN$Wqb9&`xJ{ZL&)bGOg;yqiW>!&Hr41w!oZul@zHu2z}Q(rwyIOwoa6G9E>7!PVLHj@5XlR zurAN*F}^gqkJi_Z{`|>?=^Ev|tCo70piHYdQ8OfT*I5L0F*DDFuGO4k!VGk4pghz` ze3dPP>&}Mu0vV@-av?!-N7eD1c^P%*-5CE@@8+|2N6gcaum2d`Rtqe6crY;6zPC4k z9jF^t^Dv5oPKgkXNRLu*{%CdN-2tg0>!;quL@&!wZ2L;ON4|J>p=XZiVkp;so9an3oT&cb2v7Ny5agf@-sI&13-aKdt*{94UUBs*jC>MN_m z7U(*+3SDEX<*vHwSOcZX%ioz?5WgS>1B|H)wsoBWPVT&W19ZeJ;d^Ghn?~!=79y;? zU&6a#y7PvJWJMuKcCPX`*9L|9rgX{lbiy`QX%npHRff>(s-pIundl-ZExGTR)zmY0 z#_d!oWkTvRh^aQ)i{HU=Rpbl%T>~`UL|^y2To%o2)xMJSS($l1@=eig3&H5qgGUMb zl^8df`PI$;dA-T`)HFYQQ(vVW(L-^*ec?ChVgoS!n(<(wHvO9MK$%s;ze;x;Z7Jb# z$21s_>6ge=9MeM&6xdYVeK5x~yjFokcdc@JcrMZ11EsZdOmx>Ow}Vzt8)w_1^an&p+_2Yn?S`?OErXy|2FZ_1O{Hn#u$ZsU89VK%lCkpbG$CFy^Ac zgJ4FW1>Q~o00&eRWc9s3JJ~qyCetWT~%#oGaC7_uKDs{IIi}Z|6Jr0k6-b zJR|0^Apes>iy?bdsr4Qy9#k&>gNT(O#!UZnn6iY*#o9bw%Ik$wDd@iw<`L@u`^bM| z<^Pdm+5|Vh%x+VB_kEUHF_*m+nP(MF{4Ps4mh1E-5bCmaZi) z@6J2;%x?ZrtYe1K)&uU(1FoO%1za}M8vCz`e9?d#b_5WwKOL8pkitng4UxA6I`TYK=PyGJP z%Jrf$`MmwS4GX?MdbSa8w{djvgJ^KE&1XG=Ehj$rA|f}w<94nirQ>F>Be^QzcH8yx z$Y!S6B3R;NO#VnX;8^&!xd`jtHpg4(ca<4mc6Rp52I3`GBKUVVMeAk$2Eq^|& z7tXyqDP8vrIQI-InhiL>4S+8!EV$m^p5u?=EB9%WBr)h9TfR&pF(jh^j)gXrBx*M^W$%6evcmHE-l> zH-@Es?(%FuroEiskSa~!M{?){c3ebt#8>&BmOcE-K#A<>xZCcCZQFg`;Wpe$A7Bh} zR#%TojR_B)^Cj@b=)lxQNZVyMn-s%;RxZi>^)f8r0{8N)v7=%%>@(@^=Z^7Q299dX zbWuFzpq>K?GhZDhClR~w*5=)_aU>JCarE1V7wTf<*2~Aa_pRJUwF+hzbsFG6(3FYRE;(=-VrZw?kzom2*TxB zqRg|tC>GjUw)LJOfa0l3X?)=Q`Tbq)$mGhg<{}NODJi$IY|iD^e?ESmz?q7 zoO#VMJMp%gz4NgQ@Z4 z*1`+=zy4WPe*6vZ^SD~*rX%?1H(W>CM`GGW>f6s7=?-rfE4`m0%-_fIeUo(9`q^&S zg7Tb9_}9Hhc5UAfftY#PM8CBA{cOj%&fkD&@6nvlPV-?$e~d&J`l@+f6D(f=Qiggh4d*}ep`CqzxFk@pH^%>B&WYX z;R-I%E|YY;qe*&a6cIA74-tf9=ibibJ}1_QJ+hU)Hd?t_6Y+fi{vWo=-sn9*Q#lBn zY6^w-jbbc&yDgnkbq@jWsIPy{rkGfEP2F)weWZ1Nq9vA21ru>uMy9rumMS0LvyXnn zrwCa}K4uFzVtb!R3(j&?Q_ZT4c+ zbMdj!f0Ly)Ykdg_i!N-V2FDD|KSj~|-lIOr(M?YZ?Y+GGC(iCyrSIf_3|F;ZeI-?z zWpILd@6`0xwT-t+oz=uC_M`ff*xuJu;jtc@*@Y2FUF7+$bD53%Kgt|byS8P?Pc!|X zdX4Z4^7oWPpuEdT74HAeYJA@?olk22IZw^n-!lTsi_(&)PguO?)|iUj(6M*|JKvY3_8zT=%(|ZxzOG7dj@_#bmR~w z>-$3O6kHRykJg$c8;#mNl(1r>)g#JcNAnJZ>=rx0CCs*BO}$FcY6fptbKbg9H9ZnE zR}gCGIBPU+B!x94d^l-r_ndwABL@nI_+$L989>dZnHA5WS7NvLN?tw~Yif6{aj++b z+NL*__Ms^(nUb6`z3ORAeCI)B%ie@)Gcf^x7fcHtl{}wkI$!ju3NouCvZECDD4+WE ztG`G!$$F{X@2I}Y@0nqsbsktK8*nC*!9t-pIo$pZjXS(}@j~6tuT3LI!su*&sS1vF zfRc=cYFA$GwP<_n;T?q|&tQWo>OOv$*&xiP5Bj0>=F4?cWuXosa*l zHLR3@W{XLbTki(b_+I=`k^WLqk<#q8@o?>tIYe6`;I6en=V}`>U_JclshW`e@oG=Z zCv>r_5 z=~~98jA0SZ`tg2K87*+q<5$f`?0mI4k}Y0erAz1dQ>O9agSM8zTBoTC{fVUijn^#^ z3ctD20=b92Vgx6HU1DkFa5b| zMrx$P2x)bdae?e(uh2T!!0>w`%jD05PFM%d>nOUzETiX<-^cH$sHxY{HCAeiO|eeI zM6=vwy0U6Dxpf4wrJ8lal0IjjO?rB2j~<=7XJWzwvO#^WClGI@v|@6DIGk;ee08T# zYkZM1z$$J<#NUl(8kyH~hP(IUvS#{^q5mYVeO%3m6xZ~rR19=%bW{DL2JLE5x*1i| zfT~o5eZlWeU$xwhB4pSiw)ia%p_yz7|I<Fvff?ONkE_|Kt!dJDmS?>0Uu#J4s;_fe2ngEi4B0;2wH^-x8=ZVLL zm%)CUVaKrLeak4H=3^8Q;B|9xxcNp7>JksS z!bSSe*4aO#%=JA|-Mu$HZdtmmZ1B5c^-J{u6b|>S*qU%pLE%`|M)i1!PMHay@Tc(K zj84W;>jM9x&;ldtv=28a#YN(I+UbZN4Fum7L`yIs1<%MQf}E^SHr2L;gqv(0PZ=PN z24vqh8O8Wp@XVELH-k2M-B_qlZp*jqQ($MwhL8<&nFycp*y{W`+#R0j&eb@A?{qL= z=oreNhvsyoaw1eFdN1&5_!O!DSgRNnK68OOP4tkBYy=DhTG>pNJd1@wi&hAdtUw1y zqXP3fSdXG3AlG4e^V3_EIZB09fx=jBu69)+sDP$YD2?oc#qkKTnsCqKfp8|d}~`|Z>GK#7?ZH}0OrS$=rZU05e> zc)}-n>K?nv9+eIA^@kE;UZwK+@eSU1Snv!XHR;!RSiby*HKVN>U>2}fLpT+{3z|n` zqu@fp2#^M>72fpmBBApybZb& z4jDcj#eyX0Ujuq3@QRBeEg|qi!X2^d3U@c>1|kFze0%t20yd`Q2M4T&8w zp}396qzApEI&^(hXSqi$!}cgaq~A)Lbo9MKVK|a>rsy^ZMyYJSfAZjp#v|zYW#5}+ zN)>*gB)d|O<&_$Dcu#~(QT!dY%WLD(VORP}#jTjiDAA$j|9 z)|-ue6D{n0SdXr+qXASfzoR2WJlKb7>IETJ&Kl53ci zl*dLQ(2m%q&W@|sjoYI?t8lt(JG&{sFbPB_k;C5V34P;rN*P_AkDy#p4EZTN@s4LU?JZ^$ROUWAHXKLG%^<~>cYB2LPNYJ-8SV_5Cg%XAg z8H2$D|9N>Wp-0zD(NAf!Zi`+48gM$~!&VRXmom@|eib*r_HVhMlp~o2cKUS}>t#(r z4q;QaSqSQpOh5c-z@6`D;^gm5E+j96bCwcC&L_4;aqtreJEsPQq-J^PSdO+;1GqRi zbVd>8@eR`22pRhI;pP(^hzUdz#ai?Uq4O5Pb0uWc*-5Mg0Y;$lC+`XZjLF6Z;Jr`b z)6g-%knx?@V3X8s%Z-4aO1Axvc_8qs`O&xo zKb~^r*8A)cEauUVd)DL*ITgfV4b*(`x{|&-jN@XJClbK|4v8Q1;LgFps;a7QY(?l3 zu@}uHP=Cknhgtt*1%5`Bg(vHp^@$3B8N1osysE1t!d4mx91tj^Y;fmljAxV*`4Y$x zl}92=1qp@% z;GnliUqv8?Q$h@!Veoo;Po0IX6iGW=5+F4R{VAvmH9CX6XVz^Jh~vnkd%uU zAO7X#nF5VNYh)*3P%tf^-{TDRg0AhbO@sy`@4{RHuw7#*pw1Ktco6;Y76RY-OwcdZ zpRN)_liX1X?YPCX-n6x}L#gOE+;me`ehL z!g0>w{otIOk%;`Ku6eU8EFa66OalhZ#ANqaJJ`t)l*vlfnyJz zGS75c{a(j6K|e7$`A9`}(@q^N^cQFO!Oufkzo8yiDQi%RmQhVaEHvFu#gMH8$ID$@7D+!zeZ|S-#P1=oL8q__uP~<$hb+%$ zG1oXXbZGVT0n^==wmBX<3}+D@M4LUVSlz>iYD=s^vIbb)*jb&2n^?XfeuejP#_Yne z8a-H;%+%7dVAd}-P(=sV&0Ux1Tg2t%o830TQG8n@w>5B(q|B3O5ztfFU;p zoP^Q)8&+AJfwd&T2%AFx%}F5%Gc^AdlUpRvTXQ=f+wvQe-c6)Yp47k;oc;(`#w>(* zEk8l^RG%tByp*8J$!X1Go8cQDO+e)1kZ{)mGF`D69l&MoVE%ZX0Y9EO9PhMiwNC(v zM>-5LobixE04vD41b^gPr^0e1PJwVd=p-B*Y8xTh&Gj%M4|<55Y6S>t)P@j?Ak1IB z&pqMl6K78P%-96>l~IWF2pKB@wE&J%Bn5V8njY71&fIvM9dawg8Mqhdo)VgcpQHZC zNcZrXvo%TWUcYJhJ+i+&*#~$e)E>X~+<9_d+fl6MK8jxvfnMF zN3k_xh`JxbEeyz94Mxa7bai#>MnPNS6z`Xf%fb>sBW&N1CX7Mq&7TEEDEK z93%8^=P*fiwLB}4K)S^VEaZ=HtDgH~h$R4+Dz_R7dWgYt1-a+!kb+7m)Gq_Fpc*$G znSdR*+Qp|(tqVFh$Sd@+BZ+{IVUb@9PK$Sd3`+r}glaV(q93D7boGrb9wym(1f15KS|# z=@Uq^7Xt9IC5DXsS&v()mPa$S4i@nxKJ2cy#IXf^i7NVQWGZ&{10prj*+6m>ivyb8 z-Z-@Rx7~<|Cw&jKkhg~7uQ$d-~Bjv^zv*qBvN`6B!US3w+( zwZ6XoMhouVFw+cpAw@{2bHJkmy5R85?%B!h1P~H(_F&_|_n0L#5e#YVVuHl;AVVNa zNf<4W-6J?VveDJv0FyFALtu|AUR{m)7AKD|J&rA@gvF8JnsS5TXPxu`^ep0Ca=Y>z z)|@%M-H#ffggX^Z2EVj-A`NC}NywGGHGrk{SEl?~UY3GLO<0}Zm55=Of0Q11IoO`9 z7%$U?`hC%SJWN+YG*-+q7`+*6Z*TvG2nDM#9ICVsO4uQCr=sVvam?2cCgrL3Ss2O1 z1Irt?S6o)XJ>Nl#G3mZ3HR@jqlh*GLDd_l`}ULh;p069`#g$eBO<0J{YZ za0k_=#1rGf5@)*&l0E(a&*wt`KDMM})1A~|bXJnizxfZgx~@oCJ(F=HL5Y-(5vCZ! zn03Vzm=IDtHYD}LF!P+3xy`5V8P>okFP&!}&>ieS-LZlLhX2X##b2U;0XwEKP=FCs z9a6y{g7mwxZ;k&WZ&q+e?AC{g3c|tA*P5uRNxo^Fk-38}$) z()-PZky@B1DWVp#&{LP>BX@hmZz5s1n{XOh6o z;T8vLrbxdX03geh&4B+-4g)20Mm0!kBY@6O_@p$b2I*fJXNqo$JGF&$7>;)Qmk`kk zcH#I)T4&nzt~+gBnTI5rjtohpJP#)@`?AKZ9%wunL>_1^nqc(<62eHkiIYdG1*vYs zRG)ZsT8=acz(jI7wnhkYqr2XbS_2_-Y4=S*DIyf;a%o*w$R~_ut23ctN*?aZiGrdh zU2^M`0Rf@lJ0Bi|%&V>+!<3PFfp+A_Wh&Akc*qyw@qrHEMY6TmjNl?>S#tv8r9QnU z2$}1i*W+hSKm29SK>KJgN?atuUw&p&08O? za4h(B>~Tl)+ZqXp1ceoo`m<(3w8-@Vq!w*E^R5(B{hwBv8S4 z+%D6iRVWV3T)T+d>j_EtL*Qc|DYy&UjFF~@z(Rr2e2D{Qjx1cAI0QL`933u>_rvC! zc@wYzvhu7zI+J&V>)j&Dx0s7IF9}l(0jpX|A$Ai&@P(RxLMH;i6DKIL-yCw#0>dO; zp&+Ohbujn(5AnF+ytoy=P@1GaUA4(W(=c`z>c`Kg)ymMlA~HnvMBGeMTms?Fvz=vc z0f^KI;e{={M_r3fT8Jo)c8#75f1NRnP7d284E~PpKem?_D-ik-ubQl(32PVWP+)Z; zD+sBk*MhhNjlFf5BL4YvCNL~VkZEKk;3RaR#_35vAQN&mP8hDVobt0hk+)NdhTj+K zfKsbEEO|Tu}bu$=(M5*|K4sWW;i` z2SckiA2+q7wm?5vJs+)tP~L0_pp&ph(1Bd`p~e$HE*bBfA2_BZVj}?n>9r8ICoaeU z0K6#Gb&sSAe{3BTIExzHMb{W-IBS6Gh+3uNogv~^tf9Gmq`T>78ja z9bst@JKX5vI+*%y=ZtJ-5IJ07(M3NoHEf|qg~|=aFu!BvYa@LNy>{nH0wJZnqWt5s zZRto)Q4fIB{Jo)%%K`3KsYpQ`Eg@wHq$&=Iad69dZY#ruvZOgblCa}9$f}-RR%=XH zX+t&<7Za4Qa!{iJz_6%JJB(aTJCRQ=%=Hhn5lGU?(r5+l&-n1Hz$A7o zU?V#o^obz^Nr)dFX8a_+5O=R%25Moc9YVg``O(XTkebc_@?jvtlf;>7InbTE>(&dH z7xH}y=-6rt#H+Lv-%c#qnISnOEWJ`GFWy36dAkS|3xR`qS!+y!Dwi%EJWZ9^={$QT z(+}Jx_{)*UNc}v8Pfjg3lHF3xg%CtOt7^%xMuI+F(xBC@noj)&R2E?K41)3g1){(A zFTkIx?ZAPH*7<#V3qXzJ4cVFLeF2QG+7cU(0!W5pb*do{$O zmlg>SGLisaozZM){fix{-IP9D9V6;jF1!}f3x5Rxqn>ZW)@Fa3$8zDFMLD2@nK&ja zTlz1NMHAyW)nF0kcXbv5_F6&|iT>SDhi`xNAr)_{SC%1HJR@`nq0jiYk7>=x(v#!f zjwL8wVEVeP{sQIwz?%?aR39w-U~6T?lDLp*V(eh;3CgPV(uvIY;AQQ1!eH7Qw%A^` zj}%bzXxr$|AX5fFm>@F{i|Em1SrI7SOpC70soFw9<0h^&Ta#E^bOw{4v&np{B`Lwx z7O>M5iiUtW=!A7?KI5K4yz;w4GRzM4j(Slkja%3=1%Pvun zc`t%)oNYZ%!V3iFYOugd7yNk(*BKf{Ra-P&#AT^85||N~AMoGQfem&$S2fLkP>0Hl zM9>fyGdX>Y%X0XwSh+D?q_NnvP_H)IkNS41V z2#=ASHu~BeV-?W1uD_PA#znrFWcjX0f!=DD5o~xo_mO9$uPG*k#bfk`n54}=YA360Ny$C`c|6mti=O%8sR z+9F}HF~=a>WCCI&Tl7*qu!U+9&56-e&7jnPK_C2>kvc16!XubgP@eiBG%#G>#0GXO zC%haH1sDb%`8)%Fa~yUfQ4S{ca+u*apQh23Qqb(f+n!lGzaS|kYFSDJJLkF=S2Rwc z4f6L9PPTTjLTcB4C1#~|Gwv_ed{K<|lY91QcuO<3w;%5vzulppuFmoLg>S#3+n78P z&H0|b5qq2EQ*r0y7r8wi_gVZl{ccF|dW#KBw5Pr&cAJ3c-C}IWEv&lme|y^U+m;&! z=c7j`SSN^O@D%yh+)AB&kl-57yscq+O~LL^9+RIV!B=VXUC_kk?ap!awpEfSolA0B zTB%T`tINVg%yj|Sv0l$Y^ZS?;@6a&Aw4>z{`lvCiUw!=Xhc`$TNxr;k)lT>CLu-1}gKlDMMqH%B zgu~nC2$|f@*W;rM0wP2iY>N8vSETP*5Gt4NiV8B(?VEk5<LFwBJ}pG%C=^j+5h&4$o_p@ITeJ_mXsWI`~Fwkhfc8b;)BPvOAa=LmTEvkurg z__Itkyoi`qB`}7Kn6SV=!IM(&U=d-FyozyI=2TA@RmE9v!&JMxdLo#|r^CsKCE*`K zH(8oORN&VPe~Z*-`4t{9WP2@I(Gu0k-?1I3u0104E2PE_?W4f{s4uEg>olL)N3Db3 zdN*_AaMU@cJg4)>CK_?hUGaX@XBESBD#Yz0aFKx_fw2(f;LbTk+YqNDFg{rrT!wu9ui!F< zp3ppX;YtJnSPe8T!@lfDYz~Veq?d3mEHCUcu6?P3YPcHO3yac{5RcCI?@PcJ zV0*+Mhg*{QASI1EB77t0O`(Qj|ZKC1Ash4>DPYbQQ**Z;Z+%EX>Puz{M zI|%qj?oG3BH)9Uc%^4|n9?X6WQ`c)4Hb5#mCgPc>fU1~q` zyaXj}sWd?(p&}D2m8_|NMcwuT(SgRGv`Xnyx8DCk`cyzD-HjsSjpw {;tDXH^}M zrW5@8z<7JzUbyfzBXpwNPC!rdMqq&Oe}`Z^1~jeQogkx$67(_3iVa&t)l3C;^Ld;Uxa9 zJlGK4yP7(V?N4S}Uh6^(e2t?2g+DUZ0&`=_P+{e4VP>_+fs%XZwOEtZhy_FWul8Hj z;Fzj~9NbY1DA6667fBmyh1FbhsP9BkdauC9L|}Sj^s5gvSs5RTe7HKY?lB$p^ZYM3 zR}+ki^2{2r($IumzAZ2MArs~q@yqvMZP~<9#L`Ba6hg1SR{f!4{=*X;tt`yj8A4zcij0#zdtE1!^Z8RPe ze?P3*$&eCw0&z_;l1q`W=^?|O)0l$wl70viX&Sa)HW&x|BKjWhrk$tDTwF7if5odQ zu3FHr{Z~=YC|*p1VcY@yAGTMz-4Nxb;fnOxyP@H?oAYtk2$VK!U*BoSDtp!cW^-jJ zNS6*YiA3I^AMY^qT3J=ApHYiHO{QMwZ+T|IPJMR#dd|_^rR^}J_U8rly{xUPtNZHSV47Om zBE`GE@BMsTKCOe7-sj-yVN)<|l2fCMT{xNisKa z<3l?;-W+VhSyMmN?Xa}G_JWme(W-hhmYl_ZmvO4|w^`e7r zQfscbVz<`4PP$~`*I}~6{4L14V1w+)9rON~9KNp-zmDzeX^Er{K(ZgcFEVA*YN^=v zu5vm#N%BwAl-n*a@bD0+IF#{a@5ZTWO&^nZYl_X%C#0rUhP$h&t6x7K92-B&lbE_K znB{kz5s=JHI6wD&woBKrFE6_urn^OFF-07D;-E zQ|;;N;%}?`_6~mVpbXSAR`e4`s0V?@Pus9FCr6%*tE&%2rkmc1gR++#jsKEr3(5u; z_EQEIrp}H2ZTaeoiB%si3oXT3aG_jol)Wjzvvc$j(O@m5-Im*>nY*T0y4!`b>bgcr zPK+9;du~j=N#gVD$U9fKpFhvXHPvrB=C)({t?6|ZCv{-q{rMVvrRwed7rl<#VwQ|6 zmYeW4rSvrE$j!;me}T`Adh_20&A9C?Uo~QJx;Yh5Z^%?x+3Eux`suZ10skjGI$5oeReKyXws!mCjqlJQYdeL-U!8DwG%dh)o|zMFI@HTfopfjRiE&PTd*hRh#D1(@UcU)JiD zvG6qO>n26&>yk>U(j+iEVA6fA6s?j#!j$OO%%!R{pTg{^_>-^W*AG82zt%}1m&+sh z>21%q0nrc__ADtsp;=)vr6Tn=y7|^c24!m{aj6sYm%1AjY5a@4F#7K=ipS?T9|f}L zQW@qY<_bJ_o!n*-Z!=(#Y?et>Dl&Oas$A4B!@|MvDv?Y+F^kfmU$ZR1WrW$RmQBsz zO))bIHe(`N1QVk0tam5g?{x{e`nx@vFVISD`=f?IaxpG-xs3wEf;fB3 zq7cVW7O#E34d)ltpNYxw)NXOf;U+$%w~f=Rmh^r;8H^E3x-8xbvyT!}li5V=pOf}E z966zG$HrtLif(e#oNOX@Kw z*xX9#qmY`OU6=-Rq14N!s8Ki03C}5^XUxDJ(*$du_MtwRzuDnPOnJ%DACbe%24Ugg z|D21CNbZ*FSEJ>)oY5=hu2xZky!e6(t#ZIVsE#4$C$;(FpBTW zJ)viP>0`Vw+F9Py{Aaqm74ebF3z0r=+Mep}J59N2r}F1#BSh=84#|3_y{WB>8r33Q zU#n`q%(gDl|JtUa%B?*|K4eEaFt+TJ%D?!QV>p9r<{uNwQ;wo^4ts@Af7V!)v?7v> zH&)dSFFQgcRH+hp>{TxlGflZ{M31eb8}%@Xm}Z|ZkKm}&8jP#>diqg@(WQ}m zePrw^^c$NB{F{#Jgab2I#mfmjHD(t67rLa!%#y|W2)#0#xlbuVx|o|2AJZQ8`hC%V z^$GV}EaDXgt^!K`_M?*{`)cY*hiJHPM3ai2cz#&R(JOl5`Dv?3qFNhc6Xd}YnyA93 zi&S48@}||cUS73G)# zKN!Q^>i+2Pxs_uJ^s1OD6|NQiQhTjd{5$0cg2?P1q+-k8c_8Mo#^F!<<^789*2rO2 zZ~EghTz@x{t z*C|ZThh5uCo{vlk4&FZBuy(k7XJq0kW01O&^sD%~u(oC=-myxA_54M4!s@TIHHA|a zQKJR!-mjVKF27is8;`Pf%0((_3vZGgImJ1*)rbbZCi>MDxx@`UbV}*R$kTV^B`ovX z%VK_?=Bd}b$&o{%x>=$oaxkmY7tQFHppdmkgVt8!S8$~ z@NI+ihvhi`lT>4oC6*I)X7P%bY67;ZCTE-}CG)2Uw$>M^6toHNS=el>`t4KdfA-qg zkNY>b9QdbrU$)qMZ!{{w5xyifWSTrmRkV4thsdBwP;FMX(KuU}h;J5Qj4G0HOPEr` zZqZ3zhcY<61rJum zd|U#^UddS&KW*@d=G~XdV&DM*Ns#xUykW6JPz`sWd51S*E)QI~bSGMOXr{maKY7w#!Bh`H6K3XHBj{~IDS$Q|cLZIjw)^g66zKqD64 zG2W;%1|eK$^!U+Ee6eDSjm@FthtU)kAM0oT=rFR$b^L;6qaHjTyh4}>CDSIy*eF~3 z!FE^uSA?C+^+fOUfB4wQ-VwI_P3)qrEw?KzXJ2IDirgRH*a+B5ee|>C{ZiM>F6P_M z{)T$?&5wCxkj<8?XOYb3t>;iLa=OXSS!>#b4H53@XRJFV8Od(dKYtzC(68bAZ76!m zIki!7G?QeW5;i9^2zAcXIB)2mT7H~CiY`K@)!3CZD!#8Paw%&?AM#(0HeTHa&C4=_ zy=L`Tr0exPlK0|sLU~h^l|B1?df)fquZpcFjGIiDF0t4;h^-IxX^Os>~;z7 zFNZm~x+ttIHlv3QVh6nT{l7dYPwSd*CLQ_&H>w^ydD*W~m5^K%pL)xCYPbLk9?eFC zFUFo?&K#M8FJC#|8ouO{Wa!*E1~zw=!K?86-S-o(u2{<@^FdAr%9aYm?M z6X~g4;uWUY}RDb-7Yf-IUY;WI6q-LAej-*I{(q?t^;n~-z zwThIiDJoT!J_8s(mP-uV-Aj*(Y4O}dn#7@#1Wu!WPf7czxE^^QTiYD^=S$QC5%i8o zFRl&#C~PTe$$vHS%iUh|*?HN+(LQG9T#bXh7aSv5Ed8pNoT{o8sv1x=IXP1WSB%4{ zYwGK)AMp3tQCI6r9IE5&AGXu)*Q`o%Z>{H8=k!XswF@+($LzDemKV8trRAsma_js0 zP9LwR=`RkpuYRHizc`e+#D95=z0TbJUR2Tk>gD$L(~G~eZ~0d`MsyZtV>_8l3Ne3F zzLKVQTx$$4_3>*oT^+)_z;NaK`uU1_q;T~sw>G`nF>$6rxeXgD*>Cf&W-*&v`g1J9 z^(K)%P+Z!|&3H+cyF0?lSJOPhDo%~Y1&#@>L7u!*E|q)~Z(2gOb!TJ&@5wh}2YMtj}!ek-qYSytZZ z%P}=11{TO%z5j(j`zY{`R>yn4Nz>aSI-t^IazFWn&;@wiKTJ;a)kDAWPAOkmz1Y_u zdaX5F()1w)Y9c7xO9Djy|XO`!V6w)|zUg zL8%3C#&(*NjF+Wkh(YoEYxpA%iQxRe#}IqSz~nCzos|xz6trl7xvh)YD;J&Dp+xFQ zo^fi=_TKbsen}=_(q(dO3um)Wve!{n9f@NAW3t2?`13%;+V2<0)R?1;C&Xup5C97q z=cL%qJtWOo*gC9BF<MYO^Vt} zwG3vqM|jpM4|L>WqoB|s$JX6VXX#s7951BC71J$_ocV6bew`7jDNsfVG)8+W1z900 zWy(9uAD3bcBpw^-q$d(|;a)?r;h`C?n0K?=TLpbhv++bo_Xx9--s4EwLGol3fFg7H zth}3&s%jzt&t;>19-mRJ8Jb0PxonL5JR?(0=JoKVTPmqR>|T1y0gWdPMupYw@Hpt9 z@S1^cU0f8W5LrvtyLhZz;tOU=n~Q>+7S{X3M4T<(@~`sSNUL*QlNb7NQ%Pc$KR&aq z7ds{=A&#Rzw@~{zo)@0AiUpe!h;iIIJmRhdQ2^VpRwh9P2{IC{3<%E zt--8NB?bI=9z`BG{U2MPnvB)#MDIoWl;RaPHPh&77v5k(ut<=}WT)7Xsvk^ZpT{9i zOyV~eOoY9#&4lw;GZ!;g^NCmj(vZ4Wf>V9GKRI~~t6!zepi@e2iAofDGRc(fS^hHx(dKPINs-^sk5 z3yN=&`cL~b98KOX>=W}c!c|o-+nGNk#>bP9b>=U&jj&U|no9aN-8QJTI`ZL!D398& zde@{#Jylt38q@MqkSH1qIsvtVR_e^!R~@lihz}WOf8Jl2S*1y!mz6tsg*_g)e))aw zxEhXnV4vd|jygKP`3a|b^m!*a>S^{?eVB_29q{RnP`jH%#;8+fo;n)5f)a3A7eq$x zg6*uR!(E9V$N+P%ssDu~XZm2t9e!FxsK`;emV0Tc$~UMcF$-VtcV z2#y!ukosw!>e_~RM(!?}T zg9*KXsVCPf|6X~@G$#Sa*~S#gkSm(9sw+0@ytYeN|7b?OZlbtZ53a|9FQR?5H{V>f z?8^wVC{0_{@p@o|Z*n?()Ml-n?pTb9>B^(p8>R0P3CFy?Sx)+dQ(+yv2;o!uxb&D| z`C2U{Do8oH4;3^9Goq8K0)N%we)&G0#n*|!5h@Pm=<0e<^x)YM;pccd1Ae zs+i%+7!q^(;ISrcuC;~pv(chEpjvCouemWIxANhEl4S(Jdwztxw+3YyyFl(v7*h7J z6BGlYA`cP!cbK4$HeFuY239k!6j0M78!LGQduHu7pKhkdiXK?(Ad2A?FFn%sCp1fF zcO(0d(#|L<+ZRu zmm;5vtjf6PBG=#N1ith z+&B?^Ai4nScX*j@9fFX?GC>^Afs19+jJ1U-gtV_h!y~haP9!Lh7!l0$1%yY(b8LRt zk5qg!wWur25?B|Ka%pRA>{6Eem&bsk?-Q%N>WZghZ@NQ#GNl1S3=31euHhpq{XMD- zs(H_kLj<&`^&f4m9S(6)ViY&5--F6J7T8V$-|J>Ks<9;Vo01wGvWvw93g)5P@ixy3 zu|2OM7j1GFQfn+4p!a&`dy7#xY9M6ZPZJ>nDY_hW0=UG3R!Uq)AeJs97-?-Ku??>esbr6 z&A1;{X!#x-eabMLv6$mGO4@&n&tHLKOu{z!3bfMXc#42Y`y)vv4=!K8@{Q2aux}}m z{l+=PczXZse1FMPMhA_lPOdvHulgZ`0n!MTF6|LV74lbz?NFsJtU7FcI2-`s4;!3k z=mLYg_At^t%8KagwA*m9GFX?2u2 zIMDxEOIVqY%${`5o{YWW01K(*u>YCW{b~J0&x$q~sd>Bi!w@kc7ser01hq(k(YW*z z6h%H@=Kz%y&hoI%NxdPvT!w5gzQjm6+#C zUs`nftaf&qQZ1B5I>oJbJm%4}u&(Fg-l&~>+dVMP9I(E;emYf4u7%ei@6`RGYMj3H zA}Y{|>M>Dsm7bY>t=I&Zx!L#y}j=on~sCX>Zo~lCK1({)sWYv&39y(W_(tyR0ybfye5=Bg{ZUl zQO~_e6e281HUxMCRCH%fC!b{vEh^QF*$97?_j|1Cx1r~_C_zteSt-%;OGNO*NDyg{ z=5EHCEl#37$6w{=COdq66a8mK;6taHX{MCRY_Md};NaLO(7hjMn|FXDdzY=`4M{OQ7QJw@}tGJKYtzuMex z+mcnqBg?v`3V+?aQdMTEoSdmX9dR+{U-mC$HfQtl*ftM0i)Z8m{Fw-{E!gSf)F3K#1K#2+K?dM0_-kdFwVRjGTw3$FEWWS#)etw z`{xLJ~Y>_TOwa4UBjTxhBnWU z*ei;;#m5yFnYleeyG6dj*xDDPxV<|1?Yw9#M!xk?(Faz9-5;*ErSyr;!mG(ihVJnm z0@_2@cpvjWP>RZwGE5Ro${=@HH?>IONR|=!XcfHN49I)@faP%fNT3vy1tsSo!OP|! zY$GtnhZVDIgW+iD-XjzkCTTg?v0L{;Lmsre%odlRp}_a>{t`Af5rF>@N3{+Ag231a zG1gbVEllyyEe%8fnldaX9OlhZ&{nW#t!)#kV__SeF033Dt@pPk5K{WsHq{cr_Z5obA`(%1+Cww#KK-%j^E zDV)lqcu+Pmy4|F+n3?SEE6gjVP>4?BA4x1_#}2_+!rb3d$yJ z^TFO$>#M z;%!O(0*|PH$J~-=(k|*e>2DHCpHBt&wG(z#zqsN?_?^ik9L^AzXLTpXWAwD^wKMta zW*PHRZm>0^b`O=ooi2@{ElZNjyEG;C<#2YX5C*B*7$M>kENgaay89xt8BIyJIey6P z{ACR;MO6Eci)X`5Jbu@Z-qQ9F9y#4Vt(+8+Q}?|TmY1D`{ltA$FMq!#Q3i_+{OHgj zq04so@@6Yyl!!SwJ$EAKVZ% z&07tb$?re!_>};IhWGqy;N^jDjl4)W+0dy&dCDuaJ{<@?f0snIk4o!l!O^kzgax_f z4QJK1SV5LI&W7$zf7xu)Y2lS^yjl7$R}yILyY^TnWYc$JE&-mD;fAC?$B4hjNjdCs zgLCI$R(LA1fDU#D(mO@+pff$(EsVwJWu*iSd7RKWfeP9aqzSr^(-LlEff1ELJa7)1 zTmdI^HO`!N5DL)aAM=T!Wh(*TpQ2`8S!a#LpyjNp+ z37aJcA*wh@B+FSco5XC4omW$!5_N3xEDaH%kRIOjS2$H)6DT8dxy@=G+A}oOu5nS; zl#(nI9Q$@>nBVQV0nhF@$6|uEyD++bivIz!Yao!iO%Qa#;2-UjaE$?!j{~M#kpxhR zvo$}k>LffQ`>}zIslnv`-DF`fkApG}@NdX?3r$cm`;f+wLo%1aZkQc+7oJ zfGK8rtCz{!g8$I}xI8OzC%1yLiL*Zqlw8=Fd@gSupgj|;eRR3i|LSsO)`GeK41*vm zHS>f#dMo~j8obEzn)t$|To|Ak8nj4%S<~jc9*l~}qg_ulvo6a>_%DC5;WAiJ(Xv@u zf+0NG-(^8jjzKcR&Qcuy3X6sxf7(7Si$?fqa0jFqayi9MRrGhLuxfi%f(EkIHvnt` z+0~=a-EbxPKm~==D!G7$B+|XipDg^!ypARpNgn)e7Dg1e^A^8)GJ28dpfSuBRb>gW zv4=tgBN-NJi_B?XO$#4ABwFdqql%Vg%;1QFK>}Cb3*TZG4pAT)TG(`YBA2v0mwb)6 zDN5XgNV2N>@umot_a3A8$>krOWt!KnT`3ftvbN*qh)6HYcL7-*HNi$i60 z)Jtw>V`PX)@2wj$WwZ^5mf9xvB_m2>gj-xR=@b1Hlnyt~-~YPi5cN6n*kXIjw`z)8 z?G}Nf&Jwt7@n3IxVFxZkY*+HZTp3yDBS|c0XjYwrrN&26H%`;#{vVic%?s56!~qs0 z-Xtz8Z64GrQA!E}qXbI7JF0TJ3Z=cI5yQQv=mIaWg8`3|VX#0l$-TKo+AMHbGk(;jr}6k)|8zs+Kh5Ra6pDIz*Ta@9i4|(7gnRRWB9G=X#qh5p~63% zc%xi4gDv7ms*uMM6;|(kA57#E=y4^-$*9r0s%<4XcUn3r6~{P1Sx9;q z*^}@{;pj9UbB%}R1!Yc98T{?HRZ@a=n=@jtj(|Hi)jP^Uz242!N{2OL%IWhQ{}bNM zKmO&ZoV$tRBT18KTY8;uA?NN4(NPqj(ozc{iGdgZRFxbh!n$siwi65?~D zP4u-HhbQs`IQ_8Hc*k!EX|KlN-br>VvzNM#{!{!|^^kyH1itxO{4-tiaaBTiipl%O zoO+A`m_i}awq3^%`_IFBlS)=k15LkE7nxu=bPE}p42HFl<{K)B!G~O{I1l0QMTV^5 z1;-V~l$_Czx>={Q&v6SPUGYt+d>!H6Rr5BOTU9q=QZV_we$8!L>BIBA#LZkG);zcY zx;o>9d~K_^HahV=E&^t~1dDPWX-Oo1e&f-*QoqK+>Te=8dg>;OZ4-~ug5FkUU!+NyUDy5A000oz6>#;wn*4)D8%VBSt|8@B*d68vSVL5&_^K7m)<0 zip3y~g*#)H_Q3k8ctHQ!N~EL*cVB(3vmS*1$v^XCI!Bf9ohL$^|QUmu0D=fjxv@C?7RBy~xVpzd*#Nj_qDd9N?; zDF6rH}4ux_nrH7RUN{VmPq93y>;4sT( zlZg3Y_3S51)ArizY!c|^h!fR8$GXo?cCeHRg)K{(BN2|o%sXjPbiI@KseKS1-fmAv z)&E`kt20qpwb95Abjs(>a5}FCcn|s##R4VRTti(Eu^zKhZycti*s~8mO5a+QWiHKh zmJ4(cw)XrIFz@*$kkykF;ZVxu^+wlc5$9QPc;(kj2#pTHyC&)6)$j_`i>9-*xd!z) zQF9SWZ{@yVXZuMg#99;oyPnFv5cP&&;HUH?$D4&lJ2Vk zzMSZ&g0zpf#!nH-1qFC+GS$X&U0%QIhc@r3w zK0IaXysh#(pVsplP0Car#kNB4WC)<=v&HaTI2GRH>U(>t|+F zHv~j*;wFP4P%Tg3^d)O21v4z*2#zKI%{hkRd@7PKlQ|`k8xRaF8x9+hH)JCK4T{qM z2|f^T0(G30-QEBqGg86tKT{+h?_YF(0N-^QG3%47CF+jBS+E3Jas}a|tc)|cTe*3c zNewDBqwTi6yKO5*{9~6@q~(NUQa$~oj=}A2V}YO>22Uzjpu{`caf$-5I?DkbgRjRc$;u+M}0v5m6x76Zt!3wB5UYB-#S4M?rC#LR3J>~hk z;cS#KfX?RgE@4&TFG$Syr^Y2|LcG36p=e?HUjKEBsBSZ;3KC8*dOohc_Hp#g5JPg1 zOXRBV(DCSs5~~G>i!A;Ai%ohl2rD>D_F~1+dznIURwmJ^iv@5n!-ohfDo=}N5p0p! zqFr;O!I5>sa=fb@$)>rogE)1FOz;##*p|bF_HuDz$ z!a!Nef20&sv#3N*Z!5eWUMZk2Fh1szS(t=JUDhOI^)B6_@?PABX=sFj^C$hksT|d} zRoRO@@KW2QP4q+N^z?{c4knqHRt&mDNOS2r^l*XE#G3?V;pJ6+@CFZUWgYjHMr+z! z`#1Ysu>$aSFE(i<^xrX$f>zdJU(B9n) z5YSiSRbRn@RH^gl^8N)(qh5;NZSns+gyW_6NK{}W8*c9pd#_nsU>tswScH&@gDylC zYjtNrCopp}Ad}fSN)wwNwA4uYryBB{Jzs{m zbVc;lYDaV(a;{D&GwaxxMjKF-0uPD+KN|4kWZF~9qa2c?=#HNKCr0dRD!G@{h0p2s!(*=RI6aeXDgClBqY#u z11&9!X?(;lkijdn8&oRFns{`Ka`>Gej0n}D0(1AhBf{RgV=%CoHK*B;+{53#U3bP( zm4o;fW5>yPW4c6LQe!2`hi&{XzF0&1foJP%9rv1ei-rCwi@69DyP`#=A}^Rafbg-6 z6}fdxE^Z<#nrA3U13l2k|82L{9g^gDe@KvW_G(96mZ#ku|B0TQd;SJ7FK@IzVu~Vv zW(QeMs=x1N|Dq=?ybFJ~_IAWgb&QrZ-f+(`ermp>MWUzuKS!qvRGnx?X(V|Jbk&{R zBB>rR4w~t>^m`Lv5$%HPyv^a(MQpQ;5OW63?t&TprI{@HRRq$OiLw&V68xk>+39Fi z>aHBz>|r{u+EH@WERAOy5`~#9(VK8*S3UK7X>(UZkE;sJI&1b7TKDODlEVpIjXF!X z=#$zJ8~#MK!E!H!MU#bhBlqHm?3x605GWpX$D!b{mB3~0@a%GE&9D{a(`@M{Pmby9 zFaVrQZ8|-nLg0GeMXI-qQc^Y6(e%d0^Gta z`ZH1K8N`qy+D2@GlbcML^8Ni`n{1h#-_sR|l_7jNuoCE|Vg|{0k-QArkVXDF|8!k} zjBg5D)){<{0q+0!cQ0&BNCW!mzsT9jyWNJLyB;LAZ`A^iVa%e8k;Z(e)QYOZMUah3 z%*lIKC<*K104+kI#7f2QYu!b3DAMoYD3?rjUxOVS%%_}kir4lb{dycaQuAk#WMn=5}M%_)^YJs!3Uc+^BgDbjs8sxLA83B2=KDFFFM~&EH$9y zlm{|t)Q?u&-ziE(zG8Og019`3E_Uv~UFytT#?|03Mi*HL7=3-=U~R~u;UhL2CUB-8)Cggaksik5?@PP?BmS(wX7 za$ESNYTruFl*&+8B(!c+xpA>aXHm)Z^wm45z+aU@2cBb8(dX7OCr9xyS7FG|Gge6t+9Yb7Fbu&I2B=|YiR55x5cy73GL+;Yw zeyC7tvc@t{^l?1Uh*V|>J=)+b6D!8*rO9Je;#utoHfI3;;>uJq%sJLKJbg(K)$`O^ z$_gvluHXv(Bo*_@mVH$%*wJpQVu#_i=%JzeERs4#`}1@DCtRW*bWDd*jRfK<2ymrV zV6!UR;W{n!ChY5(go85MflW`e7>L@3f5rO9P=sp+zOmsr;iEjk%4#JVEjxNO@PhuT zg>~O9oHW*!qY8tN4`D1YuhQb2IM;^P8TZFxU1|WZ9k?t{{-=9$;H)boDS#`lDfKaX z$%BgnaXFh+uma3Qh#gIw+WEzDwR?8dG^9=+`JDCf6^vk>M%-knK;`IM`IS8BVDgk>NBuj*&Jp%-(G@0H$|3<+;;Q@p2boNC_&OaK z7sP>LxN}Iu8=2yjrfi1{;54Zw@qHL`h)Z^Y*-HsP*;Tg4{sbyBR|TkwTqGZx%Iw*D z5JB(rfI?FHa=%2EL)Wz)#eD$2Gti>Ltj4R3!}c`u7cb6TA+Vn;ayXum0+9!9zym*N z3veKEsnq+Cz;XPRgeGX=GNm}K%-Hj~W8 z1lq*U8vr;`>W$Y}NA>+{*Zli^Q1CrKT0E|=_0~)U&&8W>LRBYU6S@tw>&`pA{=@xD zfA!z}ipYgJDugu}hln@{ z3H9IUrFO)hoI!fL=5V(y>O3L_-7hNauqCqe=a+H{23<)^PTaPl&E{8!gi%b6h^!@jbs%bV7ip1Y;fOYP-2aCZKE zE-gI#Cp6{m=jMM;#1@FRUPJ5QY^p@SH_@bjoBYjXZ`RkqXFU%H^6*Dp;qR$#A1y9z zI&+`eoeYVGUXde7j0q+kz7_ob8aQKvdrZdX-gu%DSF$mRBXH-I5O{E;3s#b66_uYN zhBS>PPE->Qnz8JF*a3Av6302AcuWXh9B7bzkFyK}#m5NH$BjP134H#LpAk9JF(EVx z*yC7`H72GShRULtsZM-seMX|fN_s1rOVjQFFYL>;0PM|ENrFLfGp{F)N&#R=UiK0t{G${sMl_{u40>h+?H zCIdy1e1Nd=^)4s{OsN-fb0%qj<3hCgA@$fQIH+>7G zPBPW-%GAsUy=@A)zqh7e>!=Et_QvTy?JoS+YGs9EL=ib)OlBP!d;n*@xK;Q^_A)X! zwLrG?{4-X=M&iNdJPzCa%FC52tr9H@O(pb5?$QbLxybYob+tH%XBg6UVJshFvtJb0 zpcWz$*Fv`8RQZ1^En7gWjMx@+6cqgAA}D3@E>6#EjF^+*C!F}A{9c-$pNn57`bt98 zPCGZ>_T5OzMun`4t|4D=I-4UR(J}M0d2}1Td5?L%ow~J&$v)GNe*JU~Jr5VW7N71Q z(9Jhqm#tGr$Ef_X0g7q$q)a?8JF zyW9s{nAo<4{`1V@e)4)q#~sQOoU@4)Lkt!1Vogw3)KxQ`$}b85*Y1s*)mBnO-@7f} zf8QOv{d;gLPsYr{wR}pb8ATw~Pr!?kj|h5E@&7@jzRmy6pUl(mR^1@UftkQ@P*q?( zsP?|3^E@eKw`2U48;1=9eX%i0qVPip%GHA-13-cgik?#kQ!oN$vO3voub!?^{xbD- z;Qh3c-KyQ3z-{$v#co9|WtDQ!r-6$1T;SYc?fU$_q2=J}@9VQXkj8L@aCADY(w_g@ zLiv+oNx#KbRsA`l|@{5dr_=<)&Yn~t_xa+g!T zigu;ud^l@pO*Ad!AzQodb<_=gAr+v27J)}j+#V@jD~(>DnQH8abXy?uV-?_96|GF)l_1)Pmi$0YAZs zZBdw&2_W03Mk8Xhd}GiHY1#~76VbF5`jh`Il{{w5iCwI?F0pQ?pbCWP%;Z7SM)WR_ zd9JpLb19QWfX??Tojag7NfSUEXc_tZYxuMGgek=IFoynfal1G|n*fdsLD(!HPZb6F zDL)6ug128^ z?X2wEbz}YS^ClUPR&|v~W1l#UDFT%SoFK{+FLHN{^2YVfy*nfWLrYgadABqtQok*JlxWP3g$AKL*5Bk)eH@0BRgyczRK!qctkUh zP8@4Jam<_=HG2-LdL(n8=GA1EoBGQN!>DPL+DlE8Cio>DXiz{+dF>e;DVAK*E0H+z$a)0^(9Ob3ANHJ>aH} zhq^Wy4)L-oiSX)}3cO4^1op%S;OiP=Hl!{gCnUe{Z6lcoy^ZK!#o;@wp8zk!$YCXe zXA8qg&G)QP5X=(ilknpz0FLId0r>1GfCSkP`}`tsY3?~_QJ}l-z3?=92F!|#2aa3_ zPh5>%OV-5`GF7SQ7o&%ORAo9I2&CBfGCYXV`c|lK2MLuteBrQaz4F&76#r0iF2kF& zbko|8tPXciYdkXe_sh)ul0jYN08dG=0-ZqIgr7!rL} zdpe2;n$`!(=b`dAd)JlOWS4?hq#s{ad&JGL)6h{s=sv|9_JGQw540TCU((So-_j^%y=s?g_yqYTu< zD$;|&w?f7HqVC`x5=)59UbFCvx|;OObnt}=2`sgB zezYdEh2i`+|+q?SMcE$-c<|;GU7bR-!S$|GdW?X+C)z0Fs|JX z-8i`GY}lT*>;Lz4TsqF(BTBS15`Yg^PIvzypl=;eKVr1ITD&e!OC3K*C0R}Z9ZS9k zFSAG>KmWJ%-;YK_e5&xyH{q`aVqBvrumD^0y1d-i#G++%h}SKOXW#TIJ`kfG4gdA1 z@>W%vol8g?`%! zHsDtGtD7V`sYKL}e*9APtM(pQggORLX}8EcU=BFa7nPP9_9f#hQDEB~ARjia&kA(5 zwNB5Pu6@SMJD^vA6c^VdAR`^}UQ{KzAldBkN9>Xm{A!C4m?C_%gQ8K~1YFL4w9hSS zkNs91$1?#lbpy}O0#M0kB`3JKk>uhHvJN35`WZQDcpSVE*M{Y31%F2Ze2SR%sCs}& zNkb*)ws$ly4p)OkA|6)JgG-$6PnEKTJk`IxQ_3qJIi{AwFC$e7RhsBBTuVBn%L6vA zoY}!4%BvyA21ZK^686HoRU?IKLEH6@7=NR<2$g5xrmU3lpkr*l22Tk5&K|Cg8(2ct z4+Ui7K+JK4fyXwNF z?24>DH49h^#W3kOu_0Dir0axTG@}>nE&T8QGT><0c-S+OEB#hq)ddEU8Xk}|i^+I3 zcgYBx-u=xm={yk1G}CJ+Zvbi#MdL; z%BpyweeYg>`z6|S5w^D26Bd?8&v7l3`I@iUz%gW zj%zcRk(eRb(I2ZzB~%n$KzZiQY>RqGTI-ru-8cPMtj!uf4|)x58uDMJ^SBkCV2yBz zf=BWZ%pp|;p%iE_7zJ!dt_HpJB@`x~nr0(OwqeQ(+4l)}4r>6JL^{m(1ZuBKG2m7k zX$iFQ*#0+?EG7Y1J-flSBfJu}R4f@<%V{9Sa*%Dt0$rX@JjEQb{g^e{nN6$?9QdtB z(bfR(#}Y^hup9XplRJe;N1RC#rmyNOZu+Aib$@tWl^nl2y!**Oi{|mwgLDE;UKtBs zZl;V0c^{hi5%>pv9oUx2&1`JtESlCxYp; zaIJSnFaERY9!BOKy3#mAEzv~kOL&*f@4E*j*w6OF&N`e#nCYIzUp#B+VV;j)C`d7w z6j1vm#ju4CZ+}@ETr~TOC9ENNI`%IcD)#$tv#)pWk*hld_1U z1AaxF{d<}H=JcXQ5B%r81)8Y|dX7Dmot~k$Khjs51f~QE(to=#N(rcuN9pAoC!66G z&@5Fp^LJ;TrfW~+P_@jP9{o@d6fXF$ih{sPVPHY`E@mQnySmpsm`qGdJ5mvRW2lv<@2SfD~J%S~g%UCm)w=Bb{ax1LL`H zhf$Os6o)ktUY{t)an7)j=W5_j!vSDU{?g81w36dTc!G+&#iMFpO*HQhND>a8lLr$v zv41fTCVcYaq4QK}i_v?i2@z9CH4oD{8#M=E-hr&?^VK!Wjtv7V6NAZR>cL&sG3L0J zM}aw@w}8{fyQD~WWCei)x`T)wmcCN_>Qg<}Ud)yMYo;?0nv>jqpnbxJjuAr4E6Tk_ z|KvdpfuA&+be=D79KqZ`H{+(T1LOm{RWF@rRKj#k2rC@$!0&mUc+R4V3}8x?A8gGh zks~;7iL7UhTvf@8Bl8wY*_|Tgh3rK-Y7#BDPaMR82HHaJn3+<2mfM_dZw8Vw9JbD5 zH*qxA{gN2*X_xxiA{;NDvgz4T<|q<#vL=1wvPhaDNaU{YVfaG$vUEulU8z_c-)ti;qKdIiE+KWZS(L={NX& zoTt%w{QmORZ6U77(G#Bges}gJbv+76OqQ`SK}yd?5#4M(JH|bP|I2EgmoekFbxxtC zx?cnpLw1#jy!BJ^nYlr7LTe`h)bi!$pebphn{B>)zQRUL9En8cX;xn#j%ndl!7ltY zNU~GN`agkW<5!azyzG`1H1D%cRPb*1ZCBSgRwC|FZjVlgH81}N}FO-CtU`GH(r9K@J*BhF(%0_;4`E3(>6Ryn;Yj~Vi%Fl%Us&P4_EUPc2-j)q ztjpg@7QP=w;30q9#+=!zdg{e}EMzJb%GzFPxi)G#ednqtS9S2tu}8(Y9{tuOV#DKl z>P%SM0Dht zW_N49Q2pa;mHR_@M31~ySn!dMo>?qM0lkgr(2W)4NI}D^``_e?3kFinpDp3&@b~Kk z%k21qfIesh3Pv|0ejz;6LHgJzcxWI5zy;eEPT*h=MYm#SocZV@okHA6ko6-itPS(0 zPo(eC%UavhH;9e?D0@1ztRvVy6+wapbgoo{Ka*+VkYmpx_#Ps=7R84j1uReaeJYG) z*raA?Y*&dxt0DhL@pWn~8oML#0=Ji_6-+@jd#mb5zdz!X`rNqBq#4U_m-*54X`n=7 zCiEtL^jSm`k`ev zhX*Y32V@MsU_K3&LJD({AW5BGmX00W`VaJnLgl;qgfmE7QgO1@e*F8l1vofAU9o!$h+u%_@aggsN?u2iHwXQMHHk}ap7|n`{`F3=lox5p>N%9{Tv$u9tlokazCGJQwFZlD^|pFKbORyp*A`wRBC@3t5Y zekeWT=ZvzYiNDz2nminbKG5jCs*=04?i0ty9@9QU58WolU_nP}3T>-Ns4hCF4sZZgozH>B#~?lDn*ksOcv zh{(|UcOc;at)YiqGuj^QCdYfWe2cfpqgZ0*7B(Y%p+D}m6i$a@KmY3V@9cf5PUyH?o@uKU4SoRWhxH-7 z<_~pR?rCPJOdK(hj%M%lg2^UN#~8Yw(!IKyS-mbJJCr{9r%D@GqFnpDw&G)}yxXki zKFEAw8jj@K{gyuRB$(w-KAX93XV^w|1ceT}wJl24+>e{iuh~9apZ_PtZMU`Q=9;~E zYEX*gZaHTgTIPu@YCHasgjKu!LFVVBd(7Bxbi0vTcI9#?EdZ8ruOxnB!2m6awTqK&KC0~lxT)koZX^DpLMtr<{WFccI=?0`0#xCmiQuz^ltW{)^u z<5Z~OO`c>ptUw}#hrZr;p=+7Q(Gv*!kep)oK!dpFhYybmpgzmF9RpqJf)}r?ay;4T z`KFDJ6OPM|H>~Q9105RYXU2XXe_MaD=05UkomlV7TFn3p;-ycc1w@r)Ee#|9VaE?@ zXw&QZw3iU#Z`D4Z)3=4>hGr1VHp(h`6e&M=1`E|^NWiwa08x`}^ZQE&vv&!hV6JW$ zfmj(t9iPC*Y&ezdt3eOKRmXOEI%aX(FVtHV!^oCKcR)?8k#M~G;4~*kC@UeI+6@ZI zr+LrDc0V*kCgJw?L)@Ek*;GV>7B11I&bz?(K_iyN4Jjlr5?|lm3Qf{H+Aa~S7a7FC z%2O*qoY8P!OMCo;k+0+Qf)l>Hfg*%2_uMJxeCx~_ z5l!sy%wGJkiJwKN@g<1e^2xk_A0_W-#Hs|R9Fry>L_U_#v`eCrEBLcCyhhkW9>b#4+zdkt@|}ngc*^@gcsdR*7+>(}D`Qr@(I>svO-Aol z+-JAE3kxE_E0y;n?%e|+Ye6@*f1@5M@Nzp<2Hn$a8fI91ZHGISy~ur`?~e%|4*f=6 z&i)C9^tM_48@Cjvnp3<<%?r&N`{n4GMJ=MYS9%Cu)&`7KrQvR<1O0!ywAO; zK>_0J_}}8D9B>@Fxg6DB>vcA6<#IfxM+U>2G`Y)NI`tSUJvDf9vr*a+?9{C&^{X(~ zj_1LxGC<2ln9CV{aqEY-{-6R?tqaYmF^z-;mkf<0{!OoPUF>;V*lP!soe5d`6 zID0tZnCcik`bnGTRL-FPql9rR&TSQA@Y>MV&Uw*gDq^Ak0MozptMkK$ z60Dp!E!Jg|y=#emA{b~~voX)(x@6Zl67@>*ayO>NztupZbbQ#UQK@Eok(rJq_6!f& z)w#L5|E*8v+mg7B!N5}43I%uoe|kyiKSi@X##G|Of)RiaEJ=7>abqemNuzNVw@-mv zO`cLi0jkzx%AD_KcAKFLcJyshBSiZ1EtYX14ZqSgrp=(4CYfxL%IIpTp1{q@Y)HLs zkJW33iPPwCB3uJE><;oT6zEx(m^2tSAo%8F>*-%P&B4Bil}WMsJuwNfA%(2zQ5R?I z-0AmDZG(qQ0EMTYLo1rrQ7F-NDghw`V6>+WLlaB^L<0Yo@S(74-R}V7TwJrIUH7>XEx-|2?xf-RJZzf#2iBkR{gt*P!0~y)K@*QTvw= z3p{3yCMqMnKsY~xNftjtvz9&pOR`<|yeIJ17{_VClTs-CCxRYTaZSB`#BlWIoNGr7 zj(YcSuokbSTr?gJYm6Xo#6>&J|1#Jd;+&zBI zO~jr9g-BzfYGAQV3v_PJjuu!Vl=CN-N|hW!YBgOjl?+y=M6p|~$*YIE=>XOPoA&wQ zl6d2TgLv}G=Z8D09pg7+&g`I&V)6F=m?Qhqa1YQRT`H*0){I0{ZUXU?aQrm*U%tHS zjk+)I|7roAkDN1Te#9O-=TLWp58Q=5qL(~4Qs@SitUpQxfbpZf>->zi^+yfd5Of?e zxoDGav*#KG3YF}N^|O!=`=*^g993=qKokGMZgDVh^zx|PCnS;R$G^kfJ|(5^HWmgh zr`6B%jGIiq=aggx%zhr4G5GEFpXD_F672Xx+0(Ap3cX^_owPw(s^^mA%JUEBmMA!a zU+Lt8_&L^wIDd1z+xRdunzRSof~Ck*2?$M3t9`tRL9QM;@GQ6vjY65|gnR|SLaZq8I=K1GsqRbt1Tah@?y60g zY<#F}IcYv(Idc|2_S>})1Sn`gK)xG~QaY0pFps2l)e+2p<8$1x4|R5JtTTEgz>a)? z(zj*&MUQCH(H=PYyPmMgb2f5z{Hk6-b)Dksjo45vFTcJfn634F(+A5{b0tfq(oa<# zTGr{#juzh9FWiPK;y1qySz!meA|OKVHCt+qU|xdNMPkXmZ$dO5W{X^Aiai!k>qf zrM90@P(FV2ACq^4QyA5u`)Q`8_kM6w!l4bVZ`l>&nDBS|adIZ@w~u39@F~kGN_a16 zV>=foiZs^HWmj`%Hc+q0)~l9&tl8L2(d|$y4d7X6D$-j9YIJ+*f z5~D%7JET)WQfhRkq#|7clF|sz{`Y;{@1B=C_WJkv)_GpnBiIggUTL2#8jy@s43a}z z*Oe+I!1*E~Jek+bjCvUjsF!X?!jxX2m4}{pptwwS_x)jfwkGM z{R&028LHme0$|e@d}A;vG|HZubqt^_?CkGZB*xuCXf1{e?BW~p`&OzA24vixz*p9; zaX&`}SF#Z;GjXdJSp)@rP6itKS0=K4q?h!^B{m0BCIFG`+ikJ?Kyj?%a9ReWzGE;O zMhQV%?F>9idx)>fs>QWRnENdM7c=7IsrNX}_a4ACVTm|^_9A}r0V<pAG*fbazO!eVaBCk#;DH3@rafC(!W1T0yF zKa0ri68Pzb&?CzsFENWQen`6+{X7m7%)?@wb5r_IqwVCN;A*Is^0mpfY+*1O*HzC& z=`>S}UCcGPjzXtD%s0k^e?L|Ln^++W{EziutT^sf9XLt7%n-$iWC>r2Jv~CT_{esW zftaR&*-(IgkoWBrXw^QReXg?P)(|k80?%#j&@oFw{{&q2P(Bc$bgZ@?6sM!PnG0F*!0U>us$*c&IfnRegQm z@J(@yXcNo*_&4aMQIJJBnw)y{C)eb*UoTr5FO)ANk^_YSn@)dp!@tn%!6@$m!nkax zpEy>D-X|0NV_Wp!$E%i2ncru{m)uxjn0e!inV?osA_wVLTlHd`-X)@S+4oTbYABwn zS7VxIc_gNYW2NK&>vPfA;f71>_;I9ZmUzHJFjoXBBIRksFGx3^#!wC35-76nY>L<% zi1UnM>oCtGZU#K%33Fdk&|=8(0P6HwfqHxfg{E1WRc-YIs8f^;8s7jWDn8rc7fR^2 z{0F0qXE|T1 z&lD@lit^<1;-te!Vqc<%i^2*#OMW{9Q2RBG%P3eI&Cu$^<@2_w^U+fBEgLky#=N_T?A&FcJWc5}_fo#&C=FGx%@X91ePgRE z9$=CBo^)kuiyHXXiAUy{{Hd=UB8PtG#ZUKG8X&-ke4P5qL?;dP(=&2-f4A%Ur$MG{ ziW5UVNJ;}sM>?rswQFUyZHrY}4D#f6G1zH&&*=VcnqqwDr9xunWie?s_+;sQ6bxsa zM1zT-0a~?BX%wUV*yVS8R9b440iLN7#Vb>&Kl|LXcxD%0Jn%k!H=$hHG&_ais=?1l z%IoomL}G4t0z-00uIU~fGTzNgM8@C6rXEZ}-Od&ekKMz$lII!UD$=L_)@0+gWwl9i zA~txQt%0kHQ(LW4b4{IE^K0nsplR#cPp*%24jAfB^Mg!+FdrKa$&@Gj#-avz)2{rg z#V5IPL!6@HGO1Pitl9(&ZXX{iNLT&c|LI4mumw*ktrC$*w<`KkA>=HCdvQ<|Xb34UXtGLC^eF6MwcMp=QU{G#`r zsD#ZeH$0%fx<>0QDw3C?d?DBzF%SMuJga;SBnfP)YgT;SrM(yL_@{VqH5#N9A1y+r z2#Ta4iV92jY~`D*e_Fe{w1p|1WzFf^i=^{0SLk4QRgB+lU*}ZFd{MEvOgpJN`E-dA zt@8DBGrHd(vmoW7QBeDIHTUeXB)2n0;U>eq_m<-R%nMyF^Vvcl1MucP(PWQ`y0>#3 z>`8~d?bG!g+R}#w^NL2cB89)i;0F-NYt6n=prXd|!j%;E)w+lfp`4X zQe*t^j0xr7K$apR{G%V5Yesy6%BWEYNgnX68rvz5gUbI9q`=Noju{9Wbh_$)XISxExXehx0; zNsi1V4I}5_-Rby|*8h5uD>ud5WFs$Q+s!4lj!(!_&ZiFce7Q}UjXdHWfW_TYtlXR^M{faeon) z6p|~;oD|}F9n3zTl^XD^rb}@zKEgmgzaP~Oc6}DNqzWd^aG)J z@|;hAYLigYJLO}+;(rP$-9IWPOGC_?MCa)KQeR*x%8|12cl9)@pVor4W`x$yVu>OJ zVsK|wp|{)6tCgLW-mle`Onk&la8i0@mAv$!&+piKImlRUj>BhA63~<7Q+UKOeqRrK zjjV`AB?Ao5hc~j$t{gh<75ymqq+y&UFoHCV`arc=rr=L*yiQ!_tw0R_#=|d_eUZ1! zJI=rmmPc&K<*On5YV0d52f2krS0aoV5AQlkWm zV0;{Z5QvHu|I#w{;q!uPpoiSM_pUWbdB@=q_e?C<*-7c#H}5BvBHc0uErVbF=GlAc z+do4r$j#}FR7*x7oZJ-(?AVzT&3Du-_c3C2ihfZUt-~$>M%YHBF~?22yj2_)?2IrQ z_kaO(w^L^Ds%g*Vsl#5MzdtUJk8bHhAz-szvsok1Xgv9aamJGv2@M!rzzRwl0yM!4 zZJ7Xu*Q`-v9pY#WveP1Ou6Ka5lhSLCNAmR)InC|WZ67k3OVTNe9S1?||CkM8_Q zXcUh29BZall=U9rU6>G@q@k54w;_BKkVt~+dveMGk5WaL9L%Tu1RXx++qtFJcQtto zZJpbyp$<+733`u13n;JU;e+2JY0-(s#ahBD8Z6=G%Zs@V(bBvS2&#rV<6qCY=rzlh ze}md=eg)K?`aal%ZP%zM)9a(^Se;QfTd37c4B>c~p z{d*MdcRj2-hMkQc^GtqA|DZ>T3=xWbjRt3oo1%|;RYQ%B0iY$kIxLXC^KT}u@MUSO zQwAghWx#nD4P`KZ9}pjDG8g}}>Ll%yO;&V_f3CMNL4Ntf{A=Xy^N+uGKUi?aPd|C% z_EpQ}x~iEcbK1RfR&@Ec*Yg{>T1?^N)5z7sUgNNvAC|H$|CMc~cxNd;9~HBlG#wU) z6?v?L&MWlADE3EN^`l}A-08~CQ-vl?=FFt-dNo`YWmc);EVaVH<+};gg$R+Q$Wez3 z13@njuDll!e)e8i{Uz4*HR-W`d>hNC?^t1_5Ox061~|ird@x)w7ONi&PWm_6$zEFp z9@`=If*+P>QEss9*ibHvW96nVY;yD|IAlh48!Cm`Q)8;<ebV8E+206seHr6ro`Ik^t}(N#)r2B?x8 zIfwiJIQN557nnzL0dhK`L(!@KARlghz8wV=%94bH0$q`2k^eR(9{rYmCvi)(vnj?| zNN4VWN|A6N$)hofYWn>|R{{~!VT%eoT=#}wrH@5M(PFO?gD$6qfmP7DU!6FcEJy$f zxZijO?*V-nFp2*IM8akZ>}(k#f*7E9_jz$KUJh@?3i!f; zmD@Z_&tk^FAB%GSPdIE%6)&0v4EOnaPe2b3Kq39Rk==Mn=`|InhqD??uSR|Qgfu;o zIOMa-yRSh${FtC+y=UXAHFJ%25+=4QCnd%+U5ZCM^BER%!-Y_X-^M^{~ug@44lqAbl;*=XvFeLcgE@P(>Vzp?|7(W zZ>cI#$QTo}wZqg4y}GNjkkSNhrMn1Tr<33!SA>~B|-!ThhL>{Tco z3H>L?GvFTG@wSq4vM^DKN=iKP;1l)~&WQXjI&2QeeiznB_liCk=E3>RlGGp(43BJN z(Er!OyjZRr?JbZ`K$R48F$HETVti}v0eNTdVRW3VD^WtEbY5Z> zpXyu1kM3{eCogR2Gz+X%r5vw->yyL z;N$dq4i`gX#%a9b(p}RI0)nz&Y;B}sQ@=u`^IA*4+39=8zjN|1CS{&> zoFTrXRf?mo*b_5U)t}4>-aF8k=NpydphMbaew%|~Ds0F+WH=t;>7Z90fj%C8wfpod zRRvv#)OX+XhAt({PcCBvZ=myV8J35CrU{{cL-;w}Wbsev?475@Q&t@JDyLTlG zQm!tih;f#GjxRfRGR~u&p@fzL1SGJMY#p{0pu--X&ZtgF zclNpX(^U0WCv9fikF&?TK$K}`=eU%;Rp$@q?Z4aOHBJU@%QLK}-Om+!Rm_)|F?waW z;eN@4r`lcr0P`4|QLvwVQl>M4ke|~I(Ze0#829)E{ykw&Kqa&n-%?8EGoCtOD+&l= zwXT$w0Tjs1j5=+81q5^*DdcgAZdnA~v^3^8yqd?!KsrvUxB3->bH(G!BMB4Q5rVlC z_(C`~31CVQ;I2bC?c^I_Vf)~8-KfFRLNCnDmG{(>U#m+oVgR=de!G9#HPG5Mk{Do8 zBlc!ys>shyI%QXOVe%sFT%%B027n7(Tmz+0N{@v`CG1J`{t4M>lQ%2jDhvcz5+O^N zSbB|gksGFXZDKBeCmcLVw48fOAy(M?gUXQajGuIP@|@Ra;J$W40L zE|zzd6JMhN)6wD}busc9)zg@Op1vl=&mcxFav@~3vA-tef5KWifj4va+A~yByk%dZ zcqv6feRrLE(?^oV`QK{y@T%~o71iTGgF>G^@Z+cwFEQadR_KoJvQe;pK7-Sv{vEaB z$w^Q4;t}alCq=EWEi+(tN*&&;T|nzBLx>TKSd@$gJg=Kqb7s-2Ft83(wV(esbn;G( zm|5)nG;{`b-R}VQt4>1fm%P7zFRg8tXIG6QCOObtzNO<65h+^|qpMJBY5_-c9xWp+ z*S9Sr@b~MCW0ziB3aHBqLo%_gg@>5|Gq(#ryspY3JwA_GsB)c^l#bLqj{OZlRkJ)o zKr49T3LrqAbV#5C%(xfTMuvAN5B#7yyZT zv>M6rDT-?86p#dCzB9_%Bmt{gwbe1NE=LXey=n{u_@lz~@#(o^903XrKG9DLR{2!m zV2yk>VLikwPiDKj-ytcjVT~n!>jprLZ2SAgQ#RRY+Y5@5H0e0d)bLYaPlat4(j?R> zEL`JN$6}sIA~>U69$wFVGId;J+a=E?o2gVo21* zhIbRzCUWhA3k)KZhLT2!IvV7$p7e$>mMSiQnZX%;p?>R*Gt!PXc~zj{h{{961}R1s zM&KHOZ4=>1e*yTws7;~U|7gUTrY7f8*|RnI!uah|ushbJv_ z=jMU81F+=_P7#8y?IO<7j5|DM&A-0ZrE*{u31eK#W!Yp?yxKH^e$74utXF?6eCrHC z-Sx*stM#1ZbKteS>)=%wa-id}2N75$*oy7b88*=Df8y=6^@k^8T!0JrpwyTiJ{Zf% z8+n!3`vhc(fDlSf6RUfAGs9uW16#R-7o3rum%i)m#~9Jgq_@Y*c$j!rR1MEJ=TFe- zJ8$#zlm#xTh>&?TMTUeST|MGv+&om?l8#QCemNeMi`p;`^1mpUU%#DG>$v z>x-xC`J^8l$lqt!Fku);ccIHP^`vNYfQ7G>5}l=DP4yhdS|YP}LS{+9KRze~wJw&* z?1JzqXb(13InA8|o~sZ?U=kTOl%M;|9XX&RoN2tFDTTv`N`PIVIJ?#QP-le6i~wU8 zh?a8O-kyd9G~!H)oEcsTuicEEO^YThfvz&6ciK8zCxZO|Eq#)l(kg7y;wEFoL*LqE zka)!ZAIj-1Cnt^^1tK$18zZd zWx+@>F<+zQZl4;sx`LG_# z{Y>Lm^b+Q;>1jFlxs^@$wcd3eZ$$uB$&gj17uT2OK{#oI`f|Rr)-&KwB;&@0V#G2a>Pc=B;#_l<2`u0 z7ZwyC;U-{e-DjKpHzITBQ%A;O{7j<~GXSn(H0ln&2qmDinxsa(ysUj4_BvF%Al=r* zA7Z6v`g*d=BzI4E*Op}f;q^W3AJkIbgHmY0Qrm+(*aA{8Dxm8EYjr6d!+XLMPCsMJ zY?F3g=h8OOMRvvNM*+onalvX#JB!p7J4Sp4q9%J6#3Ov!)u6loUewu3*LY+{VLMqL zQbEJfi+0YZf4{qcevFfSz${tt3YiBM9Y7D6xR3kr=APrRQjfL7AMXq}2y}(%7hA#H zQdh|<(V~%&HYl0d6dCQfZhL?q0Iv$syLJX`L0?`f#48KY5Bd*)HNtoRL=1VHa3wLz zBqgBqz4)m-y%#x(`51h#bMLf4o16e?rp{_(o#z&4HW+ZM*}LQH z)ruJHfgs3Z+D{ry*r64=0IUU=?5j){9-|oO&QguPh1SAutEtffrf>HGF(~R+eJQJU zZnyoVOU;lJqU^uW^h$+mD4Qb_kQ}SvBrx{(yPtNm=BWvF?ODKbM?aws=?C9&%@Xi2m7T&^nH{Y?)MeCd}~C^Ai5_ z{!ICPXj=F3`_zHA^wVjz!Tmm#%ppgbp|^JFE~z#u25@YYBgM>!3p|{NS+Y%k5f$R& z*H2dp*uhgr0q}%GVL_w`@rCftJg=-OMs6p5%unQC2n%_d4g5)imDu0Of%j2G#{3wt`I{9 z>E2}dm-HVF;h?8-yN`E|Ng*E})>+b-Y8HmmYcoYI7=8c)ls&W!m`v>~<=q)KIt4;@ z8$S|jW$&-$V4RkxLKWPT1f>-jGo|0i%70cXF@k%@nhZEh@~bn#_TRc`p!t`l2s>;! z?UQtEkrN5d{FB&EVo2v*%<gh5=#>_k)xGwz@XQ2J5{U$B=KrMWhc3wG`T@MeH>Ft3}p!RroG0c6X4y{Q|s^+a+2itNlN zrj4|~j>tl@6+{4-ina=dj6>8*;R>G{{EcalX`=8&ch|5HwD2W@0E?2r#x9_1SmfL+ zk#}VM;K9ZWdlYBb>q`V-brOcH1?4mapTFSTCizUy{eNl=rwaP^;vUQ1pX)l4noR$0 z=mn;GumjT~?1zuEjWz?toy)}c8=)F*7q&Ue6G_gO$7!3({?9v?XOD>!FDrf~L@}6| zvKS4BOY2nbHX}uwlvK92D!o92*+v`012Pz$8j?S-E?e!it8uCO!FKDcqb7&O{*aDC zIiY#x8`KYT8Hu6&{M2M?LdL}H=nem^tF`JaH%)(xpJSiScAg0CXU47;)V$1Aq))w{W zd^@%`<+;FDNlU;o{<2HgM$FF5!wdmTD72=1s6>f;A6UQulcesxKW&l}6#rKvo7nU* zgTE~UdA3@8z>#V{Jv1PeV<${+x_e%g#XsdWARZHD7ZR%C29vk&=E*&p%Y z{*Ja{Qzfe5q}~&DK^XvByUSY9(jhZSytYcx{p82y01-x%U7ff1sMQUP(O)sF^!nO) z3Z{=TT)SU$c=HGe(~&d9{x=ny?<`uB8{dKFO2zpU>Yj@mzn6Kq)`1hdb?{6_rF}e8 z5dgqv5}Bpb!c4!us)GL9%UZkx0KDXf1h?!mDba#Hp%=222N z59pmPdsFyjE@5!!-X}DEu^(jj!}}yX4b5&^a93pRBzc{e{8dzTJr85Ta!%X(uiJb* z9%Ylb3Dqs(>LX7%=QQPD5_9K9K`@08!{qgflC9MWv8SwN(8H{5Xjl?f7}pLEfONyk z7n(;-0u1kaB$38gAyeju(P)kSL*;2^H#W#ac@Ial+Ff#w_`7Ns`ey;-VdAHXa7tPV zMS$`U!0Zx>mbB2q@n8C3;~+T&Wg%+exkzdpd9-}-pzlRDz_IJ6E3jo30;CySIy_o;86U}jJ*QL;~z zNP!f=-VR-^7fTQ{j4fTEJbWQKemCc)n{mllzber|OWN;!y|!BQRws(?A6E4XgUe3SKtJ?W zk9w@O!?Rq$ILjmCxgyfP^Fs!Ut;ppeWXTSJ<0U@I^>Iz9}hHpR9g~-5me)VY8@K#e%SF z6rl1Aguq>PB>^g~>iyymfWSCM*hKg!YLN^+P92XeBwGXs(3IRU@u4Ra=%oK`z$sis zeZxtTxi@YbOVuRIr+Fvm3K8a%78eSFyvay)@K&i~^UQQr`rx>_{i;e*#8`qBPmRSd z(c?k_T+KXxAF=Nycv)#?F?KUn?sn~_gF2*&L?0-wYokLcembcgn_6LqxZI1M&k$sC z(YFXQ%vXX`J0_<9q5)RDw1qmwsf(5V3N%FgE+34Ho3-Ag)1=1g5smSH*}Kc8bMCdW zQM3kHta?h1qL1U~-i^XOM76Rp^kr`#IT<|o9_jfd8G05kBiqSm>+;g0?9!$a@NzoM zv9jqWDjYCc&WVRi`bG6)D1~&nvTaJ4t4AZyyzoddO9clKm#RN(M;t%st_aavel{yc zbcqxg5;-fcvF*vngXI-SAK=}=_`hfv@Z3(Yo(5z!T|)nr#C}}-h<7*um|#U;gBJEP z0Hh&XBV?sa45RV@C`|fA+!RJ%gl7h91WbB~1L&=AwT6Rf0{XgOlaZHsx9URNZxAlf z9~=Wj^g$q11`N?j1ondSZs0}liT(M=c|jqL413X2VwNN&L`xVWPoE68K?it&FpxGv z3<@8Ke&cInbgc#q$KV6VipGSYG_~PQW9mcF83Af3ul3!acv@Jk)?H>~UtWd74mP!It-AMfL@O=NJ>&B{{eL^OM%uJ)tZjD-+YR_JYCi6J~SA}y}nL=cll2I;k685Q8H32X%Zfcfa2~sNA*%uYuo;N{%)+qHJb9f7L4@p1B2O|VYnq)aRtey6Y}EuuBHh8B6DN3y!qN_#u* z19uBXa>+M}XINag!|HU*t@nUzBBJ7anD9VtIGpd2*uhaw(ab?@a4YP+xHhudNZSRPchVw zu^Ul{OZS?P%ucb|@OqCC%SI064fA&kyJ7(J{#Q+0rqtK(oVI`&el!dw9RMBNpz`4P zlL2pW%G@`-+*&pBw7s%}MH3xgW!?VwXrjz`PFZLRBcyaQ-dG*vC(9Yz%n9Wv1(1kml1Gpo`X3Ejqg58sgoyD+OKNF&t2$-=$XT$< zenmyRj|CbdVWfh^c%G3Y)_uodTJE5APuWeV%2?yocOJd%Lg7n{*-R&yOpdqntD#^zfB=hoWj|_Orp0g**5+|K|4r9QT)tt%_!0Ox)2C zur~Hz_Cw@5;H4gEsA6xUA%iPEQr7_NV*@gp8^9ZpErTVO&MiIxlK`|UqDA8h3wuM( zw1Mih!&OEub3pMW@876t?-Pl(c0K|l3w+NDR-u{bdS4UbP(401W6A)2!SLi6Bo&7TVwnJxfRav^Clwt+d6fX4y+GOcvCNTVHSQ{4j^jM-CDJ{r*+r;qlWuFp z!$N{Sj-x)FWx&PFX1cX!zbnw@vrvhfsCxS0=`rNdb_#aGVU*L(y3)T{s>Z%rc@?$~ zj`-zI2P8+KbqDE4h=v&&=RemP>FsCY4y{uqbIQ>rTe2Xk*5w)DV=x6Rm#Hx%I3yC% z&sgt}5n!j`gEW${@lMmP5FDORtzj_~vk|)Mpt)8+mZybj|1C!=bvKcsVyAorqG4dx zq!7Q@!));@s%|E#Uad+SB838vKltr;W|9~W;)vdF7l{$Gb&&5=D2kEEEwhuM9G_Nw z*PyDZuN!mv=Qeov_5kgLTQs%sWh?a)X3}clTjdH-2H-E4IGpO1G*FZlJ58vfSwx2h z1NdkgDw`LZ$jN7|(VIBKb-HK+!A$~h`Ly;kW!T0o|N3@UPJ+6L-GFum^Z=#<^h(u; zwLZIJz-Z1#r~m{AO40O+lR{`DSm3XfED|lRroi>MO?)7GY-E~;WL)~lXjGOEEv1|U zpbsAfz*00XacV^iXF8K+28;pB;oOhkZu5Di(c0TC7G&=_Mm%8JVs>Q) zyk3#v4(m8{-Tq>fVMa4Ehal5umbkHRqLh{B=U2uM$%Eg+w}7L2uA43XlL4DR>U~=e zbqf9ixKUpz)xhi5y!JHQrkVPUG$XeM_@D{R23Cxb%`V=Atz@KUg#FXT;Xo_(n)xcW zb?kQz_5EG(oBQV$oTH3FG_qoLH=VlG*=6-&)7-;z;UgrmO71o%<<> ze?{)wx>3gW}ok>JH9qpnl`Pmje9-Av)o zlJPK-c)*9TUHs8OM60|rcq$S=_x*jqS~h~@6q97&XX{g}?h-bmo`>%$yDlf%#_3~NU(0lI>GCC31Wz0Pm@#9Jg)*4Rz zKI&s8Qw;Dc`S}(@fe>Q7k!5A&XYa9TcC3-dT(UJ6&i?v{Wd(Xn}Opg)QDY~sSAZ{Wo z5u5ODnNcb)7yJ4H8wF+Nro$8YQsECjj4{$LVhG)xU~5a-PxV*QU(F8FKPoHUaZku` zgDdZOQsRaYj_)Y_LQ5aWl5Qmd#R2w}TJB)mKL<~%jW@XFgOQ+$1; zt|;wstos-m0GwPih3Q|SK8vdz`S8T?6CluLYveYGBkld}#2KOPj^#&mFOQ94uU_AW zZUX{l4w9oH3J7)<^X2UU_Je@mJ?{`lHT(N?v4WqaEQLk zU*2nETXa+M7Nrl;7XOMz<1eCaSC%-D*TM%-^>GQ9WFX@MNi79VpG+97;PnHF46J0rDxZ>35_Z6Y=xU>PR@0yzFjsgfshWB9> zuf{)D(5w=T_|CsY8RTJ>gPjeue+iflk=Xg_;%;L{1Lz4{pI9|1#E=|$l+%Tt?7)OC z@;1vko7nidcRVZw~a^e2O#CxfR_>b`gwKZg4b3eMp@}`IDM8sOi zpec3bk*u*1sk~9v;xQa}%C?1}dRRB8OT{j8i^X2}vp(-hcnAqizvS2;p1g8RN9m9Q zf4LJlui1=+-s_k)>Av<&ZtrCDv}jHL;3Nk-5=ioi`y`lF=Uu`}i;#ib8zv=@mNbhD zD-XloXm$?5Bq3^maQlPO7lDNUQll)ciJcomHgX=mXY5l^I6W+n`hE z*u<-f3~XtPT!zc6Amr4r#rL*P*-BiSO+WxXO0+zlO~KIXi0O7srmQ!?e1#A0!x?6w zx`Os*UYE^JzAL&*73QVNXd|N}bPj{B(Cs4B`9xn62m<);H8PA0y_%ogvbEw;aUcZ=EUHg!XIz20lm%jg{x@m$p zozgb|!WT`CFNA6U@^Fxq;RJ8f&i*pqpx@)9L+H3UvJJ*wx)aDcE%R%pqC3*84yu zBtXFq{p!{a0-#4zF+^(8eDfP}b38_ABY5ZFNtkp5SOI*5R4q`fP8G( zOjh#P7SJ$xrh!P)870k&zQ}5P|F3=8%ol@}@htW2fM^hUF=^bH#9Jr5;UQm-cxc>3 z;0N5vD5nm>7n1dXxdDghfV-ZPnLFq-Vt#a;u=S$%a?Vin#t+!4Jomnx6yI-8k{Isu z*%T%C%pB@9F$!6)%vvCG%Mhy(-L;A3Qfz4iUcK0iI0^1brs2uIy!`Va+v{}sPpf*v zzz*SjrxNpQ9Yp}dKq-u33~;|@y3f_mTpZ;s`ZjFY>g_m+$6O6s7|?tx6J_4uz2Eu* zMLJPLCj|!bfoYA-=6%B7o0lvg!YhI!p?R2*;S-cG4}R{os3&wHYGJvw_t1aQhq+9(eFCS#k$+R^=#+oF=usB zh}qZ_Tjr-?(z*t@^fKc;)BBb`e=%Az?E zD|EjHCFU4l#;D-nuI$!thK?%+CYQie5YINAiT4uU0j%9en1hse;@t*I<|$|H?L{|X z@npMExd@O@=JDppzy}sk+J^xw-JJ3Xn-}rZnoi(HM*`DOkH9ps(T%rR5u`~62a=ljF=dtKLvT7vwj7&?S%IIJ z*U|ZotpkbD*vdE7IX~xs)LM1(=u74gnKu((K&C0eT#HPvThavfN;kYW284Wx;!ijc z@8iHwy%OVtb-k+5r=aW69b*>u^X#ErqQ9dhIfk%h8oa>5fQAq%zytxUCM=XOSQ>M_ z-0fb?rY*pq*S-TIpkM^r4ZJ=4RTaHs$8}L@bCwqo5EeccbblU@FmiVyRzi9 zoNTKcsvu3)oMj1~&hR`mO8T{VaW;1!nuk%qKb*)3pFB=*pdJZVPyl!C*7xrZFvpkM-=W9p#U9Z}j^v|+pA!a}2jnDf*Wn}P|lw!50(hrJon%``#3 zB>x{VR^j&`F2&+5_WD5Q&-o0cdowbc;!TtZBTF=$BR?&Jh1bvlbwy@Ax4%(rZ_pi) z(?n>V(E-8Y&sK8P8iXQ!;?9H60>%*^X%j_!JYvf^Nc^?^_N;dZV6$Tf$v);2wWy4NvMHlZYsv z?c;D{RaAnodZ)oU=F zx*GWOE2!(D>%)(5o~MAH#`mikU$@PpgS)o4?zcog(v0B~GJf--=k`ZfVUbUHpu>J* zK4}>_GmmH5hPPQPwJB1`M93?|wfRZ_i`S!&Gve>VeShDM7~Q6I?l~^PBJa%|)ZV!^ z*K?d(oX+-dmA_P65NL;{vl|{JU7HA&=+>bBA_z*D&I{nCMNfhs;OYIHxY5DRmPI9TAWP8CpdLT=@;|B z3ED{ZDLr3}6^z|Uyq)s&5nkXeG%DuDMasi`M-&zAY`@ZZjK2HZ{sEIV(^VJgJXWHj zITWnF@cixt^Zpju>G5}~7kj20p1P9hz>llPy6z>xe{yY=TBA6{T@>iY1xC@cVJfGHo@UiWY`% zs?!tSrRCK^4!$&(Z?ybd{wXSb-tq1(qX$V(o-$WVI-ZJD)yRTztY03{0j1vbRoC9Q zs^Ry_xs8@uNW$?FO}TRU;G6NI-TSy_tiS%u8cxD|~F7Qh{p`V59c9b6x8)xQ~8Q|m;l_5HUdH-uMbNA z>2E29G@o%19Ymo4?tf6HK0Xb9`f&f|KDNf>`f>IKnH<;v)8j$4IPzV@V>5;pCsT#s zO1vp7shD3b*6C9MsNY=4=_V?m+*|Cy%+Hh9=+;W`=hY@;B)b^#aD~$sxt^ zT!T-l1Y(3SI*b;b#R`CSg17JKR7iaay@M!h!r+juc1g>7cg^)2+`*)fZ=vz;i>lQn z=b+Nc06Caj|4Zu`g2~xX{#?UjMdL2DDfK<5>7uJ=M6wt0ly4`W1Y|-wo^e^#rbk)1 zT_&d}GOJpDQvX#B1f@E)TV=iY8P#@3(*d4B(h%;jj5X{geht_azl#gf;5Rr?r@@H& zoG4-Z?!iC_z=V^G*hT`c# zBxQ#im{v;^_?ZMI81sQ@=UK_&?R0am1eJ?ZuyFhj6V!~qS6xUr@2I{});{$f8&}DS z{}l1r8=OW#P{im|zMe4>{xj;>b;Q=uJ23fGPvyQt=6Go_j)_x@v#OkYG|cKXVI6y5 z4h7W`mYPzfI9@1UU0fy>ACx&Bly&>ZIq~Q5*8TrwnaRG$ngnGKHtTNxv~}8cUFh(& zM8t*5o)YyhK+Abj^dBpXWjK{v0LrHX7$GT0qMr;)r~Yff`{)X}vH!~oDG$9Ze5BY3 z+L08~TCX2|Tswn(1aLJ0;vz`u(ERlPr3zQWkWf;a=dSzsR4@sAP|VSlXn zA!N`tuGyBK9=z^n^2hQvFYXhYmfn`b&*`JJk?jaZOq)L1r#M;Uk}a~UG(|aDWSp3i zAHCrkJ-ZiLt?i;c3h_BN3Mgs{yYJ~Y<_|rrT_a9vL|*9|Tw%F*(<*@BNO8O~?_aI+ zB7F7yAm4>5a%14Z0=fBxX_`F6k9DX*UKbYt6;lPulm zW|T}0ujVJ-MTOl?`bBgxA$Z+y6te87mA?IQgSOrp@{W5sU3vF@)DH3EnW1YjGQkwJ z<>!s4TYTm!E$8Kbp=msI6#g!wCsmoI-JTcb6c=9ZHK^aBG1g#ex({vEVKRio2HL zltOSTu0@Nx+n0Oqd_T^gGbeLq&dgrfd#(3KO12lu=hz>?`!mInE+1}R^~Sq@ zmm}0nST!X|$omO9$f(L!wKj)mpHpz#-{uyK>8M3~iUpec*q4{Pj)&w8X$a(G`$`$=pO;n0|>1B830`Ki4HJ|3-<$gm*WRN%)N?6P1};FEzbN& zpYSbmCI=&iMS3_mZzOhFaXH#al|bB8C^rk=-!w$rBmuBv5^vby=O{h*U71&IaBY$7-z1fa6dQE^Y&cc zH4OeBt?&}AEbFYiw(UW>Gy2>GXl?In+(?5nkB)hWN`CG6KnwIQPVJe_B0yO8wR{K^ zmR?LfUb}vrSC}i+ zNPNH;s-4{07>-l_O`^xt&lcw|sQlojvd7P7QQ+DBYO40C}>6G*Q_@ zk@nDV^ytqA_+kJXW}-aK{GnHX`?k2|=)Tw7di3nFV3;*B)K{kKMjD1mi?jhsOXw+} z|7`U7nX1m%l7^*}B$-W+BAiXQ$X45SS3)D}MY0^Y;eLPk*?rN)*GM80i+(pYW5$pu z1g?UnJVQYo5AInfb*CpWF@8q}()%jx;K6(b&LDc#@CnP8WK(KblX80H1&*LmL6-G+ z6~n0|iVIxLIEZAF zh6jBG1CH3x_trA)8KM~bC`0?BkvfwS?Ra~Q@zN%-X)bRA90lFN4mN-8N*iYVnEtcl z8B=`*$GhrQ%|RaTOdXTpTRcdQ6|D9>es&j8++T#KnTrR;Ib!e6>(UoqQExZsT5<<% zsgXgpa-G2n_Od$iis)A21R{tZ2_*A|A9bsFX6ItItr&6qa>1$qchjS)c4LOp4w~fo zl9r>stVr+>PE8P}Aa$bF8UZ==dCqf@-{2=9wye6ExrZA}u5aXH_`m$g&!=DzF!fdO<(iec}unRPnSMa@s_-fE(n5f&eXh zlwg`apfDU!d9Q&ex;^w8g=V}QKwE+MT2BAK7Xu1PpaBdcZDxi2=)EL{1T>uXu`9=MNF-caIY_`Us#Fiw7t|)es>yV;0|rQB_{j5_!PBFuXhnoz1?!HS1Gu z2-(zaxQ5w77|tV9-VRe7LjlEXg~9v%EqsAh9Q`3T@3}}hz~RSwT@*1)hn0OCnmM4I zA-f;3{to6tG@P1YkLg4m_iA z!+qQRGwNpv8v*QPMMp&*&Fwgk7de?ll>R>@iqUe;F9EmTcp2rw7HL5b?`uR5fP?54 z!>GS345$qT89`p>?x4lZyccr~o~yvAJ3}dBS88mYx$l_rSO_3C0Gouh?VWOTxZ?;d z$fpxAHya4?hpE(NOe#N=^{x152pt}W!|fPr-6J7GSQ0u!?!(< zKiw`i`5GzUSNb6WETY_V7jw_n$L$51;^m%h6}Wqp?4C(Rm02DKDSu=Q9k;StIXpG@ zvWycBEiJfzb#-;|c3E|}ky=FK^!1@(r(p|hLMbSCW9yg<>loGQM!b&~R__k4+lp1| zY%2Wzel;wAo-6-Zu9+?VaW8CV{@(X$g=3}HmwPS(J9=^tAb<(DaUfKR>X=({T91Lk z1_9G3dOBZ{Hm$dsynAmT-KcckZoX?oiXcLxe&gf_CkMy52M`n{!IIz* z)sVk|_WW4q<BJCYy*pe;|OI!|otQlJoxD&nC1} z&AO%9fZ4A}6l@WL%iXI74aI_qd<>>QT<{V*F=|X36#AA%*~n`q{~^XTC#ob0e}e*j ze5?O9-E8n&Xd|4_1jgp4ZIh(T=JFn=p6Z(qc1xu&4jb*R4jI)gK}f$4vAgmPYyQ$I zr$@UI6VLa#2C^8H)U-5DB`bT5G|7%fC-k+PZ%zZ4iGqOVj)vb=VUI3EL+fZ-qyNEZH$l_eK=N(%sM=5wIm-Bj=QO4`f z)6+s!kd~dAN$5!g>iBk>P#39OmtP4jgclJF8s%dv2frr9Rg6UuWdyX7+@N5ba?TIe zCl>+~JJ;9fayG5HC~uZ5aB8_cx%}1f5A1 zVlG|(ws~Y%%Mai@jUirUf4tLaN&k3hO`Y!6`18#NR!3wt>R$D%d{`O8y_HU=nDh#G zPNmYupeu5Qv5ndI$zBy_cW5?W)g9{if~V_+SkC7ltejE!TY2zNS<1sffGK*2jo&hGY=RiA0#ulFOz99S|>jR>zz7@Mm z>F)gBos+;*T7)k(ima24B$}2>xlRi~wGK{AybnlQ84D~rDtzXV_m znW3p)0q6}jZ8cB|(dU6lB7mQw*akd8b`i!4|Jy?Wxqeai1oQBGg83Sg?j@J zqT+;f7F!$Ym*(sK=qGlW(f1{uEr(4naq1px-9oY3h`YA?UcK5+y$DO^=L;wwzA|v& zb^A6PHJ{O~COh&Zk9L!(ss4I}Ip*_9Vn5`3sJhS)t9k<{0}8*Wn!jd?_jom* zeK?4!Q~WhTe++FWJ9(^Rz+6fS`=`}=!{&-pub&5qA;eBnVo>!VyBYpm751bC6mBN&|q&+C!K5o8H6-<5y5+gaS}3h))h7H zRK0P7)8!=JvJmVGuJ@|UVpD-$-Y3|qMIP5Mv(dg2=Dl}c-plmY1r0D529?n;%Knfh zP&Y10Z~$SZWG8ADKVf@}Z2asOioHDc5I>~d>AAQ3Zf-*4+Zj_SmaV(#1V1g^XXMM# zRK6wmWNba8!qn9M9fsf5?xZwa@{)`yl?U^5L+}K{Cy7@_$gt!;7$>^OGo-=ZL*t@_ z7_7BUnVwT?{9}f|1Qf6CF2#735XF?TUspc@0`;#xK*@Zs!u{4BI+x42hMzq?W~#nH z6eV&g)#JUFmy>UzT=Y)~2@kQLo2gIe_7NI3xv=tA+t zfeEcekAYbWAOJT&O^Yxf16Zq%M*H%?t$t3~AK+Pm&Z}Im3gOPv3V>^FXFdZ@!LTt` znYoB(Lz2lJVgJSwr7ce6NR@4Ipvm|%IL;rv%2X0BJs6<@9A91`I>Sn|IfwH z&Vte#e5)=m0)I3{0AR@OOeB#0gmiK69AHsii$0zxwj*Y?BT<8Ug`*IRh4}_Gr#`p4 zfC=M(r$Zq3_cbHk@WYqt#1t?98GjUe+cUXH=GGMT}%&XfJ)n;U22$Tu5E5pFYxI#^T#&F<= z!dK&tN8J#1vYhX5&jtE1NK;p7$SBuVrR}cbm<&VD>aV4J_Sr!mdL!etttpL;in$fi z-w*Zte(h0Mz|w@!GDqe5UUbEs?0?ia8)_WsF+o9#d-U>Xx9#PnvnCDy%?5;lMP;v| zk9cv&>STh*s16ott6n;$C*XTS1`#a&HYy3oeCyVL$!~4k3wYJ z$X9YJTjOisa4GhjdV4%(40$rEO2LcX)H>xpJ7qoHT-R1n zt;K4`U%|P=4!PGhOtken3!<8#03xR`sCq9md<9rnsglMHDYRDWMA3(^1I3hV(Fu5= zd1{f6mS%a3DH74O!9!agTtvgLX&t)+qtM1(VJZAPQ27%x&cLCbMpl+MV>S``^jlbS zURj=TiX9a}(Kexglpoa8pq}GZ1(isN2j&lM0+Y3gY?OBxuCCA==kfVJBcr8?iF+;Z3y+2!^XMvo+9|5P7ilkgeV#MmM5;7lNOO8K7n zD*Yo7BNjgsR|kXydXV(>pvuY0&b4|R^~%!q2ykEVLvs^r@AyGNoK>eM4ys~zQA}O+T|4n#emZ-{) zaDvkh^R7MeL^SM9{(ex4KQ56Og0(Ojxug_zj+u1w$b$a8kBLq!$vV>ltq0kvT`zgVN8#Z*LzW{^O!K>1N>mWCCvn*)mE3&aS`K4`=WfrVko^Has# zXxg9ce(hse1pi%^IF;!R{GBz#Fb0Y~#fED{RK)9`KN#u$x`KQe-b5zN0umq)K+;Q5 z!}n0ti86dx)6pVp%hn|WpJK~3S=v_pL_I&wsO45Y-2&8qk+Y;*O$<`* zb`zOy1+MLM+2jCZqN$9+%>j}4Ow{}~;0&HJ6kd^)UmmOOX`~X}NBX2qhg(<@O6V8_ zKcx4yKEt9J+C8|)AS|z_(opY}HLUVHWh;3rjQDq-4^mlS>&WwlnBNT)}k&66lBf70q4_%=GVr zwYSLtn-k27Icpwm5#NVr%Q}#d4lK8FO>5I57lUd*ksS&Z*EHCetg9qKQAFTl&L@n? zgkm+-b%n^Nksqb*&x<4Ar`yu@JLfsz!PhuT8wOwDTL;6tAM3lZQ9@buFkwIB zXDS=;rerGFF)@U9n08QQnP~4GXw_T>>XR`Hk$drQ>j}q+baeh9?{`IaR}RtF`X#}h z2HUvv|MrtApQK|R#Xz5OJgW5Az!gT-V~%d+>LYXcghWv0jmftISZW1s$f^Suj+T!eap%*=%N=Q>@x&=jvV#fIjIZ7M0PF z=y7(*FnvgH(%1MxQ{I*86dJ!h-v^xWr(h^hvOy#zU0Sh7EGl(L(XM1PsAxkP1|KyR z#C__#oACwOBR&s)tu&zTth*mGsaJm!J{TRY`T1yaAB|ACjY9tw2J`DoN9%HCqM{<# z_`;jhgfw0=Yi^GOb(+IJ@4wkmaRR}whPCc(^#UOI5jY%nlc<~MN&nN>{i^YY4}tsEGg8jP8?@3@M+!az*5 zI&O+kkZa6%%NKZY7q;I{Eowx0Y?E3}qG!Sc5NI4Er6ob3oMdlMVzj$BN=V=br?*Ox~(0@j~cj+P_FUfrc=bfc9 zXDgjEoSRKw<$_9ORb=Tek+1bMKQZg#h04~SI^G>lAKKmnH%We=uFoaCECZnQ5FqnB4BWIor^ENW1_D5? z-EOLiq?=p%yw1cav$QXqbK^%zF$oIMVCu|Nyraj+)V@u*0}x7Orx0O%Zjd6&w>N#E zUq9UZU3b;s1swp7;6QfV0|x%nD*?m;2U$&@6-)3hH%+;SRT?YARfZ~@2?Q6`bFo* z8kyCNio#)bFq$~3Y6MWxq1sse@9V3>3mE|J$Di<9j+GNAFDO&r(7= zfS@5kibrH};5on&NbX;<#yD44w9JI~lR}{`?~F2t^F!Vz06Z8Qg3Q6GwY3sBhp`9K zp}P=iVN8hs4NIA$1N&cHTG&Npe3kG-L-D{*u?=VB@lCg#Km4Nu3tYD!ToX&c&)wOx zo=V8CGe5n>B_pj2gJoK&N3RMID23lM+VdPm7m_99>ToAYN!Sz}!~5vXm1pi2r>6kp zM!QnXX<75!u6s~h%r4+GkXbNpXo=QZU{)=#&rwKNP8$P5*1bm*xdE?SuyCDeeoP*v zL!xfoJ`M$LIKhMQaQ)3Rwn&E@ez!8T&W@buVOn>+8!Ox>)9DOYP@z*F8YG%LY#{&c zs8lph9^PzoJ!ljZL3F5l|pjMxpA5OtscveFn56Fcm(GSmKx;h(dj@ zqFoDWel}5rRpl|6KPrc^hAlOP=DRh zzOX{wbhrsOQQ})Cbyeg@smRsXz4ln7JoT`m~aNkmmOOrXR5UR9DK# zuQSict!#$xmWBG>+8vTAB&lmFLrcMbKg#f-mRcjw#7Vz{fb0uA?nj!ZidIGuKSQBn zT0+Z;Q6m4WrJf}(*xJJ4UkuA2LcpyB{pq9{4;ECO49@$)lIC%=!QV< zDu)5Mmn^2r{px2@Iu3drZh}M=zQHyAoafl(0X~lS^6q5px-g_`XF(Npnk?mhtMUw+ zvEK*kyN$b>HpzkKR*~wF{Dz$8E&8UrF@(Dbyfyq6P97H2*`jIK$_Jv+Ge8qy06f!mRMRbXh*-BXZtX)xp)A*-rQin2bO5tbTJM)>7#Jk zL*&2?d5e7~f{BM=Ne^-97so{u6PT5_bFt)HMA6j%7j9}029ObGWod&aDTf{X5PXZK z_@upFn%eWn{kllLWf7Nb-HoB2Evawtm z6vlAbhL87l(kQjJ{^3~tEwt&!?)OTqwB*cAvH_!#{##H zam_J=RbwGzp-N&S4Q+pZ4Q<)mee&&KH1hbhFuR>&?s-?2{$W#Pv2NGPx^Ch7 z3Uhi|lO}(Hog?j3u=bp$^tpd4RLiWD`IRy+9Afb` z75%Bw{qgmT9h9aNi`L;m%@ma1d^qxK`^8Xo9sJg@a5`gRgURwj6bCWv()`*V2LuXr z6V+18@!6L;DZmTVVB!Y6N$|e7?a!-LoMV;e+&23nlwGqT_KR^7PT8^Oo6{eZB~Ss% zl2%?^Nxy-`4rL42i@C0-$;DqzdgpG_d!FV$-mH%DPJM}gy3!DywE7~wb95qDkBgRl z=F5^zrr6f(H(669-)xs*_!PU_7v{_iq^N#5f}$-v{tW{js~_R=*LM*ZiQO^ivrR4p zzW)`LzBc3)`T=otj&M@1ef=DV{Y8N_*OKM=>_Dde3)duYWU8@w*d|A=oRNF5xwb7F?=yz;hTA%65>viM9`-siwnPyjl7e@fz098$sY?oNw z5?7rawNc*RS!kPylaF&N@EqY`aw%~kbtDlq!F3eJ-;)&a%*sFqloT@!-J=^_>$F>p zf1!WZ8d*?8R=<^^K>>YY2zq9^DVa`eVFx(DBLI{@&;VDS zVsuUptzWcNEPPY8%gK9>xpQLFzL>PbrwTRuR3BiOI%5IB)o5EcFEU3G^ z3*m=^pW;R9qpjS{+^p_Q&sKGCKMTIEUUWB{aeb4lj@e+5YOm=cU)7F_oktOK^{kUy028_B;TO36Z)eO z7OIP+aZ~RqdbyCS_@pN+VRkC65CI3=z!&}^0zAK!{ovQ{UAoMn#%L%z2zr(cgMHkYo>Eyh`WOM&4m_NkvcbcD!7xSMzIN zKhgHh^lxm_pf;JOGq*XJ+p|7vc%e^Q1O9B>!E>r#9V@XQDC^yNP2`r$0&# zGVis{g$F#3FVShxK5bA6-aMX_GD*3MOh@E%-!9d;{uMYjl2cr5yIv)^LYS(RLOlmx zrFbLSha@(0Y?jYxqS9lB#RoD94p}y$-+oi-=zU+k#XR-&Ip6hma8UD>eRagw|3{m~ zvuz(RG3oRLFI`%vFVr;GSd}E5J;Fi2QN6@=l505zux&xdQ5%k-O$V95P=N{h`*-JQ zs@nQ_l7QN8-+DRD3Y4Mv5TA%inyhfInoY5sE5<3+Bk<+d@~eM6d{#5d@YiI+;!g_~Wa)Nn(VdriPhGC=06fRXu)%>Av4r#u5JdkE}BC+*fb4fTp~t1(;f2(@Q;-e$w0~l%0D&AD7GrJRP<2*(td&WR*qrV???t2 zTv`wdz~S96U>*yA4dBP2syisTca=gAj`Sl~1NQc9tT0}!J?aC5bybdgQm zP3LrrkXeUCB}L$f;LusRKI=H!A^<$m(Li6WG;{M)(7=ZdRL*FM^FHZ&vFiFiIVOPk zYdyD{Kvay`LDV1V?gdN*wgZr=-tq4Y?4W+94}4_nYKF9lQj0d}%?6FLh!Eks*6D|c ztgkaM*ebs^)rsZXiAEtMT=U`B!)KK6+H@zV^S04QPJa32ckao&M>^t|&0b7LL~CGQ z_sB}ubHY%ZKAP*1A~hYzMfb=hv9ZHzK67!$@sw}OqXUvfhtd?o93=mPi)@WDOcYQN zIiiZDZtm^RcJVQH=Y`|&>6?Lc zWif1_=|^ULt115|Upuiwg5!!r@|QRjc7xCkzTH<}MQnmMp}bq(pNCJJlSjlVx!J0? zN!>Y;^x1CB^g%Ag0_-#<9^+`3i$z&jPa}!FUV`kl(Tk7tGB%&#`nC7=7HhpD*$ND5Lmas+N@hzm zNi5B?gVveq41|OcaV~=7K}i_HClEu3)oC*^&e^|kTMhPnWk7Bogw}8%x^TzKU`Wr{ z=_4uobAhgpl}G5PlGW|1Tji_8qgO~=i_OI&99hd~QcH@3Sw zZXdeyB;>Dz&wELdAi9E@irx@4GCBt}R=s|zX*bY3#B@kimZXv~n=T8~k|es3KE(&j zsH~IcIqOrc@hD?!OL2F z6_%|3K97LXo>T|Pa${# zmmG4898C9$uuZi=T!6#@*Wh_oJ+#7Tx4IO7*Wew%C#L`f;G?u451(!Z11w}P2*yjx z!WB-)Dl$1~gD28#Sh*(a;MXVOU0t?JzP)Wfm|jF`r)Ju4UHuujx%lWBF2!IIn{rZ$ zF>d%Jx)X@L)J0DqZ?o2)wqjLpEY4v1}uJ)oElo*<-2q-!aC?MTjfHq)9r;`Q#9 zP?v78@pET9<|%n?_iCvJ`nFG;y_Z*rcR46SoSn))A8R{w zgX$$RVOVd|J71@KauV9Mp^mTU^=0>yy^{;iK9YitMh=ke+r(5)xODpp20_L?CV-2! zYUm{JsYCX0+wYopF6<+?e|mCV3u91)J~*fe!S`cghrZGucyWILE|3VyKVa5fZMPL` z*f!;CcxjWw>96xA+74}AXw>nZ{}ZYmrbuWs9O+52wt7P%pozlIWE}Dpu%Pr=?(k~mPXEyh0vXB8B zQdppxK1<-c0$`n7$yZeNcW+xB6m?dWOs6VbiA=mZs?!-OuW5#T)edHQ~0< zDJ>TfW`~*kO#^}Y$axJ5j+z7}PB_U^xI#&(cR>AvCr)+}eYg!GcvtsNrCxj~Tnl~m*%qP?-(<|E z@)`fxIT;}}<+>Qwj>1!s-LBv~niITnrCnJj*mJkHGleb{FGX*+bMda1!X*F`cL|E4>ZUX*OY%Mv~j`kU`po<>2h4Ty_U_nSmf zu6|dXrnZ`%4$)s)f(3~s;B{Kiz~0n6=rDKs$_g!9XzB^R131zr0thyNFd)=xC_m@` zw@`^&3PS({W>X@L4}CpANKauQwh|S%;3bqFij|P*f=lqOa!M@DVK#)Rrr zrOhi;%;8I+M_isCzWu@?(<{O~|1#V?s`PF{02!tOSXL_XxgLDEYL<+>Wm84iV{3bg zZQ);d5$I9WweR*XsO4D+(KSLxgy>=kr+zQR=*3F2Ln^CgJ{se_-(Xx2^W9m)c8_LT zVbnT>k8vT(N#eYU33TDr9I!mm{0iy{Ke$LH7bD}iB$da7GRSx&Z`xJOKo)-SBW6oj z)h~~xc&8c`|KNq*`o=deJYp9G*)ghn3*7?Te%{WJByZ>rLBAIp2;cn_DhZ!cWtfc` zjbtRkCeY^RU4aL4&6~<8aa%>^tY(@>1=*fCf0HUnE+=ilo|ej_i;JVbRj1WzRU}b} z(%EP0DgSjzFB9;Y^O7=IoeY?p2V--d7jf$6Vwxomq!ZT-&i?bNuQRPY z*w8)J8Td}Pcfg7RVkUy4{QD;36@ z{&)5}$J#>m_*`Zk1dh zPD}7O>^m(Oq2(NI770;_cyKqZ_cF>)Knb2SIJ=iu&8K}cCQhww7Mdm1QmJ|Rw?Ht= zaJFzceNOs*9-sI!#1XAitCgQ@q@4}~2S8*0YcDjXkcSI5Y~JZ)G;DORRtTmPdA31YB~&3A=oGB`YeD4b8|~Z zwTWaT)kl&Wbapz~K1vS({ zz1iRWLu=;gj=~zP4c6(cHe|!u2BL+Hi^SA{haY|i(24np<{_67ESXpqENV{&3=@05 z(D3>tdN~tFJ@{9;CT0XIS%?2Fhy=SVlsZDPh(w*eiQgi^8L$q#hocPhP&!YbCk=)b zDHXj0%>mgjWY8}XzcJF1*zeJTVE!rfm2!u9R51TB#xe~1P=>k)3_4y|?lqwgMhPXU zUfn6}nsFE0+3po78*Ux2kmRsR->#)tlew_kn{5`cPA~$R&>s zWU2~oy15U79BHq+Ownl}r=`T|z!|vH+%P9#1p6VK^R)JfHQ;b$Y3=!#Q{ul~zqUYR z&$N`t+`V{olI;b`@Q3RDr$0pOTfaE_88rk8z&k8Eb(haed?Wh%2fj@l&BkBbN61OP zyz==~HQ^P0ou_^=&SW3jH#huI?uuqog?6KxVNJ`lBG@EmgGVIb`vwp1N(k8s$aP3v z67ykfO)w;K!2xsXk7rzT7`Ff9Ke>^n#1AxybtYd0%55r}^+J!7JTc_<6lhtTGrRER ziTYTOHq_VR4b?iuFJ$S4(lw+~dj5)E#E^$8x)Vh#P&7S066)+6Ru8LG`C!nuC)8Ri(Fe|K zw(j0WNt(hPHeQUi~hG*>XJH0j+4`p6}edS^#ekr~wriz?& zYpY_g(3uTPSl5>SpYUSr@Nd=6?{X{@3CljOI=hYwXT-TWCak);Agx5s2{hFX(@)Pu z9VeI@h%i9f10EkF`*aSCp@5%u z2@(0vNB%AOOA=@~u#V&VgOk%42#8K(U; z9p3{p^hBl;3PI#$R`^vvX$a>+Y(uGOdgO^=&$m?*(6tq&fU`CJeuYS7ousREi(c4DR=hE^aJx>Auf`f9SP* z3pqE9U_BA(g{?;S8!MtYJ5B6`m?3REUbh1o1~{52c3#u0YQ^>ALqcx`2hAl(b(>sS zh!@Mc=H-h*0HJSfTfb|v5P8%r&V!PgNXe0`68d5~(DGR_y^#T#Z9iTYp5vBm(;E`9 zKmeH8%89WE3DQ6xKL5h_1@sj(RHw!t|KlE=?@Uu@GRJlLPKmi-f#e$;xQzxlaTowmNnr6_5%bf$Z^puJh+0J?Yz-pC+Fh|H=U|v48NFl zqF*B2RB>oHAnff8RbJ~&waU2H#nzWuLGB|@DRJQ>oom~HR~dU*vilaWw&TBn zhT<}2H@Yi92NJ)CD_i(5pS@VHT>j7Ew}M%hxM>(hY^}pe0DmM(J&U zuwxvVWG&=htBl8a;*L3-Zx;_ObRUKjGB9c>gVXIb;R+?x5{#K1!_K&uvOeY0<<{k7 z@Ko?&s9U#89JEh^)u*Un+y%Nt#Kb+b512dcxjob}&1bfV?gC4HoquX~&&zwwA*k=* zOqu&NaL%XZ#FDPFuzsNHrN8>H{NLqS9Z(+p`L>IbUh>Sz`AE< zz%zm^{u6z`$O8aEbAI$EQn=zq@kmk&L5#J;R}j zM!y?HZK{@h&ycns!Wd32o}fK5-%qK)`>~^{6c+D4Lqx_DTeVyxXLH-OsK;8a)p{q- z2czW474YEaU$Nr1*{bi!H@z3hH?JkgFWM!wNQ`9{1qxbshir`S*f>DGh9q5ZLsq z?|M*NpQN|0!TXsFG^?tyoes3Y2SP;MiJ+|PsUMgr6Af7?aQ}f}>naw;CqVo-H%EQ9 z&vXJvZ-?FlYn-#=%<-@Z3QE?ExnMBcKHN?0P>P1$`sm`S+1;&f2VlZ~V{+Z{3bsoN ze25eLvWfo#hY&^&F5qDdci9O52U#~fmbo0N{7Sch`Awyxhve1KL8W4oFx>Nq2@t>Y zfw$|E(%DDDU4jW?3pGV^2RukvC8#O*Q3--fTG#(m{*Ji1;xw|sp(yuJgBUFVCKxqS zte;*2hHTSnKa4VV(`j-#m22YzC7ISN1C5(w96wYeiI?mkwpwbo^CS2QTfo`Y8?LiI zN8~X(S8s>rA=;x6AaVS#$>k_?XUtNAAvODp2EnFQqao|8Jo46Gcaqyw?`kTs74A{z zf=R79ROS^%SPax`K2@K|(-X<%{9 zw5|CP3O@8R3EJLdsO0#dA-MUS@_Ov7Vvf^>PpRLlClEW1j%acizzecJCluMYj{d{U z)JI3SPXvxDe@^hE2AI=%2|Qb_K2@JM=Tu_?I@y=Yc^gEh0a#;pvDPt{?!7MK|{S*1qGTX-_vGX$@q z9TF`p;}r91jIUx`5?y>X$SK^Npy9=Gb-Jkzn}wC|54-zFXeSBMpb%Qe&}{l$7~$gB zhod^HAYg$L2j)V*T*%Mv)BKl(T83)u!2q@R#=`hnCx=$qS5oTAR6|0Sf>EHzg;kgQ z)2T-X;Q;1mBQk|mO?WbOV#{_$+IA)U*Jqrn3IZ__S&G-}MS`}ph+!Syfa3~FvaFtK z-U-n_?bztu#9!8*gl24ney)VxrlZ^VFOUzY8W#RlOD~=eNVH*@(%c_Gx#V9n%&$wx z5LKB>V3y$1D9=#W6Yhw#S=TaV?xPU;?Ws8x{5f4`I$q}ENR7gvzLuwXS=NA0Nr}R{ zvCqEhiD^3cN&1nIDiapmz_2a@qjSBt2zsq#iRbTsX3LVNh&ycQii%tkpcvZDDSap7 z5^hI~f+{8O%q0sPmmQdF=@$;KI-5kR4AKuV`<^Ph)0j*CS|b63B!tJT-D( zqEK^)9e~8nF!E6H-yi(`B^kc?nZeTcZ^`Ww@~D_n-2FwuX;Y;s$hh6W@WvSf4;*|T znnz{YiE>15-GG`FItF-xxv`S~Ts2-!82uUO5wM0qs$PfFbd6oh_Ps_SgJ_VLeU}@; zmR<7=l#n=lB}QQQe7}3J@$ZiAMN=7!{BuB;_-RR<`N1P5J!JB$OTkY7fv+;AeriZy znIb#~J%1sD{@F5s@n?4vr3|P89ORD2yyAlIcaj7A-DJ;DcBO#m8O zty?gR!%xll&D&^v<13kIxlnqE@X;EE+i=-n&>BsM%o9pT&M!yuBENV&GMIV|B{<|V zZ4cJ6>*)OrlSN-V*dIlTj~MM|1@AEo!rx2V5ZV%2)~;Br<$U3dKv~uCX6H?pj&31! zp8$K*4=U$u^*Vn`l>x4?oVyi5kO5DJLYio?O@&QDY_^cPn4}8&8xv ztIeySjwRrH1}d2a)`zHyvqp!;u00zORhXx;FRBmeelIvi^Sh#CA37z%?t71npTf9tF$S95BD8NC~SEB8>Wp?HS{8@^a{2=vD_Ywz_KEZ`ZzK_B9xY?=cejYe__N@rvbx zT#9CS$$7-4^`{sruj&|onkw^$9DQMo!2bi-KqtQ!5(C6)U%Q%)+26#}%&ls+%}QDz zgg0r9U_iE}W)c{tl4)8Fqp{~&hAuxhqs$Fo>Jmv$o~1z&BRlbW$SH}!ngiJrIZsq0kQ)7bZHt0Y#Z|>U3Yaa( z#JH-N?&Ur5z4CU!FF{p<_krVHJQR|bYs_zOK3pj;hbwg-U23S3OU+esv9?NH4l;)- zpt5k(ASgjd`dZmI(ipVz=;i_JHe(MUH>O=oy{19|Sf>I&=3jw&ajz@0F(zn(4OtJe zCS*2R1!1}~p8+U$Bs@r}knI563DynxrppqT5|C}H2y7egrxOxD9bnIUAQJ2!tzbKb zWB#}6;`5kP4G96GA}<5TlhubHAQ{r*#~G;m@bWJC2K%A7TY*0NpQ;CBgJEs#vC1~8!5;6Q$<(lH&=T6A}{ zTSY*Vrcxnils7*HjE^PVjrV}z(WD-?t7G(~myhO=~k~iR;8yt>x0EZ<5 zl%bFcu?&6#00?sdAOx0RKoVFFfQ3hvqv}AF051W{5|9T53fWenJjd`eJ{u6g^R|aN z#zEQ(A~!->WQUlMA%qOrwxaeCtubce-8$5(Un;WNWsY}`&=cGSl7j4vuCS)ZO3Bwu#Q%q7o&+D0{if2ho)A%9ToO{geF0|ZNFB`JkWNS{B#-TC23hqe^5L5xE zI+Ac8)Fa_^Gb0(npdqsHE#n7t@-Wkfcjb1;N?(o4$vmVnJ!7ZjrLIt^333x3Cf3yD zlABhdL3M)p9d=#-8Fc_QEr$stgf=0-Bjmd5U(4pmVN?aGD(iEEH08L={IRI>UOY)j|7)a9};v&wC*fOHK)U}s>APhKUlx23v- zWn|94&0Ry@Kn4JzwUu(Qu}Z=ImG&wn3IKn+izF&FSs4n*r6vPX6?8WTyyul;Rq{$(m0TST$!mXCE3dz|US9u)db!*ek_$Cea<($4or!+Fp+%+3WS#$O zO`ANqyH?JIgL0`YD3?1Kz-max<&J<{YzoNBp(@2WcqPF*=RyHF7Y^ubCbkpM41m7e zX}-q=NXL<&5`uHVpqiyIOrNU`$_v42c`;ZmFNH#mKeI}S!t)r5otErsq~2Mh8GK6y zY@84bBE>G;J*GdJx3kU}!<)zA?0Q@i1RtjW5 z2|-PSoUuQ79RoMt88X28kYnMQKoUcTNdPuvgy1vDghK{s-D$G)1KLFg5N#8`Y#*8R zACz^t+s|)-dgQ+xi;L#Ej$OGGl z+=pO2;Lit(jrRazLK2!v0aXPh6w6K4A8D151sQ|(H=UNRe1@r5n9t*Xz6+npBl`hD z!2f(Fwuj0G>t_GZGL_{ZDd6D8-+%wD=_W*FU{m%^`P6_!}|drWb2p|4ER9L4|oTld}4tK z-Um}-c`6YQ1p4y6|GMC2&y5qpU@8^nk>}nu!$^mYPdzDaOgpItVzQq-la32L$H}r; zvm}q0icP!GLD`oxps_W(L*{$;shJT&BT<;iP_MO;%QV!CRcicY8Y|OR0o;TyWwDm# z<6?Zygiwa*U>c4NfOvw$j7pN^gmIFSS|l?w_q*AyQilv+Zl=@G8eh8JhWaLq;!yg zs(cf8Y7X0=YL+*s!|oV(XJSCBR#dJyUy#`$X(Q0@<7KhtUi>$-$_0Q!1d!|zfZlgQ z;%6D6&o!Y($@@u_^dVKkD?{*pCKm6_9nc7k9n>nJ-F`CdOiZ;EO9&4#MXn|Gdct*s zrUh0~g*JZ^9elhk8jCz(nUJx`on-(}#vE;p(innsGfLdoJ*f*EL-Qn+02)Ft(`hI$ zOXng?$Sjq81vRdR!+JT`ZmyYJ=Lojl&TK*61qmRip3o(U1O^e^_yEt-fn4J)z+XTo zsU6vL8tc|5^VZ4a^bL}mTCCwqp6^yAkq|)+@JZxnl$o}~o-H!Lvqfcv){KkS z0^B3!YIE%vr5-7t3;t=cz_lhRVWJ5&31b+h``TC?rpCM#(*emyiSROHCe4)GG>F)8 znUt|nR{Co7ddD@7DeSBKZBp((rZGKjqa?;Mqk!&CX)-i;`^}w1BTLKc58ka{`(gu` zc9W4NL#-8pjw-DV0LU*k;9U&J%e4WyP!~|b06tMN(BxDHdIEB_$B+R9@cRBLxq3V# zul;R}y!M_tdF?&*a;YmUF9ibf^qv}dbW@{BIsjyZl7T(7awZg#ms>(|sWW6M6y0W9 zAOlnb$n?Ls&kR`w^8olSH5#ydzA7M>ASm4dx!hi*#08RYt|}lG>#O9IX0xnOU!cIK zl1ud_`%Xmz;y^V3GJv|`NsQ84>NEqdGYuTGG-?YxnaHup&f8=wxQcAGcDzwtJ>auP zf$|R^JG*MNqY~H+)d%>Fj6dC+UJ3@}#UnxO-o!q-&=k-LjFJJqUo{EhDyEfe?Uq_A(2_p2ZF=9~Gu`G=&zx4o+`L_W<0Fc`bLy!YXQEE7G21uYsBl89LXF8}IC`QH-l3{Py zly3O(F_vIp=7!Dr>Q3!#-= z@9)rTEjNAw@C8{Y@?nPDrQ5|s)p6SCWxW*8_g&4M<&vX7W~H{^1Gu1n=JO*r^f+h! z05|);4A}ou>m4BjH@H~b;OXm!jzJp9;@ipE$c6y=RMV);K?n$dF+Lw8bp*?V$C~Nj z!7;{Qk8I8c1i+GHj>jEYbhE-^1NiLGA$iu!yTR8bCc2dr0OZ$tyJQdTKMT#&ak_+c zPd3*Bt_jR3LDIyzNC1KlP^E4sz4B$gx?HmM~eeQkUp9XQeIE ziiW8qOgFPh-Y|%b>qC^W+A#}b8jfXRF#d#u@ft`Yqve#ehmD@e!gUZbz@u$#niN+c zV^hmzx@VupVqc|f&uv$d3(@7c*qz&_$2rIP63<@o;K@pus4+5U;070qw|M&X`|nn8 ze6ilhQjp(}oz{##+5W+xTpbF^mA;@{?m-3=G%_D#%njfaz^VbPWa5zynJjjtsV;O@ z$rT7fA2OnlTp0+-`Pz^?x2IZuxv^PIuw;G7*g^&{cG5uQ_uK2`>AiJwI$SNUbOlw4 zg#3uiJ|LJ-|H8qb0^@T5WJzEiQ@wz&Tt4Ph6xz(TB1@v8VaNdAw@N*kyoYK6Emi^A zBvBy)D$Cwps}+IYY-m!z5BR1_60f24hY)Bdpe=PO6S9g6a1;s)unneYy6gbTzgf~H zKU>!-zuR7~*p3YU*@H%cg$#?C49pr}z5=qPvk-zhL%P6)NS?rnkcZO;LfTOhsS#kE z&N+Z&623@!z;wuSAOZk!_AmR{fM%0nC;QJf1Mam;60-7&1`WO&M1${1@Hd}hP1jUK zs7Tn(O%OX0&Iat$^~iK&0;mJFNkA*%(5^^^Pyp7!qX2Tk0(;~|R4n)oR4lYI;k0JOjM`$Obcm3&|Ou`*3l$%7)kux)S|p6+?U5lweSyz)Z|@&-~N9 z^1oht{VmRzYhU`ak^$=(_}=CQJ&^UlgbcJ+X-N#T4!v_R2h(AQs(>W}rw)XbDRSbz zie3*U+-Ay27s8cVRnSSshk|-wVTLi2^$Z!XjEI8-CQI-GZ~$Qf;XtO^2mwHV?E&mSA_zzd)dk`o9SH#hfinH=)9JQCS0W~r znt^ECOf4DUh65STyH?TsW5zrE-UC(7kH~(gXQGR?UI$gOuGb87H3i^ zQ%jK!*{&LP8ZlixEE$-adC1LDuJyMo835F2>(eYG4b8IF-zK|rdUeVyz11}nnAIc8 zlnm_F%pL@Q4nkxxO(t`t%9s4<%T(f^QlX@&j+r=JTaA*@GZQ=^DNG=}HPwL;GH~rh z=1=`+$pBI@0v$P-dE{;cfRWB!RLqddd~}`({$>D~mER3cF=W_Q%R*xfApnFjl#g{q zci+NOgV|mU_x>IQ|5m!jBSZ424iM2~fI)y(@S6BqO-)P#GlZ#|>$>o|WEKA(nWm zWnxB!R?n!Qsq{~Y!7>HPWXnz09YY2H|0=sloTA2EWI@?!MJCdVHN!s5yG8bnZFDpJ zHsg=MS>;S~4GEy4!S#xH5Nx9*10*Qe|0D$neorKh1QiaQsi4!?&E$16S=}tRo569u zfXwt9&?rblkR0VX( zGM~3MtZi4R3;;N3cgpv$iB-tJ14RbUV21tdVuOvqSKuxP&-44tjHojQncHA|3REJH z9D(upUZ_53D-RB2=o^n`4hQvlz9$o%@hkwq>4IcH^D+5hS)0mY$hPyDXz1BCfUynD zwwJZZkIUOM<8O$KAv<_b8G@_kW|d2shBUTHKsP0VZAI>6aVh`vJo6any7WVavXyiy zU?-E$Hu5|fetv7hv~e|Ad#M)S?xsAtbG80JjwiWJ_$<^B?})tsw)cu^w6H-zg_&^vicPHtJjf zW(#1}QB7VGEYO&U&obzP)}lKMAz=n!AO=bf;@4BBupWm zpLxU?z|bi2GY+VYWsPV{L<_iMGy zWcz#yWa#(4Ky}Rw_MyWF*}>>cU2F_DXv}!GraCY}2ClnH|A~K*3H|fneG0e%-E^1Q zo6|2x^M*8#znz$Bh%wrE%>4xC3MAW}6P%aP@)SU(mDAX1-TSBxKnijVLA6t`nTX9X zY6sy(Pt1-Ggl;9bcp0oOpl`Bi4xsISr<&O#WV#8m_IMIj>D-TYmBK*=?0gL-4g;tG z_yqcUNWfi-=|EvxBs1O81{F-CQgm0cpO1uUPc9NXq;{RM(%UH0J-c)`8UxZW-skI- zI|dY#~R zfS6IOA*kNi-v!_gS+M>Pq>qpV3z93cTV;l4yUH1nGqXX*Skszbvveo-w zs{vFytgfGdikN;Ql>pOW$y7IyI;IN4!^rLvaWP(=%*1rHGr1b`{M z@X4rCVLA(0m6_0fNeAxK&ww? z95u*)I-XGgxP1@H1FD&8z;HLae=W#o=oz@vwCZe8pigyx{h?%FTdi)p&bHz=Tx*u$ zk?p}}0QhGg+U+A7Pq!bo0kDp=igvEL9N%GetC1@~RMxa=RRSWS)eEW-74`c0x_)OJ zd?zGM>=TIF6B|v%g!R)o^Wo(^N-h|_tJ}Y>S*1^Wf7ZjgPu)r~u*SDjhNkt)H`X@k zR6i#B!G3ijU`@m*bM|OJkos^yaIg@ZXcuY%@=9AkUL6X`Raksiz_|Hqs+2u)un`4+qB_J3&(3N56;4|sT3mG7*$NLDfX{?K^AD<7=uoVlQBlAfW z0TSTG?1)hr00c2%nfJ{(p#j0*MhqB2mrEv2v!QuLp0mo=A;b!Alg!l~>w9(D?;P(D zDWSuUx5EYTv|*g*J*s`i0STD`s|TxAhO;8-N(> zZ~|hm-rp^2kq0?df{nf&IXY%QWjc5T2+ldG69k%nq%*cM&{#MmJ94_*hE zA%N7IY06CVX0V#6w()2x2c~LZ2=`(o1dsw7g_$el;JC0(XlF{h4X%F>F}9n)!-13w zpA(G_?C$_^0r1B_t)-R|Hi8 zTQ%SjPk|0cbLJ3GIZcckEBR?52~L3 za$i_p=?=-I)}UPK2#NmR6_$&wVL4Y9mNS8{yjWEurz&gZbg)LwhO6cD(Xax1z&M$3 zfH1(9p=A(*-|wuKrw-K1bCq@SVs*WoZLF8G%?)yu%Ts&n z zeaid=z_ZP618f1timCX_;%@miz5vzU1HQ?|BbA9{>H){doyoUtqhp$v*d(FBuBTbGQgaH za_>&*o6;{2m9cfjLGdM0TIRD*yqxZ)u;F(~t=P?vec7aE_&uhvgds(lTUC!g z(Yr(Dc`IeLuT3QpWI!$WS?mqUcn@-eLFSvIe>9kl~^DAz*<@>7>fQD(rE zMF39FYvT*pn$;)ezE5I_zVc!M&6vs=V@TzA#;8hHFs<%65*p6Q z>&XB>lwei?L(FUh#tuge#nxEtJR;fH=MY!O>-OwEH8b1u0jUs#wz^Jbzz{hbBrI$PB?t{(53X4R@~h~|z}B2jS>y}I zbkBZ`v8k&hF|Hs=s>l#BuOy8gr%8g$)VV^Cz+mPA5j~p(X(N+_BSQ;G7!X!M6f3k# zW=24&Bb|a2vG3TIgdqeA+(C`BVK!a?T8)}+Ysv8wWn9{Nt#mTruE<}l#{yLmf=Y?) z0LSCn>>4TbtaE>(cir)^{|=|_U)47L&;Pn#{`jG0LkNa~a-k_G=fXj`JW#FAz4ope zHUGZ;Kk9^d?cKHV+PiAy)pymZ8Tj=NG|6l4ZID;*td`f_T_>-9pjlpjf0MlSo(8#k zM~z(W56R_$uv{LjmMh0iTxtucWQU~ZsXdrzX%A}JWInaCPG=Wf>82ZHCQ5Ri?3d}Bjo5NvHgE;a|``GYlzsW9#$y#Z{K zWChq_R0WJf5~732%TI2vl^2g1>C-Fi#)rZ7yj&lUi!Fw1k>JGxifNCK^3`n+>0(!75r;9zLafaP+Gf!ZQi5cdVQ0U0oF;P8Dc=z zpP*WyElfAn>(pdOf~iWh2+z zX^qNy4Nh&5AD5eTuy0Y07;l3C{z!e40I0;tNPJiaL_-Nexl|^Bc1rK$etD?8*_HI5N5eaSMCkNEzd>B@1OfZlD zI|Rb^t3@uvKqGFl7~(#)s9y(aFolmEumltBxbXqV0p8pQAp`H9gZ4ji1BVb`w&79N zJAX($1H6aK837pp#C*cJkwOBH3-QSC9y0$bTVf*e4AYj>b{@ii00|&ij`b3N38V&e z8|s)C$-)H-24r1!i!4@OK#fodD9qfTLxm=Iw(9?--WHWGSg8Szi@hN=^5&+m)NC6! z)Rd&jnuWLJbshoTO!s6E(AcyRS?&qB1JBT8Lk4K?i0lHt05b#@d8-v5m3!MIIu>{X z0zsksiK}-`FLI*t9P-RL#S};aU~EA+K$LUK%;zv>UNq}g+mG3o&P0GP z8;}DF$jC-R2&`-ac^!sdD-p6}ptfK@rG!-C2s(*T{UZSJ0D7(s#5-pUOQ4`vJ7;b1 zcgp6hZlP_eHOICT4#|6F4(s)S^O_1G*8w!S1eHbYYwc7ysS)w7N|z^7MbHjtv_^J<-vvTI@Hdqdss*My+OW_b*~)}= z5>>^ndRA|@%}qM{T64;$V+dw2VVX9{c_=Wlbq|SmotsE za;maMo;_GAr|KKz#f~O9-QFl?I~wHWo_e{^S1%WO>g46_Iyv7}FBkgjxnU>KPhVqXWa9+EF7< z?x>Z=x7N!q);G%|Tbtx`IBaGU91kn`c>RM-^2d*~$R9s;Os@QGqk0Hv3rdC`PXb9$ z%*Uo9+D$?wLp_*PA+0(*xvO5g_yA17Q;-48zB_;$01F^T_l}eZ;Hh4LJz-Z0 zjsY7&0ET0Z0$q^Qgw6Jm)WxV>XJp@CJ?0TSv&Wc>f4jxBC`A$l8L)bOKr!+gq&MF{ z9<-vC~#lXs^kR%!~d*vXIV1& zs9f+E@IUK7w#4?*SqUREkE|0v%6G~-<>8gxN(R^tTZw?kA)jZxkb+xgAchQ-dUi_B zLz8$%9Ib%hc}>uCUB0^PZzTcpx#ywcsz|~psq?TcL#N#2hM*S{V-$>T6A!h zIKcGu2h(1$$b{Op-4a9~nz?fD+5;PA`=#O@y_wqbJ2zJ}aNKwS7Ig9;?pxNYO!%8C zB5e4u1c3E1aW%SKsm;i7;{`}r5ELBOC#5+xGTnDjV~Tf|-q-*E zg`UmYRfu6aQE$Ba%CjQM>vk7GtmFKU{LN_ zV!*JK?$Hnc0?oNgP&I=P14IedVa=|##U(Nn8%T(1oCp^f5NbQ#ARDs20c#{i?_XQc zFYlQ(?8^55@Sk7GxcLEXIzVL)U{8=(XdXW(yL0H6Wjbd;bZQHZYjjVdDlnvp2$B&H z9oEBj$p-SEFS#Nk5={@MQ<=vv^);P~5XS%S- zazg^fc{WO+6Ab#B;W^~QLCwZ5$~r6!6Wf&hSQ5k|#ODjk=*5kM0GVcw$_GBVXh6x3 z-9{#?+ZieR4s8=o2;|HL`@?3;@f09$v}9mcPOrA$L`F!=&e$*6DN7_nhb7Kb(9U&< z0b|-R$&vEVU;wQ@!LoP?Fbx~yFu*@qyZ_Ju2oo}0(*A$;&O18J`bz%+8{4=_8d-Ah z4FfhdHtyZB+?(91$`p-88uexs+jLS%$Zpt@wi~u2Bq1R{LPC-aB$Uu0l+ddy*nm4{ z&+|K<`+dJ7;e^d{&Tp6OIsW6Gku;;3ci!@S?{n{SpT|}AL%OijU}bclXq`y9k$uzV z808A-Wdac8XPJ1udzTSna2PNEFd=$&9<8xG^K6^h?xopPDjC{rvlPrzK%t_0dD-s9$#Fp$Cgy+ z$z|nwc4e7f$&2fa4KcmGp;)i3E7r?v=TA)|f7Yk|&v}KYuC@#47{(NSg?p;`=*S17$4uJ~&iKarGyejOZ zNk1FY(b|~Nd#Kh^9cKubIR&Hi;Io7>P|QiAT2h^K(xE(Wvh87J8!$Y>jI2QW7&u-R z5!4%)7X1G5nqob%IH}(+tS}Qa5^D;m(1ggr;L<~9!uglVx364NT>bToTI1%sgqvYq zr;x*YkO=dC2*N=7#^jB82DSsaROTt@0AK*e`~{u@CKDeh2r)d&{$#)LUhFrvfn?Sa zcaq_NS5KAOsNgf4j41O00zCWD+$Mt8Mn0esXAis~1n{_#uBUur*^NjCHu1m3-;{kYhVOiXAWV#U? zyV+D>1$LwvQhWsBusA>%~>;`NCbnx=*sTQx8xodJU>vvPzk0T3>u$k z3G4J1i|v9rxhHI`rbF9lZ$*rU2N%x>s4fNyJ|y}K4?8g6OddSA01S|j&>3*KF+CH*x|HKynYC896|s@&uLp z_F#a|;(5RT2@U`22aUPWnn_vE8Gyb7HHqpd@8`gXdyP+gc!V;*KqLC+9t?yBH)&Cy zQccPXTZ|8F*T{_3rr3jw=eW=gO%Ii79s|9Z)t0p53_2~dSYtz5HK5l5IpZAXQcOD@ zZGWO;N2Er3*+3sd#)Es!)9g@G-dULHDpkkO>6Y9%+@K54Vs(HZ6$NI*B8K}UGN(31cpjyK#b@I&Zs+r;0_(S-i&J@c>b zkAQ*iUU^r_SDhPA4ANRw9etJ3_eGK<++ab1yFsLMn77866;H6gS`mxVS5u|?xE zwx(i2s6dy8qU|E0x!Ez*kE%^coO-EK)+{u~Sz8IT!0C!I1kJvoTS>5f;hyY+q3QaO zE|__M9^?TUkANEnqlx&CX6+c*pv?p7EOPtAG&X&ehW5&}$nJK9x^^C7v>*x>RP6}{ zqyYp3G@o9$7fL4vfdmuO(G1w!7K7?rU`mt<_#r5Rf+ z#$@DaSo$)Hp=nE%-F>QhUN}b3g%C6#LKj}FX&IZfx=*bI-=Sr6i^;Acy~;lE($PFN zjDW)C03!vIf4lzfzq;%6uYH4#-FBM}#$tNAq)e}uR_e9l3cVUm>ZR?adT~oauM{Tr zdMv4Z#U(lzFV?}5xDJ$*XkR>`gQamDsf_Aqd00mhs09^S)&6iaEI`8kZDHf|!^5Yz zX<(oz-zwWAUnG7chb~d9HX)IF=T+$&A6dVO6)2e%i9JdI*6L(Aqjknh}?O^M0emmQd4xcl93fz1_=^isvQ3V4t_lR*2R zVve*Z$v+A@P=zcfGgn@>?(iIcL%an(J@lF1Vmdaz(uSMqc6ikthH?2k5_l4JqxR$m z9Db|VQ?+-`L4$f|VTB$Fya?R?Bwg`&R;^X!nHQi-!v1og33D@4jojccz<~YfIu{iN zc1Y;i->5d>^vr8`9K$J+3 zp1d-uGhZv!nVS;k^7lbKXg%N1E)q-@%i@NdKye@|E<|=di9a&}3=$LUD3{E;>1$f- zzOqkc-Ky*3f`Q~!O!rTN$jC6ki5fb zCV}^0fE%Qr86bHe(Sd@*djU55YyiI#-a? zaTkNE3dRsG1IB}T&epuli1M--#>7mhS*W;B4dn)xn^h%%z?96m4J*$LRf%9=IW;qo zx!%-IxPb!*{IFyH^m%3~G&p^!Lft2+YnLIW7(`b91rLA$0Z4K5p>&;hZh-i&{r+v+ z2N?L5J$K4$&vVYUnrx+`;(T@dZb3g`b_WpP2Wm;ezdO0jCH(6XTlFQb=Rma!FyOi9 z{?QNj@;iXQgJzOYXhfW^1XLo-%eygrRaPx1zTJT7e)ix3tFRcc-k4D(M9m8F8;muFY$+OhT4`9N~n2i*&9 zNZgDGIs>e+bZJ=sD6$X$Bi3Dt83Yt6-}SjRm~*Nd!TRM?h@g7WbtP~!-aQ6$Hy6>N z^_rKJ&=nami{U*M+YCXkt{2<7F~F!#^Bo`vx&+KUL3i{(pVhRp)8`HWYv5LF# z81?BfU1KvgYJ6tC1r*Dfp`@)*tW!9pPYB_ZUZ~4L1sa*L#y&f}+jv`-SeyEGAFri- z@=a9=WhvhUqKoVUny8;Qxqd9FO07a&iMZ{vzxY3K?fx}wC{)tb?Te7 zI{CEKe=ebuUrFlZ=Sy_*b8(&eLWxe@n9wQa0=`_T)BJoxvGMXx z?hWhIH4*a@I9BE4N#VSk8WE~QC=Eq+3N;@RYO2ssGYAxCjBh`$%BtNA5g(2enivXs zkj+CPx6WWM%8HwctO9(nDC}I18wzx+zCiCrok=Tz02f~hsdNOa${uk)!@K8wKJcCc z&~Zu~)ri4ifW*6WG2rPV+_Lebj0_60zA#Jm8EVUuX#CG}gS#ZM@bjsJQ)K;d;5Wc} z_tP2m#@GMD(uAo5p(M0_lgsPK{rGNp3E1`}^PN`$^Pn~PdcQp12A5%vyqOoaiZ-+z z52~o96955Bw#dQmn%XGTgfR7D9fTInBhMi@YI^=N$om@f^O^Pf#mssG2UO2V*h%K0 z?EpNW)<6XU$o+9Co&#kz2u!|cfWic6>a9RSk%Q#h(~>a$@>>5;(EaPZe5f7!IaRjp zo|!@=pT8qD%J%{^(uJY3;fJ&VU!KVSd}VfBN?H^;5b~b*3|tl}(zMJHlK=$>prnGtB7rvnJl$bw%S=5ZtLGHs z@zaj)V$Pd`0$I;~rsxBWXh4q{ni(pxVPOV_adhSL83;rjWNB87re`KJGqcPbSr>+C zL@+nNfHT{L-06U{1q$`N+<3VrgV<}jbqVkuAgJ~+u-wsx0ecFKak#@4Ciyo+olHIC zoSM*I)6M$hwgoWo{j2Uu@y1Emuepe-GK2Gb3`}!v&LSJbbiKJ;;HJ`QOj;Sb?HRvZ( z8>}GUlRZE~>!{Y0K^ULm_2rpQs2NTnfcYfnRC({*YE#speN4Qvs@U4YNb?a??(Uma zW7T+!e+Vd!tPg%)-7prA(`sD^KL_DD98M`|bruGHjau2;1>Og^Bcmopa2r$z3qw`061nu zD0UG1j3@#fPoiLOjizT6+N=}vPlJ0dG@1@B!#Jl8$yjCq{i%Q2Jd1v5PCyTxh381yZgko*}eA4CpyU zOR|enehPGLZoI^GgZ+M>Smc92azKOkU-;oUFz|89#mD~r%-uh*VkFv&f0l~AA!4D2e< z38K*r_EIFJ3t@>pG@L@`E=+ZuVO+TR%op&;?64#ZHegh4N<+C7t(^jK4~jBe<3F8Ir$-k$8BZuj6m{FW z0|Aw(z-^Ra)iD&`8wj2v8{}c?W=4ay+Bfl6_Pmk%~v41OeyqaNu>mW5IU;gfJHXum1_;K$$Us=TCQHahY{9 z_}=zDb85`5f+7&zfV*TUr~m*U07*naRL4*yTIgg-0T;YCT>^^Mxi77^73Lsdw&)TOm`;(2aD-zC&lZ%to zbu{Yqqp6KXU1GaF3L>1+2wj2pYD3&8y_R?V$i1of?BJ2Po=hX4RnPJHsSD67(5Ga`MZDfm#Or!&y=!i!S8Sh%sM`S8dPUEl6gH6=aY zl!@S3V;sfjlK`RAvOKF^b22Ne3W>Wbi3q{G05@9(i^qgEX<%ATI~5_PCPeiPMGraz z3<~zRaAb{fn7xi8%m?0)gLGP)@3cx9RwMWuA?JzXG!h%<_0D z-{RhNmgM>_-K?{~0P96=cB!rzOQPQf1o#<1#!bmrM7fFaH@Y{hp+1mH^~DSx0RvtQ ziAOq|bOQ)}1|ax(1Ab=)%FB?hACT0gnR%vkhT0hw|DIjPD!bvP$WWdIvqyt6 z7Q5l;j77@sMZynd2(JLw<@8<0K4~+ZGjpI^HY9D4F3%`RxjN4bmD@h@fa!`*EalXW zWBZ7VH8xYgw)g?&!D(}qlNHtWek~RygIjgOSazHxT!8O@sAl9C?1^@gAS*=yz8 zA3uH%ochtNdOyC?1V~O@Rb&Z0=A|Up_z#@AvdBQev1%t_&Oq*|Yr;DH*{B6S0|H1` zsoo#2bBQaCzVO}2Ro;W64-kmL)8DCs+X{@Q|BO*j+|a2Fa0bJsB)CYZAKY3b6nzj! zK{_2{Rn&IS|3{7#Rhxt1h)y)Mfq~<=Ad^6sI}u|`&>F3I3Dxb*VjahHUkjw*EEmhCloEsa4Y}N_%|fDPzeB<2)~ z=>z~g+#qlHN9HB~1iXjuLeP}}c#wqiKP21~a@a;*%il@jElCgDkpTi$y`R=-@5Og( z&+q5^zZJ;QverMlG?Ci(bTXb<;#`rDMWqmK`zjal95-~#_dy<&*#^4F#*$f3Ve9hC zU;UB(^W>S2zhKUK=Kq@m@dfAi(7w=<*f=4bU4r zZn&yXaob^gz*lF+%}^GJ$Fc-RKo?kEj0jOGJ9Z%=#h z70|*#jhdGo)1{$p7MFy!ilIWx#;9&h%Zw`*rIX%Hr`#tA^Lpb6P@v)IE6lkxD{wLG zap9PDV4%Ns2N>YP?5BT^nVOPOphcN=7Jz}GK@3c~;moyt8Zh?Vdn*b+~Ts{ zb>=|K(DHz^g{iIpZG3_uJ_d^iq`T)(H*#iUnWhxt4S>3Iavh5cI)={CgwDFy|5|^g zGjQA0KQ&(fya5<8rR&9zKEb)~W(HXJ+oU$RF>phGDntOlsW|&Y6Uj;siv2tQN;L!k zm4w{uyl-pg2FviO_Z{%F0?fVO?0wZ3u60KXqE*iJ__cyoHQVDs|IOn7?LZR0TZ{|t zX9U;=I(EKWv3Cr9CT(DV8z7Y*2I&a6tpEex5vBS_^$H;bUv;PWz}n*dNUj^}IQMh~ zd}kofW*=N2L_g_#rz+Gs&gU?>#0i0O(@T#K?xb@kX<{eU6qc0qfZn<6(? zf@&x?ZdBMv9FT1$e1XJQ!C5yMeD=ZdqOg&QfFcAaU=E5IC_ikxb5Na@^($6R->}8p z>}{HsnWu@N4Z=;`$I$fUDT-kqlJp*v%`X6zA)_Gngo4Prf(hFU^D{{$^1X62A)`RJ zwG-?ggcW>eU{a{a#1&Ypn7bO7wor6V{d@xNKd9GiEzF8&Yd=(~T2wr^Mb}!l%iR+I zME;oZ*fk4)9ny5~H$#oIV{7tF-eCo5sI(coePTo+WQ(sKz#8t&QR$Js0gpd`jFLVky zsQ#4Z+pw`u;z-a)&Hw{&$sb!(u2=G6IY9lW*ur$+yN12OZMIBVO#(P3T25m^94n2SQmN@gT`+$GqBvL+W2IfeB*`H zadQCXHFO)^+88#;O=bz6TUz420|rulY*yPZ(Lee~HWGuVHuE#~A5U1(mF?xh+|vQ5!pdVPvE z3OFF&pwjbq;~h=N-{ActV1U*bi9AUM$vQ*6@PfH9^Bm!BfKGF} zz48V;f6pZb5P)bwuMCZ_h``MQu~Yq|qG&z_fhr20!+Sw9A}M0Kc`pXhyrz0;W?=Yk z8=CYgDzTyUn%-wis!HaRLzY`Liz@u(p&}a|MnaKlzK`jdCAv7YP25yztpf%y{bDx2 zD`uec-?htdtIRRfJFw?mP01)sc@>cSqk)dQD279u`r|cFp(R;0rWQgn=Bu$(VrTY_ znzSf1AqHM*)l=@xEmeI`=LB4JdE5jCMh%%vb);R;j^sjD+8J z!suK7X0f6^;)R$89P(^WNIk!5tGCT zp?q^l$0eN(MDHF~s2e6_-NvRAj0X0ct_4{|sdFec7$8Xj2?aWUu9Il>$E|W$vnY!A zWAyE7e){QLjQ@u})q{a!HO{z{4!|)I@EhVfb90$a-;{731kFW8Cp!JbxX%22xjy`- zYJK>vDxLZJq{WBdsL+T1T%!;Fy7^p=itf@&*VFno-GER-Z>LYZA)d)aPgEC2)c zedx6CeHvZo12A(m!Q4QBQNa2BuswKWc7SbU&EpX@pl5^M*}qire>KakM|5JDC4joa z;4Yn0f?SX_lmaoqy2Rgz-vz_bxtIqGc03oA+3)s$XT6sV3I}U6+vrq_ z$}Hh$fBF5!TmZlXKmh0exg{kgZ%Q|a84cD>lM>B!9tCt`*vGv8lQ}pLJ6CFQUjBzi z_7g!-9MvImVw8#i0{{-FRL|V_lTU{x)baf8>fLRkX7ydGuTG4l4hqxIZ*6j&fs|fu zt3&OaIJCShK)uB~-HFuVb#)63`GQ=Ls=~V32PZ8%f~pxii=D~AQR5Z}!MxT6Q#?I8B-LmW&6%A@O#TJGq*Y&Lzw4{Z-t4yhd z1dPD>73#v&%p$wVqJ>Tie{lL@4G*pUNWcq5DFkOwW(1Hr_3B2ZaMU5gfWSGQf&V*q zb-=*C?zzimOQ5w-L8q!uV&C3pfb$>V?bU<07NFG8F(XKdk+Fn#?uUo{P%@7s_}xT$hHnTc?n2;pmL@<}WhbdZ#h%f-wQJ;VMTaz+iqeX{l_JK6)~2Y2tXsXhUSew(>lfY4jP4T*5IDbp zE38{U*MMLhyCh?qCWOKkfTbCs(v(an0t^6wkAi{WHazUb6|%aH)7;D*sq+aiaP^or z5ebSr00K{Gs~yo|9Rbc0;yc&=?ElUM{8zH2Cx39ORmKk%hV@o{vEJSu)xPaf9f-$u zup*&@WhFWgFV_CTs16iGb-1iphpQ4gSd-L&s-*Up<55teW4nuW;_A3gT%XYUO>rGA zjq07UsE$;|bfhe-BPGrg0NHa`53j6>nX@ldbsTO4mT$&eB=Q7+ z<(+7u%~nF?q3R1==)mS8qtP5o2Fdd-*CjBneURXv*j1>LS3-jVCB#CESXQnGtbPrpz^vL%mF*84N^|6uYF{3lC=cKSoPDN7egWu_Lko5C2fPreh2M;^~ zGLR8PViZ6}k`5U0ij}Nwgvo~DBY|}3(h@u7xEhm`laNy&u_E*g*Lm=ueqF zP9^f3JLIt53nB0q0E_`JeFx$7)lma#Z>@_M_+-w+)Hv56CmVLgZFy0>wk~QQlmgQq zJ}oc+O{ib@X7pwhmX==Lm?Ihaz#xsU%Jaw1N5ipzx z2q1aq5rE+NXPi3$e30bXL(K5E)fhfQW0~m$8ddfjSfUYLifVOMvV-u zv+e+0187N5f*dfx^%GE#Wy(V5orj+Ir!zeKna_04xtW1amK^{FzO(zz6lI6RovOa? zdI1PXp17_^{_*c1xW@47Akic~fAOD!0q8&kDn87__`zAIGMsb1O1`{zy(MFG3<$sg zd~feNz$3t*aRdOwIqtG<(8+@uLy*jK-ST(h=JCxc8QhqfJ6PYRQ5C~lQ_j3!y0le4 z_%FZ!Eof9Rd>H+48i1oIwXRT@Xs^!0&~)LzW&_v&0b*TtQz{S&K*rb42+$dXYmeC< zLFdpr6+_7znXyjOvx`(Ssyg+VeodpGLTjF+fp~bnyIFFhX6^C?7m6iR!#Rco39wf` z;%AN>>n=g}6Hq{+Oz?WZjt>kQQ6z#UNkE|lI5dt#G@(t6XLiujg!y&DdgUYAC89waS_{EtIf8j(M2LGb7Qw zQoVajQP(cRjJA0G`RO9kIt|mTj4gI9aX#TTebpETSotm-GyffVtRK;;&F5%BpKRec z>($3^{l0P0G1MZ7Bk4tk{LckNL|18z84ug4&x;d!b#2V(E2!|m@!!8aY|@(~dK4gS zhGzpwYoSqGNdBQ~kPN$u z9VCM<2Y`TTKCk(py3m=M)fVdgiUJ*FXqdk@6zTZxus*1#yWosk-%A$g{n|pkS6!$h zi2}V_?BY;ip;hkpZ!6Tnf&#t1fg#}%lN@~)srSMH9oSK*=U0{(m`C!G;bMH8Fu@{B zBR{BK0~jzZdn%{QC_N;#`?iJ+*c=TgP9HFnQC*@WNXGe| zBNZ}}`>fPW6T*g|I2cdl zazVtje`{C=F!hKO=}6pN6oz1fp%Rdz8`>$b_LrM0aEO}L*_-PlhQPS^XqB*|2=g2W zETlQuB-WT^5Zs)RUvdK{jdtRoz(M8Tb8hh(;3mWZO_iUUD-|z>^r-atUArZiYk>Er!L1}s?_?>z$Cd-MLh2f%{40ji2@GZnwz1Vb%%PHQklBi@H_ z^dnahWgC2Vf}7@NFK!DeW*9BeC7?q09i5d2fc0w-0EtN-qf>+c77zT#I^FTW7#iGynw5EKJRe*zg|}Hz+~0;JMklSf$|^ zt2HEjsiO&X9jne4^izip+fSDT=zQEnKhw#@c^Hy0Ox*E*#e3i!7&z-L{TF@( z4BWCC2V$3e(;Z-7)OWphkH%ncw}ISgr-70Vu_&{~yfD140P`*@vg%Bh6X)Pn+4XkLRt#$v6@RW{;+9EGqE$@* z47l!nVvFe*odK`VMY4x{WXcP8=iCq6?g?l@P@dWcG$mqHc7qnQ0|VpJw`o8cQk-)w%#k=n&0DNd8S6AHyFk^W zs{RBFuy)>oNCVy1nRS9T^xY|q`lm@v`um`JNe7eJsrHF4>z41B+N@T)*(&=k?Tq8- z43O+Yl_a3r;Lm_8D^WhQS&1QZU^r*+CUC>X8wVscKWnE2z+iZ*qF784neoh z!z}Ozz(2(Y-UXMWZ%uhE00a;|K!TZ=Y(fVcH72ytIw{#brU#Db{nW8TmPJ~pk-8#n zlU8QcTWsyWOZ6k^X6&(m9%Vz*WA^IGF?*F5+N>4Xb@CFh-@5j$zi`!@d;07>aQHhv z(hIBNX3PYynyM;pvs9G*@FfG76c9~`aCuw|{=)I6+DxKHzVe5a2|c%_L@(r(=<#J` zx_5q+emlQX4=$|Gql=Py3JT4lq<*uoQoo*CtzV-4GQU#4U09)e7gXw3^Q!doS+)8F zyz%)}dSFqx9$k{uQ!C2!+}ebmT3xD#mM8U_oJt$Q{n@Nq{fr!dsx!&yvZS6|U8d(Z zlwM@@!EYly>mFc;>gr3eT)x&w^dSFe3?q5-% z-z}@qeakBJo5hv-<$@~xVqul;&Z*R0bF1|egiCTN_2kMjJ-MPxPb@9d0}Cqk>)AE> z<(wMbJ-bGC%s|kjK|h|>pxdX_>&_WK|T+eMt=;@VZdVFzGPp>Gm?f%26Qa!!0RL`tV=&6;Zx{vLe#b;LQH@2TD^t;>& z-IG(P|H!S-BTJKdbXiglE-Tl)iz;-_yej|Qoe97| z0`HG2$CkeV3h*3Y=+-<3f@B|XfabsH`!7mbmjn>N-+ecP_apExxPN|?Qz8mffXowM zNvR%Nl(dd6MO`0In3zw%hz=i_`xjK|_klVPYC;Ti|9(M*Nrv8!*T8}bJ-o2OoQj#f z1ynwT3KA5coO0c}uu=~!s?fu^<$5f)%+AMW86I9%s)v^*b5^6s$0R4u_6#RP<4ot^> zGOga;5B@F*I>B%+|3?Bq2Z5U~zjML-YNl)J)7s}mg*!|F&uh8y!3(7V=5L6A4%+7= z{ZteI1D?+0W*gjzPA7oyodi#hpvypol=tUmYcamn<_x&mz_axogYsdmTHm)JMGGMD z@iKV;gr&VnavVLvQzCd|hz%u`$)S9!)RT~t7%(iy>;OSay~_oCP4B;J=RxKSIzDZy zP~RYOv#Pbdf0K#^pxNG{b$v)gsDbOrDo=x}~do%fk8I`1>MjdqoDCZ<~eAn5Qv8t1^k*|+Kc z`gg#WnKaI9@nOY}pV;PlBREr-5O5KiuCmlC`A86wXjNyM0=NndEQ-B4|_7?exLTm*N1Q z<7tVk16C9W9EqXP#D`#D<-WK3?yl28w*xnD)Vt<|sx8K)Z?gFuWHE{UX>-kG7pGm+ zdQj(?lD$LKqbhC9;q!cW?+2=L1mJ*e@l}8S*naI}4P^cF;tjkPV1d^Vtd-0RK=&d@ zm>D$o^CLAQTD7HLn;G2dEC<@Q57?!O;hZzOEjWMt@c54Y4Z1wECZ#51riGmbnQJi4 z!7f6n`J>D(<1{X9s|`;xK#jaAz>#x;m=N`TPm?sa2cc}7x7f%=a-l0Nj!>zBoX=um1Aff9+bmPzYTgZa>mme^y}HR`rW)L z-8G}m#6HL;kQXMu;L!?qlbS5oAW4M|Ot%oexbg1iU`U2CSEK#^zcBZNllm1+cKwq$ zk_(VWKnwKzb?A65A93_S@*TG2*K=z1yZP1nkGVCbiEk`|DZBLV=FZ+^*Cca>U!MrI zxJ|a4?V`~6OB8j2!l|by^LpkMeU8MVUvIoG2EQYyayuR?fw#y{XV#|nC;O1u&GwR; zznNVt0x1f5^~L}IAOJ~3K~zkJfm!d^PDE4KSImL2UF2YF!(G$rEhx64NXBQ91HsbZ z9)OY>Nv|CPj41ITfN2qQEB*Wi$vgot@H8KWZ2^k-R?!83YtH~M`;}QO)?Pp&AcFrR z$24G&leEEM*c;?-%ma|WacuZsQ!+9`v^tw(01%LiB7@3zV|)3YiCyr140R(&wC(;kEV0)cwGHr6NIOM4Ud&lfm(^+6(L*K^KjSMj06C8eC zmQ`%K3*#_M$6?2SX1ggD^l#O=K8*$jP%m<7LXO4&MT2C^t8|PAt+8&vh|ubk zR3J&osL*;1OJAw19#e&cC~87<1=>r9p7)sx#JoToRfvuNv?1Ra_@4y==V(HIa*zIt ze>ipGwEni`2U?I_W|5m+u8sZc#n7$|?ha`YDmf(D0AUtG0#6R4G`(g$R1s!V{LnC< z)>p?j_G#9dtVZiV(S_oigFlao6|uCplezU>1Clm(+ggAWKm_uB_a2sB65C=zPI3K^G> zFz>Z!8nwsvfd|@v0VsNOTL|VBkoaA~_w8M$DWO7h*<}{T>GY%3zcdv9@QGRLR5QBN z_C5RG$G=W)GFNw!2!fk7$Askm#`bDx(74#vAeeOk*b&e!`MV#a<&h46Un|*%s0?{9 zP(Hj#%llMmUhi^?nVH3!oSCmBeM*fUg*+$0clO1Njs5C1A(WSz5nx`ROQ-%eTXg>U zJ36=O9yoAw9nj&UN=?o{@c&edsqPy1Sm56CfyEVid~K;7 zUsI|_SC;CrrRdHlO>h3`rKQe!c5$ik*q;pCfzh1jJ;p3C?f1;8 z(a&er>W*pk24+ZPp(m2~lY;d#^`V?{J%AkMTs|AwWQ?@x^#Fsk^V~N5%qW-+Fr?-=r?%yEsRHo+q#LlqhBf0A+v!Kmv(31!BM*IVbrc zK$7_ieg*(gl=k^3Nj*~X6mrNn$wmEq7zJ$TpMZe&V1PW3@PDTha{E+@#7;Pa*;jH$ z03DxafMRByfl_i$=IK5)Fwo`vbY0qGxwa3i)_13s84u4|a;u7Mzyw`c9Eb4?V5sDs z9r=0}XT1U!P==renc+q=vRnC1$9HR?-pUIbisJwgfC2b`1P2E&fU_IOtbH~ABLl=F z+w9=L!kM34I2Si0^IRpqNyuom9bm^d18s6J01nWDs0b3=n15_~<8CGa{oC&c^99`O zsC+>yB3Y;9O;B0nrpX27)kru&3>AWgL6L!*F-Z^HTTTK_Bwo)+1zP7O>TjAnQbB`X z-5gMbpjlK7Z`H4WJ~S${Mzb>GsYC-cA(A;%Vo1;c1M@R0E%7HIThSYt!$zyRQGL5ClyCgy zVHqnd85xnWR%0?Yrebu)1`SJFuFUS3jty7m3;LSz*!kyo)p_T24gzXW`wjp<0|fr} zW(dx820nU|{!71|JaJk#wtQF9vZ5BVv*KFax5m0kbe3X+nuW72i8qNPAe?|Ze#6CW zszXqO%sDua4@EB2Q_*;YJHIw-S6j3**<)yvWZ#1URJE)U9IDl#P_6x)PFc~wCL3b) z$tl-0vkX4iM&GGm+scQww#`BeXfb0cKhM)T8W7Q@M8*w}n;&g#0^Tk|WIi5RP-!;~ zI+ET&9WFj=iXXOa9JR-0bUYX!AqF4;LI{#%XF}F!fP8lE5?z$JNux72S^&C7*zoWw zdmNUrT$g37R?X;=)GUObiC`U~66f3DBtfiI{@4Ii2#%AdPVvZ^=&O!&2V$LuK~V?@X5qk69*qQkL>-rg3|E9*-1 z?8-7dx4KL(t}oNe8_V?S<}$swF{$U)mFv~b3GLqz)8TMfN8sZ}igYkPte5lRdU{Ej z9?LD)!#NdtaAB1mTu`M)aw_zAZn>UVlGJl6OZCRanBLr6tXDTB^wNehJ)f7<8$059 zugp=Vk3;|~5xu%TuD7-zGaA*KTjP3dQ$nw8D$%PO6MA7?(*Ez2jS0QErC9s6#dIhV z)d%$vy;l>}+dGT(=B8r3y(OwQHpKMO>bPE76}Op(7goge?6QQ>VCXVDw6Ic-E~(H{ z%aeL;RjK~CDq-`T&nzv~)456G#Y2-}JwoM>#1qQ3zt-to{CrlO?w(VxUoWWD1G&|D zYE`*?zgN~L^y1oto?TU@rGumO^{d%{t2+H^cAb+Aol$F*b&~R5&8oBK5M1!x z6o3vvE=O(%eTYYw>?cg7lerOSWaO%J4=4fyTx<@NS=42512+H#a!o)324&=&&^Lb@ z01rNs`3lsQdrNW98lxy z23`Z)$he_V`KL-xtBe6<8&aOuXa}AuJ{2@tTio#A#`-EgH$UD3Fo0w!2#^zo?f|Ms zB>aE@5FSBSz_%i4N4m~{t3uLoAh>CABSoQu8>d%PsUNvp+xj=9Dxx`=)pm13N)Y{Q z&)-KyrA>3)xfajLOln-lR+IB&n6O{k9HSKY!MpTs<8)zXhVlm65Zy(YYqYpesZ}4T zK;{o!4bT zorCLCF}z95qgpL6WMVdk>jp|3fPnA=r2e{MX2vUOF)xFoE6FcGRi1O4Az}h*99({{ z-g377zWHvL_eP^RYV$hiZ0N;b8Mx$9u_oE|m2w{G4t(vh-4@It;XLc-7NE*;9Y7T# zc8z2mX*T5@)OT2`Y~2ak>HjgOM(qPy02Bh&GYS&ED1jQ!wN%heO~`qT0E!4cr+g?1 zV=mYyfFx*3#DeU^N5BBXv6Dk#3p#a|g?4IsR)H!5mq0pvwb-dLtn zH&^TQKQ-y}cUpAn9~*T1#%jHPWtomNmgrDbT!)*IdiS$+I(lQHj^5OyBRB5SJD+dR z(J$2MgD+O=`1NHvab--$uZrt~y>T5bk7-{)L~rFs^~R2vUf&keYg=P_V_Q^j?Tl() zG^Rtzn2t6S>-{T}dhhdfI`a8?y>or7-n%BL6IaD_VoyZJnc~sXn-& zLhoN+siW6b>gd(wI(k*P-o3Wk{_p5D6?*^bq&~Q=T*tpyp;I?k>Eu`WTbbT#Dbf2a zaUHEI);pz99g2iaUKFo`{W|~~PVwf|9VOaVUZR85B|21FV%vBSV6;6V6nq%yCFlC% z^0-h9qC-Mgg3bjM{%4ja^!&OKy|^Q;*NPK*tEx?AS61k~))F0Sj_P=G*y4i*KuknOl3~3Q59>ft#5y~#ZjR}-O;J-~+P6Kdefbf+ zvawinOYF08NzO@HC7vq1pRb}IO!c0Ev8VZv*!$v&f27jSYiwwIiR-+QQ!*ILb99Qx zTi;xVVr9hCqTIl+Q(E%sQS2KEHFOZX=giuL@O5ihifTgLI%H^8`Wn@YXw=UalxpAlA`8qYjv{--Bs{j-kw6OfNp$)f+n=}MDcg@qd)C=d;FPif$@ zQOY2EM}frtXVdC!*qOEx?IJn^02M&McP25Q>{N(6-;75pgWm{TN4;)!O1t_}*H-tH zH1yhc_HR>BfucjD3xx~}br$rlG#>HBvjz@vEru_9amE&_(vz6?Pn+k!K=%nI&6frk z=rlxKE*Pj#_scaVv|P*jB+PXf=i$hp7E3}%KoM*{1Y(V1eRON3E1pn5A*>U?VDQ*IW}HZZ z>y329M$ zQC##_=L^~b6*5;mpnG_MdUP7Bp=nD~N@f#7g$4$ojd_|S#S4Np^y1KFTO%37_TB}< z({r^bt2k9)p)12YNBh|bfR67LR}5>hPK~3mHRzwtNsIp1i^iXM_RL+k>UeFwj_;1> z#I@69^%gWWpwy%wFmrBSDEY0#PP)a&%k6*~QexK4d3VWwoqnj(6y49)xk6GlNP zhsrnp14xj5P*bQAtzn(IE~Ya#SLnlAoAu!joAu$p)$7bZRtT>H%+T;J@NwpAW%}?t zHO}h*4}@=2+H22zyGCdJxmIWXvC{kz&U~v%AKp@{55L=>Gq=?0%*{!ixhbJDHZBl3csa9wHzCx#OEYayN6dNcz^S7ls^Ysdy z{&K>7$Lpd2P>bkzYeXN^7n$dR?Z-G$q_9FzI?8vFrDgd#Tv+I4J=Qp79q34?mrw!QvEqP>}M< zKKyLTJ)3y0$f)mt19JxE{d3#A5nfp8-VcD{w*gujMsMW8C~R7hd}o14%A$_xrSi#d zd0$ho$_qR7pDJn==Xp`(i2|`ZPbZ60?#c~@{3hcKl-17_<9|^nRVP*z+p95Q5?AsK! z69dOOOc@@Y=V(H-gQ((jQz97J;U-J650{tZfuE_Y+n|jfC=LeleEXWg7HC0q27I{A zfE&)>JpdR`ga8M|qYLH_00G>%NeloY{0y&-${(*MxRLWbJU6IJbTQa&s($>9*HT4e zn+d9G+*|=JfC2uWgafrA--_pvY8u@Es%)M%&@ghh7|8UJitvQzgvvENa2=hWS*6wH z1ib4biP3`I6`B}|XjDd?fq=~JlhyOWi%fl^OQ(V6Jj@N%acwh%n$WXvTo-BC5qm z_PPXZ*i%dTc!KvR@<6G0&jCelXj_PWV7=7GeF;J*Fep1_kH+I zU%CVVg8Gy+DQnh!zNI~<+KL&h6F%T0vtCdzz$=BIt4RUFCz&Ld(53ub0)7oto_*yV zaRH=<{qyVkS8H-+#DF;09)$u=RpAjw;+ehUDi~a6dj7jcI$eJruf3>M-wht{0oX2_7dF z7YtBVw<$&^yeRNcfyU!KN`_`ES9;gWQf7(B5d$JRoZrjh{PVh->X`2&cI(vNWRjVe zATA9dicprK3E{)S3<1H<%n-0oqW<|D82H316=2|4b-vz7M6|!CSo@1&Iv9@VNNGezE227(NN9gqQtvjF z>%Eq89c?Jn;fjRz$4ay>T&#n550u1oq^3mgHz#!bno=Fx>%0bz?TMQ+G07`Q*9Wy> zy;p^#W|0nTE7F^r(8Z6LIVuLJujUo&^$jtj5}}@m`|yct;v%6Zfj{%jN=uGU?hcy) z+KJ{uL2trC;MC{hI`a?Z0u-G2O2V9xPvf9`L$OX?SFDp)M|JYLm?hkpsR1g^d@X4S zIe_By=VQXy3^A7X%L^>ACYM5x<=uh;9oST;qosv9*@|C5*ts${7MlAp24*C?=>8)c z`o@~5-pY%ZR{?n!eoqIt7FnWf{sEOvGX7Y7kxsNmbn=>Fo!A@IiRQ3@1dL-(-4L_y zfD^R2KQ|QWSS=E$VI3@_8$lN!s<*d9v~P1*ZJ$%9!?-F(^G$M;g#0x#+=}VR+@$WE zRcjO=s7!PPT+k^9s`EDd>$v{pie}6e==lQ(pat2CR!-8Ac}EQ@F^>advE<`0op0Lx z6rKSLyvN&{!uEH-5UiK|TZ*iUVC{s_ zk(h(R7e-OY9UzBXIVsTuwiXt$QMmZduQU@JZABNso=m{!Ka8}I^U`D+ujqM%X zEQaR^C_4B6P!T5nZbGx}p1}>xbu!zV;c$~e$%JksNwy8up)@hWIjMWVLBWB-fv44w zTrx=QO$Px}00EzL(lM+X3GK$kmI3wFmGc_<-Xp|60tV*vPN-l|y}d8*?E~HXo5wpN zMT!%wqtF}un(B)m?vdh&3)U_C0(`K3wJ&P4|M~i{ttuPhfE>qfQC6Y)b)RGc0u1aj zJJhAqVD;%fT^DC;vvmXayNLaRY0^f~nC*GKin)`$)y<2rg>h2HyorH))zuEV<$+E)_QzF0*2 zizC_}i|9Z!Vzixiu1f0N-3cApRjhaGV|u41s>8{M4v|2Ygmo|()!~M?-f1n>p}k2R zYAMs<>S7(Pj_I9-xDMCEbf`3k5!E|YQ5}j$ z?7JF`h=g`Y!g4F~9avTD_95n98>1F)ZgP~O1Cg-yg(G@BKdQIG5gm$$b+|aJ!_lz4 z=Rv4S)x|ng7uWuhnBFdoXn#0j)T-AvL{o-aB-3SdM>h>bNuqJN#@M~YaP5*i7^nd$8`pkd(l^^rMLx&D28jY!I zhYVfOYqb(X8}yS|WoGEXa0c`q%p*wbef9r14s{F*V=mV0;^f{UouYkob;Md$CvfQt zW(PoLw2WvSSroe84{R^8orX*l$d3bI{H;ZB#++0XiM+`+O{=%|`fViZliM7K=@M|W zg4<70L3e;^K2>@Wb>A6)CPb3Y4UHs(Y8PODD!z3C+Nl#Ed&O%33Or8&4-oN{eiD5? zkLREQz!T=P*iIZx={B$(ekjq?n_OqW%|9ST2tB|j7R(A~V!K7sFtOU|zsn zh%e}`P`3#hp0-poLb22k=GyEAqYAMt&=$7!-z8{DOS9^Xvz;353^dT^WtH29A#nfz zAOJ~3K~!m+IVBfbS7L&3mK`^jzoY9tEVR-Ag6@~8Q^!y{FM&>`DujxVc?{q)VCG}o z=>O*xgxY_`IWX`si^a$M88GmV%|A&2R{Q`Q#mvb>GWWu{O~sh*9@mb)UQMSyNG6*{ zp@`LF=1pk&yKvn2Eq&=Yw0xvf(7tQnxcqH&l-M9Q=YlLQLFa(;wRIF!z`9g5pCSb7 z4}t0r8quCwc*nFlT|LH0>+&A>9<;Ux1D84FGS(;pFyQ&7w67WTW8JxXx(f;gtTl8B zC^itR33LX0#hLX0YM__cWZ$*#4B$foji@q+%>(K+Gc%d$6guil+&ThKV5o>M$*NM- z@J4;Kq3q|Ffp0Rl0DE}aLfcelwxZ~*yZ0st^1w9En%Lu8P>J22gZ4yn%JpUx9? z>omY5lznGmd}xQDHe%LBFc9qNJPe)B$}H7{%p#2s6{O}2F3&7dZdR4@vYRZJpQ0P& zLD}_VKdO?H9NKJ7*iPZ9Uf;gvryp~*ocr^~?SW(8{ekvxEi(S~gXq>%EuLSc#}}3B zsl{c+9jA)?5R~GDPRpI7(v)E4K{+Y6B%W*dkwxXE_y5Gwq#j?A)MHD__2{y4)69Q< zWkOFf)ViobznfoWb3LdAp(Fn@y8GP6r#X#&JOq9EA`x#NZ16^+`RwHmRr9B=z*_GSlvV zYP_|ylUOQrcU>-uGJ%}D)rc^3j6zGt1I;QigJ6u2NzcA!JJAxnCl)H z9_Di%UsFH%UR1987gp(kg;jcZ zQH35|T&^dUCw2egO8snpjqb~>wC#IlWvQNBS*j%@|yk*_g# zNq5zl7Utq!Yk+{Y6xt0{eV1&PI)NK#K}!?1c2kijcpYo`Gs{Z#9Kd8{Txk8@H><`} zikMG$lyhTAnVwvRM?=!~#e)ktubldk|9ljFC`-~pK>bn(4q=GVqO7B z8|eP+ylPwX@yp^fpU8Fo5BJ%5TlsCf&Znzaj^(fpR^zq}95;9x7PAibZlkqCwS)nE@(r_n^Z&lN-PD4nS>)*WrE&AmBzvLJxTG zl{$M2zyLQtZiL(zsqXt${*B}I=@kIlfPMo&A7Pk zrb`>$&j#?=Y8`>SsvNc_#TkwaL_MTY$b=F|Byxji9^mrKh-UXr2rvLuqHtiVDUpN$ z5PjRL3C(lzqUj54R=|S+%z6L=T`uTv3O^&$R~Q)JW=X8cZcx~0LR4LyJ~%X`Up1amHqIG9H()UE@M7E)8wh*w7YpA*Nc#{6Oc9SytKmC>^L{ z01!|Y@{*$Gz`)1dK>r&4?mGjXHip^_gSt>$2z&-ea;YG5eR_?0t__=&xrD9(4&1HU z*r!b`hz>&vaQ11kbDZk355R!eqKC!?0Px&&m)!MV$J|CaQjpY30*ueztR?Y z7JB6VNH+YMar@MIT{EW1&VAkwP)wrkuh}n;YY`@esPGW*?zw4j^CB3IYwJ+fSl5vC zqZNaw{+I&`;)_5JA#l-X8Q~5*FV8@sUIb=83OyPrqhF@O+EKaG-`KIu^HyvZ%gY}K| zl<+{0*AO?2Yqd^<|32#nBsCt#ookj{f&wEQ zy6;VHwsW5Af?^@pCg(o+1Vuh_3e;`LM|f|3HvsiO3ct;Ka)>LO_PiNX*>*X-eDW45 z-fV*()VIWU2Fi%_mJGu_An$-;>}7r_An-cBAE=@ePz;%EBoCr!K_#8!mG>r*hOL0I zA_Yteny4c(2g&=e=JCHsV6yF|dV^f)vs)}VEZ;)05mA(%PICe)h^!!# zLT<%(*;{aR}6c*j`U1XPelc z>~G}k`PnN~a*Q~3fC7L7#}maMDC}Mu)Xq6NzSAAelKl)zgwC)l2Js!;d+gwhiapVC6FZ56#;_j2#mtS18;=JA%mCO)9H{$nGQ)!< z8E0^p*K*UMH4bHmgdW{jf(w)2f&wUT?Vu$_@MN~O6z*57`P)kcI<8Kc6j?eFC3+Tz2<3hM!wOIpdu~J zs@2y1O*T-xsc)0fk@)<@z3WWHWlc8bLA$I|z!33-&<;2Jm!6{mz2<93`eIWSLS2YT zA4)?Qk_}AHF;IfPflK($rULnDA2;{2pKG50{LlP+t~2o8UVrR`fPrtf-eGN)6PTg_+zcd59r6K?K^|K9Hp&$>95YY83l`YV+pW5yrL8mC57eLOp@bDTd_e_J zz&b`Sb2TwkpphACh42CE6frimLGyZ-rskp$ao~7+6(uNAjvmF_7ab#jXS1!9h%bEa z`k#NYi|E{|b@Y}W8qXcgdXjJM%h2pd5TT5asBtg%iLpyk(W-CMUDF!vInHs;R}xT? zRB{ELCn@G$&Gk;Q$+gJ&Ou-N8F^NCnyI+e5=IL%5Nq7+&Vf&#T6MRpo$$nd)Km)@04m{8I^1=7uwG z82Ae8D$q&5z?Vzh@XIyf6c{+(P#`pd59|mF&KCjw$WR;_+)G@*IrCgFKQYb(Hx)Ky zN4cSLFgZ~{S$;v_gysU^WG2xdFw@|qW3liT5*Gp&tb2`OISIJ%xY2WSC*f}&+z|PHXhB~Z*XCpl7@*zkgLwgf0knYD z(R(fGM(ozs{=3X+7`Nd?DKHTKQ!v0FC4-gyTeK>>-UjB7`y8IJ+6L(W1HCT1SRKyK zusHwxG&A@@=l{Y^1Jt|Q<+>GMntgyG?#>B}up>`3c&iG3zR#2q^Hu$wzKc#96*<-G^~ zH~j@XRp=ZT_+**Mp9~NWXi>#5Is$twkn-f3fiCAkI6xfm&K!ZSwldV}EBYk!oW}qH zVpAVS7xD&Rm~qh+fXDB{6nLPt4cTpTE`S9;Q0yNYN0NxQ@#I;wS$Hji${CA1L6QKk zJ~3psMcI(u_PxB!CzK%)LBH_)IdKd&FlmF63JD93On->{`uv77$A`>B*DPH|-erBZs1V92ZqnC!Z*%}EL@NscyqZafoONlZR3~18TW7=lC zphz)D?G@%YPXKA2y7q$`e(}jJqI0j-d;ju7y^$Bu{R=BBp`xfqqD11&^+W~N%YOsb z4X{onS#|({dp^~55@w#`943h~Ffi540+KY7n30H)4-nkneP_#4;{da)SB@r!0->Av zgX%{@$a|CAlK7Fx^FDkg)Di%QuNspi^ZDM(2(ZHIe9@8rw>d%s(r#M-7hFdO4DdYv zOEHt+v$&=xRN!aCccxRqa~=fv@4)Z;zsqUdnnun-@IEB2>__q?{zei^e#QRrm2bA) zhu_aAHS!%v;Bn#QkwhA>!28kV@GirA4~hhBYz^1d;k9ft`-$UfAZuogem9%W3l;b( z>v&L*et2PpUSjZfy;A~ui$ZdsNJ-8J2%v~eN5EzXa@_DQzmq?Dr6T)zL4_&x@clS9 ztUD7FjR8F5m7E)Xt)nPxNj?T`Qvg(rj^-KA$JvK~1CF6PSKPYik0Iv>`6|E^Kw>~= zc8#5<92oe?F|hmXyxQ2t*uUL9YjYM z@6QY%Dy+@U&f^06jlYQn*4uZ_;G%5M&t@Rs*CrXtMNBep2bt%C1Iz`;3D1rA|FQSp z(Q%d6`hUO;SCx_E-odzFz&03+amT%Yd$%-2(u_3fz1pT@T1ZF;$xXdCh1~Q8q(KTK zA%qYDAv6bUjC=2r^L>8nv)_3~B7wUu>vwbcuJ7_6dmU*snmKdkocHW!?`J;`yjBJm zzck(r%=wd?=W;Uh1@px~AMzI}H$4&>f*Sz|05?I9Hi-kT%|&Y6i3BakUzFSw=`wr) zO2Fl)Y&acmw!YHD4bv-BpeTa+3IR`*8lZ z9%;dGfsif^EEkF#B;+YwN0}0bQ{za}g%@-;j((>O8S2qxxcc^-Y!!W~`j@A#(!8uv zyCKp6U@#6zQQF|n*T7X=877{M!C7EK0t`%2de1AB(etXLYbd5?eNv_vK)~FmXSYk$ zs~fuE_zj?L)Zayy0rq?6PFV@Y$V{J~D1ltiueV)*WDCR$v#z5>pcM1seN&yQ===1Z9sa5FP>26zwLXNlWJJAmU8 z-|t=PRLr=65zpOFqE{HKOBgKDWra%gr3v-P^8V*msaD1bHheyZD6c{QOBB*a}okLt9qJR2yu zj^{es2MHh7xbFmTFXvn)spov<{!X62nq{)$M)!5JA^w-V!>A;aY7#jEodZ`?B+=)* zClMr3rYMP*5qSbhI9r#bJCNXtiB8?j{+>uc=@Rg}%Q0Ni$Y&;(;BkWELt@VBnUuK+ z0Z`;baghWQsu1r-QtQ?=-<{<1@*2E9&m$4#SmQlH4#aDcOYwJ-Ro)9~lIPO%GhoL9 z13-y=)&#SH*G9UX;s78DdJMo0S{MFIe209WB<4I$u4go*#QX|2yXmxhm)F zD<2jZ=zL)>4eBvfbNhw#;J70FdKxl$l{V#T}OCDaE1folB~=^Kq6)GuY4 zGJ8%m2~mK6i*y467kq@F-Ja$M9OyA#eN(4dj7VQ%j>K~^%QZWzRP(Ybgrq1pM-o0? z1zX*>-sTy`2R2w$FDvC*bMfrmYm#_h0>d$U2LJ>q-9`)3F}efJcVM)658yulNa)e+ z67w5CIuKPMH&9H~4`2Xw=wAy8&Vzvub|VK2JhJuCB)1-F3srtPUBule?_9~;jIXr0 zn-bR|;F$_5fhPgr*Q?!>B+TyoTmTjGWEWtFtC(YCMNl<|isHKwB>(8fE>S_42Gt2bUOefKbPB!uQO{=SED>`A#DqZD<^@Iu)@Y2)Hw8^m$g2r?UyJCVM%^{KtrNg`%lQMKCAOIoRvVE0 z{@v$010QS^kxoDMU6TcUJ+Dm9uB*0qZf%ubT2rdOt}LdD2G`qknJJ-w)0zg-K^D_|^P!{brH-|0fq#=*a~Y`o;Wm zJ$Xa9o|s-?@#ORh{bXvT9%Bw+X1NWq{(4TCetJWt9-Rt>y4He9Kb3cqZL0ZPizJ$K zL!mx>7j8Vph_lM|^z3pQ3VvZpv3@tdR8Pz**Dq(6>nZkaUWJ~RU!i9fmgLR zTrVw&>xG+2^gM&kOG@F13C7>69u{WBcy4Zf4*Y6h~&2*i06QKglkj zjy01m3+tv+Wvj441cl+3=Q;B+c>g5+J4LSe-h(FIp9WHL2 z0@Q<;Hvl{^UqE37K!C3mOcTGxvGubZ><_?*V?{@Ud%{-@d;yM_nQ$`&tcAAk)7;#J zJud+;$sYk!9Dk$!P|Wtj(Nil8zybgO0(40LR6k9;FN5st%Nrk-v}nf*dnl{N1WoO? zOrNy0}1lHiU)Ag82&+Ib*St)ge<3I(tX1EIt}j%frPogNg@YHc))BE~x#H zh;}Y_5~X|AI1>o;S7`_G<@#1mvYlfNaOlj^8A#Yc+ez$DH(!9Y#u5X| z@(wSM!4?iaEgAxTEUh(?dcL%;Tt(vUssa2?B2Rz>d7Q+B_93X;R~i@+B0$Rk2Mot( zsdIB>3y07p{jQqet6_92cr6kPDh^2RZA&EmK4D@@m5`*My}M=AC5>9rzeE!=@{<7& zKtmi=q4`-=TGNktfhL<7phH01)Vo$Q0~NX~b%j;vX~TE#aCVxDC!o`D{`+eJP~a&# zY?+^-b3nLGz-E)#L~64pVa(+X%K!y+i3&cz07qjg?6;0$KiaN$s@(0t0Q>iE&|eZD zg?*_XvDJdAJ%GS#{NH?Ov%WH+&9IQ01QkkO0Rj-X8=R}KbF*T-`}MSPtBg?{``*Ob z&=q{ z6|~G=*QjULOOvK!ojV~diu7>XY>|@~y+{-`vO15}q_mJ`WmH-$&Z^P6zHR{Bt&KHe z#)+7bQD$r0h`=fX16Kq>BCgKJ)56}BNt3(6!Hs%gth--O)ZzSPt*6RMd}dseZW*;X zIq3bf`+xSYz3BcQeD!mGcuZ$LU#$}lRqDw7?z=-nkcwyjvl?uhH?9Ys34twe|KE7y^aRqDvL5*^(f)zRDHI&x2`j@%yC zk|DLRJgPs>i|ZMRl5R?k$hqo5!KzUT=u)8s=-NCTl$qs85KjRu)6w#r^nA@K%1v*$C)q$FP?L#uOJXiaR zbG0`=qCH{v-n>6Q^B9t$`%7}QuQXSCnvsz_qs6WJd8Fz5jW>L%rKB2-5+*_4w#PNwnpq*8!{t?zb(nP)(u~@rw4)9 zeDGy)A~U)F^C@nE+f#Y~0R#t>1Me&NpfOOVfq-@n#5_i_?-z0s5!!z)QBNrSBtQU_ zeG+#Pco3d%m(f8Wct7@o_XlurVz>$MYO4@BK+(Pf;SwR_L{U;fq7+X7c(mTZk}Zi4 zfMBahjBZiWrCU^faif;>E7P?ZF^fqVPA-tvH~f8g{HXb?>{BmPTzoJ*$aBV|tu)tR z)Hr%}9hs05?IUie=G?87?K@mIJOmj}mEM z!h>%BIsuoT!Fwok1XX#jx9{mgzCvC&#Q71lrwKt3V)&i_98kTdl26bj!1Dl_3d34l z(*)PD=fqN_p*8QTy>v5}=keVJUK6U2cSLTu1gfD^?4Urvn&659eh93}3KL#h^f%MX z%w&;vxN&W*tzM%qPiRPT&ynI}PN+>4$;}9OuLWp7?ZLq8%yI(&-dBJv;sOLeQ#6>{ zyF_&(YV7!OjD37+#cX67e| zg+{e3)|8B5U7vv*@6T>=lXH;hZa-EnlkEscpqN zS`gAvOjyfvbi698W3{>FCW|BR*^kBDzCB!`vmeLtIA#W3NU)#2El;OzFVM+b3v_aG zzD_ph>C{$C$qIA^7v*gQ35oWglW30xwLd4M{h_cGSoh`TX>Wd12Mcm_q$q5rXva!J zW&nl)B-9${GAN`m6ZG057kD!Kby1;^SAA+@{iFd;jAOP)^M8q+EEw>e)Y8<3FC)#+Ozc5EmPALAJ22DNWP$b1c6zOhg*FD=v? zt73X^$T&i_F`B%07uQ#$$j7wEn63y9B+|D*irC1R&5A z_}h(9D>T2dxIlC{k>ms%;9s?4b-ukH24gOA-F9`v%;dJOjOq0i1s2DrVJ8m7obpXWXOsVB;_P2RO(6mNz@5`_CSCtAqflB!}bB-0MR+FTbpDQi2yA) z{-=EaC}_*^db}T$2$CJthP=Lba$aDJlNj|btR=&o^DpW?K4xW9m}w3`0KIH4leZ}G zJC7kLNFspDC+aMZYE%`Sd zFun)FOf95yr+!9by5NHDZZOa~7f=C+f4#cUd797%yO9G19=+qSB<~$C%lQqJf^b8o zZNQoYoM3PbPAS(V0SJdihmQwAcY&%uL1G^p(wrO!#!my9T6+o+6??DG4|pJP_kb0e z5Mbc$F-`WqB>n^(S1(og(@8bPW2Im~01ECL4Q%nt8;j#BKNzQWftbGaJ{Q|u}0E$y?<H?Gks!6g*5eth5g&cFv-MWny)en#h>e@N$^+@^EiZC2~oYt{PI8nyoLX0`r& zn_8c^N3BoZr`BKJuXDe;Pv?Gmht7R}ivte-Ug5yQH|llnM>p%-Pj9!^Y5md7YJH?u zt>134$6LSApw=%{sD%U_ci_9DI(TqF5C+foHhacP85m|uWPcqJYm8+tc>A9JuCcpp~K>8VP z7`g*HmgQ@&{lA-cf`b0`vRv)k6t?f}NGvFvn{o98=jxLoS$^D7An;Ae+Xj`74TAq)i;Gqy-3dq|92Oe_~ zJO)5_@WI^haH)OqeEG!lxXYmx%W&}x#Ws}3&D*4|5;Frf=!|kug5yP^PND%gVC$<} zbPnhOIIgD~45C`e&5D~J!+!)EH@kr+oQQq(kl6qqye>Bc+CEQDudovoR7gt+KmuKf zDyUC#;3e}uz8k?lc(bLCUA{#==oa8M+AsoRAs6wX&05j7R&xSX7PAAizALONfZQkm z;6~H7c6?aRi-qS;VlXOwrQKk&QmzvUKipWUyc75hbm`nz9Xp^d)Jt7D^)~%~fB->f zU~FJx(wP%I?nPPE##x58(0*nBrK76@K~oC?3=B@6ry=Q!%w!Csv7v#*1`419Q1MIY z&YZv~_2|lcz#w($G$0ZE?S{_H-cf?yYevA+1O7F@;5-=kV7GC=z~gs3rmds4THHF? zfdQ|y0=F74j0QICTw0_A97(PvProApN0-BxQeTgbKNj=x8U901oY%ajN{Q@wM`y?SJN{2S; z6PLGj6`_qhdYv0CY%gp;w}C*%8$bY1U=1SxB$Qe?m@mXtiabT$h zU4d?0hTB?@(d%jh0RRCggscrNJiReP9Xk-2>eR7!0s!$8_#DAJw^^-KkbU!4&OB zRsDDgA}S%BxjoN100^nHe6mO_bSS>p?Dp~7jjl8CMLdn;6Wg=CA+)bXTmS0&oJje7?+mUXJT$N?d%cMy=m%a^KAt zD_pnZ&OD=ppKhkZ;^s;%0T1U`0h#?lc!u2XU?`*m*&*A%z3Y*hj~G~?;0&+dRDl*0 zSYl1r5jqYY0UiuMF(Mf^y5+ngy|%bOZ!XUlPQL&*fX?1^Asx;S3Go_0)UkqW0|N(g zf+7wEbF72G_XT*tFN^)#pB=OW9ZEY?NoJ=o82i(l;v{9BPQ|Os3biX3)jOf6c4bHP z&Za!=*%;Bz)p`2cvZ&r(nJZW@6uofL%pU$KpX9j)ioXu2OMO$15@L zb^CI>2t!_X{vG-JBOeYJ=++@k6H{+gd{~VhomprDWek<=+Yq*do&(3pcXnI8nTkOV zawmP<%?W(GKxgld=`6DY1_<)4g>hVK82dq` zje$BGirF6@bO%sg!FAO0lHumBG}EzaQ^err&tNbyD^Ouw0Sv}a7eV32OE1EA1q@u0 zdZPk8$D6tje0;zFL%MEIcZ8tpbnP<8ZmeB954Is=ZjA2c=!|>D26C)3aBU!Fre``;3Eu$9A|oT-=gw?rSf^_OQO(b+RCGwA{5*x<;%mTslAqClmc^XLmP?($!2_mtw#C*b zKLE^@wbc(4!*^v65U@uui$zz*cRcSL<4otgH^bV&MY=5WCgCbfWcIv9-MS1jl^_ZP ztWUmRaZzVf#@d2)!NtJj{6Lq^1JtQgZ=(vixq&W9={#H`QkNzZe)D4q6uUW!K&h?{ zi$KnWU}w$KVDgVPr1;=nSC30dnD8d{$8e?S8FTNCS&_Z?&i+k=5mUD05G)pw%4 zclUWP@WECQ>F=*SnMmI2)%w{|SGlLc{$;uYTV0a>^E-9!*Z1k%ukKOnW4BmhYE|op zij0{+7vS7ux3qzQ$8J^YBQ*{He7VwXp&*g;K2mG6qBHjv>QFq-5@%Qod)J0dxn}pq zTpg>8=`}=q(NmcskTqt99G+T$mIXbW@sNJg~?lTw|ATbSERs2Y9wvOawi!BDSfPu3Q7Q21<-e#Tq!B(|? zt5L0AtF~hU?c0Lm`?XpFDgd08N9uIufw(i5Wk0HdIv&pvv!#cE6oC0T+un2k24+R6 zxJUHPiimcvj3g88zsz&;pRUU827LM1=-~-4fUpczcUU6)jV-K^Kg}+&L>-FH0V_E3 z-Z?r}614pS5O7=$1Vc`ibamK3(XsNdbu!M}8qvw7uny&sheoVBf%+Sa7zU8ZH*r;d zc|qLf6QH&4jpXU%mRz0MnyZsd5uKIixeUgmt=^}7>B;#8hTcHR z(0q=UJLRA=x8>^0ow+*0(C}ReU~o6C!%@e9YmV6V>^=Feb#yzNJotD{h3I5OjtE0+ z@f;n>4QlUtcj0;O0dF_WNdgk2I{-ic3{XupC5wcC1~*ba%a>IqH<8SQk z!2p$c<^@R3k?LZ~o+>3lb&Ek@8wBw*fb1o&N{pe&j zL`-GTQ;v9Vs1i^hkXU3;ke}gG`-&TYfX)D5fX;xwd6I_WynV(r@Nx9Sf zudz7+44D7|K2ciIyINBM#Tt{g+Eh7uTW8>ErT4f}Dcvu#pfYbjfOdO_fO8`5Il-j- zkn`gvd3j)y#s?zS9k41}M%=W_=l8DAg5H%D$eUgj2x~;zO?Ff5pE}b30Zzk6ni80v z0TTMAOfgD8&u$~ttNUmJC0)A=N#69ixp(f=-?|mt+}&_9Ti+pQ-xWCD8Tg<#+<(RM zlQf}AooODGXObsBGeAgSEv0t&cZ3DkaSFLtlz zUl*5e-w~@C?$m%htq3Y1MFfV-2)dQN>;l42q7Wa&9&@CgI)HGtVMaA$Y zZ5Yt@IpMd@$|%$Hj1mi6g|E+uYjQ@R#f0=6GuRrLx?IH2)cK~|W$IliGc_u0g{EZY zDmt_(ne_YQpLqzrC*O$yh_Loxe8}It{{uw|z@2~I$HpQF+hFmru?^Zb8V!CIw~Tah ztjs$RjU(D-IGDMJ4Xf7jLAhEqFvnt6pVhi1ut=As&ePD8IU15O+akT&6;>E<)StfU zlvty@3L5lAA00X{PvqB#PU_yNzXtT0p7b>toxa98Bos%CMiq#(0|Og0pw~=6UF_5A zdJRgOYcVF{CaoAylq|}iLiO2kPN0JG1YwCstmD&YRJZ%aG?`f(v@YV?+s>;AebBY$ z)Gr>_!P{%}c73(pD5=o)f)c$ME7p$cD(%=(ueY`~X~(Ub_0G1f+Ouu5-npe-yBjOD zud+yc%Zs$DqEzqHS84BU^*V5OgN{DXsJ*w>>CM_2?Wn2Lu9|YaU0b2I>ngRYp-Q_N zs`X|?gebanj$6MZX7_XM>n|=T(u?bh_1C--Z7(j@-^wbqy|hBx%PRC{d4>L# zTcYhNVpbKVI!vOtuP~|u6$Ls}U!*;am3phWUT;K?=)3w-)(i;cYD3w zZmQ8+HC5VCU8x;)Roc;9ryZN?wX?ZaZ`W4pozi0MiWX{TFse7RW7@u{K(DPU&|g;- z>h<*ndNU`c9h;)sxjtWSu8Hc66;ZviG-gA@aMJ%cw^)CeSFArSDAHeUEYK^0|3UZK5B71~{0s$C_;dZ)BV@01m5du@$g zX=>8;rUt!LU#m9@OZ8T`K)b9;p0Bso=IgChdFDw4eTQN%9SOP<&|cvA(*Zyxl%E;) zCDAAGe_?i!6@+;VCJ2vHEHYZq%u1p7iz za~R0Z(~fmfy}5z`;(Rl-v&wxaPY2?8+FzKjJ-PXMb9K~aL|&X*WIzK6d|vnWh}hWt zLa|<)7q`J250j+*CcEm4u$8AC(M}dNi>KTG+ly z?<@7t7DxgZ4CLnr8EzccZ1RGST+MudQzW9o$AXW_h{--B^m9GW7*GH`h?9pe&7t00 zF+BInX&9O~bt4Z%=mbz9<;Kg<@O_D@Df{wXV1Q%_*H(g?bJ37CZZuU%IKvAwYc)5c zTJtk&EE!tW2dTa`FhHV2wSGb%q~U?3c7yAaIz^eiCR&#OAAr>EV~iSf!AFqo?555g zGYu@j*(HXhE!0)%5gSGvpOLF^8DRqjsFt8;^9zVszu+s z?XjfBKW@34>t0QZ`J68$s5d0v$&OjOSskutfHIv09BYY!Ax%kt4Q5j2X3`ZaO+=Z^ z&~T0uxXR+ifm1QTkS#Qtg&8%;psHRtq)rcA;kt8Nm(YT!ZW9z5zIs(da@OHvW1CH* zpX-f4(la;^-vZZhsK12SBR3C3Rs4sO(CL1+f>3)kp|4M@vpFH0mH{gS-3mG$e)eHQ z{|3#^g8EZpF*#6V*P1ub0+?SO$VpbchovsE>N@IOM0lbU-6&b-cFp$1py}MsyDr+3Otdz+XL(^t!c2<7U@fvRgq(%LD z?SZb}qAZ0Btf#Gg^RDw?;DfCq(!qcKo>4!3dqcS%zrI#aOs&?hrdR5znMl`G>X$RB z^{W}xdUj5^o}X8$Kg=o9^K(m$Xa3^6BK`h`GW}t8nO>MzqF0v`YUj#)y|}1YznEUF zr)E^@_p{3M%&c<#ZdSRTxxvLRrdR2wQ)^5H7fK3BHw2x2W&pp7d-0??ljdZ9em1p6 zKc8BoC#P2HscDs_K0_WruJYQ#0#nR+V@XVJE{*C>^Gfuq8C806dbOUIR->n9R_G72 zOZ5`T`NAUGhhNXAGA}3gkDq@%vr13TsIS{!Ka+TyoPfT&H$WFDVQcusQu;cNE+2wlerb6x87`Ej3 z#rZ{ger}1Ly`fBhoWpQ#seU%CTHl>qub)nFh&AvOuU`e`8V1 zSS8FDpu)p2@Af55Ms&xrJew=c zarLu$BF{G>$-%|!3yKa3LKl3bvqi@aDeBp%C;s>{;X z>dF8&&kY(GSfz{8ZnB|dZrBbG#H@2LHhrUpr!8sMg_tP15gu3o447L$KD1Z2G3wcM zlu?CJdyKXH>fUv@2=)nT05qWs0RkU!a)E7~fq$)%5VWN8VBmw@#*r5N_AQUeYxkL3QL^;R@-2s$*P$BX(AhsLZfp{o? zH)NJ;a-cX7P=MNKKwNi#0Z(%ombO@#Ncr}fXyH14j%q`4i>lX{%*DzdUYImEWc?vn zcK~O8wuya11^kQtP^or>M~_^zuF?ueZ0DL9%OS(PBjRHv7QOFF}A3TAvsLJ z;3DfPLVrY#l<3!UipB)iC1)v^7q~1DW70RMPmf8q=5)X45))WJ)Bt6@YtuIgRW@R6 z|60{t(xh8QAy2zmw~uni$-BoxKLZf0?Bn9Acl`K+T}0=ft)2h&L;Yq(nSL;-#?DD* z_n1MUOHT)p>yw#0I`~j@Q4FL&_ykFEqSJ`WH^~15^;k6H#*S`Ztj%lZC~tO0|p9|Rn8TXe6L_>=M8eCH@Z0n zfF9q02a3!Pknl54K-U2EBl1&ThyDJ`yh7_jux|hh{+I8~W*=s`4hNr~^8|pw@ugtI z_X{rnooG^G{9271bPF@DLeso>J z>N;U}jjLY!pps8jp2VHtVqln;AUP)~r%g|1feIiXfX+bsqy+1100%&Tj)VVy7NPcF z0QWjhAal1{2=3jhPip8o3rK>PPN z4+cJ1W&#-a&zm1hs!PG|XL#2KR5z$6bj3(Q+n@6|y87hwmiKTV_WXP(Knr_UC6iQ(t*WvzGKj z$KSo~^_hiQ+PB6G{up464{?e|p6}0k!cExE18`$zq4!__3L=2vmP;Fx73A#x&E^tJ zXOEzxHzT9et|zW3_8+C7>49|f+c5$#)Q#Aj z?DjN|+@jhMPWsiPT8C~ng(&8o{4roVB{N@_1XfrKPrpg&-N*d{ZHO5ox(2;%s2EQY zCq3Ll7hagEj`la`MST_MHbEoOS7=mVt;LwY1~CUkTo%}y3LkfR_6@pn-cZNhG-hNtz|jld0ra*!&+-uzt`V#jCcw zp*|rq>{Y-O=Yhycg!LPfV`XFA~54Lo+%RB)BBmB+@7sF{f}O zmm%I9?azTKlyAv9xgOsQp9jFh{`dfRaP0hSnfXs4UpyzSSLeIRK8ZdZ1QK_O#{BN* z(0E;b1{kpAci(LwS99Q@z-URBBC_u!^MD5a2e88M@LMMKUTwDt-nPzij6l*$v5f>i#w@sQvkBRVJ34HF|PN&p6CXH;r@V3P)>&oSe%?iUSL z_lronhgftqY0+NEWV>UBp6b>0l4LS5FlC0WNZ+8V0=XI&2np`(khFywoxa+%&8f_~ z>a0t;My4&Z;b5aGB&uxQKY+*R2vBunR)Dz$+=l@TBrUij6a37;bI-1q7*Dv(T@hRs!jua|70zL=Aj4oP)Htf~0Ag0B2B& z4EKy_QpwOQ76=7EwTTRDve-1BL5q7=n`W~li*>^UW%eb)* z`&(`S#fk0)ActVSg6CHZcTq5;QR@fRXw`r!i)H<)?ei|}O#giQ`7l%?xzA(x^yy zuXr%fv&$tKp0Yr6MTu!yQDqORO%A97aFM(9=SnVMzy`e;_O8{JZhQQFu9ou;zuyr6 z43NljPI6BM3~;~X{_E#*`1xB zLB7B}ng1h?Ai*a|=ibhK&=DXgEFvZQSR(iv|BDJC*EGKqB=>Y7$UDA$jq7Cay5GJA zkiuF}Yx`y@Vv`(&$LAU(_x|tftI>F_cOFKrvh2*NNZh$zc@Me-yx)%}InN~k0sC+2 zh^CO{+<#Fp^U3y;Q|O9R8(_hh^$CmxG5Shq=#z|cocJt&0ge~l06qt-3j-1i??Qn| zRQ9QkGe1csoCKZjz+V;?noq;_de#X?^cTSNd<4H;oj>St|N5cFHW|bN}$M!FgtI_fJ)7&Bh z6uxVL87?dpayp*NX9MUkRLt+ZFONMvjeT|jsDV<1w*&h^SAqc4@LWC*$BRxC#|hxU zJ^_9JkM{ROcL6X2NPGQb-_zeux4hrw@=uTd&w+tX=~~=pxwici7+@A4A)R$+zRqlO zDnTUwOtmu{OfV>HTCfVrFfcQ)uqkBHQUC!sW_$^>Wn62g z#1NZDx}bM10-yYoloPIcPo=-n^uwtFa3DFLTsWN61Q!U43pYC!6#kF@hd#u@LsCLe zdEoB^ixP=D3lW@V79E2BVLwgE6$Ia4uvp5>*Wk23Tx(J; zoIJh5FD}15x?QYJ9n%tEprbhuXZ9Fxz67ZLj7(pq>jMRv5h%9`8HvcKz#5GUyBz40bp)_?U9H> zEAeumRNtY*5p=^yj(w&7AGg;Bij!4bMsyTrf7_@n zBH+uTV1yq5kvF7Xv-;#~bYPvu6@hG1?csVLNP-K8Hd#_gV#s`tsq>)FGYSyR8)MylnM=6bez__qYaTNd408L~4Z1qMQ^^+a(!Pq1 z(V_pIC{`e1;JNcb071K%h?RY7G&LixYto|@*QOWfy7WTL%`DT(KDAoax6Wd27G`R3 zi>uRf)u-!3U3eib&jIISLeXKgphyl%n`izf$Q~nP&_8v$ zMZeUk>T%JjGufTEIxAai2UI1yUw~HRpMB9Lavlu)x7UmJd*bV# zeoQ}}QloENTdyx7&rPB4+6Fx`k*L?VCe`VC*VXC!*VXAelj`kp){rk;)uhi~)nwcM zyoMqE8vSxwm3}j`!e$PBHpNx00S4p*KZIdG_57N8eeS9zJv_cyU%#fo3XbFo-YbNP zFJdG--vmnVI7%e{-@dk9KTJp^BbQ8t8LAP_`})LsyZ4iCPjr@?D`r#I=NO~ zo7iAE3Aq6I3HuFoiKLh$5eIORbbcqFfh7S@0JM1yd^gyv}bE^AaSz(0-VW_{sG(1^~#r*vBWQRf<`H?KeeDPVx&y3jVvJ{W$s!T?ne?znxZYMq+dh{xG}5z>lYOdkPhwm+%~Yl4%lupGdzn zuShS=FVdgp0!T_MIVb-jNWwi;h{`_R3b0$=xG`q0;lUuLh$Q-EC^o&^jK;`6-ONXU zwnJB69JOSg1fPAO=*uhw&#@fUhMe2zMFvh12|oKuSAt<@w)~CP!Ar}4U4q8OzS1?| z`vnXTbPM=C0D7-H@O_>8Fu*`cr*tjtyIdc=vO&LFTwwA@CXtkj`VRxd5px#CXbeRm zWUc4`pyNs~FTh;E(c+NPlilP@#+;;8u+97-*BL*UtmvwUaqi*T;~s|^53L(oP6R_Q zu8rp;Lk*256omNM2Z=dJ20>*2{vBwS3x|VBaFOyn%ygIy02ENYgC<1#k)(v6iVv_L z>F0N3@=*UFvG*W>3xkRPivX=QzHClJE(9)G1_{3~zA?#5_Hzj=4!nl{8?t*;P<`N( zN@dktSBGy_*>IAhX07g9pB#d85`(pt@N+}Pk(8l5_^Qkc_?xmfBf2t>t)c0QEm7#5 za=j(lJ-Uq$(Y@)v*OIIn&CjaRjEoXp z6Ueul`GTw}^Bll;fWc0TeVp4d&Y@Q+t^1Y2IW)b;_+$inOi)ITtE^g?)$1DPI+{Ag zs7KI`++2Zk9tA9*EYzU`VC7#UA=(}QwEy{hXW;#A*YEwfA0Q?nCZK;%O@?YhATtRy zj%$tUi|c@(OYo_7^139TocknNMD~EjcMT9bBR$WdFS6v{n{7b@!j#X?2=FtH`M;CA z4|E*f5|$b9z>OVJI zS1AVAGdIz!TSqn~kRmg2Y~#t zjEx$dvEBklZ>}+}H+RjAx9*zjuuU+R?>;@oYi{pN${*bHt|%Ugic#DCp=xyVr99TG z8Y@n?&(XFnx%G*80BAivsN~bRA@~_Ekn9}v<8LUT)mhw-5!IzB3pA+bOcy<7Xi$&o z8kw>{<1zaRthN}NzS3xiP!BIjU7|o&s`rleg9I_ELWm3y&Yc{CLWB^y+H67RPFcFB zQ(uejh!u1lqqJ_9S)_Cwsh$^IY|-PQ;ijSn5V)xG0P|kKe~_0q;7{c&B9{O`qMUilC{q4ds{b60H{+L~&KW;463#*Fs(&9qBwkEE( zqH%2x7V6bi2?d>-V*2aS0==}XP%o`2)SuVI_1u~w{eCt77dIE!XJ)&BR;t}3tj{kf z(w`Q@^*oyM^NREW!=m%!dXC>0#Pyd&1y%)rabcmk>b|f5XWb$_P33!LnVy(hVH6#T zhR@zmsz1#w)=P`ydhy0W{eFItp1Pq_zhXf3hBCdlIIdT2D$uJp#`N;SLQ9;jioKvv zFT<5zRABq$6K6}f6IFUD?a$9Gw*7i`Zn4c?xT>?GsQi(^+*u_?1%hos!c9f`HwjsF z644hI#I=1zzTQ|9(`y?F^zyQ}Ipy+tzn@pE*EYtrr>H;&it=xGR&w*!40!+U5mqms8%hCe-%($LEGs{WGlMGwppLj0jVmKdf@S%~h zKMW01l*TNKt^o9-q})CGGN;(oj2K{c(x$GmPjw%<)3Y`|P-Yzy2AXYlVL^fDQUC}D zK09EG?*ZBq`|1FIn+@S{RF(MrbV^?T_=nUPNbQua75$d$6B8Qr-134XrRNy>xp)lR zo@egDEgvh;*}L;hBbC1$i)C8?3;+a&B1lO&M0OC)SYD2f7drh}3?B#p0)`VDdNllIUBqKB3V#`*;x;@=eJ6frdfnU%%QV zAtdvb0s|lj0PF`lU^`Sp_PT zKB!&}vjIP+M zq^3T!v?9}u_f>k5e=7edY!Og`NdB3tA-w9)!pv$rpI2J~i)?9=Rj#RCGnd14gm(t9 zreA{=XVuti@p@45pnxpS#PqAqI(9`vo0HXHfIOWIW_*a~pv|T*W@$MIer`~ z4-D9D=#Q+c3jl%@3^FRkOw)wab;{^=d15|@uHj%C-bLn^LFlZMNfuC?e1U+Up%~I> zG=sv<1J&7pL6*^bFimVTDC}hZBn}v$MApsLHUtTfC-oAg(2OiPq^WbqKK8oZyD~sL z$|BHXyoRSPNvbwYMp9J=x-}xdU;V?uPiRq>o*qYZ_8qOdv(6{ z<4T(w(!T7lcCE>?zinS0)4pKX9zPfki}&5RDr&~8sPZ7s3B%&GB{6g7eSThvUR+e7 z*OwM*2hUrXZ-!U9*M^0&?Mn%T9gf=b||DXJ|Xj3d|}osyN9r|3hMK75?=hGwM3EIad^< z&we7VleZS=U?ifwYr>ZFn}`dPpG5`c{`>ZdTyqn4szz;Ul?c9&^g~-BnK$R)1%;*p z#B-BEHVYGgAR#%5iV@+c>_tWaazF=Fq;ks#Uz{H|mJ8hv2A;hfD!_tV*LN}anRATJ z3j4r!gsB z6NSP@z}rt_>|nwCKuyrx-2eoKa~%*sJqVz12)k!4l=UIIkocki176;V>Fnp{6dUq= z7CEiir8c3DasZq)5^*?!46@LwgLmhHsz1Cwcy~PKQJg+8GQvL~5%BTe4F;TUHia))|1`M*s%k?7>Y0VY@b7g`qh>2m3)M!7G;d!6*MdP$qa^ z^t%}tCP)hC5R@eNwZ7U&a{WAa9h0TES6)P!iyuT69Ypb{CKBCFnJ3g%^285p=c zeS-mkerYpAX8=Q=i@FT5=+c>FyQiSxaP#ceshDt1QL`vUNjdspi66&MeWC z4BGaELhBrkFqJT3az<2F1lHSNF?1xmiKkqjp#RL%p!9h*d^{|DiMbjNNS$R$Lv#>Q zx{X%1E*J}OLniuJg%0knlN4m8;U7B#@0Jq$pQaI=2Ltba!+x*700th}`e-ttjSXow z^D2LCZ-Yxej?P+xzIk=MzB3Wm;X32gbKTJ)Adqe>9_lLORLPO7^oc9yHs>^nv8(u( znv&4988H#?>ggQ#sy&H&doX|`>2(=}nv+##73_8WaQ1C7MI7(;&DMeNW|a?j`-0S` z_cFlw7ck(5M5%TovFRy3Zo5UL!(5O^=MQR&=1bdD#C)NES&D`cZ58Ic!A%Ch{k4Us z2!Q0q-nAC9Gs|>sMl|WJJGjRz0h$?@bwjgRqAE@>gwJq(-=5cKT1Jko6|5INNaEW& zi8G{)U&Fe7^(GJMK@A`PxlkW~8xJ7(e*i&yFu>24AQH>^)M`d%vCSAw3KVE`>T;!b zyF6KtaAE~RY?g?kfLBGz>~)RN8rd@U(4*^!B%dE3(6K|7I?x@kz(JkafnJI5N<$12 z_fY4KS!S+C7l1%=HMRR?$v}aLuBGc@(#;&F-aRL2RNBhqfcnhdaYY8#C!OJ;2l;sc zwvj=N26{M0i7(vt=zCo%=O6noj=;I6zUz!j@5jKjKxei^b^7K!9V-p#NE8R&pc$E3 zl7B~mj#T97XkAQa9x7MM=PK0lsS=&Ow@@dVqdIj@ky^e~rL&(b(dk?Bb)q&bK*fnI zF`a&}TxTAx(Am#a=*+#i{DzaPhF$CO^tYu>FMeNszK-5ptP}TF==eu#bnLEj9czf{ zXhlRvibFbD8rHF@hyW&-P8}%>>S$?5$D0duVq2*WHN>^AB&PkPF&!w6=}>KUeWhCvPv*$$Lw6{PtoUsV~sMqCD--cBWwmgF)@y z5Z0Tk^0X^jpnbK)I@nmGBTaD~uFTir;)srvMRcerqPN!rGMs+?t7!W#j#>aFUYcKM zL$EI`EioU1y%j~;TVJL_n~QYvmZ(l|i|OnGah<%QK*yS5I#!#nW3_oYeRrW+K2>DN z_^B-s9n5!N=y23I?J^5`D3YVY(V+H+!{)z0w_xYWJndSStKB)ddOLA^cdd$;BQgL7 zNqK++MOCOqB*Xv#5@+Z1# z3kla{^2wd+qUJMjC<;BDoHJ}Dy1SM;BQ}8Co(*B^V$daEpcncNAb^g-j>Pb=7quaw z2TTD_Na9U;baB+W2XqyXC8aY!MgO%MW9Bo!djQG+D1071gSkR4b=?O534rOX<@wsa zG-}-s00en4osd7yF4oQuOHC-PQ@Yj;Sgy}bYS2rOxV%abMq_6mj0=~))=!t18y%g2 zvv)*m6(22bB=+2Zp_AbAgUWOvpeUhB?gx{Y#CK9<3=h>?hrxFncunREpePvy37OMz zPSM0Gc2Grax^#-1N~EHX^0t)EfPQgX;Od&)P~-@CRr<<*1X#X68=uQ z@Ph6(AlRvctKuOg*k&m7ULe3f_CGgZd>#z^7kBLU_!D5@D_b5-YUh(IqB!HV>2VcC zdK2#HkFKq?fj5TUP~9@xUIL8YHQKod`${_WH_mSYP(WflBT#0+oC;iebmNJM8Tod; zdnGMEL3=QO0pC>_d77D3Y}bo->W1p!2V>d7lZW?Dki3(euj<=qvAhqR0!;sEELQZb z6Y{4X44}V{6fiyu1jhgxiKji`?90$Dvq`Km1ls;Lk95PRT=P8NlJZ1{4-P)pK3zb< zsSTAS-E=SRF;87cjyq;q7;WZ)9=h;?9!8fzFra_0Nt%@vOjh%KRX=+`lMVR#PAmG=lC4H)OZ67Nl!jcpRCBbhhZ zs;#430AlgC@bg<=zWuzk=zA;`|K&sHe*1l^__jP$ECPqyQ@6)-v@~MHMH0c&x8~{W z$BQhe`t$d*U#L;bSL$^33spM%sS=(2Xn|TjU8>fv*Q@38l?E)RC?78k>h%4^YW+ro zTEE?-)^9c%SV+z~Rs<8tqjT#$UX!ac|5mBi?=(7R-mlf^>;r|C_t2p@-Hhi_u1+A6LfoY} zA`*1E6}wluWSayR{d+nLZ!XQVMEh@>;yQ6l)N;DkFP5wIbETH-+v|R@TrHm|v3+LW z&1ClDaXY?e?v3eGbFL1@T(W(Xy~sY9Wl4x%WDcudSOM~=kk9=M|L z-ZgFe2dxHL5p*7ML6UTU0m=94i;yafXy3+=juhm$S=G`U@ml*gI+2tb| zK)Y7vn)nS27!r3I2%dv6S&??G$}{(2W@4F>-L)oHZ>`7|rgR5FVN+GwpB>hLoUj2I z3g-tyVeQ=z(Y_5~9oQJu&Xu|5k?^7U3;+h!4_vO#U)P|Qa@&J}h|WGx;4G=32;Cdi zncH*UWh{0!;Y!TooRD5&i0ug+hf8yGv@mGs83fI6F=*G?ZR^6qtqwg}e#aJ?FP^~J zm-Y#RAI=%L){_1A0|RsjO!~?wLT+Y&!5V^LU#}=cRi2wN)j4j+fB}+qf&`wwLutU6 zjJX2G^>+iuHn@xjfei)KSvSD7c#5sF!H^GwJj@mNZi5XE+dP9)KBDu$`!ital|AS} zkUWt@K(p`z#I&Hf+4_M!l7r=a+(0E%A(H>_z$P(h3}vBsn2X@R2CK?V2&^*t4ejr4 zU52SkrvdMlsx zn2jOn1r(F~f6bg*xjq3Xv4U#r7_)Yb`mgNrK;L8O3Hu<&CMvXGGow24-cH zC9C!h3{)j)LIxfJG0n;>wQI&Ft6VdFKiM+)>{WEOjD)_^n4H6*JHfT*gP8_sO@Md; z{rUSYbDjz)h4HzW319%1*gO*8L6L#3po?u|oa}0Q@DF8(M4jN;H_A=Ii(pxwI#UUQ z7DbFnS*BD|=^AMjZ#+7n%@9yxsDckpovt~(BgtyMuj=EK01)sLB|0$_8~9wTL4KAA zP{aI^4`(#iWE3N4Mjl+e*LGRoDqWKq(U`yniy#z^)AI1&exT)N-!@v$ zsm*yh(U_+r<#5yUv_FWOZBPfpAsvZ_b)qg;C+l-{tR$qPB@rF1Ezq%sLLIA%=|n@m zPHm1@H{kSLg*v%4suR@_9WDr)-uT)QYqhpm3 zo%wjNTK~OLtzW5D%fFTB%w73zUJ_5G@}N%DhAiJXQO@tqXX(s+argX(iX0dq(FYWe zM}0D`7T6V^h^vLaf4opwi>QVop~Bucjl>Y#q+a))8pg zP`9@g*mKyomd};z^zBh&a{x?;BLyK-bKJ8!EMF0a0z)Ad*-uQf_C}-jIwbvkzSb|4 zyZw78?m7S;jp@uCd4hh0dgO_QT-=skPZg>C=5-xNvt&ZW?m!mjg>?-Fec z()cVS_zVieIw6-lTo`^A7&wp}G6S?dYePDaxG1bcCAm7* z7}bfJV>;fPuj37QI#Hi%ak9~Ek5%Vdr-|daZ&O%1mgnlw=N{4jIrAY%ivk8V3|y`+ zUe}<%z|bNmdAs0oP8>5M+w3@bCo2;dO2UDd6N8fk zQ!~#qV~zmi#}~V6rHk!1<{KJ=Qw8^p!52pna`OPp1pFM6F-$v{@=r*CF+l7Ghy9j; zUoTk(fBAt#R{#z(a{~Ve2Aukdn-gFt84y5%?*rNr&VK0kx(Rli=nAb>gmWQOB0q5a z4F--A<|R}|p%5{L01)sJhis`vIwKxeA*4zON0oN|^4<&xyLkY3xZHTqwMKaay>o^( z@h9+APO6o(@2?50G-?nxO$P5=1Wn-Q*JTtKWev$)a~{sDG0G5Je}ay}b%D5`*>LT^mnRB`G$mDY=n8m1z`oNN zV4&A4bS+J|5PJ#?U4y1eH|us}ILDyh?_MWd>~K!et}Av zCI9W_5BjD!S9O%ihNdk{dJc>XtTja@)-z<2Js237zErcb;_|a4NQd4wstveuEs}fW!IDzz17Hc=p*JeZvxJl3h6d6bRq31h$QjPo8iz78Dg`8^xkzLbHhCti|Ax?L?^f8>BQ!IOTZ43uogHye87P5-!WVTc-#`x z$@_|R{N55ByFIRB^?5p45^{;KCA!QY1a%a1)qr$DFgis@u?u1++#{W^7Lflht0T&F)#rqlPwb-XER-2H=m z&R~uXG4oIq)bU&6I`MF|PCitnlOHSBvAU>L%FXPx)+MWZ*N0qjby=<*N4WPSxOhA< zvw0wvr{lL2>eK_JI{leyoqn)Pr?K4%xQ2b{f=(-gSGIsgH*9D+M=3-Sd;$cKzslO9ha#v}Ok zcwz0wWRg4q&(~#LPt$J{p174L(|p9kTtevq2ta2b!~-zVvuOB9Km@FyHpfHuM;BHk z{KP%22-*-p<&AhM;A1_&fKU765-`AafRnGE%E4iVHsI|lQjBR%AZ8Sy>8Z;# zE|sa>B{ucxA0)tMs6EV#R)`lJoj7z!7C_=LW>n!Mp5Fj=QG%JHFc^L8I zSmP2i)noeCw>R_$JjI=5p!XE#dsiGgV8(-j|2_~nz8N_7lXz!ar{3Q7y)RAJnXY@0 zEMNfO3m{+v;B9=_jxlBRfEX}9Q%pllEgM;#pu=DddQMudu-2s53d~K5C0uvVu%M^$ zv?AUkH1TZDC`9krk6x8t<}?Fw+6|2@;Kgc+qxtY&qHqLaO5PI;c-jt|1;7B4eh+5Y zCi0o_%Gs^}1PG)bI?Yw-q#9i}yj<6hDANriORW}^T5ohF z8hZ2^^*z9VdoGT0{}&mas72txE!qwp9)c4to^aD_J%^*8w_fHBxnu#u2@XFV|m&a%h4BE5g{)Ac!?JXhg@@;m8Xxx z#rh;%q|ZVH+P*edJ6DIaKay?Qg`I0$PsKF*PuJx-P_Q&??v30vC%Y*hj?92$8z#P2-(|u?^Ml&Mo3YJPda}eR)`a zSm2z0&gB744YxGeeWlupRU|{9QTIG&!P|2hQRZMA6RlFkO>vZFYYMqm| z$|m%1WdQ^P@$~PD|3A(gqk4dWbS3wn;a2E@C7K*qqM3nJrWHUhz$BIi9ycIBfF%hh zov8pd_>4qB5#q$kwg4b7D&!e7UR-HwE`V+=Bt$Z|DYm!$<1umXqCj2>F#Up&(j1E z5?_&4W`F=taCRW*!n0Br8QmqZr5nN|958;lPENZ{tH;G`i@_$tSJSj6ZJFU{OHh}Z zrZ%Z$LZd1txgbPOmuiY{2E1T4drU*ZOo zfC9FNW0Ee>%#@Y3F=T5vJ!PpTr7W_Vm~xFqBwb(|1hxpNaj@e-510JR*U+T1?Xi0o zGcrsjrCw*x&!p5v_I&vOvMH&H#b*&tMg$}d>NnMD_`tJtVIU&`F4+)moZhIrc-{5@ z0Uiw0PGPI!v?XXvj)Q??|0L@A``6XFDXPO&5go|S(cYY}Io9ltVp;B*&X($sS~o=0 zwk_9;O~I}X!fn(JLz5q*|jp!e2Q=-tdJeH5zHr@3X?5i8NI zXn}TzbG0iY#~Qeu89CaW6Ll5N)hBCX`s1k9SR zx;*X7%(2NdRO}rq!!}&SniF>&8s6>8!p41v!GK`)qZ{({$*MeU&&boxP*l4kQSHs+ z`ODRT;#?gpjp|SZ715!J9382NsJSlJs8~m;BRW*dmLy~iEfgz&zJL0#px1N=RI z!zI9i%TI4`n}v_A$<-%u9RSBd@GTmKJ?pX@AX)A}9pJ>Y0ypF&HVuU3ZeNq54^|fG z-PL7!KciBg=a=YkeZHC-qH3v+sJSAf!$n!zm+M|DyMsB}69()-`$6QKqn3t<+P31t z6j4j9yFMEe`ryN*AvITr)lwJMp;BJ&VcR}@u_mlT&%UJp+3^+8gb)xvdS0D=w>GAh z@+?<1K|?jHG+OJjZOU(30ndX&Onhs6)zRdF#{dHeVhAWh@ohF*>w;n(LxEc1T(J%W zrR@u48`4H??ezj&5(L4E1GP6)9KZnHy7=q@04PGdpxz)1W-Gun-tq|k0t~!xwi5@V z34pUtkQh^bKmY*1y9jyu0@rh!0T&qZ(%Iw#xa$E5*c7mhK#$;3^D1m(fl!%a;&(p5 zkmI3A@Zw=6h)ffioca?kO%oG1xVq>D{ED8R(HLcpZm{w^Vp2X4`3 zYQeBlbMcrRSgUa<3v80lR1Gnm=M>}NZ?qePyC)9NfIcHNGU>vEfcWIpl{zmFH3uOk zu~So*Sff8I`TT^?&e0Q?!d+k!IQY2SpUXD5EW!ItPnx6Dfu}3E|4b`Hgy!Ng_zb1? zD2@@XFTCIW{l*DEaN>y^=OEhvoOr@u^*Ryv5WZP=-5u=fPuHRe9s(& zYNj~70NbsmX&VyNIBkP%z5oD;&A_ZC!MFCCfvU;8&awM+wP0A8&Iv>lMcOcebqdQ( znqp52qG7k(jkwJvlXbrLjXPTd9EO$*uQrZ68v%;z zLl+)Xr(0(-SU`K!WE)0+KcPSr+d%g@g}DLQBh|WjX0?hY0^(h*8da-xqwAG9ron2R znFZ9D7!^S(;D-0Ur`@bJccW@^7-CCsZd#Vc8t`_ZV}JoB-L9@OFfb!+zH%q!>fTw6 zUn=w(=r*1|v(D=A+4Z^`&BG}!jTsAMivJH`V>MG;5wPXC@oZwC8+pwGmw+g*FUS~I zsq=?rCFnn6k}uPszLR>0frqKjNkcWH|8$K?x>%!=FSSBXG<49}R%wIIw$BQN1g=iA zZNgtV53!-7&?-SK8l8HD)#TLcP49$WiDKi)hSF^**JxtuHKuhMk$ka6CSPJTamajK zl$Mj&3auSgtHx=KW(kcgG}JFBV7{uRG}`~lzuu06fn)m&;o9B*_Cs~P(xmn$s?~OH ziCS)osd+<0Et?{0-4ZcsO~+mN>U^?NoiEg?^Z9CZJXfo>=bF^^bfelHt5MsdHEMgj zR&7tztM#cywNOtssrBh5wLa6NmRpL2;Ppstjt;NSGn&kijWHdesY3wEq&JvpeEYqT z939?Vq$3a3=)hB3bl}BXb?DVQbmX<$)$-b{YI%CSTJA2>;rcw+&osmwZRfsnN8Q<0 zqyvpH9csimC{N9Im#g*hdbK{kL2WN?RNFI+YJ0L?txq@Fv9>)?r`E^o)bem$`Va!tJ<`4pisr;7uhud~dZ5-&}0JZ>|ZsW|^L9 zWyrBD7Uf#wOLLA%3)6RctzF?<9c;?ikz0z@e0Ql@?ypemBUSc1wm(&;_GcT_{^EMI zKU1gnC#ux(bd5Tmt8?{qt=bgRh||K%s+Da3)F_&FXkeM#j-z9-E#NT#BKTXt4m2SsUR>I? zU~$--foSpp3H&|B04RWl!$yhTl;cFmi-oG)|MH;GemI6bc~R}(TCM{RHt68fTh;v1 zHg$Y!i#lFeug+&{)&4+<0n^rPd1~I8ujXwrd)>C)S*Z5=OVs}La&D;a!E;9Ej z6SJ3O3xRsuT}A46#5r5F-Cbm~G&BWh8rt7@QU9~^D*^*6MlaDLXV>XBH^yuo#7c-K zAL~%m^DUJGi)E>80~8`Q18yr|R-*s_GzRg_0KeyJY{6K!u)YDkQLJO&zQG}bHiW>0 ze-zxSp2a_yf3yPwgjW=sB^H4UBm?>)L6b(?g8`=Tz5(}kpll7iE&vd~)F0qr4f+`k zdgAm(t4C%#8j%MBTn85;HVYmM03==|-0b{n114-MDB`uDF(DxK&PFr@91Hmd+&|Mp z*2|n=0Rz4fVmb;4z^fbpuyML8niI4GVLZ#nHd#{uM;FHrtP~MOQrIoxx$cF9xTnxa z%}iZsjR7f~(OqPk001BWNkl<{#df$@*8aeoa#0nja06|MM zUQA;F1Dt4C!83L96d-I%nLo4%U}V1j-^ zBkfabX|4eSr2O6$4}&_-1YGEtQGU`Y zdZcpK*mRvt42lUm&O3{SVar)1HUoeMXe;HD8ZBvgVqk!-i9)YL8anpF)c598nU)CGBz*iS%OetvoUeUD%O&sEX@PkvoD$aKr#F77 z*jO;I;B$lB@&-|+8HiJwIKI+}jm}wzZKkCavsvM9niQN+ zu5*X2)}+AoR>KF+HTNS=`2*ZT^Jr(CBwfrur! zljaVUi-zCpL-^eGpa5V{Jq2yYQQOv+j?;vW`Ge)(-}{le-q_%rfgUa~n@|M4EgPv^ z$F;wsKy6>Ik~OPORjcFKT6MhKq>dLG)lP%@WQ}O5+n#Dr+p~=hC;%3oZ&LdUO=`Wp zSWq$$yms80YaDK@G!IvVZK}RIJE$FNL;8GqSUYo~YQDY5Ku6b`o7DC8&FcKYZLZ$F zRh{2hua2*ms&#WzM+&mkx+TvXjc5ST47A=}pw=x>JNA|>SfG}vGHr<$8M#41m2U>K9#>t0f+?wz;PRNZ$gxW)nLC}E;ZfnPKwg)b3 z44Y0S`}CP?5y(2=Hf&3tkvXF6*2bVZzw?6hRe%AXGw{%vb^7IX zF|&Wd0*ciPYI{IHOI4;?Dl(mFz0oBScit5h?auzAUgnh56%2Zy;4l%II!Ooqc3^qkAeLr zTh0J9CY(n4^&Mvb;zY|spxNiR(FnLg{OnwYj?;vW`Rw~w`U9UcfaN4bvsg0esO|;+ zIj?u9ab$KNyrclYG~`U@Da5Q$ExbS%dt488(F_1eJvcxNjF6TvvZGaPqI!h&SnuL4 zL=cpPL8TR%_GR^$Qr&cNgYG<~(dyCJu8F6Se~GZc*$wvoWI#cp ziY9RVdVS*@S8tqGYi0)IkN6A{+{Jt`#Q6T)NSQ?GeRb)T_7bRC{K+rDvFvXmSWjcG<(nOOzbkLdV-7BE4 zeT_jxf4NOxiWvp44fKI&=JlUE*Kz-oFE~16NO2a%Y$W|-P8~ekGzfzSOcTXG!EYVy z^Jwrn8ksa#Ba<$$8b0_u4IOmW(E?*qR{qwifd4HkWwnf!a6E+IP!C1EThC@c5IFRSK?E8yy zb)Y1w!<7*osg0<)KB^(jDAF;%66c&K3gp{ zK^-m)YHu)PbmjN2%hT`X7l_=W50}Mspek2wH|MJT&V04qQK;6N3)Om4p<1^UsC84G zS{riIToKPOsKCW0qQjLrI#7_K{n4=Y<%FCjASbLtWjQ)hm#f2dc{*GlQ_FgQLR8I7 zQOir%SDdH)C3!kr<$m6NN6eBo7-xxbylP}0yWp<=umk?hstwxs649X^?7Q$g=2`SZA)&v5I;vP zi@-$2o5IG4M_aHDy#CHJ+`thZu zmMwt3!B6tJKJJoVtYmncZ6aheCGh>R@B{>4CrZ<9ZbE1jR&xyT@G~?8%YybjJtczY zgW(M8JpmVJ2 z;)TQu1|>JCZ$8qQ1iN2d=F3GlvnAjp2IU9p4<|YreGdd&SXg`;z?7az|C#mX>;s42 zrvr0|3kZ%sYyfEBxy|R!Y%nU4qa!&m@ON{o^plIrEOMLU!xz`-8puW<2+h$2Y%_3< z(;RTycgMNXfPkKYG&t3`0RalU-64$>&DEN?wIGcE)QHQ|%Ea{lqCk;Z4dSo9Fs)kG z40XltX_%%YUt_KteS4=T@&sH%?ZH4F=gf0LKlSfDLSvIIOE_(?PDiA9ULazb1LKEW zZ2>?u`lK5BX&)hCtn8WK;qVbiI?GPt1_t_15y_r_0vt|A`@{pBAfWzz#%WMLQa^DC zImL<`gr06F&P^y_)5D{ae{U(ur91wf8;+yb`>$;Zj?;vWtpNcHJlpggn`krDW^)xA z->9<5>#YE|ytV-Xo>svnf_a)@AJTDGp<1QpH`O$I(y~pT5E`DikarKF@!2e-94*8x#Mbe z&Cn_%<g#d6j~659NvFF ze^R9`8n#w5QWsl|8GM2IodosI1%o*YRKf*K}b5JilaZ%yvfuvt*;xbTn3KsEG*QHY`F13wbW(Hrr*(Q?FognGdr9p0=D*tuuOMu zGGD9-x%(niinLp(IW(@TL)w#>tzAr}5z%IGJ0b1NbiEJ4*&X=c!@G}WYkz5u_T(cX z4(qd(E)0#w@HwtPt3ukD5p>6IV2R{qC)o8g8ON%~vt(Q7)fArifB~Zktqodm*nuda zZgBpyv_B)$ChSJJ31#bGK~M+svvnYrZQOWVbg;}MT0mx4G+4K0S`zX0 zm0_cnLrbF3x8&n^^Uqdb-?~f#1~~j!Qy#n%2z)YH7?d7bO0d z&CkE^)o2EKf`Ol1U10IfUn~uoA|J$wJ(5v?EMp+7j$0z?BqW0%jr(GjO2zSR> z`k=@kz-E*X3RW`Mgi-k3@&?75_0z=>eSAZ%MRudw?pg0HaG?{3hiSG6pg;)^+J!nq zA&|kv=btVrvy(9=F;C}#+T&?Lh<%|Carx|7_1658{(0*uUoNN%IG*^dfk&|(J%eon z002FL(UfK3&+FPKfb8U(vhJEc^4s^hd4IC2Di`s00iLe`r>$)pmL(| zyk(jt-vH1A+%T-h0*|muydte!SEp52qr!C5ahe^K0dN3yXh!n&CeZEIXGGkipGkWE z9)+dnVD;*issVi_Xk^kQ3C#c@VW+2MTd3IBAy=B)29x{LfwN5@jKwGgMTkH%`2Gk2 zS=+OoPftGIe$MYW$$9}Z4a(sDQ_TxJW#B9W7@qITM33np%>hA5B#Zu^C;uK8{MQ=) z{|FpTI-WCdjA!xo)=oXv@Rm_%pwTcrhtA@s*@SWNx&{mYfY}gG=wxc9I_e4Z6TkqJ z976S|xoJ@ou_I)sP6@2lsew$Z(*r?Wl2)XJX;oGLfS#{^{vJEhivuNAXkXxnuNj}K zM^CRw*#5qGUUgzJ{tp+F>s#m6B&#qVDgxW7XF4DjW+M=o^lS{%@pe|8tBz-w> zP;Hw_wwE;8*dRZBM%|Zk1`tkrjy<^tIP-Wg;PnFDt!FLvqUp5>0q;4fYn`=d()nf- zfEd>|#r^w@w+4H3(rm38pJ7cqjk~XhXE*4r^Q#iBY~G#i+vio=HWVO0u^Hfh=>ZAb z9R8mabQv^I{xcUEBwGS69Iu#MuNy|-epFy}YVu+w_a#kuxD|9kw*{PJQ++?(XRy#y z696FajzG{7ndB$Hz`#@D!-jF{*JqsAjzE#}l%I(y*J@ho(nPX4-!s5)HP1eO7-I0; z@p(iI8+@)#Nm*`sDN@(39#*XAg!+VT0)vO1U;w=dbWTs_dgC}4IL1#AsrehPYIjCR zf4(uQ-!ClCJ69K2b`MT{B+~x*`dkAA^aa1Ws=#`M4;MwveTL>1I?TKCU2?5UijC_H zuPijTKW@j0Dfv}J`qlhmy?af}@#?S5)q4x_^fPlTtg!9=&o3*{2aEFbMMjPemuKrh zVNjp1%(0)nv!GDFonNTmEhyBVu8&&t3Uvkdn)k2Gv*YF%38MP#m4*84l?5XGmwt!G zL59-r7v}4C3kvKQ-jDY+00$=B#`nK5s`nPT>u|ikyu4WNTvcE_&wC4Fc0Yf(CSTNt zi}LizVwYg+-E{y1gl2j36@Y+IhT;KaJ^}ahWzcLK=N_sJ&9wDt%fbRU8F*R|Hf`tO z7*0+2@zbnh0~&NRp0&=#6bcgJWO^YCVE_Uo^Zpx7JUzJm_~=`*FV``Vv$O6*BMR`t z_31#4(-!PQIBX75&dw8E2g7A_2c$|H%_rp8C!a0OG5rAB0VwBY_ZiBvt%6-Q%7(y! z2g1XkCQ;lkc?NuK`h!)Dc62a?4Q;MkX!aZPb*QdDhiVFRs5+*@)lu!wk7!p$*j^($ zG9ucS58pp*LiSw|1maO0EY7u!6q}+0xje3H?F$99KR2YqB_SOw!f7hkT&VWv1hs1& zIS>);f9&P2&RP@!@grx|>6eT0&Eg1~BO;yQs1df&aZk*JkC8|WN9xgHbv{<&iU5tf z@=RTLxc_<>Dq2JJ8|K@V{ zfq*3z|FnX0xRpQE_Wll&u6qeXwAiS_#R9wDl4Z>ID^&9SFfuYmgX9;2ay&$X32+<&qG2oxJX zq5Pk^L?I0bt!@^M)4LM(gZANYrV8b($Vnt`+0MdieAj1LlD9*Uxjh zA500DjQ=GVC>UQWv;q|GL7H(-*{hfY?XO;#6C~;^sD-ZhoWYgM7h4EuIEZ%dnbl;) z=K#}n4+d~kLbU8P1ItH1OQLG577eS=Z_@!!@AaI7b&8I73MTXV{hz zXELj#vu&{8L&*3nVQAp(NdXW5puT;^Sfva&RpW-tPXvpd99Sv9;~9al72gvw=7YxA z9NQ!HNwl`Ys-$2So_y+3I-E_S$ip&@q1` z?tk`M`qQFZ{r0Lt{q&MDqu?@F`}rlM)(7B%L$C1b%ZqHvO@Hv4D+;ZNe>ZM2Lcd@? zzr4uK$DEUYcV&SYkXRpanbRIJ`TysO%JhqQ#d_xockceTtMcu8sJ|3e=G^{=i}SQM z64I_C#UTCyuj_Y?< z6xhI%$v89_hNU#i{4K{yG1<31D9%FgkBz_Ox_`corq(yN*t5F?U493v0-!{*%jBI) z+!}Fj=;P7CUvLt>z@=IWpU0c-xBc1e6hWm`%f zvDx2<7pZwql{vL^6(VE6K-lFEY|BwgeNab8`76uP;gT#J$i>Gu+Yk_F_xo{w{_kH< zr60!YA1|t~Hvu08ycrDHF60fz3)tC?@-@htrW|Sx+5t8K(0e%9!}q5+L6bG$bpmV$ zm}YUpL(oezPVqI9dnR052im~PX9FURPW)awx5g5YS^L8W{>7ywhJHc7ykP+YWFY_u zC<{fi^}B0A*aQGTIFUe=@C9Xn=BOu4h^ZmAb{-7SXfYAJAW&d@R%k*@t}aR|G-|~B zv?}=m5S$gru!$NcPbP49`13Wz1dN8Eckf{~frrbRJitx%neIDhj=3T`pnspS#`Qh% zgh2)(9JObblC5!{Zt2F(3N%GS2Apge112&~y@ zTtTDp7RP+X*oN?wCe=g_+#l73VBP1C%gs}veT9>CEmn$TzzpnFes?m>^tZm`ch1|avIhK1&OE5Hhk zZVnj&V;aph%Kr}mby#gOJfRqD@OjoSZG#nB5Vk2k{{g$sVFS-_&3FIF>f2|8g$)Aw z-Bw__fdXhdO#gkkEy39qK8E|);QsD2hg5Y31V*b*?@?AM15Ptb(iwr3MtPha$gwG#+d4aNWOFu`mUoJT=WzK zu&o&G>c!&%;$!|u{NnMqtkI_tM~_D#!l&Wpyb1{T%@qy^a2-rLeACYFe||}c^$DDl zY23#QV*QnAM^E>{Q;(YxJfW_s71{?qnzok*Xtk}-)zqz{5=t>B1ne_kS z(qb`u#M&IA5RUVoE-ts@`*2~@ntj*{Y$v!+zNX3Ndo~<=PyO!7!noGZ4Lmt6+h|-9 zwMLmnot_8Q13eJHf=2s;`FVPOKDX~K`QDo9IHmf%t7FDgpcyx-_V_Vz3^e0hm!I={ z7!801n);o~g0>a-ba7aJTo85l!SOH1(?{1wwXZ6s_Pb&tWb9yZP}^5IPyu-O?8dN7 z{{c4tc13~RE56=;q7eL^*3r2?ux)3=;&6K$y zVV)Bu;EXLz*yv{fhwV#Aaduh+=ul9fK8*vJo|_LEdT2*booM*kw$SYF&2Zsn2$~5h zvs&q_Y`G3u8Em=u|LlJF8($3=NbQrVbz_(4nG5RlZf>Eo6D26&mRuLz{ZyH{5Jvz6 zo+(r36J_dnq*Uz>$LoP&wclG{9>7P6a30FGSnM{m12_$BCZix^#Xk<9!4pq-#|PI& z_46x>^iT6j_0!8r#CneU#bw1t0pd-`rr=*Mb7-Fz6bRI6e$3u5d>Am@V;%3O|D5Rk z3Lg-_WS-{UZwvSuT>wo16D?n45daj>9B>;BL^wbIC}6|D1Px9wA!CT|c*8PjfPZV; zTWc<=^>=ezK@oWU+!_NW+z)gKHW7ZZ#9Ez`D9w?91HL~QA)W&R-Y=cafEPxh3m_dB zV1SqyvG2w4x+twc7pCQDR$#f=>@hLqggc<`SPeFs&SbGI=+|eY3-;=jVm$uA{ih^c zJaG5$?mm5bk5KQE($%MTy8RurALu{S;QlkzxAz#A32?$7`#swNcOpO68he_2wg7;S z{(UFd$=9VJ4>!A0a}Vk_(I`S(&#mlFvt#ABd-WRpe*gmj0yYHy_l^I5c3tR5y-pmg zty^wA<`dc9@*e;O9;$!CHc`;m<`1nD*0{* z4O%kH(cGXL%}vX(%@o@ytK{o6W$;3)sY%!B%Y-YQ472XtZjWTB{|a$TtXDU6>ZpHRV8DByNqSE(0O0rHT)@Ef!>VliXB)sk zi7vDzHeYiC`8qQY)U?1dO$jWqf(nzKjPMokey+K4@t*a?1}-q*6wOIp^`$HWs9XdV z7EEYR#bj4iQ|eSVty&G!oQ)<4%oJdyVp5Z!dr_NkU^>+mK!ELl->l*eMSvTEV+tJv z+Z68*HE(E0zS3%X$`YLw2%F9X-3cyfJ;6Zgz%y((!7!tD?{up{eJ2?`ils7LJX_ zgNcew-LK+zWCb{CjZv-_MeOnMbEfkAEx)ID+}?uI^ZA*;^K*)3-8KURyg^Y~?lceP zM0AY<4S&2gPrLK;oZz`8q=N-VL%R_1k{rx-gvV!q1ppDJ-SF7GZiCGaxd)#vjTi-; zDgGBrT@#Ov;L~L}`gmzXyR(AM(URbmI^{~de7GSpwO`Lw?-K%2%hdVxB6U7oXd8f* zhLEZ8QRKH&Q`tI9_=Jz4&d;=;86b!!5?dyl8my zfgpc>bwR>bls7DIM%ID8K=Ghv-Y{M}0LLG954HsqG#&2@q(cOeSGH1{<7Y%?jgr=CKD7#ZDw z-vj`B*dlm0Bn0LBFUd=wu1t?ryrB{C{NQ$Fj#ne<4HN>ZsEdXMH6i6njTv&O)h(MI z{agJw_%A>1BQL#bO%qx|rrywQ;MPOA;oMGxY?{G17oA>!`rVa|3gr6&qt9I7ns(^B zP>J1?n%pAjF;VeznsC4b&V&r|yl|M!0(}JE(_7HoGHquF$!+tqUtU_0p!od$ssg>g zFlJN}#H==1#?>d}8a^h%P(}a)H2m}`Y&oDnao?~WI2Mkd$I0LmFybDE%U9y>IF8?4 zQD{JhhM&iQ=$J+m`ch(ZuprMi3kHA|x-A0@KR{sjYM1`&07{Ml6{hnEnh;Jr#>XdB z*HK^q4DZd)*XJuD=Ev^?W1-ZbJHV9(Q8YYvu4^DxdRS|3|KfYf!}}IO%b(i44JkSpa5WKzdfpsJM(OSO<*pG$G9{RE(VBTQ$bz= z4oW_kf?n1@Mx4gvpQD3>t>t8yxP8Y8Gy~c8csLI4ph+MbkHNMcCC+Les!_`e&wn)n z;y|BNg~lz`E0@;k!>TfMK2+f9@e&yrc(KZPsPc2K57-(}+a`1YIcfzMRNyV^{@L)U zcw?9aR#~>1Yw^YnTcJT9NzOt(a-HX_g;1<@_D;NUj5iloqq90=g~nz8l*|Oce-Qlg zQaFEwde`2hMfS$}4(tAS_}H80*N9@8Pb1C>+}8PLK^<}cfa##;ymFFba>w-m3cmU0 zYYz;#RS7J}PHJdEc$&4VulmNW-^@AC&X zOsAPT>L#>`luMshI?Q>XU!GR3IcYJSmX@ViY3r<}TC(Ql=B5EPi0K;*b*~d?{8Ow> z>NUi~!vuOkj{y+i-qX*VNJgu#Z3EC0q?wo(N)IAnnhipY#-%Q>LT6xfqmzc3Fqw6` zo7^$68*0VWjT0?E04f6lVmQ9sHUPp~gnDr^!r_y84OOoblm24rk9&|8K%*mIEAZC^ z3CG=pj_rKz!GI6sLf}fnlr^T&3f%yWE`We$5z#PJHpx4%I6G1=oW+fZx^`HF*@4cn zps`$yAAGsFPniQ%{~0z(J}MHuMr;F4OUtxEa7@}P%_PNEfa&mxF{Rpka-%inH0HP( zdEE{go{CA0cHi9pvXK=!J#A@1_cAeMfi4V05~5|e@U>GL6Jl8!W^Rx7F$MJrr=+3@ zt_mkMs&HbxDknFnekwW&C^wDDA5W;5t5u__H7`A1X9seu00CzP!ihR1KuFegiN`f+ z$UNH!csdQ2UU=)NH6xQQ(3z?0bcLA?U_9XJD)b%bjN+OI=tz8yTs5p%nPckZtzt=M z2I%Pd*YjjFrofT>4{(r}34Vy*=2oysKK2Lo3AgSa%Q_A_w;j_kBl}^_1!E-b%b(v{S z(47DV02|b#)ax~L&^bmma>EMpO(rU3z${H2a=kfM;a+vo(3qButTr^@7^BP|j z&s(@WJ*w#`H)wLowN|%pdgj>PM8~hKj=%r54sR;fzN$j)%FoyC{HS)vqWUyapg-pp zYkP5tc9j=vS8<`XNAmUIikLoJo~O^V^YnR6zCI2Y>61vIwny{zd8|ku7nbYuvI_00 zt^?4|!?RkazG+dyM*2MI2X1+d)6lg~zrk!DIO(SYT)X>O7I{hu@Q_5SKYy}PPVA7&KVv3!(~uRpEL*9WWf^`|v4eU=f` zXQ6z35-ZhbdByrXw?Kbh>5No9UJ=!-d{o?O2ziFV=>ItI>`% zVf%VlMo4?IgJu

Ah=%Zpxh%G@DQO@Pxk}%*(Q78ag+2o&bXFD{wQ4Sh6mYbh4uk z6$iC18rGiNu+ej%4eg19wJVgPouP=n23O z_9eCWV3!!}s9Mx4+%8talQqXV_p zvKfG-f-Qa=5HR_NT2z{4Sq<~lgPtvSp$ZS?JCN{jp*kNaN>ux;QG4R>1V#vgA{)^JPY6#8 z|0EEdFXMp4GK|;NTEi;`5yPvYsSkW|PaxxlGFHW|X zq?K6XaB|veO;1~4MU#ZbHuM`BeWw2>e67Er+;~b3Vqd5_oJd`R-7oGeG{nTlH016i z3upi=(9n-Jj_tUV`HAV;h~$gRNys}EVI9hr!8Q5>gAKOS<3ar)4D*1weyuS4;%G~oDzf9Yf=OG5f~E1buqyaubm*8&murzyR-m3Ls7(8OKX49a*8-fyGKso@+H>$W^*1 z5J^1FjL~&kKfNiDO6vpF0Q(ens?}3As48ArW1J=e3Kcwhil8dMJsUr2{?Ia=ofg!| zfz?(xAR&JBfB=dMJa@nGK*(>KwgFQ#XuuSwzZrbG(S>;b1Kjb0q|`BD^CRpBrEM8pD8o_PNIAf*UFf zH0xr3K+?eJR@jN+Cgfi$Tuu+HumTv2NV?FTLqx=WGk}12X7bX6wdj@UCCVIAXB!^2 zJUA=ydX0>AwPa+4&QHrtfVc-Xf9tD!Oa4E3-~ayp->d7bjp}^1S{)A*sr~MJwcnAa zwtEWH_E3r1pRQ8J^EK*tqFk+a6zWiUScggpZ^~8MoiVlDQ>eCk3+?*tP?(>sQO7qL z)%oTob-un)ov*G}$8$C6c(hdQ_mUZqr$gl-?F+d;D=rT(?JdaCfoPUBxh)$aYTX)9 z>&CEJZ;q<{fg-itnXl%?uv$n(=Gbn_Q|qQ2JJ!yx7pvpGe6wBe_Q<{y?$X?ue;%Yp$9%hRqJgrwG#&RNU7THEzth5sPWYI z7v!jIOHP7z-NN5Ah1Jp!RC5iSd6(A9(3PpU6@6B*o37J{GeL)M?1R8EEKM&?*3s#Dm+T5L|wrvq>`2AzEM&BqxSvGAq zcgsfX@LgGE7W5&gL=D*n99n8!M#G^37f5Fyp&>hQyGAR@!;&=1`cvpXhYMU{H3DG< z-}}R)8#{e~*8*7Pfu{qlfigr7oFQxeO92y({$%teY*TZcK7z;6@vW~YXMoK>0t}Rw zBrHRr1a*;|_C%?zPVh-R(vWLG8EsqR0ThH#YzW(vd$1s=-P!o*1{27L7Zb>>rIIJt zAuv*hS)=XB4(aoZ9DTexS065oiqMaDQQI%fbAl9jf>$C)K@p#Ct2EYWzStJAi-_;0t}ca z`RrP~dJb+u)k0WI)9>Ak*f{hofQSbkG!9-j;8*Z~1AcbXOoW!M>Zdg*b6lksjV!gg zeq^~8kEqlQ!>e@dFxLI$<}8GOc<#_#%^4c8Iz6yjQYUjqX) z;*|5|9%oZF>_r`Co{78@(J_7FZ)xHI5QvCzAR@plWxz~x+~A~%VAv-8z3~tCl%sLx z7&4&mxP&Iav;c!<86Zd+I3rF&f?kwtIRXFxcT&gxl%}6!8W5lUJ3w&434IeMefK-W z!^gqES9$ga3_M)_rZs^yf;5|#+s=yL1d(BW5Y<{$O0hnPC7Z`m@3yLXe+n^ z`6lwbK(3~xTyHcOs4ydwFSbVCH+3|TI1Txx`P4v$rlc-OfPty0OU+tz(WnB|Ol?RU z15~`NC*ySF(uhkYHYTROOzGzi&C;}#8>~)CU8&2{3KLeNnWO8>3CK^(u?7YNpgE#& z3Sv9po9NYJ%dKI&U}%mmP7hgKlpfNBLnFE%E!XOtK(^i2xFJ`|D)}mnOS(ei248M9 zI_VM(OPZ_nBpih1SZZ(ozT-?N49x|x{eZrs<26QTfYJw^GG(3>u4I4*|G7oO&KA=R zDw5+{&7oo=Ne%2b!LCmTA~j~n<(d&#kpNh>83^T*S~sRf^U{jV;R=_lM>fCpRlX(vpSBSYUqBo zUfr)Zs{5_=>UyJ5U9Z)v>*ZQ?Jy)gnhsxD@Td{HBTN)#3yS+$l_m!#b?ozegSE`OD zDnv?b=cA?Se6&PekC&LEBF!RNNDEuN6Iw~s7!zGjme{bga7uKu&@oKd{ zTCMh{o7DEq2DLr4UTse{s{P4YwLej-_Q&hg{%oT`67&5v(X>r)%l z{_F;IyaK4&tj;&KxZ-Q-t*z>ObBj7(1#oRp=eIVh^Uclb{LVJ}If={dPt>UGu41*_ zUZ~bv3)Q?KPe-c4I#TV5jRSomec>UfI50+nS=yZ$(yq*qWfMTZGMArV(6$0>Ul235 zt`8f%hqPz=zui_42PC;_yER|!x5v!svg3XR*rn=ttkOO1=Ni@V(gtMcX`p%pho5=Un0})2w;HL!3e+%rW#iX@qS7*aWchXOqBvI0_KWK54^$eLB$p z4n!QM2_0K60T_7TFWiK94SFyDQ4CDNv=-l zV=iHX`%Kgs$x9O(0KW;qh8Rkh*CQ=VuP`HmE7D7}a%5d%Ly|G7QCU4|@vxp7n_|rl ztWAI}jvsNee>_l{0B%0nH+jHxoz!b^k7ESf4-kUg;mLFDvGe%RIbk764NX4JHXeRz zZ|*?}(eQB79+}oDoF$e%SE+1rgEruPHN&OEvn^?i7q+-p53NXC|MAV=J+?Q|@oVefKlx{M|M(7d z|Kn}y{?X0qdUL(HUZ_&%Lxo1$uqOZBm^yBam|G!@no%{Fro!1SL@XLo#~o31-XC)e z2AB;{onNdnAkh82P3r#PHg*5#rbKmpZ?ig|uCN}b>s#yXzPrD_Ro!oIQTGqxm*3u? z?r+qp>#0%)25!!=h7oRh`>hdoUyl{L-#=6!0|U=gIPd`g`OZdl|Kv_ta_#RPQTO{# zsO!_0)V1dgbsc$IU5CD>?k`?d_a`r?>rc<9>-{Iy{rgAN{m*x(>$L`TasL3Ne|(XJPhNDlcksLJlH2>@o9h1PId%WyK35++t?rLs zQ1_poSND5Qy1)I+L+bwB*VX;OQ|@=%_d5@{?>~L%==J%#PhM0vKl|(@b$=TFdiyKt z{`_Ti{rNdN_U@0KRrklw+t0X;J)U3Qr*58uH=C@wo~ckLR`vJ9?73o_&-7QP-~@R@Wylsq4=#sOzKWUGep2FRN?EH`TS{RrkMX z{=T|)yr!<7+~ro+6OUkV9BSv795cireKjXVK4 zh~Sv!K?!0~-xCb*JrjDa17N71w%)v@x6FX&?=1MZji=76w{Ris2oV8syjYFlJj4co zNu!^DZky>e0^E-W18gSPKzI;9(}1%OO$E(~pO)rgw>Sbz!Tfk(r&uVg6tT%8Wfcb( zzyK$C><_6+(+YKFAX}4$EHJtd6F7YIq401rb;U#xZ*KUvgM_svlQpyfrVr>p-JPI^ zxRW_xz^Fqf5LA|wn9QLq;AG6-IL9F-ek6fTx4^R@gK#A}#jW}KqZybPrwh$AUN25X z0D+@mU{GR1a1;m}r3(G;n)tug&yRzFW9v-ZX5eVf0NVlRBHjUO<%l}dy&xEFnC2QO zY;*wvIL`Q>Cg>)J;uoYc*>G=Vs((^A)HYRU~(Q&O(CCeQQAX*$Ufpy{LFh(l%b zK~;!VX;d#A9#qb_x&$=|i%1Vfxa51NFBDEOH;!<*9yt5Z>|H;sI$@KU^%r1(%o37| zp&xn*B92AgIVe1#%(ix?q^%G@#??X#?(^CQGyqUyu;Fzfelu-@2MF*$z&UxHX-#bM zfSI{tnhUV$i)YVqAQdelgkok!w9zi#vT*TZIUjyF!l->;#lH&m1ZTT<{7|?fo zoZ93b*RbTd;<=zk4!P8}Aq*xcwg^04=SDWnv`1JS`ym6*AAo}3LyFA+nJME_7FZ!R zXWQTkr=qj$Gl{{32ONO`r)qZc%7k4m;^Cr+4fguwHOzT|*RQXPu~oV-jkNZt)kB+K zKeji~@oVefKlqU~&7CjT+w_)+X$z^Yn`r)-{)cs>E=PL`a{uPvu5gYHmgeYSMXvUj=V@O>OnWQxb+D;W%{PE5Sx?XEi_YbzYrk*DM*AJ@e509(s!)Mh^lm5;l>i*^Z z>iXH;>iUOU)%ESoYJa*`Ew>e^?SWEtK3}7*?`~1|&+c}BiQD@AHg*5tCI>YB^+9!W zd+$Hxn%j3CQ5TK=&+ZY8YWMfHsQVvpSNBiuRyU0=_wn7$uDG55ahtpDKi}bw@uzpG z`&SRR`sMw0Y#g5zKmS*N$V0Nmn&$eK_o?e&?ol^I^Uv>pb-%iQaj&}mZmR=aY*-#C zQOivQI#`~oLlqGns?5>B!jMhd=^LTnP}W<<-Gdl5A1cJ#KWJ&wgtS4kWB>pl07*na zRG)dy{o&G}+P3D%CjZY=sr}v}qgg>8YrnHVtvBVXc~eYncNVGh(Q@(n>iW)Rb-jI) zy1svlI={WuZ8V;%Q^!MPYTJ@)#y8Eyj%I}Bz=qkkV38j(fjHWL!$p~D-Ik}WC(G6K zOr^SBtWnqZwy5jJcd6@t+^()4-KwsCxJ}*vc!#?A*-!6L*U#=%*RLK_*Y6)!*U#^F z+npyX)cI_cy7>RTRHyd)OVwPLqmDPf!p(rW30+jH5AyQWz6CB=NbR@qBs=aNjzMs~ z%q=MF!XHfGjcZW36K%BBJ6k7&DDb6BDP5Fl0uI#O6i9AQR?xU_`0|=f)`FgHnV7kvH(@ z>;_B!ymh7%>vE#@O*)q}=|c9a2fl!^tPH!+U@cp@!4!B%gYWK;u z0It=emamEG_chBnCTMb6WIqo!KKMLm{QdI#1 zOe@J5AaIFks=p4G=VHqkSYk<>OyCI_Lo)!^)=$4^!bu*6+QXC|handL6nE4Zc#54& zaSkF)*nxp0mq~CEfo0f@0t6;m;B*B4-vET;VBpv~6Tm=E%>WZ;ntDHhzHxYsB4Znb=RAPG zH{bBi5zhLwT_{3};-Pum27eE*ph(&V1fLa%Se*{gOUf~QDAzWrX3M~& z+`z#t>i*$P>ZUPg8}eGcI-e?6$6Zl1*F%xX)RBsy031eD`evLugw;F69!a?%YdUd_gq^`F% zIC>Mu#`kPG-e^)c+X^-<+}HOu+xJ~>`rkv#YBFjT^ei?n96ziOdO$!F4o29Dk`ipS z!i9R_q?5=Nz)mzig>SCPHUTtFLMF5=a2B0VjBo{FV+3`}9DuwPX|Z#6LbrOP*y$lU zZp%HYiDfgvmS~UiY8oxcg`ZOh|l&OB&`x&Qu=?51;@qZDQOKN=-4!4L!#hN z0|aQ23gZv+2Fx1bDg;B0%g$ zvHt4`25==pBy1HA8S_D7fCK&>us|4Ezc_c;2YP$>k& zh+Ah_;1=HRYYgm82wW@5B^0ktghU}2#)al6Sh(6OIWHO((z?;L3XW;CLI}z>z!&d7 ze>_DKo3wglodFxb4g7i!3V4ibN7WgXkDx$`%>dzJejE9hmz$>JuvDjc!*de?R<;>a zaJ5NU6tC+vVaNiFA9A%7;@|Ya=O&uz;YkRPJ{hK99rRAs_p38y6nHNF;&EYay{na9Dvf8#@{^B>+&^X5G5DURy1wYmCu zS+4%HII0hqMfJh*Jm>OrUB2GADsCfwahd+*^5R4W0Ox*K0{Gbf={o1F|A+Z5Rrt48 z7wX;X^7L;v7U-RoMfxD4P#=f#^-*TNK3o&ipO!cq(_dd#pkH2Js6Q-?>Ejg<^NR;W zV1TkG6Z=eOYT~HLF$*;NbXi0@GIF#lCt_QRJvlkroe|XDZ0CftBRitcf_d6q9Mk^l z0`0CW($1<By!6?XNG??usJquPM;M`h4xEDc2`8wfds5M*B8b>F~BP9o|-=y-j7>SzV@` zWyRW4S)jw~V`|x&r`DTeI@na89YuxORg!OxNAUPa)|P8;Lzxb4 zEU`MU!9AY6`4R1pg@j0VcZLINxJDYlS{$}OG{Vd9?8kBxajgk#VV)p#uE;VifjI`n zEj-PID9`n&2%L|UXKPPRNT06A(e_ng;i6<-|5?uIhrrwBnxMHp9jwgNfzn(ZsR-Gy z+WJ%S1^@zpiD-s_I-?6ANUn0$`Q!#bfjWU`bdCMS_-seE8`Xzq-&d zz`*n8*Xs8x@@xZO94*|JwOk@^xkg^9EX2{IfEejrI_&Z zH*dys3`iTsuNa^LZRo|b>TLS&DL|f%1Q_6Non8Q1kW1;rqZ{9K#FT6V00J~3RPOi& z^SAaBDmDVA2SUbw_V#%2qj4PpAb3A=Z1I?Yaq{)+beq8S8Jo}yAhhd^n@@t1-#bpv zaSlLO^x?`e5a*xXqZ69|f8tIZJX;j^!?ZG~|H+da zy+Ckmed0Cjttsz0b-lf}0NfPs2i{*kc&~6my{=0qLECKu=B1TtuF>Jxf{`4Xsi|qp z5;ZMtdBQzwM%pR^0h-CL*&rS9&MWPBzQ_nBC|g+g&!tT>A;?y&5#zU(f~VoO=9K&e|APxn3V=X=TPUgPP@0_3D?S0E3VC*gLWBSi)}Tw1*L!Oq6& z<5;H6cAMs7h3eSCY(UUIm@+B5w)wuK#Y9QCXrLCG0tEl(os}rPFPbS=I5NLhScwvz zwyIr;7TW+QhlHE)I&Atb+ZOBc!!2TLJNfUDFi$lb{4VV81AT}6*0LnY9|#)bwVT>jr`?1OR}E zzu5qoa}#ti^Z`@{Et8DS*P#pHP{me*#B&N@(7weL@y$ek#}b*|IwQUnf;zP-<~oHy zeny)t8PsGmaKnbje%y!X^u49#iN}<6@aaOo>H+cACzuPmFax(=jn0!_kIs`nj?dOy z0P=la9hWP+@xh-FGKs?Da$+9+Y3g}TKpC38UyaGrpJ8~%b^G2NZU0-S^&(u)6?a{*&$8GWqN)* zU~D}PtxS=3W`s2X`nA#d8l*}H8z4v%kLL!|D$`nm9!zq{hjYw8mkkZ?iR}!j)JqG)*O*1dk3_LI*BJVB^nS&8XQWv0_bzT+a)ZLUWbvrTy`z)>7GF5bg zxVY}duvycva@p+F&K8%HqfbK~Q zL|pu`#*^nLAOI9lP>bvd!~WqyC3=2jp*%%6SZq7M#o2-ZfB@lNh<%$DAOOE{wgNQn zXb0f&bE}r0vA`g}z>~wHVlxGv8Brup4ky?wsuUu$2hav6{tduj6QP=fzN8Ero4(>6 zYlT9j3>W|aFs0<*1{{>i;_p#yftGQ%p2p2UYi;DYKNm$N|7sPg%{`ifOH~VCIl62G00S*9 z=%SMH+L{7f)Y;=4G!5-kxNI7T{~Kyh zQ@z1yF!19#lbY%}xuN(m8SM;dO=uOCyxuP-l{0 z6NxaG!j%hfV2e!vAc0!ZE+R8qGxR3_gLRZaSA^@>{X_+k%k}zYx*} z4NC>V2@6!9jSG+U=x+oAb9Gv88}+V^`R3>jz+G(AGtJxV) zm<-(y!84mfG(~M%jE!^oO{n2y>CkerT+(u~(!i|MC=EQi06WF!_TuwF+zJm9t*=03Lw?4`M5Y37~otYv)g3GL&pG62;&h~Q?uIS z$YoBi+Q4E3d((!~3B*6{EFx0<_+!Ep{<8&s)e(}o%b<_J-m9Yvw79O58vJ@ppZCnD z0(qN6-WefHC;sasqdR0nKu~xbDx}GCqYBiH z9QyCyrew&M1Vwp_B|6mRPv!=c)=Y{pR3(B>xuti3^89fu)tBd{5d{#?+@p=usrOQk zHtQq+@0o9sc}e=^=b=6QV|r@5QRFe8K>-p7V5RBbztk-Umb>(ISeg`@kiSmKR1M{O z)597BMs5IZJo}b=w{xUH` z{ysHL-kX^!G}wS2-Xjxz8dq&(eMv%2)E7(4bl-p(8h^Kf0ZkyD=TllZ;DGl4DBv*; ztaQua6qoFt8`Au!zfaE405`G?pyTM{dmBT!v}uRBqc*82CZ!mYnyh4FpPJ{A18#H7 zKVRgN{k+DITPh3Pax%xIJbwTMtd)Js-5T1)<^cC13V;CspkTEqO(+|Rk?CP=W&o~6 zSfX-#>0e1BM#N6BQ2;0?BgN<HtO8^5VNPz=bdsR@If0X^oDSNm;8XhT>26%6_?#(q}WY-1_A8&(4xlo9T z;rn3=MdpAOzN;%xh8wQfSELWm^9vsez`+*_yjprt7JD>>5FNm4WAb#;#`K*jye(XZ zm>j%1I$vHKX|x1r3J4psG$HHvPZJN{-+}=w0BO*n{!oaA5f{Vf=j%9xZ0G|RXuJ;~ z0Z#B^!_XlZcOlCUrqSVXuob+fuPHzTIs$$UtpJS?%|Fw`qVA1l#f!OJ8+pt$QUu#r zp6``TriwVF%ofCxfB`0^q?C?TL2-ua2oMjW8EDmPq&Db)0651Q+N0BcJheN;R`zDH ze&!kHDLu$KmvCWa%Eko~4FC;3O+EAjvH~nm+1YHU3XO3-K_@_iZ}|RLh1xPyB+~@^ zOvTK&h%~we+37xXpmXKyvlC*P12z-gFZdnHN=@B zbK7RegS5h(N@aa7^S2Mkw#8NeA*SW)<0ixe-fCX}17jT-T7ZFGEf>ZcT_`Di6PCxD z=n;-o8SltcDjjq>v@|r9) zEE(wtYYlgV6b#T%QUHBE<7_!7c=SdTJyANeoT!u;`#o-<*4S;xr7fpuqub)VUNW@# z(m4HUrn5l*jVn-chZ0Q;CN)^|0$LZ!Sf@{VsK9xObV`^aT@q%g#)0z*)m0OajV1t4 zz)->pxdAJPe%oqeKUN$U4VLqM)>_Uw^Fl353OLW4iAL#+a|Lj~Py!L}r3q8xububE zc7Q_rVd-AnLiJ&bkkD+P7Uv=~2UZKk;DhZY=M4(iCFqU`&4y?J9&8|)u~+V_=QkYC zYz7NI1E8|+YmjrP%x{~e`7UIdSJFg8n1C5~WmeT^_A9oTFk;+FN7rfr`)Q^WF`@j3G1s6u&Vbb#1ZVqVjnfmLreW|sMH~fA86JP?$5B(dx8~^6<*=X>7 zdEFFW<9i2|y7cuO^QXxBbHnn+m|RU_X1hVM@u5{NIkF~28)~JS<1U1L1P!XqM~H=i zk)wd?Pt7{F97{7mWB&?QoY$`d>QcAK4Ir)9m#iBD5}XfeIGEXpsK%90vK$jK#`6LY zOrxKolp|h0snRt0W|GhGOwrc`(9o>{n*|C$;7QhP4!K*Jqu??Cfenv-4H{Y?S#`8~ z7Wx&uahy)v{S(oIuoiV)xQ^2fs;3?Cjo3?NX7)gK@5_ot`ohnKAY zlXud7Y5bcO*#ev-_`owc;MRfz0K&5)3RUn67}yn~3DKNi+s_DtH})ylBvB{}h=ln% zP9V4fMS7SCCffn(ntn!W040FrVt_?c+Cw=F4&vdirCRW%5fqaq%p?>y3Umkv&#ZF^ zxA0F9RMK2nktO%R!qAEq=e5q4iHWH)-02bmhzQf^&U6s##DqoCCt$k=|KFF&)5y5bKDDAu7(MZo}tbJZ1v#{yjFRzgFD01Br!13&sI z`+xicHPyAUDSEfkN1%}Ob1auht-?w{frdgj7fHJ`|A1|1bJY6Y#@^G4<Ru#6L^ge6`ZXRIH1)LAaBw-j~ zlgI%B3?ic4nJSymF*XuxDl9l*qhUYS=Ci%vYt1&>f%b@|V@^3xhYUY{gur`;^1?Ko zV!E!Hp9==ah=i4KOVkCeBl>TK3~8N75H>c(WGsX_mB`8tc`~DIP^Pr;X^m`^tXmj1 zEJou%euDu6ofGCLAhDVOns>H@h;}KcIu2+{7xvd`aY1ishF<7A@=H1iR-*uh4$UX3 z0Ng%Dj|4ymIRGXL0G$BuhvGdlpx}H)(YPBYpssSkc@*ai^aL0gbkJ?6xoOyprg?^5O!EwN$Zi~Xj<*RdotPniyfRamh|}zUG%qNhE%M7} ziv#lUd^4%1`DPOTC+yInElGIKBBV?vA zr&*@h4$$}TngA&L3_#$^g@#^3UqlnmeQDHb68Rd_=ufz1h&s=&8xY>xN3+d+zg*&# zy-U41eKxccuTGuW2EfOsL1ik>oi()3{{ zMK}{ByJX)ow+5Uc5T_@lKh?+0Fk1l~Vka55s(mZG=JhUdD^O7Yw8j7+ru!A)q(*vu zOn|Ie3AkM?Lnv)hh}pcbRiHR#99uROgx(!Yb_*1GK-OvpchysZU}X4AruDTvrgm#Mex|4 zugI3)jLDT>j>^}1X=Fho7#Kndv6)c9>jwysDL?@PX!yw^;DWxjZ>dCkl*)$QW=p`P z0D1%8LvKJ*F&P3({Ds5EGL)Yf$71 zn{mJZ^c`#SdG62J>*|~f?KzrMjF|Tv4GGf=Z7iUNizkykHU$WR&-oc(0Q*rh4YX51 zfXCTqwTyuc1kKIl%rnlHGtaz0&We?p99|&job6O#!G+qq&Wq!8CJSE7E#LqEVd{Sa zES%m9{J86Qb#<+5h~A}?6=*BH5|+qVM<_mtUecyWvb!Q6Hd{CApjFnhOwu}$;A%c6 zG^f)O8(pzz>Y=_-H1ur0tR{wr-tgK}WPl?@1ILCr{4yDoVV?j1AOJ~3K~&NajF+_~ z<#tfQ8l9~7aV(LMi9QYJBcyLe>ugyOOG@T;X`84lj@A6ug)$~F7|%L@wlmI|5vSV_ zxK+@-R5yoadua4TR&PY$AldnFL-`^&jv`;e>J-pJu<-x{QEVNcFE({qx;W-e#x3V7 zHAy(Y6p%qf!pT#zfD zE>Dw>mZZ!33o_+{MOpIU(ro$X(oFeiX@z9J<5IX_!|J-twVJ3U|iJTpgjFG`m$R|aKYl3(^G`(^K{pzK)|l1~e6cDh2a=dryJg=>uY9pIAp2JM7i06=^`->XghF`t=2)Aa6J>5)$s1ZD3kzZ?&{;qhwh<`diAbXbrG@vo1NClbzcZ!D7>g2!JrOiI+%1Z0O zWeIU{1gE8dRF(PUMA#+!R(Ta*@wkUml8qY^&3URRC`LRU$AZM*BeA|zSu5I@^Y|$m zbauq$5;*_7&d=xj;~Nj|3(ueJ3R?~Z1Lzs-ra}QnvThO-1T1qakYE!8Wr*Vsg^0(& znFuhTcBSED4O#nmZcq;0{@70k2K=4o%M%ldK0<-|wgg!T_FrFI#7_jsoZlMja2>_vk+L;3Iv%eXeC$Ehz&|*9A=;aZ)SM5d3 zG#{-1lR9|5wh$My>Zj4i4Fvb0+XtK5`-et_Vma{iFOuh)bYLA{BCl=xitT+)b+@O0JYU1GP6lA7O0J2;A~@wdIq2a%TvG#TL?=z`tRMI z1_M8?Gl3?wC3=6nc^l|R(#FWrZI-o-=mec+lg*n=?8Tvr4H&dI3a1^wz+^|B)iv&GtjR21Zf{DoPBKL%`~0qcE=V|WQb$6jB6GCTFq&fCE4Ags)<4u z#UO-%#@0SqDVIr6cT?_;MKZm0mP~D(sWmPUI*fTemmxGxSS@`LmT9rEL1$p;HAdI4 zARZ0}l?iZQGX$VIF|=T_2`$QMB@kCP1p_qZxB^iC9`s600YKA#)6nC<)VkRyt+p3` z{TQ{lpucLOFgUn=Si_vt?g2OY1;1Lk<W42Um&61PbvgPD8=HDkaXUVY*nQ~-ZmK-R{mO~qIavXpDv=phxaqHKQWqRds$SX$!ZowXvsrSLvE^T%X ztaK^$2+hIaB-6A*Z#n4l2rf7$%2K78bl{!&Qge5)RNq}DmG`WZikqWy{Hk0zxjt2@ zOTAKw%h0wgsk$~ps;|YrKO|M_15#P$my<Kt9HU_X7@&_;eSz1c7PA>)5YBP1#{y8o`^7DZ+VA$s zKW2ty-;T%SU$u2V_{{JhKlq;CamPc44vEj_7w0(%66`!*o}O4FpX6pr-3=kF`dh-% zaA&5b0M>5yYqQVS>UXB8Mxg%Iuuyon63kGGpYArl-r^^FJTr!+S+P8NIcdVC9=^O-K>$-co{M^TSX8$PR*Z}@5nN!3*TH>w zZBUTdI6#4*;ju0$(2Cd|81PZ5ykT?%Y#(SKwEC9`*#|U8nVn0;)uBWS4|b-Nmbx&z zRe@3!;7~(@xWbvKqCd;Ep5n|Giu6{RvJTCzP!NDa4-2~}Z@vyb#40MDh zlrK{pd0HgDUg^k*75ahnI2eG#k9$jB=PE74#ND8-w4ABcN$E5MR+-=__~?XSO>XCv zjIPC!-@Qx=%>o+>YHhD_-PS?XqgJ&qlyR-x(%Z3EYk*^ghK5~{m@d?^4%xE4cd^n5 zp%g+FWH7)vh5`)mHCvAli|Ce;P3F@hinM-yd6BH`SuB8lifR3nR@v&Fgo6^A39MDE zweV#L$#QA)$xXBqlcb}DY0cDtFaF)M2>pW6)8Da5E_3?6R+HO=CACYDHvTmKY(H=4 zU#fa1dptNMP@! z6l&AD9pCY3IsN7DIs*Ut^fz+qH``25)%$mt1m3rI%BkO8qh9t6&*7OL)j?##u53B= zRGA6K`qK?2jrYCV&F$}Fp;-iN;d}pBku;Dd{HN>9Y)gSTyF*Un=VJ51l&Z?XOG< zrB}!FmM|;$|DzG}9Q^y4GO2&CK zo5Ip?Z*EL8%KOhV1L2+N`rb)>=J{!AnUe2Y>XtnVpdk75xd0z<Wm-+JSq=_;3IS>WBu9fd&nHSm#zJA!3`Y zqY(b7C(>PV#A{YE{9&T-hUcbWV1W^u@W;bSi(de%ItmUTYJD1gE}+nYY$J|En5`E_ zAp$Cp-(8WdG$X*k-zTLThoNz~^2WH_xajB^)eb}j5P%4n3-(<@8dF0_DyF%|b%?FO zt>g|2D3#mQC8SvRJ{tor>`wv&E;o;5Zll`pGyUgcYNP5AAJY&R5Mr|o%1!VX;bXA? zGU!U!j1p!8ZHV$+S|Ur@MB)PC>CQamL|b9yBxjCtoAE#A0tM%qnuPe$nI^qkF3{9Y z`1effY0}R+>*81$nhw;T#-<-YV5*VNZ<}kZN6*)gux3g<>LXl4Y5MUthuUM3jL+Bm zVQa|5jbamk&=0B-|A*6y(D>YQ+RDWj^o(EB*)||-=KIi;nBJXrCYb|d542JNvw2;- zW>bI^K!5=P|MNV8(_rAcF4y1wb!bBCB0HsHi)mUtTF%i)DS=j0Qio#YrL!?Zi=!Zz z1nz!@nn%M)g*%meEoXqgZFB&(&;?lcAgCnp>&e`p;PW%BzAV9|)jwf{bWWHV=g$KM zXh0{oPnO*7#VTC3K)`|%G!5v3;L%g0e=lg4BNG$DT2ou6%c6F9vZ6zwRz{bI+%%A_ zV2Kvz3^Yx)pb4Q%!a|jLrp5-ZChLsFTfDq|AQ0O#QE%S+No)+vSoGqh@N9O z&+wkncCZo1>x$;d6hJPub7{O*wU6rWiA)HF6a1d+WAeKi=?DpwEee+>#M_o`10Vwo zK>MMr7GQv5sW#i#ol-R36B9GFu1E|^pM(X{rp35ejWrvB*mlGY8QL@_Xv~C-ef>C$ zm$uC*{G zET`VRO&b1jr=0rx4mtIQ?WXDf^;HH$JXsdZTkh^g+WPzRV$6+@)U5YPwY9=bPf?ejgR6|4CDUv8^U!s0|2dKGm%1I93SdqV zfcE-UIrYcu^td|LQToy;V+z}SI8RniGQbRmF1jEjhrbd>~?1 z8&tPT-;)ZKaTOvb;JQ4i+@3AfSBIslJRlXhZmGyL`2^J)gHm^EhQ8M7Qn#jOS8odH zMnhAyqvUsy)s-To8IxdKdu>?iZU`%|!@mD`7LG_Bsd(sN`G4wuqRl|K%RG60N<{XQ z=1GHU1hP%K9e)77C^nQJKmuUkX25{i9w;CH!ID&zAqc3=BL{Y5aH~ImrKPguFkHx?M4LlQkLXrq712|Az{AvDiC}NWU zFPN8-&y}^%eU=+*k%CtW?om^YeSgXf#lQXqfH9|Az>2t-#j^fXOBx zkPM+7MS`$RF}Bln9v|R=&8Vri0xe0YKLntWe0;`*>ShF8=)&_!E9UV!%6aF);U(R; zmF5&6TsCP=>UcC0DjimPKs} zb@0LP1CcZ5H63!a%9Fv46>>?-DX~HvJ+XP=1h{ov zI7BWwx4TxebGr*U1-hNQXs~WD*>Xa!1Zdg6H#RHdooR84XEw5c9keSHxh|v@J1!io zwXyuBZ~d&C{^EBZfq#AUD>+5e{;R8`;f-sg;kB!z;l<6S8D-jzQ3;dxdvc_nDfJU& z((vLYseg5w)c<Yv#tb&r%u&D}+MTmQmlsefXv)ISuJ z`n&VA5r%7CU2MSs7LXpb@MLItBGV%^*Q81P-MP~6FcbT=ata{u>#MaI9xG8Ab?p{I zi>}+1XBz6?Z#UZwzzju`{Zy%(BE6T!n)gAG==<6hX?XKSY53bMrV$53{O($5czUe? z1KWdfuu-$#qv5aW?#Oeo^?0g8AFCcITQV^|sJ3HC2H)F62FOzta4y*pmV@22wQmofC2)g3K{y0f`MEk=;hzXL$UIk#vK}v zZUu^6QhRkk>UZTx-R)TldU!8KJt<1zff9un87C(A{YpuXiFN@#=mpf>$Dbr8vj7({ z%X{4jK>;%U{#e1{0EL?o^s3{jZVeEt-5ijb%>k*~nQc;-`TYTcZcG(^FS-fHNRgWB z(oMQEK<;Y4)ZLV-{W9Ad&E_JL3#UyOG^7^a7E37Jl@5W@_u2(SPk z*x*sF*HNEQZu3WigAf82RkANIo~nDX+ge}%0w92Te_E<;1^@%7_L-=?5Ca1^0Z{l2 z)7)d<_sSS!Jw^x^r4*sj`5HR%>#?~CDsUwD^Oafh+Sokh`&$vPUF8D?Xz5QSoA_^jEhf-q`u-p188;v}`ez|DMpw`xrYEqjK=$VwDLh7p zK(0WdHuwmKb&?-TJ!YG5_F0IFo5@+!nTU_EAT%2WJN0KPVXR8g4p5ff)bu&o5E#qS z#-D=%^}_+dX)y5J7wm8Q4q#w?^!E6)x2I!)OlqAfh~25A4kg-DvMuAY02rnK-+%-A zIbkvmRmM`}7PcvpiAu%DQ94Thgk{pc#Y8Q(5Q7tv;yDCkHBc){CTLnQG@Fod<%xOY z4{)rK5e}btI%Uf3gClYuo59P9<%to6^6Hpetyk1mus|NVJfd~ikcdROlNwyAg@a6% z+WumP%9f)&L+eFt^uKO3O5OnH344x$zDSz6wOcLkRjjTx zb{m3LVzM(Y-pB*+p$A&`p@9iW(klhACi((c-~m>@kI^JPL}FizWA z*gB&Brjb{_d_42p;hA3|$sNo_lI;MxCkpB!V9jbhpbc4F1%Qw95km=zsX0_HY+0%K zZSrN!rFr7+oU0Y=nj<+qvL(M~mR4?$Ov&n=F5xb@YSZfLSRxc+atj8?Lm1|CsaP4o zG7dxJO<228E2M^wsD+K_MT6pnW&nXQ;&!S_i&@gK`P5iVkv12PQi@PBgvT+_ar5(f zOV{Qz)wUVy=HX7COmCGd^IJ!>cuj0y0cX_k1dpKS=+$DO*7o%ee%nXo^w<82Bk-@? zzm$gO)=E7S_q+3?_U0_9*`6+SH)ojM;=%5p((hvJ94CId$t@e z&X9_dG^yH{CMSx+awIdPx7AmrN%f{wsaj_eVynx%Qkm~Ip7NUHG|=?Fw7~!dK*1lc7pCqF59S+< zCD}|n(oNkFdpzAZ&|__o2JXu-xW7Q^t}zW{-PJw~d)0Kw=W5lr)>B-8yuiHt#mSysy?#tJHPeICy8>HbE zB{4cwj()#p8Yj>{*`V82Rzo% z%%IfVnj`fO6iWTiqYBba{c?-`j&RWAcWJ?3b%|U522QcPx-ZwTYi={ca|Hue`?M$K z-_WiM^Cna2W&jJ0W!?25slCdtV5i}whkrUSkluBkyf{57dp5ymgUeQA{=>3m#x3>xH{V?-T?)ycCh49YtdM` zFm_@1{~{tLQ{d%M`8s_k$OoTcQw9idk$r|5VT$BoF0`+X%GUxk{Qin;`QwBvr4zlZ zp(O}{jlj=N{hJL3~6rbd=(K-Qu;ui z@kVcDxU81bdWADxC#hXp%+P5UK{`-!&OWQT>H{pb#yI(06mP&y0}buQl-VFa8!|w^ zq!l+(bPQGJo6~vQobz>i-=>zL|9z3Kd3_cPe4C)y0tRjkb%^(J8VvjwSK?s<2GBnD1(m`r=7Spx5x11xFC%EJaXO`9kXLgKEV`&_j+Q1EUx`Z0#4C(iCyB5e3!ws!a zsf81=)j|*(LG=y4GFx6Bo3BLx(Uv~NY9Wb@Bo?SeJsLyOZW&Z8uaC`@zg?NBMJg$q zOgz%5UyjYy&$&If+%dRVZW|QQZNe{x6$$m|u!ty~Xkb~)%D7lu9rI;Qn;fkft#i~l zjAKBJbEd0t0M1I(0LL1&76uSd1ZB0nsJ|8sF)6ye9Sdc8o3J+fH2k)3F7sZ3lM~0? zoMQ;mO6ycAn{ZF-Yl@+Tbx7hCcQv*>6hKc+4V=aWiqN<QfMVIyr&wT={w)9iAOJ~3K~y&OHkH#gDy|L@tu-AAWm=oC z3{P}v4Rx-OUJhK0W@sUrhT3Dn0F(Vz&4#In7$Gqli=K|9aoqwsfS!)UT0I<#)CCFf z#5vM}ftKg>kv`2A#OYcS(7?1Ul$Gren48TAu5JJ!YEq)14cXtzts9>FAAYL-|M%nd zZ@wgzI}4@asw_EH9FikhJ~zZ%za3^-MiW& zpDpvL#U+DChLv9}_sD*iM-HZX<#3K)jz&XLu`x|5wr0qQt1{)}rm$3(n?}8Mqerw^ zz9~nlZ!eUZdrPGDk+o9)#5&VR?o5~Jt3py)?$`Ig`>0wMkg6?dQh9T}oZK0aid%~0 z_)Ud!^oBw?z9maeMtxEh^(dbl&_d%1Zyig^6H(|YMr?d+YqlI;7nb8i0d@LOmPIVo z3x9u-f4PMZe_)vr!!m_Gk>`_&^$#LWZx>ECh_iB7Ld=Dh2-OH@HMWh;O)5Tanj z#Mprz$p8%GO6|QxQgctS)IL}yb-!3Awf9A(`j#B2+8UOV#Xc2KR}^}sYFmcX+*v5K zJF=zrhBT?XI!!7zg!TAUmHMQLzhP)Y*Mt>J)m)ntFb(!N9bL>{(xE1TTnQ9*fAS=hm6^7VbeYEdc-kVQ~W>fMOfKRv?Ci>aPzfZHN^d zArXi-K!Ox&BkZI2g_E8~1UDZ*LN)*ZBnDE@eb@@18F+P6fi~GR)rj<<=-5KM3sr|E zn|kzelSM#t&NhJ}bKr$h(1Qx)kzu$1MO5@_MafnyY_$Z?egGeU3&h1nSPW1wn}Zid zGTqBl-2#9B+7TCaUK_N7TL+fP%>(cqHx46g8K4m%I!0>%ulU9RrK%A?CqN1@^q_F( zGA%X)RH###Fp;zk(u(#)GO1O%>H(OVa`9!thaDnb>2{hn+UeIO0Y?o2$8h*DjX#t3 z<}nM=mMR8@@?)quBnLaxy$5QJI{5qtf?OKujc{8#Z-CE63OUXEakmQKmIag^Rnr0i&uK9Sa#AcVr z!vGP)LL2Jtm?3l92PNFO^lL?)3FjO(kQDSM0wMKs;CMyd zcG_C>$DKq(3RJWWIw|ueO zFaMYqmOo6*mfuaukw4GKmN%zo$(xh2gut+OW~Rw|Gr~ezFt_i_N|V1%&yYV($(BD% z$(BD(%a(U%h2_IJA^Gdn4Eg<}Z1wpkF8~oLy$Rocdv?0KJ1<>!FHVzBSBB-&Rblyf zWx9Ns5|m>Bmz>OVse2;L^#NZ{4uwK;I6YNP6s1bl`cw^Vt=$@s@GT>~)7_PfCV-oRlfMS7pmP%X8(QE7N6vl2?v+jfE$?d!3fMjpgP+k54{N z3d=uNX2|=?vgD&>X|iWoQ1J6tmW6@=qBI~?8-i;4381M+H+qZ%t37ImdSH!P-Gboz<2ppX0-)uyc|J{D z=6Cb)f}reQ?a>C`(1=_LM%4Cm6;ph-rYducR7c=NAnj4A4;zZFR(KRZAspuQqX$7p zfS*4CXS4xqP5=TFR-o94vc*6oT!mXwaZrD!$8u7ovMg0j6a?i+s$ULz{IYM2Pxh?_ z40+|C*DpuXgHi#|%J<5CA5K*vwPyu*=i!4h?0G7 zJ=WC^KlIaR2A~P)W?*VW_LS!v(F}aBhYD2uq6&FkC#4%TKbnFVUrdE0Yy$uaH;1Jj z%>degtv-XmP))-diLmO!b+_K# z_Lj-Lsc4+f&*bm*(Ro_0jLO&GF(&>{e<&_+*n~DME_O8TPYf>-BFSm=p#-5L01!}* z4U6daOt4u&>^>2FJk1-3B@iEKRCy>ET zWkNBLbYDW`y_x7?cQ`JQ^wgkEOJ@QG;8`OwZiRT*G)Jt}Nh?ikHcW$f&e2q0Go7c= zw>*5PL+UJaPJ8A4V<&2@MWOecp-s1O8v6If+cefja11qvM*aJn?M9IBU)>j)kp&@5 z??*$=*KPf<2LFdWr+J>!VBp7H$Lp%=<-W4#<9_{2moqvuL0+o`&@Jn^R@U}fE9-hU zRATV=#)8VHB^n;-AY)M8VBc$L3<3NQ?Z-BObP$nefBt%EQz zYHiN~d3|iQ{OO7;Ey4|(f`NCYrD?zsAxE!`&5>>Y1sK>lxL9y9`~CPFEpkp8^+~yc zQxJM1>netQDW7A!{VnB&+!D?iYzHV@$F}q>i+lg4b&1IIHW@O;nW{D1>6gLI6dCAD z(!!FHz%Oep+WO*Aac3^&zBeB&-5t|p;Uz&eCcvD)7Uvs&N7l^=(8li|(j5R0m4`1g z#ksGkd)o~IO5$!zx!uadeQB{QZCj+}>sTZ^29dbT#unOUo(4e?szi|^0MS4$zr%0` zt(U1>fx^kLdvgMI(xzS-4UN+bZLo9R(2M*Pa#_m6b7@qqPOW(SGKW|CCM;8p2s)8o zjwON(Y+uJJt$vPGn&jNyv086?Iu^yYgxL#ybOXt=6)(5earI zmFzB!L3ui)iRBI~ZcFHx3A;NTI`-qvANJnIA9z9=!gr^KHPDLyv3Ft#yD$d!%=hYK z`_M|cbtPJ1s7_4oZNM4ehD`{NeR9 zyk`R02w}tg#%^HvH`cCzjxUy&oCU5idVjzUuA12FuZ&T*l2i0|3bl*Z%J+FsC-3{o z!9bDhDalo;4|E@G__4jh0*kOQK)?feDw0qd(c`2LM+`@5M_MBgz)|RGzf@!!{ulHh zO`9We4x6hbCSmXW>0$Z%X!^p{i2_9g8Mjo!c;q{v!AHV=peCsmA z#GZ`-7cgi%Hgt>=#Vezr2t;&p&$^onFBG1pWvM*e59$$9d?xzn1NcA1be{{E-B>_L z!gdt#Fo9%t@@a3O18H*dh$0m`^FDZPvIcDWC%1U6!$pQtVN+QNwV}DPIRkTA=gSzU zaZll*Gu4@^8vz<4Ebc6A0xP_Z2{Tkwh&YbvKTST<{xi?OMW~tn+d2#p5O${0YM=+j z9EIY^!Ip>5B>vx>AX!Pd9`{Qu;2oCX8-^8CYY z*$muW`dmCE8$l|6zmXnmwb%%tjUjA|1Y%nodjo{mN?tcp{0zXCsVgA z+2657hB|y&*iX)Flc%2zJ|C1?U$!ez9z0W9yD_sNVp#O9?O7-0t~huj}9w{10*&qG*C1u6b&9OaQ0lvu!VYKe2xx<-kHofAJd3Td1G9T7AdoL z3~tOrDCk}yi`(VJh2xwDN2~i1+au#-G}!5qfeM;Z)OBjKBdim9ruG9JtK<3>9F1uH z(I4P8#nyo8?_4g^+oZ>}5uQs*q_8_F^2Yh9xJS9ZXSPMu$__0>erE&rp(E2A6CM;HT3J zvq{`NCsp<=4#+>}giI3gOw%CKOR4p^TkERvRGFF&uB0io4JHh}0 zh7=?dW5G_tt_?ZOyf(He^6~tDzMo%>%T+LhR!NW5Gt^j{{OpLx+Yz7efGHtVsyz)$y z=U=SCJO0n4o`xI|FBfDQdFVe+4=+*5fB^=e9??*60(xl_4Tfb=dxXAcAtXKn>dtpH z=V!;$h7E_`KHsmd04Syi-D9I*f$)+JnKHIblGeC3$ugmhPw>X4rngO( zJE)4o_J-K=#ekqy0QZfV~0wK%s}S`g<`@x?ibo{H#t1N3*7N$DpXJ?^P;mdzvCYg!}@)fOQyRD8V_%+L3au zxoKdjYAHBxl=Z}3xL8)TH?^d#-2fU3;c-q}mQv!Dt6f{p(S%-7dfT=bCnS;gbuN%4 zm!$n07=Rjt1_FRX@o!8Fw)ZR6W5l^lYfQenAmM~W!TGo6HbCAr{YvG=0VP_9u77n! zw$RK_G-NulWNJA*B)^}KDGyv$B)1PL*1C0IvE0}n9Yuk>JT^yOiPg(va^=NQ`C8A8 zED*E?CLy_8^12tx+;)U6`kPch?PZO{tY3yYy)wk<(HiMYHD(KrT$$|1m648s^mnX? zSNDYZ8q~&?z*ax!LYdz#T{T=#p|ZP_%GN%-Pg9(~$z@pE%ap%UkxWj^R@-MBt?t

`Ouv$UxqT}V}GuE6v&f(*;#V5C_@FpM~brK z%Zyz4z+WJ5CP(DYNfCM5RVZ(JBJ!56L_SE3$ljcM*_)mtpZhZ8(?E`V6e^H^h6?4w zV4-~I%ah$H+4AAa4B5RTP2OFSDQ_>zlK1AM%Rgp>g&`%uPaiD|$;Zo5<)h_c`DjU4 zKAInr&zJd?uC&kPmycJ4<Ndcwm>`Mvgzdu_Mls&6MvezAwFV_U+^F=<{vj7^Snc~xs zf4VRr|Ck$=zs<;yKTge*cW0)mX!nD;sq(>sRQYn5S7|OZl{DQn*fhX8y`INbz@!r^ z6~>#Q_L+o#LC5)IK|nzb6dMG{|6CB1cju+aXN&#X#KYxBPk|nTMC7klcvU3K>rya~ znIgCf(J0d-!{4t+Gl5!aYnq&*lXs=#EOW`hhnD#o(}4JSKYx1w{8#k{Q(xZ z4~4LL&thL(D9!8JyUYOGPv-e${|c9!y#FWK3=le&+GUQh~Ahq~PXrAq5O*4#9{b-3-9rX98~vEddQb7v9I9 z?8JZqKf@*gVKBwk;YMr^2Vy50b2}M;v4Yk*H43irkCjN z|2H(D2g;t8)$K~Oa0B9R+y4D;?_XwgKG02KjW)M@HUZ`UaO(R0rTX`8=|$PyN+i&^ zsIfXl#NR0zFFqTH>nXG~P)MxpC!Z@g@;0x7Tkf;9Pq7XK*cwtysed^(U+c9oW{?0) zkOH*RjPrB)_??Zu!3LIX?2Rda$t6K^#1_%Iis2Z8wp1UV3R3S0PjOw0nr7XQ9C}F0u9E79%B5;Yo>bi(m8yr=YgInH zPAcy%mXo*SNyWyn953|A@sfZXiv;AL&#R3bP2J~9{Bk(tkrVkIsVMQw@jRb$_-S-2 z3*Ay#>Xno0f|?S1BEzM(mADmMmmxJfbERfyj@0hR(tt2>m#~w>YyM=e*%nmfx#eWk zE0roH_Dj`Tzf_iZrJ~RyC(Ha&b#+)yM1w-3$+VhAl?Izee&0&;1a3Ky;+B1D+_Db` z9DMyfB>B43QHY5%O)gD3Q+uY;nhMP1oyK&rM-HuY$%!zU2anQwaOXLg>{ie~)5^~u z_PFFoDm-=^dW?Yi7?hiIY)bigG8&BN76%__HAg};ya5F*bPtLr8FYDIXFnO&iyIGy}AW3L12Iko}1Un;~j@t^qm+ zru^g!97=KNduO}A`)9Mjrs9bHY_f`^u_CPqqKzMoCK&+{2YBTsmZt?RXz0JPoo)#ClF7H z$fwaMm-2mVkRCisf)ZT<5I!%?*RV6+}gNRh% zv9adimrLTf^B%Fx$+W|yAg%*;N=l5Yyg?~ zLnGq8Pmh4o1JB=V2WZSGF7Al*00hvAXxf?V12Xto9DyikM@%p+bqGL!9U_f^)fNCg z2oQRF81x{14jyuz7Awp9hDLR=XQyY}vQEdHgGnIG5dZ2B7~wyE)V zG+0Yei~lq1VT3!z-c7E`5n%Y`~68|7d-kgBPmfQEhv%cNb)E5v#6Fb(`7 zAvjJG!k$y7{kCDI@rEX3Ej=$(p|Q~pur09n`@UP-$U`?Wu0&^^ae<}@6Cwr}_^vI3 z*-r3WY!1HfdH!#{e;N#Y?Hc{P{{aj{qV1U1I3hEpUlzx_R_=-*C*|0&u zvw)pui~Fzby;h59H3C;Er)#-x4N^On2^H#Sg!RyhD4vtgkoCsr)>1gQrICbwcTL|C zc@iQ22)2gUe6r;;JY&u`O!@8Wp-ErgyD?XQ$G~TwjUL5BoGby(H5B&7G|RsmZ;JDl z%^%@?ZtPVoY%H2?2C!FU3;8$$38goZU1AIoFh$^)Fi3#kPjNn2(56skw=U2kkZVxF z8X1tVTB~!5X_9#H{cqlj>WR3LsV-~yBxVJ zaYYl}KRFU}q>E#&7EVC}97!_B;nqTLftJeHFBirG9A_m$zbcT?&Y<*ltdvVyOp5C* zx+RR4RUHGWbwTgKxtsI9-TW{>;yPeO)f;<9WktIpS=7eVgPULe-p|eHJAC~J{OhmJ zi&~fCPPik@(2}t?hlc!g%(4^D{x^)zzXp80u->Hn;)VZgx$(t+eTzvg{__o*3qVGa z28P+6BY5nUjneRRxzyc}t#oEIj${s;Ebs^}H*neyBzc5}y{6o)&9coSKm$;_#jh5Z zI4ff5SySSYy6s_UxIbSS9xs*#OjpPi(8T0yslPE*3tLPW6E*96QoAiAbvL8I%$53k z^QHdY0;%7XCv~@F>n+&^HMeBT$%s!Xa@z~Z`%JHxfqe9mqi5F)db@%ajn_8qCMQUu$(MQl_OapIhGrg zih_Vtl?9|`Q$VUWrb^|8uvD!LDsZV;@0Xg5eyQGI?o*NLm5MyCRIl?%MM+Thr-kKU zdRWD_75P3xA0qTDm1N;$H~nWQW5aT$jns~`9ZTT}%B$(mq%B*wAV<~|E^ z8nX>x0|Cb$yVB|i?n5T=SKWhhT~d_`P)QbOM7Sye9-tTDI)qRgP*a(cB2_f_5s$hT zG5H77u(e>ae_)kIU%!S9V{t(M03ZNKL_t)bkr}Yrr+*8Td2TuGAykb#1> zDenvsi}I(8@B+@g^1q{&hNcC98dM1j60ln20%NCI z;~YWh-eR^oXW)X-x#bM$>sT(soIdqpCwG7%g8m#vmJ|RQJK!hD>lk4yHrXaXE201cO`Cf* z0Im+?5TGkSY+Mo#He1sHhZ`(R8{LVT{@Xelv3+=|2^fF|^V{*cS_~lo1ePCacuea0{)kY^lsaUG4dgA*P}?gFjtw!o5h^CHa?31FX_-39H9DjXJiISfK+7u&}II>(*3Xl6|5300j7% zhFyj^fpJRR7O&LblP`GC^SGz}bc0Dj26Q}TDAvlfxXWZPkz8zo(@Lb_mCbVMjcw-V zG;D3F2`VE1?1?f33@|ZjH(@nu(sZ$&RCWfv*o|SS*&0xgK|`-O2IMhZkM*fn85){~ zTjtUCQ&nQ@N~_mXcwU=e{frfzGgWC0O zO^AjSgB@r^h+wm1IYF>lX0nFa)!qo$%Q461YLiY}zbn@yN8g*L*%fs+rAghjA*tEq zm#R{aR2BhblBMpc2Y;HJ0mnHB;_EbD9={?YA7x}n9W)^7`jFJ$o~aH(Y8y&W2H_MS z*}KpQWNX!4mnPNg{033wu);Ab5YQJW3;+->RNL^u78za`pa3v{a2WnB0w0RT0j&VS zox}8Z5Q#Y-l#X^Pv(>AsTT%2(XVH5F7CY72= zP@v$$ZWf>o@iSbwS?Aj(fZL`QP&N(^#PSKanDTutl9pS{W`M78KL7?>hU*3xs!&q_ zv7P?W009mt8Y?b_)-rUGUI-UU=a#did&{}fFJZahFfzuOrY^ z()|2h(&B=?()_~ya{f7&G;s?ebAYD%f4iXuOvJJYw6P~Zj4eY8Eu$IuuIDsVrSIMx zeAmzY?|uC=82H9j`g{Hh7dR-fIPR45+(-Zl z`X5uAYoH5JeD8(<#qs1_wgFK57y?lDT^5zs#^lA%S8q*CmyhNLmCp;OclVr-yge;V z{vN9bhUH6X4<5sWt^ouXCIAKi0Tf$_hnm86`?f+7=W9OXqFo4a7mAZ`O-aM zo)*9WR~)Ki%PBI_;g%(Bi)3xjXxy>LIu|wSqc~48W_Nxhx@BYjDD9>7B4xa}~%|U_;s?VPTv$ zgp&}INnD1gvCgoDH1e1fBJ4?tnOYMQGvsooOL`?NkJL}ZQe-y zt-B@NYzEf4rEX`IoO*VxG`z4u8eZC@iNy_%#R8~qOP9JE(xmpH^(R zX!Fxz++fmxNn(DyM4R>6Ej~l#DRh}c-l$ur(i&!U6ZWNkeeLx(q)Gz=TrA#i z4(rzdGc?0g&AQm8gKY=@CJpy$DBo$?;Hy#01NlZT3iTTuC=EYJxsOHV)C=nrnCWmB z2TAUOuJrC~LmR&#q{p*?ys7(fqs*6vhYPib)c3%1#sa@+s%fqdt}t5xntaS<00Pj; zIhP=!hB^bK$%uwcc$uXgsmM3WYyzqyrm1I3Q@c3^;-W68DKmh8oC5L{j-;5!;JMjS z03@pNV}Jl4!Li)xm+DfF91eNqlZ8Rqv&e6P($ZY|Hvz!FEwlc%Ox^y}T%9H-!^x)7 zOu}*P2CvlbG{=V|VzxpgMe8vJAQD7JkRCx}TTIXxuT|d%VBqPW5Da)aE|5pZMdZUk zSkaV4RD4K4&YGC^V1b-^aig39&61oKD^^@S^*6UgV$T6V1S9>8{_c1E|8Z;!yiU~jM$jqvdI6--dl&+Szc}5Pl;eb zGJE2X5G+^%0pcO<3B=uIX8Xt<_n8R6g9eHfC{!rWAcayWw6suYDJ`^Eaf`c7#=`TR z@9|sLzIH+%Xq)G4KfdGm^2a)MWM=z)-|JlK6ax)_0f4~44j;?TT5gU(Ofi|PG4h;E6|{trp*DV_f~CTA!?zEdwb{026qp z8Tj`#(q9D@o-V|u0C3>wNB?-!;D3kP|J3vP$M<^}4E+6N`XB$@35cH-Zaoy~vI#m0_f@2(46kxB9bx`AW?241|R)Cwvg!heoo3XlS2&`07DSM&z3f zAy$N}li`6fZK90hI}7&>SHBuwX#976pVvwO1{hYb4R9L)M?K-ZLlIiYFv066!riJZ zH-Thg3cJ+{(lb*z4DX^i;pfuM{*XoLBtj!Y8@^ZfLOq zfe$CdMM2?Y%i%XVXbQYI{Hk-8>e(Sh=9J-`MWBLmey2W}64UQT6zlmx6;?O)D$wZ8 zVVxhyvcmrJ%)l)52?Wg<&2K=tosg_C>BYJrZJvP}01i$2*=cjsE0AG@?d(O?_(yed zAZi+lA<0B)#JoP0dbn*%T{1hH0E*uQOq|qqw9$@E3rrDpQTsWHo>pkd%cL(ObjI$~ zZ%24POecm`Y-q8GqB(z;pRwHP*&7dofq#6~_@Dp#-|s$WMkP>iim$}#vBFu(Gw)> zmRj>{rYF}&)wm*LTLAp(;f?bg>dSc^8QPr-2R&1};Mgy7%_dW5d#+^}242i@5u=s+ zid+-T)`4dI#<=QhLnb0-LT=P*l4!r1>oyDzm23awHLlS%YE-r5JCQ_8bIR+hD{)il z-Lb{iz}8pO^hRXV?W7)oKSQyyZO1B_%!mj?Yg$Qz3q2`ll&1RXOnaUCDl*0W(1bFb zHU~*IGq6G^n%L{3YPvRR(`-vqhBgjU1TX-gq46g@_vW~oZi>0bMsNB^lHvtbip@dt zxintk-UrJofF^{9c%CbC0}O|8rX)matFAE@)U0Qp1v<_7!Is zMTo~R(RQ(G^qJ&i4+@vx(vTNAU;q%XD##FdSWt`Td-=Y=aN+YdR?GaLX%Wzh02H8= zk);KgV?))js>lHW?xQ%vy`L+ij#=|Su{Hb#27a9UoL5&GFo0!a&$TkkwheqPd?wsS z(-RL$O-=vvK>3D$`LA#I_ka1Hw{G34NF*vY1Ho?7^zbE>`XH2}`kE{&z9jaAV@q&j zT+R0sSpXSdiZ7p9rZ1mbYPJ6%&|kj$Vy@tT%+#Ko#V#=~m|=V{RO6H(JhO&!+%0UN z_|Wn1#ZHuq55;==kHg(bmq{WgVys5_Io3xM$nl-AdG>!#^slg~I}?!2juZ%neL;)BQ7Cb0vXSXVgR?}WxGwBmV?`?K@OFu>gfU^W z2u-NBab(>^j!7AIdAJB2@txz-HH_AK(e3-0SIW;|5MF3_v`EHvH|!% z|L?8U;)pgP6QOm>bhTQ_S?Zu&J7XERw|Ia|iVKDG7pFZpd{bs-?4zn33I*srw z$4|#~1TnuBG7T1Kxe(iy)K6%hQC|tN{WjHUxfC#s&ajfNsDS^czxiBdKya z0<;7a0${cSOM1ZdcgHQqF55#kgI0sf%(Q^PgKZ@Tm07Tuw+QAuKx#7Q1d1GiKaOy| zl3hxaCAYgOh1;o53 zYz90Sh;*wlI*o5|*$xa$&q)<7V&|mIw(1p_r*Rz;ig&Hn{TG&{HW+^M`o|H4W<$vK zf_h_gzFDhc|LJTEode0+V{^@h5s!B2!HcVO-MMU8mg(kROZ4kuMa}~8GHeDNx7OU_ zrbSFl{LJ986xg}y+%jF-DUr%exF|hn;@^JhVY5#4yneX+6VhFcO)pmOz=D+14|bqf zsX_&^N}Ho|4yp^&GHq)zB2X*}+N9;Lv@g?y_GLme>$tXuqt;SjPYByC` z-4iJ*QH0!p0ftn*ybBe#PxLQ04GG_0>cyK6gMmXki%4Jo`DrzMuTZ;dv$ZKJtThXx z`eH%MM7&IOnbJeyA?OQk`L<|CTceI=4c8j+@0L(ln@O#WhmDK9B{!-s7RIz87}fTi zu(lV*w4*XdyDv{@?==P5wKSpa<+<8gl%uVQnERPXP@5OQ%@1h{3B;k02-D*4xa+K& zM|yEg8$vPRD71k@t!V$|N*c^*# zYa*^4g;DJ&iEC?lLOYfgsP6iF)nA`b9Vy3G7HIc1CE8M5s4rrHW6Ssb)p zYHLuCs&^qmFS~Hu|CKy(%SrlJ^#(QaczueYkO^h_FPw@T~`!p z=hB3B)#hqWP`*e^#_5RO6KhnQiO2##y8yMvaU zeM`b>yg8xfAC_zP(mWBo#&@$0U{UI}N_ETP+PySan+tQau^?A_uF6;Assc5xN~rGY zT>EbDxor)H%z+8O2N2kspP|ObzC|#Q)oq#{8dRzGGqSa>3`CV-=&@mGmP3@62aWsG z%xa4@2iXIlKkA1iYW`lr00V2OeU+Jpxc1~N7D#qyFvF>*p@Mtmpv^{5*AEQdhwAjwYWIyM-p5Le2gyJq}91qS|EW9}V{&KMV#A?J^D+Sbh03sZ?6T?*Loh)MK?v z>NkQ~rqF1CsGs+*u%_2f$!|$g=e&g^G^2xg|3(=~^7nDTVQYXlK83&-K;W%KIaWLn z;Fbhoeg>Tm6Mo;c{otbN)brsv0Ro_bP*8yG?OmPvSq1>mga8E8k1np#E5iyMZEX9# zZz_O3$k!!-gt-d!3&b@jJx9|zm8tmDYCSQaP#=zuf2A0vaNcDFPhs*v;1FBdHB%xM zP((-(Uh3$xJV=7h#CC-uq4=c{g()zADa5Cj#cj>csvpnz2m4l~(%6@rS*y97DpO+K zq3O9gFEC#N)1yWU^5JlowW~}CeaE*e)y3(VsSJSA0#kKr+GKT4yUdDw0JflBLvVK5 zbPW#V8V~>s00h{q&gxWSHL<-*3kFE>enGW7Ic=;Z5qCV{5>aOb#%X@HoYeb%L(f`0 za}XHdnv|lfj!x)#`>q^tKzi-g!Dm=@zZ&v%U}GT&K(wE(gB_2d46yUs^b;$}~dS3W=g`IMMGpBghC_$>>vEPGW(%o~6m9*(E`D{j7-IpOmBD4|l?Reh)i#j#ZxHr<3FM z{Eb?}dvPg1JZhYK9+%95_sKz+kfV<;%hrdJa`eu)JQMlJi0)? z9$Kzv23P9IfmM2SRG~fpzm3n+TVwO}>D0JoMG*kDW?IyMk+;g^mZ`oK`q247Yo?*% zY|qHjHnRYAf?XVmnCJrpe3^K7k;@9$9m}*dV_qYJVgP`NgQGa_kO6>5n5~Vgo!OaY zZ3?}J?*Xr!a~X^ie{S12Gh{S%G^_j{p9P>`8zN$a%bvYL7~Bjp4%~JVCnIb>{r}Ui z0uFc{Y&HO?Y+km+&^W{l5I`3q0Bu)zvHcu2tbd#260iZebp=i{0a*ELdfdKue6E`o zgtQ0IaRQLDSPeh@mITCUt<#j*b((%Ms7mi=Wq(C5({N>2W{m~E3@+czNgm%_j!R~o zGO`EmWmS~z1UFSqxxFjy?41ArzOYwfL*Oq!A0-b)zL2bjSh-VZ2;Lf%uoX29B;LZ4 z6)hnfzTmO4swDu3#-2u=CLL}pf?kU4z`aHvf&6+)y4 zoq_2m1u!6h$%6xY#^DSTu7kfgK}^2R3oMi`tnyB7J4PLkAEdNn&R1HS-by>Jw~jrs z`#;$X01DU?`0`Wzf7aChZ~xzI2E6M~izANLQLQ@a$X1=yx>b97u16ek;@1eB|F@6# z&wuYQ7&x@cIAGw3E1pe>eetR%dDlRuU607G1mg&CUHK{2$6ehGnoDV20Hh(juI3itRCMv3t* zZ)Wj~quRxQm`ZE-{U(45IDmkLjCyrcLU;A9GEaUsM7RXa?o=h3eQHR0wj~DlO%Gbr zKG7V0Dl{H$e>zs3Wg3-UB!tqZ25<}l08F&h-|f! z&C(I?e7x@8o0MasbcE@zlW0AxNWUFgY{%lu!wOCO{`RHTsa_$0*Rbwu#~~7>wF;ofH>I z>32DKq^f%u-jVB|)^-=GPA<#7$oHjaNe;w@r3?>Iq{@C*IItX5~V7Ji; zy*@f$e;iq8??2C-Eg?V8A#0#5 z2OuX)drO11Ev2cZ(f7tOP=#o+cajs3v_$0=y5;5tK@%4fTuZVu6do@eX8O;hAArSs z{ni-X?_5hS{>a`(7v2UqVDRiT366fm`OSskIsgDrczICVKvPs?mV8DrU3G;$_bMQvMHRfOa|NkU~=<6EuR%Ul)5Y4y`k3u5Z>;S3YZ-Ew)>5r*A*siS-fe)8Nu@vlU=Fz;R09`UP$8iGFzW zL(jwC-*M#uw7NKwFhY$?&=MXyv!P9_~Y-*$kVQ( z1I{DnI&xRS=#xgFyfLo&qjt z1q=|nbzWeRRqymnP3c^u@*dUt^|;*B6wXiMaPrt!&bi!`qjox151W=H&(};>*}Qs} zH_o;GJ>t(?G`Yx9O!Am=ae*XR&Uzn%S``B@VtMJ!YJJ64OVeL+L5C z8W|`_P4>}7^h(1@)P;hv1!#YKKecVs%j)=J&K8@`RxLYPr5$~~dbGt})M*L^rDtnW zyYdtOfi^TKkgysU$Wza>1-4;e<8Ve`hE=chd79X%KnuInS{0pIqX&8)u%rbv(hQPb zOZ{pp|MkuQ03ZNKL_t(gsacIO^r8Ox-NRtu(9R-K(^IRpD?3wfOiq|yk8=e29U9t? zXxhi+STZn8>~9B^ngu!AJB}Fx&=&#NoJj$jy+03keFaT4lVG-7Y#M&vzsl^5`98ls z5~hJm`~CRRm^Hu7Rjl0ficHWMHoiKv$cjJn_-Gl)L1GAr)1e23=pF$C+$aBsK8pT? zL~WXAHX1hBpXQQ%d5+M|ULTQfzsGB}@70I`8;J7UeLuu~`{o|KBVng(GkG0Q)d+26 zW97D1?q~TkjX$r6*W!a+{psRFSnlWji7p-YFG-L? zqrG8f(D?qGQxNrjF)yN5MimPX#}<_BBLQDnwIbf#2j~8ph;|ja#+>s7pUe8`PD^T2 zckDhFxvc^B2|Z`cbkc-l*2v>H#PX1Km)7_XNvi*eQT1z9aOk zJQm_-o-bP&KiuY)?=Ya#h3|$_ba%jj--M7tjJeHcxBX22-O&6mA4dN+%>ZCvao1`3 z(V!~5mz5(Em{ez)5P}a64c^e^jVJjrX6aZ-)ubYi0A z?C>sYU!jrdMJ62V8Ca+b(laz9Jy*li^EE6zp`pp@6A0<7z#N^PHq|bo*pOnGcg&Gp z4x0M=M!%K0{aBuWxeNKNfdBu40mJ{c`GyX3v^|bXSKf{bfSJr~uFbUKmnhngTy~Sk-HZWdQi$K<+6{L`}*wHLiW0 zdZ*3T`Dyd4dZ#T;Z3gM@liOSEY(NjYU^~sd@S8DBom<1{|LjO#}%n5K3qu$p&Lslr`r6zy7THMeu6CbTcL8rQx=ebYlaGcZ%9rA}pH-`eFRnCqI|flSVO*E|_3D=c%M1i~de<9=Hv@-!7HW9>QKNvo zHzmg!X})tb#x%f8+o9ON9AJ{|C)$A2Uk)l4L7-4^(cAzCNUsKHyT;fx+H41Cve*Dp zxS9QFWP#oHJ7aTG+lIf4&Npfi%`;6Q_rquHi!2eh<>Y+kTnTB^-yM@{_eCSfRG<4s zly8qUxKwY9P8cX51^B~DWBSdoB0YCWss1uHFSQBaInwvga06fnKl^+}R3G9@#?*Us z!gQ5rDLI$Y`~pP0e#Iu^Nh1~-e*TZ*d&>RtUcNcX8MW~Lyrw^mD6oI$J-|JT=J_w9 z5~+LBTG9hPL&;1&me1V(F8>KO+AJ`RfTz|mA zj(AAhi{e_Fm7{kj=2#c|K{!(7+ru>;q^;libDzAOyhSJ!B*D z_SihzhOiOvgATSMXsg)BygwnwKp*d^A6#?GX9TE7>0pze8`@U-T{aZnS(6@^`{x!L zekfvVW=3o?vEk0g^xuu&f`Aw>u<+z*`oX{|{Vg*mMH4ccCc+i)ZCw_$M&Fe1D8~=3 zTjB-?00?lX5JJG2+KEU6o>yjuQ-7NR+zCfOf$L_3>_A{81xh`*I1v9dtWd8F!veI( zPQcIfuQYM5cLU*;i9URPrUL*1goywK{tj)30vvF%ASi~v)6g^NBWalCpC+B+WKOe= z^A8P)Z`yC{NfU6O+*IGWi{O;PHUK9H98|b)dv9`Xne@{j(Lex7xNq){4Tbk&=N9fW z&Ca5eYEsSrv<_9m3wuiYN~_D-SDHN@A~*!YT=2QLV#DWG@7w|kdf5eZrh$P@Ctjko zOs&4(RTjObf*!7zfYq=9}ZrA~4B!-BXaM zwR0mW4bAWQ(8QAm^26&d3k-*$eHKK;L59t)6wv1NSwxcbKuzw)i zC^BpiXLTu8+3B@~y!Ot?jW~l%rZX z{lLsl)f&=1TjvDk>$J2fDJQ00?WZW~)I{pDCmH!?{oEuLAb^I=PY-FRaI%BeMUD;i z`fZ0b1BZ4Nk?L1JYD2@%rpENnXg3jmBdN`xL1oHHy*Vmh{5wq;lYKxc4YzI8`qb$D zi)w8+h|YyZ7C_)PIBu$6Y7|AxJYF5)zyMSj3`!VG(#W9$fL=u3L1XCw0mnJp3YvWH zKuAN*)c3>j+4^{5%uRS_hV}ONJiR!?Jr)#Z=u9+(G@Nga&(%-+SLl)c6?%J8wrvZT zlGAMRe4!;-$Q69~&|V4=0N`Z*&xCwvkzN{HVn6_@HSd>y z&s_8BK!T?TF|p=%0S?>`$GP87@O*eL;NsI1b56j?2WpVFhyQSLT)!DwY8zj+g&ZHx zB{h<~KTx`ue$!wBrnpZ49yugfi+UXdynC8xKP5+lunBAW*}(%rVHp|bREZ81rpc~? zu%$fjs>;@ySuwpeHepN=01&U$gP6?=va~%b!xDZ!o|J8$1^*BAiYdNrMUum5=w+WJ zgL3&?c-`0~)3~EYp#T-{P0TTH>OlbDgFgc@c)b7-|8IQuYi2}DEbWHlE;E6x3a^76 z865&*X|x|Z?tSFjqX~T@7`Q5Ap&I5@ORP53AgDuFPWb{1;MIG5%s>NbYC;%5aC~Th z0s{aoLDIeifC3_zGu?&&G{l#lgOCH8gZIEnu1K$;2SCg>sLa-4*x@}%T4!HZOaYh% z(D*~^A@~bhP{07|S}#td2?qqQ1pquCR-|dc5d&br27vP3-~5@a!7aU9(*Ui`vR#3N_4G{-TS(7k?MT)v*Ti&Jcx$62VB!T;2;cGcC-hgFqfSlv{lm}q zcAo^1;WPwKzjdp2RxMk=)&F-*a3fMzxV)jeDR44~L~ z8&I}v{EoMJq#@+^;=Td-9NQFbLeE)1>akNS{tX^D!WE0YEv*IQa!B-vFuBpQ#z0tkT2*tzOY9I2soM$R3Th|*a#F_A@oHDfl-2)B?RW`jI?PwE$uQZ ztU)bgEPa8_O<$nl9is|%t4y7L0g}E&QmV}0-JOFxOWB|6{v8>Zz#w!ES|k7I_-oPa_A563K_fksbY*#h|)mJtAjXm@_d!qe)O zMYSUl*1APeeK0xO&Ryi3Y?v3;wqTZRop>+N9T+ueN>uzm8v{R~UpF(PwR6H+KQFA! z3xnoBw4K3-WfNqYUSV4#sO_oW4rjJY!$ zpPov@Ee#7IN9YY+_{gnKT*XTr4lB+WW7-$$!t@MVagT3TV$K_QbB{|ewSp&$nE0%~ zETak`x?^$}IJUQrX?2R#(XG0wRf~X4?2l~KS;roAs@fcNy4oClhSkwWo~)KFj@J?2 zIZ8)-heTmd?V+(JH{h%FRsF%g+T^?K!~wyw-%9*Ds7e3obNK4d9o`Ha+Jzhe@nb8V zF-u%*aoLO!tmP>afB`@{fSw5!$2i5s++Ae3&=#6N^Qv>)mW@rDqud?f_yYzwHaz{O z@HBJ)t^gqj_Bp00r@c7<2G}g15ul+*=s%z0#RZd#B=z#pBK`Q{s?0^Uu>2?e1HP+MXyI0zjUUe;7yO-P$Eo#+bU`3P zXQt1xIz2GWoP&JQGJ}p&1Cw=T`b?|A9kP_swIcOh;j=R5Dcq+{UuN{nNj5yGFwru$ zr6;AKsT!j8Ck(VYCw;Wyr^oI5&ozK^Jn8gs)hVW~G&3}c6qFOTU*5g$?b{D)1`h2k za$qxnfR^T!a|PFbYsiNo)OWNG8ZS87oI7YL$p(3DV1<4@fabo`Km&ReIN|S(&#|9j zQqHkWW9l?Y=!EDc$_23FzWC157{m9ciL=Ihgxg}$#Pc&2fI6(mdKE;*&yr7aNvS0T!YVQ?%gVq3IRntwujHH> z)ZSt?08VqjbKDhm83KE<7u%Kv(J}zUw5;YP zW}0m%xdrsc8?z!QO#oVf_r|(n)8d_@*k-XY#$*ApwCO9t*qJ(aEOT7KSqbrUaIt{` zY*g!h{1g2@-$u?rng;{Wgb)yWYdn(H*aBP^we_}7vvWYeiH8voH(U`h-&K5ov3)Y1 zRf0nZ>?qDOv`o`)2y9kJYi5M?#q>y$BNj4|#yZmHW<=}&;2`*9a?H>%U$ECk6dK9| z3=j&&flomRVm-)q0KaZF1X%U)cTf58+W|lI$5{v(02f*segJ?k^Z`r^0RYefXi8Yq z^Jgv!6q*CT0FTFG*ruW9Qse&9z%a37E8rU!LYH_feg`nXEx!W=f&2Gmlh8Aks{~3z zcUMe8x$t`-8`J=tF-Es5wA4;A2F9kB7yw|hHZo9Th1(DUI+8g12O=7f9@2pHEcH5Z zrcOU@f>rn9#;EE+KD{Q?R`!Kq8M^4tT0dqA^G`Yo{wk>{~;G2+6&gq8Yf-wIuGP~*#S;i(xCv5RhV1Km*9nQv8|UH!#3fFBwYs^uThX9Y8&xY^BSpcT~P!9bTx1 z`c|ei47h^PlyjU?xAuZ2|1Udo~r?NJzTznAB@cJf*V?~QH7xYAb9Q-a2t(F0(tgYu=@nm z5U57=4Mat%@M(d`RtSkZo-oMV(Qrs>cYHscbm9ngO&e!*al5&i)1@>8m~dqCTUu_( z!I*{BXvb;+ruw8Wu+1spqTTWRtkF|)3nn3(xd~(=@Xd5!UKn6 zj;j!jC(~`3Q@{XXeeRcVJsMZeLG&1K{Q>hdZvX-&yy#xoMsRGhWk58{l$@W#wTEVw zNj%%lzfH_B*BKf{0Q2U>$u!+bF%yn*PGPHn#kgf2^{X@>0d>L| z$Kc=CJn)>H$T(_S0bGN~1gNVBsbNLf!oM&%00bDrB*;d<1#^)aygQrsI!pCX*rBsu z?S6+W1O9zap0nySyUw@+13YI>I|2assr)wdtQn5Z4mE2hGQY^$?zE*7al`+lH zz)lZ;ZL|h>kW)|!PH%gePC9Xvt=-QK%+VQvY3AXLk2e849giQVz;PFIgeibIPzwSI-zZ?KZ2jB}p;Aull`Caqxz%<7X;b749D1b!S8B0?+1sqHK zE~(!hl=HlPbxDcd$A*rn4z|YQa;*`d8Q|gvWryRN0?=a?K&T+~K%Xl8epI2}osehs z(d2BcogLNsIT5S(FUzqe`wzp5EX)g@@P}A$&JJrWV!HVueK9wz_bzodgiOuQPC+^G zR-@3E5LIJ#K&>!)P6r481#`NTnY$RxGX-ssjiGG~+hu85mm-_Y-+g{{D*4$bKy!;D zi7!N$53t4QUy1j*te8@R5^W-XxZRbS6P=hWG1nt~&PGDX#MK~gYzyLJ>1&Z?=0cvLjrdpkzHc6e2 zAEZE=-d637>mw{iyPP<}>caGyn%$*DStr+8VbRQcRgf%fXaNLN#>v$h(ji0L)5fXW zi6hnZgke?}wVR-d9&y_)vtfQL$uCD_NxeNLY1xpyokS!x zJic1nLK*tgq=bF{+4gfB;I_rYn?@3_{`v@~Hv$N-5r8G|(vVX7&RWAeI$@3aCzGRs zqJzMgCZ35nz<|I}+-^ADXizDddxX7g=lC8URCI#Ql=~jWgGJ zKSZ4wvH_`q6YNkY#O+)~Lr*`&?|y*o>bQhGSIZPInw8teLNVg?Ftz6Xp|bFAUJC$6 zp1;%3r@~z?#d0;*-4GH?rof}x9d!j)43Y5{(_9!1 zCj&TpAWFaT###)djb4DVjle}t1ne7pzYzcknAKrF90weL06gH_;Xwm5A};thnx8ln zp{2Uv++@~3Qgn!r7|npui2x8uMr)b>CDd2ZZOK_H>@%ORSz5UZR(V7a4~a9`7qjt5LuCWFmdtxl2;7 zqx^K2x(w)|=5(sGVE|tI)Wi-&n%ddbj4s8Bb+58v#E&j=G%YttWt!>=3V^SlyGl-x z001BWNkl5yj{p@TIZ-%o?D#Kra=c`D$4Yg^1?tb%zS!anSEcm zc2KXZIxHYQ)N^8^S&L@q-Kja^x(--n@W*%6J6U0=X*Hz8{tXSluLomWTyA3B-wr9& z3zwAXw?j+xyWz!pVTcp8dN4o(%6&1Nrb*><i)JSr2pKlr^dKQj#HWD=Bz8M4% z@I3r>k^dw60Kj0BK7z((Ma*T0=92*i%{w$}8r+SG!uot+Os`ES(68;iC^bt_JMShz z2G*8{TPbrani4f3FwcPv1&t^)Eq(`(0>EK_`{|UZO{{rNfF@WTw7YRG z8i1sxfT=w_Wmd=%nYYJ6+8POKb5>YevqJ9w79}$Z2y&YpviI)e%i{LB{A1dres0i! z7b(+NnIdHWbc)k|@fq^|c;PUb2DTO4nmbfd@4@R_Hy!PR3vy(uV_I1>7UVDh_@G41 zb@>J+m`;k9d9Uqr=XP2|JMR0I1jK-Wc_&ZTeS>QBx9o%q8AB|5eN@f2=NTX{OVKMr zW+h6VK=XI=Qq{OJuKHym!6DsOl3~`QxDVlB%{Bq_#`=uf9?Y`DINlUK3`1OV9Oo1l z3)VywKWED7=?<|Xc7gk6f*=#kI3Wz2y{86LSa{E){i%eO| z!5oxYwjkWBz0s9;{KH`2&@SVEfk#(7lM?p=1^~qVctNl8Wd8~S1FX3T|Dl+maIx?_ zOVWH1^}yg|=nDh_9!TG9g-F)|FCk$`g%t1>Pwd|ZweHH_aHCq;vlPRX`Imtjmh6dP+ zVjgg5vKDl%PHB~(DPmr*^1P*5-M2E;Q2EB{?{A@LU2%4;?!CBNZ_~si8wOU~Ox17= zqSnuG0Y6;yd5-{0Y-TAanlx}sY^f*vRoZ#izut--#Twc%Xu}7F8E3SeqRz(;QMVJv zC9Oket4CnAE@>B+Pa~ezzDlz@VyNKGi8DJ@X+*nx^)(6+8%{O{nW=n*F`eQnJiW>` zM{JMS2Js#A&jFezc@Y%0u{o#IS{Rvo3}@UB?^>g~dL76WfU5G&c)ZG8a{!fu$+7<) zJvpGvHpYNf>ZMzLeP{>K;h$F1)2p>NKhri%aNy0622b~7j?k|LI|m;qL2L?WSfQW% z_L4I3f6otsCtqn91?U1E>sM`5Vxz+)a|fWn;7$nD#-`$=6(@(1oRgT~6V3%_fXc#W z%%qzJ+NRfR50d6HnE)(<^1utF~lEivr`O*ukg zUJI|8$FSFKe)}$g+*@Z7y!g(9T(kMyG|yRH!gmJ%@H;fXOtP7jGv)qtYRtBvO#jJi zps8j1z+>8D`PY|BJ110)Yz0E!@Z9Gdvo#}VVO(1?Ls~Z{BB)5~W&;GGmI4h>`_zKZ zBGya;9AJ;|oB%8gmgyyV5BW3wr3sQ}hAp&i{p_&aAEpRoCfNHv!!_o-4t~}HF+h>u zZtywtTHM5+1na2FO^7VEO$EOPpoA6$7~t_~`ng4{jNXH7gg49KaS?_C>O2_WzIm@a zcw~F9_lMt-W&kiS_oV5%XHbpaWixPEv`Xf)h}^X zSBi~ZmY@p3rSjrq@(Sw8GA(MG51d*zD{RVp!WH-egP5>Z+A=?A7aG0*)S4Mld*j_3 zoiH972Pvy2*7y`DdwAKx#bbIylg|Yf5I~cTbBMWz^jd0`o@fQ2_jut;F$aJQy(rSOgq^$uvGvs`0N5GL^j3j0U%gzwennNUrNJ*poa@4n}yml zNf$m)fC5}Xa1P?aM8RuCFicPnMe^vlb|r#eO9Kx-7+^3cJy#I_XU(11X$ z&JQfs>1orC{gW?@2_Kz>aJD>2$q#4b}@%_L0Ghg4>yXN0*0Jv`|={WRXM;#Q1#?Sq$_eZ0TThTxI zorA$Zhg4V*TLOOXFiq&tIupPEngNbHX?}nBb#eyjtg}{o*8W&XR zrJ*=%RN3*tF#;IixbsCb@2y0k5j}XZqYywNpn+ye=o?(D9+}?r*c4j^xc3kBskDh7 zR0E20%f^{OD=u#4c#(WQaAuiwb3UM;_W=TaF|g9=)k#I#l8C6jCey0%%CLnmHs6sa zihKb$tGjcY^TktR3oVS0=kiD&8s{3*J2AEN)`v{X7#Mgk0N5cL#iugU*h0a9enXKv zKn{uLz=yjoNo^$29zi{1gYtO)a%-Guo_z6GG*rHx8c?Pid)DelearRMI2RZMpBJ}{ z?cN?bGee(Eiy3{$M8>1?jnfSPpxAs`P*G9`!sh}o^Y7u(v&uEGBbtC5tBccuI=Agy z8$|R9EKcbihPTW63K-z^p_ihjcdRrK@;8Bj;T>WM9pom&`vk@6X3pWJzi=P`Ai(!2 z+O5Xig}84&lu4XYqkArJW))CV`R+2IwdoxbQc_?K3WP!k%5{eAF!l1P!(iah&LUFt zGpkisoT2p#BepfvJr4iEsw?T(1egSq#J*KDr^05!?co@mtVeV*Vz77g*1 zXv8dy>uTNYuELOZ$rqoALFtN0EhrIzK=W>zr(d?&ja6*n-E}N z&Pmhty@AzwCz|I1#t0dMCUjelqYCk7CSSMasPTqu)h~-`Uv0!{Z&_Ho5@GEv4H;bs zYEVN>mVtu0@=S}p-!MBY3c&rfBN%_h&kUfEazjk1npY3o`CQ*pX81B;p)@NHL}n;eMb3 z`KAP*;kFD;;D@^qjfU}h&vRe^5u+DBUUTj;6Abg1k0vjS0E^l)S@|zXRirDq z_fs*##<)l==v-^XrhrU=k?Dmt5%Y<|eFHHK3lx4OwG%-h;yjXw&kD>oK{0lt=LHs8 zd2ek5d1nNs8z3O044Xabq!UN##AAEvsMeh=EX+0SU)N;wZ>@F2ciO0hr3D}TFEsBh zUD9weRLoh9Vms;zP;j83|GLNgI&k1J6C4;oeEfAk!@oH&(Bg;_)w1Q^gMk)@!N4J2 z#Q_7*g#33Ie)bh-9{}Qa_jX`_iwwsw!aRx#6cH?H$6@=4}{~-AIl!x z)8J!Wi47jbq>zc9Z}Mp#9_d?U$2!M5TyE|IDh%9VFJk_X&A=SzV!i&$0j@#BaQ39zb9NP4n+{2k^K3 z)Rv#283EY&=YRQGRhrhZR3ihJ9Uvsmw@d`iU+4sUVURGhLv^YQ>~wP308=|wXlOgO zqfsktM>(%?KBF#aAJu{`6$+p1T#V2v(DeK8I7Hx{J_c9{p6t%4Y+3y86rWnF`+HYf z&?RA)aK*V^G3BJVHhG&%xaYqdTxy_`p%C?lTMvVQLp+VB`Gv<-zdWMtiKx~sjOpXq zxq5eMLT^pZ*XxrC^~!`2y)>>we;iY&za$$ec=2zI%hMZU^7ZPdLQB8>-RKfMKeAL$ z4zJKlV~h0uWw}DnLlgGq_&mKjy2z&9Hla->0yEvEA*R8$jb)OW^WLOfeLN*@lVv{@ zr(py<(5#ya(3phLW8OquI|0tVdp>WEPl(^=u|J;{HT@&~4gb%1k9u=lo*AiZm=!c? z3cb;WIU$?KLyx8brP23|G|z9%)FfpkIo;>E+v5T(rbe}P2Eyq)+g2cuhQfp(7$+l+ zO+>+;PmLS^0{{ZV))R8|;_wo^Jfc{C995`K=ft!pC&S!y_9Qa3Zf+zs?WbAh{eZ*2 zBZOF*u)%Bxn5Q}&C|rAV1w23AYum2S%-hsHV%EzJ(8RR8FlIw$2F)1O;JAh>CG3*D zl_70hlmtJ3p&4OwqJ+=?c@mTXns`nC0W=mE(Y%k?dQ`sFE{fXu7Y8B?ZD6Ntoqu3s zi*VOA3Rs(309eo_``jPk&AvNR9Ic2g2~>70^LK=tJ^t2tnfCjk^tx<$01t?=zcny$VyiUG?lN6>_pjDFpf%@35Q>H7z&@y`|wf zgU~l^27Ghvas+7N|4}3E8g%C(1bDzj=)_e0-v^Qb9C-YH1RxIH474+f&;gpzVK8vW z7xDULJ#odeDX}g#pG>1YEra8aNj=j$Z->XUk46!S3=Ou^{Z!d;NfwCD1MxtB=Yu$wi6adh_1W~Oc|POyOl?`5r492#R$t7H z=#OIx>~VN3@(7@d@H(isW)*42<&HwhfTa1}LhXN~Qu`mRwraYwz%FLqneD|Hg|=Pf zwJ|NH*kt1F<3SBu0UXji{fVt5=QIC0_+8E)1RYXkr!TQhB0~a-VS;xtV?#r;yXyQU zdUkM03WRwu#<`TKBgv`M3qy)6SAj63x5wwE1aZz1FU$DBaD?BTkgJ!VZV<1xiJ4st7Q-vDXK1=hvl&2bdz$qbgKHw1>XY58T59ZVZA&nZAQ%GciI z+1go~t?iZB+FBad=AxK37G-N)Zniadq_o28W-<)ZVBOrX)-DKZZAL`vLQ$;=$Mjhw zu62>9wnReO8VqVnMwT`%4r%S8h&Ie~3AfNUwk*svO39~}MvcF2fDeB9tgtpM4ryyB zXuS(G77R^1AY_VfQ)%cOP*`kg&#*IWAz>R9gtaBp{rZo>26-#9kcBSb~xG{(6SF-Wy7$gslHrW9b# zwt~$mynepFfEr#4%{tG4*Zb+rsJ@sR(Yi$u3lOwWL9(Jkna1J(0QuiB8q93xkON(Z zCY|E>ZCjirM7GP=o97IGa3WkZq?w|*=HGUeMO|nuLAC_fV!d4B?2Gr51hsyC z(ta6A)y%LWhTr60`7)}Fi!E4H-TGo2+WuL*lk zw5kYu`5s_oLqS0TpuuDzQGRnq(1gTW7ddAmtd@D543JDWF*9fYk`W9zu--8c+JJzCrftg*V>yCcadMhi}eGoVY zVJ&)dwi5~?7`{7S`+r!X{STID|4+)*oGkmd?-y$SJ^5xD zuo%les6tHE01E&MKXE&!?QC^Cet?cU`V12hw`_5O3449hf8h3LedjyJCh0i`PvdFG zUE$bcc?Cxx+NF*?2nZx?MUUYAu@v>8WC!2Zzw^%sh{;X>j2sL^obdTDP3X|B<0KG2 zd-by^i(Iw>94|D16iqK+fad>&L1lVjpesDS(a${Ax5^5jPSbe6y~l0j*vbJ4p#69~ z0d~UA;(>h$g27S|{KLhL2^dAQ&M^H=?g+9nE)hA(Bo61U5cWsfYYl^gY zMZWef&9&NDk*kmAC-lY`SBQ=OIw7IIPIUEgxKMk(Tc+lpR9NkQtXBJ=H=MErnLkZH1bz-mprRdJywffC4XNO4B;EQ!OlPq7qA6cLuTwJZ64Jy-nliZ|@hJ%Z* zT`aj^&d=046LV93`+S~{_pNlBRvWlLw?tdP`PMym&ZFeCP}OJFYE~!w{mZQg7-Ks? z0GZ1i$X35VwkCEcNr3?-_5cB&!akvWiRG&hH0BHal&?YU!AEykyl-q^7oSw4ShrfMveOwJmD_-cA=95m6_^m5$sPr77|(aM1Jv(^71`@% z3qrkp`*VkO5FP$${r3mI*8ZO_)BcAm)qG!(n!i_|<~#G%bX%U9ZppD~SedQ8)iLcV zjA}=oD-vk;l!UdnGNOIU)k1NTC*Tq8zOnylwYJR z#f92Yn$WJYT?34InU(3Zl4c30(UcV)JAm&UX+FQQH1s6Jkh(1!~O zv?iF)x=6m(Mhmn)oY2N#+yv0O;~8pL{Vjrl>78fjw!SrbGb6{Q`o{ZT5jFww{s)Q; z05t!&RL%Eupyr#K5LyDtc(QjV)O=6A_TO8e{XePD{>PW9`Qa+tA~dedHgPcmV*(rM zN|FhdW>c4G0^>b}na(n*EK7A|&Vzds_Ip#^I*uyqwaPfjiHZ>x z&*)TX;<6VO+6+*a<1Wz|X_u-;+ElA^19OZPG$=i;@$HK=rDLfG{F&Gu zH=;tTA?XQSkiOUidr*g%v|&fu+cpU9zT36wqZ5ujM<*P6u7#3e{n@fb!1MuV1SlG6 zvI1zZze>$P41A;&?m(?trt8Soopod@oQc}$Kmsz(KFKm5@Sg?)9-ugVfq!hj(KrkS z4y`lU-_WezUH6Pg9j0*dK~KZfn<9OfrkCRruns7o5YaIe_xyO8C_sd#<8i$CCXzq1 z(eup~$1Dvs_e-%^;Qk1MqWJTZ{b{(pkg&oWO5ToEYsY;nwD-X)t?Hk>NlkzHo~zgH zR?`bNtLf+0ST#JnLfa|}wQdfAwvg7(3u$9UNF?x5J8JXQ_~;6K`P-GQUcOOZzP3tV z{^?e${ZB4eGv~%t*;elai%isKK}AVNG@5^=MDWomoIG${dg+p4t6vUu)G6LiipCm2 zFq=h+0Rra?PjA6fKThBw6YlQL)#-tYtM%%bgiRQkGWud7$c5C`n-g;N1n=XpVttxi zY18;J&GOcJ+`d0KJCzOb+rcIJ{)JV#>g=Uf*PH`o@_=yz-v@iX=Pa`v76UI`sx_ly zmDSkxMPewyIfrwPF9gCg=oA8C1k&T$m04kq&@(X4lGRC9$4RJnAX89{j4s(OA*e)N zN3r;%S`h-7Lq0=y7X<0wFK*FjLCfT^yf!P=twIm>ftT(QTi+g^r**T#smUQzK`0-9 zB?_k@zRSPpUt#sZoxeP^gXr*2>%TvJNnifW!nGv677GqM*APB zvYw*(hh=KKw^R*xm8jv)Vl~`eq{iFw)p$ptn(ir4(<8NNe(pLozj%|HUtXo=C$CV` zJwwdRtz$>hGE)3Z0I>E+wi^u~Q^e*GRb zzj~*dp1od;4_~hO?^mh*o(eVmXo(sgze zx5{ib0Wy24quO_Mjv8;xx8L9Qqh+eUw@UTjEzzD8x#na>ZppT+plwS&y)0^}w>X)> z_usfEs11ul+L9B|o~7BUyQ4z&Ph6*lr&g+w=dpT)njTrErbm~n`H2;3da%ac>&AOZ z)Oc61>TgJ>?uxkfT^`fE6)}4*`>xAX{mNYJyCSZ=B|#hX))i(7dr(UbUYKQ5b`u)2 zMc`aQ0&gbUh71D?p^IL{X0``Uv+ZMPD z0r>#96rpEmSXH3rpH!>yr_0r_`YJW7zEX{=uTcH1C8`5(6SV&c001BWNkl{hnK4HzH&9(l(6@0_caOazP?C%Z!1&X_o`I)z*5!SU8TAk z@*N;5%Tm*m4@%8V|MHpPzy9T){DvRgx^=4}k*H2+m8PkkW@uHP8vS+gL12K*02ef< zK|d%_^ZmsR2w*A7MGo2!bz6>_@65BU0NVl9G-qJd=GIbIQ|)00P_(_X%J?V?blV^q*V)PC*T#p=W|gh>~0_T3`b*?t*5%i;R?Td9$dZw+` zS+is9XVbN`xjH9pu1-C1lG58;q_%C&H!*Qqn+tTzk==Dv>yve4>yuK|x@AWL2u%CG z84Mh4LgXV`chZrqx`@Q%)-Btql?9BkRbab70Vog>|8uI*S0C%&w>dZr2EO5B@eThB z7`oUa(Nl4y-hRo)_^VHbg+?n@aelh!Alnp`IU9YQkmCM--X~T$MP#P^3K@7yuCb zUBypvc@GcutI``2bFIPQqMWLET&R;P^7)y1e@a}>5%4s!&_W?`w6K)UZTT?3k)LNrK5}ZhlY@ct`#h!r-ooD6- z7#u9t;Pf0#NH0&-*z_`uNiVe`E2URpeoEVPR@zM4YO+zFMz$}|oX(Y6)TPEM+O1Z_ z2c=cxcID5n+1-|EVP^*hE^Sw787|N>GfytlL;VU}KECVOZ#Y^G|MNG!1ONTr3*wk*{K+!a-M2(L?^>#Dw=dPMJ8HG(_A2dMRjKVa zR%qJ|720-vxpv-Ard`*UXxFtx)>!SirBr+Gsa4%0*Q)M`8&vny&8qw1<=S^kku`CE zhK6h6+E*La?wYuEROM)QdBhTHcgD#%a^X@bFp!(A`n#*t_|wbne)fKUx%S?(MEmZk zQNw+es$ZFJSsVK*vYf{9wn8;NxK#BIU#YrBSE~N`Th;XYyVUgiJJtNsZEnc$&=PA3 z>+deJ`>K2JDmDJ{Mm4>7s~TUtT}?0Fq2@pE^Q+YS%(be&yV58$yV-nHh1GCfwy`rB z?<-To1GQ@SUbz}>Ez-UfaS^n|`DsTu)4%{cb!yFwh%qmifNy0Ap9rb`%9xt&E7ksI zu2S9qFGBrI^YmFX$kyH~ zb5(a`j_Q`hR7cQPL57*gAUfW*C@ZBkVxVB+UT8Jwj}RU&&a~5VTqbdH^$?i za}C^l3;iNZI62X0D*(Nm$vr=ZMt}ljptbm7M$~Q*Hlqu$bC{jyoT!+=2YL?x1p$zI zi_j1xw*twH09ym-K^)({wnqU2VFRA~SJ!C&Q_Hpg*(Dx#k1`JH;G()%asnK893{+>P>_IJo7%tb1yohAue@CA7-<8n*yInQkm2hAH zCym>4osf<#!aW7ThSW3!003X*h&i0=kUdsSrllS?E)S~la#sjQa3|Uk$+Yw~1T`N_ z%(2yvkA3HsW}YUVTPBB3_OCQ&AzVff<54sUSbP2~=~i+u5P(k%IH0_?z;7M+JK%uk z!~dJD?E5&+ap*tTD8iF=7aVudL*VCmz27&Vb!WGS&~A0#D&s$6d+4_Z+>%Ma1PlN0 z(8;dY3izNgE>dILm1;;jqPrZk*1ISzr1RS@)P-r87C<&AkS&TZGNxqsjvE)YJCuTD z=Jvu`oSM<8T>aWDwve&Y(x%wOwR_q`ozix^RhJWoTi_U>J|uj0JYlff9@|sL9dnl2 z9DRn4P1eyzl1_Y*TC_Of@4&zTnh?!B6LyX?w1Z-R2z`(z+ zxj$6Ua2O1H)8+c>{~a*!;&spJ=3dLJXjs{5&QCIQbYj- z6vrsX=i_}{p%L&x+3U_D{hMu^+dPmf@MxbZJvX4->iHxP@LLD&i}Qe|Vb(==EUdI zV-_T}H!njJGzc0R_`=ltmu4HtLoY#nau^JJ{mJ4V{Ogy$e@cxv=NbiLLpV?GFDTYu zXO-!rg@yWJaY7%?E7Uu)iuLA<61_FESRc$O(8qK0^~v0XKAWGXwTpALE|}2zXrb1} z3$-z)P@Cg<+8T*!XI|JQ*SqtaKm8Z;;(C92LhBYpjn@u0pNTQe9}T3Z3GJFj3iE9MhJ(JgtuvYI}Ks_Fb8;eOKjc z-<1i~EzOqQUujY#9ZqOnyg<8_FmX?4&ys}pEYH`z>+;pGGGP>_9VOXXJ2$5Fb0gZk zkQ|eU32dQC?Z}Jk|FHMgQC61g|Nlo&jAH;Zw1^^zfrWtxNJxux*Uap$>5e@^mxO?= zM?^h#pr~N$F^-#;PwSN3@t-WV_c?c%%Sdxft6zrv^mLFDzC!pP^4fM*&=6C4MMC%7PRFW{q4cqnN& zoF-M}KB-4i9|#*zHehV4B04nya#mgDk$Mby;o06Ek=WWCiLJ|%x>XUKM%9!dzwZ`g zsB33?q;{@PYUlZ-X0Bf^$&;%JabZrAn#X=6Y0;yLfxoyTiSE3rWZW7uib7mMl!G?_ z6bR)E8^DH`7H~U;WE2YP44jC^sI_#VIcYd?stZz0F+kDbC=V&oZVo(!#$o`Dfm%^} zAe$K5YuNDMg$cTimJ2{Jpb5y;rrS@UV2OC(SCJiKl*=YYlED2b1W5MjND?If$cq}% zUa58>?f-2tz$N%&NW^HFgZW3#o6U|6Kix1onilTB<2gn)P9RO|dX(veVeuvCfE(9g zCIrT)4Bmh#2q+5Js2HhRjO_@F#aiddkk&aepjDRiZV27Z~;8}7jAa`H)S#Zdez^%bRX9*!_9+Ai^tX-l zAaE+6PQ^MA!DoS3eDQ24>qZm71a8k10hVaXxjn6YnMUf_WwP|*GTG3lNWPjJ(sh)z z^cN9HmBZ;KAXa`dBuga*cR~VmB%kf3&c;rBG&~~#0b?yJzo1Nj;t&)CblWq}n{A@= zY{_=a7io5+ol`16gKkL5(f}gF6ta8L42Akwaf80e5naz%)6BYt>7wya!FaK6a(V(5 zgpdNo#KlQ7G={VfNKV&MLD7w%poDjLD@VjBHvEWkguj?%Gc8}<;R&3`FU1YV{1xK6Vn~jjYKaJEwb7!axVr8%Zy9+yzS za1QZ$6jmGuudkn7UYb;KEFm-TKzs&1sU`ZtQ6O>VG4}p&6?Cm~iV?m``+J}W08+&N zfFB(U+G4;ZhXXv9OXcm=;B2B#e?LrA4ti6R=fL-IxY#d8%5g^yNDZ#XWkA|ZF~e^~ z&35N_q;?*jGc?gds*c2OM0vB>hC7Rlu12;|Y~uK7j33T~)b5re4?Xtl5Qr5f)P91j z?pY?E1~R06k;lY}fI@_nApAg%km=Juo&cwG5n56#QNVgThD3pb&O!P;Ys0qeEEG?JhJk=B9ffDJPtpg{0+jLNOuOXcN$ zh4Ot$$jIwCGN)`z$m~^@n52NjU{A=aGK{!$ve_RZK1Pz1b zpU|d6h%s%7bUJ_n5y1o$=i&>JCTR@m;FjWU#p?Hh=L^$Y<%#u(s&E928Y}yZ$OF7A z)>oP?7LJ+Gxkxtlk0_)7SOG8waND)>O^~cr!)+s3$xD+TW`^YTesExDI2Fma$BThu zUZ~>lt~W|DO9N7~BqUW!BT~6EU8)v^q-uUZj?52A<@``0j?4>6l?|XPWnR^ir`v2g z$3_JRxUnW;d8wK>(qYE6cE8VbrIEnId=MGXU1?q|9DpY8n(1|tbGKBL7>P@uB2`h3 zRF^tQbA-e$O@Kawljj`yaZEry8=4_IJbu&Y#C(+o=R6Wb5`C8(%67}vDSp{9kY~9se<33PcN&Bfd?5_4M{R8ILa5e$;e@X zvj;AOyy-5^Ym(=jR6RDD8r7w4?Y{FnrZ~{!oZ~=f+$pj@CDlv^Sr5`ue7{JMCXPGTWfFHL489aC40IAP!=+t*UB_mo$zckQTw{XE zB%?9{4Af3G3|B$T76U0d8Q^muNvGi4o#K@PUblKMa147=j9SuupIeJReiKAZDaN}r z5lkU)Br{cx;N~7mNyOoRfkQC`;dcsrY1>4f9Q?H$h$#lfwI45Qt}ByI!JYG|fEf^s7#RU0)Y8;ozQ7$ba1E*&$WhGA{sxkRS$)$0qi`wpDP z76WVm$`4TDVTqb>;1WndfPo3!f9{V=p-nQlL~@jg0Z<1NfFKWZc`sanD-3qmVwd?p zL_U&uy8GZ_Nr)f_QxFgo3>*{JDHNC-a6h;P5CDnd3y>H!q+)Kf|Ia(WLOWL|Y7i+M z$~3vB14joC4+6S@NRQg?AeU@x5bn5ion5Z*Bc$|ZbSRaPtqV1Vwt_PNfp~&kk(8po z1tF)n+SlG}>(zMCxa!Rwda!Rvy3NJe01RRe4xy$k2P8j}Q{(XEhaBTZH#lXfzn-bdX zVA}7zJgVFn_%UGnUr`y*zn=^+6|hpB$aYfLQ?wJ1fNiHA9smSn%MqYs&V3-@5)=Yx z+*{{crhxEsAQ2OP7@93RXSk(makeJ;@pqPq283Um%u^VAa+}0IxYfj4w@AbN`2r49 zV~Jn!p!I8*kcI@cpx8SrB>v|+Oni2a#J*W8v2PzR@yFE?dvT6YNO@tlY>gJmpKi*K zFK&vclw3kiZlrOwWijRKN_t_>88DLEy zQahB&s_rH7#=t`PDae=_;$&mgE$}t2zqbVBP*Fg(Of{o%phO2Vr|Fzf6xod(covCWjs&PB3mKsW(wKq68h0=M|J*@Xe8j{1>5EOW_^uCNvZmJENq z7&x{ygnP&T@Vr4D06B)E_*){&Kr-&h)COb2T^Wi@0G(i<$-t8{ROAE%LRGn6=pKVd zhrkNCw{D?NgXH;0DatrLqdXM#N@b2m$)Ve31?1;hAvu^2OvWesydK%-_bO2qcr@m# zs3O*{i74#3etA%8=Xj+m8}6e~T?F2NEa;9@pZqu_B>OUbhD)&2tQ){a5L!VQsd_U8ohV*WW29@pbFv}cG992BUYV6<@a@aP(r|yC)ZLz=ib=K0(xu_< zENQqiL!mG=i-J;B;*(0?PdQ#gl+N==Re@WfEOhUga;R)4P1|gj94Tbr4tTZ9IgRV0g4FIS?94Xg^rU8T4*K)kD6E`KtlnM3BtrFVlc{O z(lOhsFsCEM4&)~2K#9Dj06_ATNdz1R3YN+ow-UiAR7l>BIK>x*LRFzlswiMe{Zd&H zl!G||+3Tn$sbUg73|XmKSni(XkwbZYsa+J5nnhu$Srn1lB_Um7nG&F=$@|j=0>_?} zDpg$O^ZWs+o{#!wx>S~$sZ!;`kNv2nEp2r!TXG!eYGKsysK;rK#m-uUoB=&rT{@C>gqE)g-CHIto%!$v5y(TR6 zOZ>XPT2e8iEGjlVsY9uXEkjcmT&>j!$BYcc2NHY~MMyp<0_dhac6F)Bg(4Zcu@?qK zd0IG-fWRZL5CS@vRwtVz0~b{5L`gGN7N=ciT#J(@NjD;CvYMJDpL&^g{SD@y2|%-inh>f&M{EBB7qTioTyHEK z{vKNN|1$CaN6&q{7&x|#yrHH+URbaxp{NCcl<5G8BEduqxE{$pde?Y@5L|z|FN9x+ zzeZJvPB?Hng5=+J`nkjj_QmUp8>1KZ`DJW`sEl%vI^s5(34TB^Fw-qn3o<3PVXjdu zLA8XU0CAM*hp4rU>}qA&C(b7w@k$ zJc9RD$dNULvd8U`Et7nzDQ!)?m<}){ApSHcLuEy66N3a65dtey%q8#^8$fUTohroV z1Y96HMV!*ESXOo~mbV8N%9h+LGr47YYlHX01oz%d4U|eW37VBA2i+-h$YX+Hzz}6U zvU8$GHucX@C>U@sI1HJcfgTzj5>TP=x#fb<7s1*E$=L>zfe|R0CFN=WWmJAZt4tZ! zrZ}M>#Piu{1M3?N4qN09L%oL4BD28I(DWuz3V=LHM|c9o-rP8ZdIwEpM~%j^9couiKz1IM<8 zXfg2N1{EMdu`u>bsl*;Dlo;0^FOt}k#RiSwX-P`c#tk|RgqgU`PEU6P7*oa6iyAI;;9mSANBWUOU=T7)GQ3D zw?gc>a*4mb*yK#_t&rG@^Gq=WHhpc5GhNKn!UsHh?D5isidpQH#ZrGyu1TV2yQLb~ zPc9H0tLS6!_CRV52UDfG*e!L-f~J}A#!`vByigh-#Xemo@#iWe_Dq?6-YOX5NW0eE z8a7i43ZrEKeP24|h?=R3Ch@kp0F06e+8ny#P9hH%be=gb3N@fG+zvz>bxEK^z=eSO zpg5@ofKCO{wAiNWug}T-9cVd40EiKt%*-~=&ud`**znsNslPo#kCkNmKx(R>S_Gtr z$%67c^!xFeViDr+G7QfG>aC@XX*J#Tn*#8jEUABh!YNZ~7x=V@NK99Y4Md3|3;sm| zzmX?OCH7QQVoZkbqrgg6zAa59&4ZmL0-q1xMg7`*Y2Y#I%cbtlTse~OmbzzuB?2)% z0~6YhmpiU2lh2q8;51C26ojnkgSqAntuS4Dh!R>+WxC~XCO<&0N$}U^O6-LSv)R76 zMB*>c7k=pa>k4z`09R%6MwziY|5;C1d__ysmxSGH71@ag$Qw&`0QSZZGBu~JDxVN^>K;+ z_`5{ZZCWnXs|#d*LAvZr@oDUs=~G>BTu+J5hDBtPIx*wVP^K^(q>1esL6e{Y11%?T z8z!NpARzD=nBKlr!_~1=ZojNp-Wggb+oJhK4Gu*(Ct{Bjih3iE06bSAbq^Fv)q-@X zEc6@PE+g$s-~cWy0xbFOrGB}IMhDZ10>>;7NF#+ncIU>i81X8v~hB@6SL)5 zaES?-B|LLE^XxL2)}ch;SOBdeiZ3XZR|iHCva5UCK9x^Y)jX8*oPt2bHE!|Cj*PH; zGCWKEcw@H4*85*Pwv*`iy(Rv^^U`p8*d$Nu@}%~*OsQFsu3hqmhiy`oA@z4=YICt} zb%xa5nl7~~@D)gxx>Xrc84W9hV=u~2@C1!)2IO;P`m1%cg{S_!)Zcmr`J2Di1&ZMK^fqaQ? za_+lvzSLv-I@_&~8lW^ZQo+*i#^`K{ql`1nEqhWtavx*oN8K?2SEK zAVk9hc~XC0wkFdg*7}(-6(w0-&V<4zHM1SALB302EeFCzZHF8VI3>^?-an09g(Iq9 zj7j?8Ao1NO>xDzgkBpJ^og2YjeV*fnYAdX7tKFu(<7rD~IIMUrp~OlH8{Go7>3 z2PQ;7*J(0yo!k^y6O$V_u-c(7HIOa)ohc7&u`>Zys1*10=zG>e5-9v*g;IZarpZ$& zO3IMH=lCgNoT6k&(7@{XKA&*>GVU;|( zW5WxN{yNg46a$kwjF-E6mC5IUbg5(Hve5Z3AP3)@sUvbeG_CmPh%DsCZ$3cf39JfA z?7=*Vzc^dsFU`@2J&#UsshKW7I%YFv60kaCCJ!sAGW}9rM z5Ftw%E>lvlss~+->}aWS2Y~p1jRp5lJaSc;DxR#r);Ol38pI|;x1VHa!NtZc)e5`3apJ&L!U5y-Jc4tFMhM3I8N>^-5n_?x($C7=e8IjXPwf;6ay!mDovW4nF#y{PHdVi%~V#jjWjvo z)PJ)W_*c^c3qAV3S5zD?297N=p%{2>!KOs_mviB^%Z<7h=Kx79DnTUoB>!*pF#%DS z|Ix)KfcCt0eSy60#4AVL#_bf}58^7W>Rv_~IN@dBa1$&{gL9kPcx~eMLvm!tEVooG z%=qPG;KMZ%gGB5^eDm)l{_~?IzFQ};w{9_AN;;KvCox=Hn{DFB5{dtQStI}8n{^U9 z@S?;jUp7(wn#AhfkXYTDCVqZgVt-g8wf7b2hQOv!nd_20sczXm-lOsTsDQjPAXld% zG&A5v(1@^p3qW3g8d}Z(q60@419ZHtY$oUWeOHvoyTglQ`=U~9%Fvie#KyU%6X}qi zW3Mlfh9^oi2~eerQkP<(4~C3$sx1ayydgKSZqcxyKw&a!1Nb9i1q4tbxKA`Mh_sGC zatag5K*)u{ZDI|gp<%fXh#oM>w848~y;E_8PKHOtdS!^e#)DvxK3BdrJ0Jzy&w=Ma zI02bvg2KW=DtS%*N3lYqrKl^OF>_=|_cD2FU`B%2y)(@(RSO*RO@uOZQWQ4H>+NAV zSR9g{C!#>&*EsO-`eQqZj^A69GXNrihU2n;ax@NQx|BaaLPj#G389i}fm;~0LAt!) z>5pUsk%1%|P@_CmszIe@CIn)GPuIj0MMDzxCKxdf8 z(R3v*vVKnYWEtqRb6*M!o9xq(W`YrWIL}N?o+#F728lP&8M^-{^6Z)EQkP~_ao{7V zQ}397V&1hgzc^&N*fa-7Snb4%9FJq=b0(>$uqjG2h0Ox;G4r{@=RDwd$+pQp5F&&Nz}~wJ|G=7#@%bHa$hijEWt`wagPNkYhmDFggh zroa>fj}~YlsNX-I$819|=Qx3~(>Q_4QNP@;lPIP^e6PG#{VG$8qT+NYl&S>`-#__u zXtMT={R{6@`K#yx?G7<;XGe1aWKjWNm)@vwIOd`P&txVy1@XCD(1dKCX%m=S3m0K=}s>%o5 z`#BfF5onYved5{@RXtM7^K~U!Pyjn3@yF221_c2fK+7p$b7d+3{K(>O>Fx*5jY>+# z5}DY(K*qHz(D6FNI%~4SB?P?QN$E1>?0i)^V#DV7Q9WWxK+wfwtk3-?v?YoJg9nQnAFO`OO z*GR*Ax10F$eG>cjA&GtWutxmz`xK7U@XTzfzdcI>6Pm+$e&gPm=90}*{POC6yaa~{ zZju!-K#YJXLB)j?x-PIbki>e=p($VjuK`rZi1c&I<@U=;<@F)O@^eLz>HYy#u<=Y( z;!JNH^(4K%p+Xw&&lUItcErEk=a;{ZNEaNKi3hJO{Dle{YZFBY0dERuzpDP&^j#FCHpn5PYy|+W|3I>~eQQ7gywzPn3O%2GF zDSmbRC20oN4apO{J=~GKE}+py!3V;=D0|-Nvt7CqoTuSfl?WTDiG@*#|8vPUpNZ~qsWzkm=}itcnH+n?i{MpANrHAEtX`51)%4^`KN$58CDS%C=d4*)r9y zuSe2MF>uhGW=P0B)SXgHlXtpXwg2%7z+8+%j`sjWk%Hhrz%5K4_5}R0H{zGW1%5f0 z?N_rhNZ)%rUO5o)8h%4jKn@m%Wq)Br_U0i2>obZ^OmMV;O>XHFWhDPva2W^_U4Duf zEr5zC*gQG`s-7Q`s)Z4$sz3py1p&i{F$__GiH_z>guQhH;>1;KkxC zPy-o0>Q@+-Q4ey>p6%QDJB59dn!*)jtadTpV^UuEo7s#2rK zjWQOiD)DM1#TTKKl+$g|%FY%8Fz@ji$Tk)D;c$vpR8(M<;WP~@c;v%2j|!+V$5+F` z#)WQlK<(l!w?K`2`sZjN@S!T2dFZV9ec&$&N z%K!akP=+d`;1Y^@3OH$qz(9ajUuJj<$`Cv6MJFVF{Dj^DI;J*PD^tZ=wycjsP z%%rZSK_0AlDM7x3@CioTLR;2cUM8>KkSpJe2+OvK=-0b6kn}q`(1T{v`f0R@j|OEn z@&gRlwC4v*+&XPtC+qCq{`1O_%JdRTtKSHmM}S$`niXE2(pLS_v^8u_VW zCrTvtTr@%WjjfNG0>Cj1qr=149}*iuBLlr@Ae0KDyw`ZDFj`mK>H~S^xgZh0I7i}d zEiwE8u)#0PF>C5mQK?-Vk*ds8jh|gUSwEmaZU<)Q1nY#2B^Mj6k;UNCDMwAna)r1| z(GGi5yd9&m?2o^OE_9KnBs24L3xRZHx?;$3SxBKBHpVZ0Dha6E*tyc zD`2=)%e$8)l5~=FI`4LUB3Y-IVJDjqc;QH~t`Rdj<;Yd7XXsjjf*HO7h!*rq&X7^9 ziez-FVhz?L>kCklL z9DYg@acD%J}i@V|iTgBli70p9!9!^1+3^v#Hn{4gpgTgLlk_e_s=whxC= zgxE37tDh0?ljEkSu!%X|8oVbGblxYJeJzyI($t$|=X8&%^z89^k$)Csi)mI8NGgUI1ZlqrE3HbJ=uzY`WNR7o%+`)H> z@00h!-xLuThVeP_KW>9a%~V23%a+4X?rp>pZt^0W6OA-d^6nqt~QSes0=pcC%H-S90#Vf<#^H|^O8ljH5`TS>N$SD><3h|x3sMdv z6v83s=;dAM5_`PZU~=g^y}i_^3O$H4DVtKJRG0b8SS9KqR>KBc3_wJg=TS!Y zp+JgMQVir6O;%t-){tV`RDQf6{gE>rV3EMllmBso6HE+jVSu(blLHojKMu^2*ZStm z%e@OUp6^v8B<(mA12cF8XacaHo+a{1?;?%Y`xM9r19EioK=%^jG6_GbL3Hj`bcbk+ z{HO`wMmVtY96T@5r4$@@T>g)X0n|9`=1MUD{K(3WvJv_^ftxLsG41lyz-M@?0yWG* z4a3TYj%r<`24$ghOH{>3i;^BuC3HgiBNkjlx6TldQ6@shZ%X@;L;xXDRif58(lgnw ziXE3F&5{AFLyFtA3L>g8-l0r}waF56!q0CpN{fMREhp$kZxo8s1gFq*&KfMuPwTEe z15KLzyD*{u^Dh72Ci?%*-^YuAW6Mk^2JVhNFT-2sYm8}IAQ_#@5>S>^mqle`?|k{| zkPLMa-#Xqa#CFwtwlaWbV^xR9@gCVW-lJOC9}UV98{n}&7?`8+@z5;!X^Js|+V6GA z0iR2|QK)$kXncP+IwW5XOV=RDpev?uk21PKCcwj@o{@J9GtZop9DK2l5zF-DymL4rZCyo1ZQ_$_ivhS)s zsVwsACP26GyQzM8tWTj>gDiy%USc4HzzR*n!0>;V60$z{&oM5SX}oz;j@)qt>zj$v z3&8Rl&Jve!6^`!U0~3NbMF4B$IPElYYR7!Ju9ZhFOG?qWA}P%&2GV7eQwUHHxXv!q z$MIMclMq{g_)9R|WR1knfS@3Ptenp}dA_+1iT*qyH)hF(UWKy$ zx+0A)?>z1^aBQoH$oAj9pxi$`W2A=R_c48cuV0>gIKT)Gd^RLQz8V&BlG=!TMlwG* zQzurOb|zkD+?sOLVnLDv6zSXjOr5mG}ra)OTrWXWe}@(&9Of+T+# zlqs4=j0tK-8yFu_yZ9FH8sFX&)aR!O!RwGTqj0!widSJn)-_ipPBAdU$#$}F^QIu6 z^S#?~;nm5)47bs?A8R0HuXP?(3!RP&=pN~YU^#ec#lf>ON zSa|RFnQ;G~oaf#~kulY+N&0@=ms8VJzaL{V@}=)?GQ|{f?mH)Y5^lc~z&j>;)RSS? z439pZ_eyu1wHOtiLm6(_KGQ2dj14MMWAnIxszIum7)1oqn&A{JBo2Ag)YE~ffI9z9 zcPGrptdbeU7oRnv3lw=A6MF^k1y6wOQ@nz6FbO+85lkz#Pxk8VT(6`+qv1l=AIQ}_ zkC6t>PBq+y3b!gD0X3szUyTO|DaW3lRPtMbMx3ncbriNqdaGeh>v@CmdCU_yXX@iM=}9x9Od z%kw1u_AL^Be}yUv@fdyFJy}u{^(8QRXg4dCYq{T$mYrfi3Cy>k)$7q}Qi}n;9IDYE z6?lpgLw=g*7ZQAe#GfBNClfz@tJ3l9@Q}*+*&h=pg^tZ`3h593)4>^P1oVFY93?tJ zb|m@d5*#ulWNU_mDvB{s%5hYQa3eMeK1n{D19%7|{sct;5Ft8ibT)xHti6&hm4ON| z6`*Sm4w#NT1h-%(6Y1v~V=}sJ1eI+TPFj+i7sw2S*}y1kC4j$^+@u{MJ*;vn=^XJZ%#Q^nl?TC_+;Q%cg+97``6ag z%j(i+RP!C(_d%_*BzRs)q8M0tX}PTLS*TMq&QByY3AC_T(6yuQI7_l=+Tb=eIvb4t zf4DiQ@zc0~j>XlyP(4e)<~GU_AIkE`mdTCxr$fa0uz6BI^}wqjd}XC7kqd07#(cM~ zU5RPu>X0b{oDMleK}O~%QxI$nI_h;WwG<(2nil_0@j+toXD7DIz-B&Gc%B+Y)3e=D zRqEEx&`#|#y5zG_0eRrsqJ%7_fep@)iVIE9@g_mGup8D23IZEU`fM@46mfR9a#?#- znY?#nmaccKdH*cv%CSE39epw|D`5`z@YRKq-=$oe5;P`&(^!XeE_qE$^bK_?SGbVX z@dq}<+F);=+`dTqwMtK{3)du}X6DiVF_|3Ox-+f4%@7dV+xemzILV*1jz8|pOj|OJTUk7C-4EwlF z(oUjGqNoY&BO_FG?H#|mG5pcMGOfi>(=HeK|Mz)PUx63VP#FClTIKD495~D zaUM?rqy-DdGu23KQZO8Fr^r4Wg6Y0bHryq;oLT7ox#ogQeX-`N|sO)vh|ci^ciPXzTMIIt)n&2@MZ zPUjzTvK9p7oFQ|3>Z?Fu;58lwe2+lLxE~NArp8QFfx++h8`3sVAe5{c9w|`onOb~|EQ;I^-crEqdDm44juS6gYN>a0A@pKw5PY#O8_w!05_C%2hB(F4~Un%k5-=g?f zCDLJ}!?@W_29O3_c@%d5c_n-XUYKpz>U7$i@pRp)u$p7p>46u=c#kHF&Dk2mG;Dy$&h2U%*oG+XB)b^!D0VFwBRXZlMFO)2m z44kb*X2$>Ae`1F`VRP@&VzhD#E@?4Eu1|_+P()A|T-h>3IyE0G&3|)=G;7+zkre&U zasvLh>A>;Hz_BF_Oa|6gY>@Ho3N@y7D3aVR(L_SK;?i%BRyz{CRSwyn9o&ygtyx`aXGb z>*Zw$wII%WI_<0r1PLosLke|*WIW|;9Dq$A$vH*M2TRqL1bqCe%gSZ_^@R#^0qSDo zy@5IM&VU^Gy%Vq8kSkC1%9n?(DU|!JERuVjSbTA*t~IPn1gb$t7XwFMhm6ZwV4D{l z^U=+XDIE%=cdMY#7$7hV>ysRj5pD7mu4w&Km{pGyOX8#3ju!*Rwu*@Sc+V!mh5X|ivvgnPlI9#!0-A3WsO;51ez}gv z5c@a9EqnVnB+MhiddWn9#QVFOP14Nclut;*5M+Rp^nW@yT?ldq5@wS_m?W42gYG}w zb&_ooYo3qSAm1QC*TQ;~UmK8HCzyhOu0KgA(@&CV?(;LUd#UD)5rsM9*gw#NMC>-6W+yDR|07*naR6ZzB=ytPiAy16EFzXEOovDBp0zhjl zyk>?`U!?e;L8?jlc&`>I6etQ=@)&1bu4{+eF)Y)j>ZpKr;5i0@VuAN%n>0U-GVg2G z48v6*pCh@4V?ol*aRRO4_;x|SFY}5z_Lh64y3oL{47wx5JdRF0y8Dg>KOJ&B0hn44 zypGum{5oCXnDsq)N!X3N=aD=N%8b_m>OqHdJfi=@unep}{stJ7G3iyvC--&Me;PDV z$6Y*>rc(}hCLDvlH@pz&WE zqvXFRNugrJzHul>9_$nX6d!zk8L3kD%zu0`uupuxkR&y0CEiZs<>|pu`C&d9sU;>h z%r;uwkj&m*su)wf4XHh#L8__{kp^Hs%bZaN7+N%fQQ&yI(3u8g79yC1egZ!TD%X66bR7-<8vfXfg-T!(s4UF7{}A;LvaI6 z0h5LitqPR947u5o1g)~ktaA#K$8b@LadLL^0djfE>2gDIW+M70XG!m*fLz#eoU}dT zIyvp6_9{1OdYN)jlvX*AYq){%_MFlZ}4Xxx~fzl-t*gs zb3?q@w?J{hZ1e=3KQ?U(=c5Dn-N;ZPILEC7C&j?QT))(-q@U4<)-kN3SXRF(q7rv> z;)$JZpL{VQLlXt?!*==rya>XdlKwEfSsakMJ2FhHj!4ZsUqbokV5V^mr6We@CO6rw z_*^i$;6}d~7Lm^eXK1|9H&2ZX;Up0h;s_HkHMC*`Ob$s*ZGpb((hBtzuwCh5Rktz3 zT)ON`1eo601RR_@@IV_h1#EE6(#7YTCh2{)CsWGCU~PNi8dTFv(9!0;6!)wv7TUvg zTL^H;+GIQZT!QVl$3ua_x?wx{tP>owoi0k&#vVliYX^Hh3A7-F7A7jlVmFM98JRgMy zughyHmfx8S@cOKAa0axS?@U<9fp$y+Qsj}nDK14;FyXYAcpk^|DimtGPbUT(D}{?b ze@dzzJNcI$_av`EG_}KzY7h{Y5M6q5t~BK^P!#Qp_?4?go=5=Gxs)i4f)o;>yspBI(wPnz*J%vbjP$8nWloVg ztt@cMPg8@+U1e|BmkNZ6rjwaOllLC3SNRgVy|Kr8LUh(+?lGH3o z{O697X9t(bk8_JnGOr1}Ljt4 zq&gV46o@O}_6#PD6P1&YDxRvFAF!UtPNh!A5tq+D4bG4c24rh8@^)YR2TU-MME(#n zBa(hP`E-;}4|)r!QpfR>u_dEo;6vO8-vJ5&y8bWWYj8uJywNX5zSwMbYmst6Q&~;m7)tuWO9cB8P+x=eOtNY=5`q}_3R>zX=fM7%#Ot}xkH`| zXziEFTTGU7&lo64r(7b5SL2nwx$^G7EctLyrgqE0TN5Y;vB5*cC+PUG@!Oy{`0%LU zzVLjAuSP~>m)F;r$QQe%b}mk%Oc(u99rekc8Q&j}li&)mmT;bs zP~yR`^3tdi0@w1}E{ny5=gRGSeb|3Hi^Cy0UqVFWv!ATciL(ir@0gX6;C zm-k7`zsT?#Y?3{pL#AAoJV`pY9HntZ%b9}tA!dk76)X>ch6sfOfg%x25?f%fF2WJ8 z_hpKTij^%;^3N~Vwak8|K!V_XJ#@8+HJ3$oZDf6%b0HHJqo@W)YI1uMaHpoVFOlg^ zu=bU7El(T+>oKygKrac3EIvmXFT`K(c=gy$qT~0Lt@pj8By2j~H264|=-{(9Py~EC zGNh9?l5mP{Ci}MA&GdiEM4u8>Stqz1_z<{v3jwAW;Q0uvG{{tdVu1VcTqMFgmv+BN zibn?J+na-mHXxA(!b6w;r*VE=JNC>n9sMoNdcxy0??_3L9h2Q!EGVCGcv!Yh^vWI* zg%GYwK7ueNb{PDnLkrPV{MGlSw0qIC%WMscwZL(V^d)=9c|IkL*q{QwEBG z#I#`wQox3^Y%f`xwomoR{)kTw=lhkXgd1~p)T=uDbnP*^I-KrO>^kcu&?Q`U@hi~q znxbKUYMM4=DM-k@n2th(1@5DfZjyIkLo{0sgxpeDo{pu=&mu04zW7$s*)P z4O)bb`FBB3JWOaqt- zXcC@liV%tcI`fAyL4${eI#R@#lqpY@_nB>EQ}I*413`HN8Af(i-G$*C&Zc-OHhGx60^{J=r|Tb{)M1K@{b3B@gXnkC!F z5dHwifea*_H`J2|3K5C{O`fW6Mn9wGHz5tuJa(Oks?d#>Y2iYPXDznc{E9_;hooi)GIXl4>@5%j;pY zMv;ZCAE7Wj3Tr3$`-A={wq$ED@zZ3#Vl}~Q9`L2fp@?y|L=JGj->6D}Gu3cL-E4~5 zN#r;jLLtxq8+7nEW)mSjkG~k6F2q+OjFJhDC+N!2x#KwrCI!4FB`1yu$wxP4B{)Z{ zBP8^NUFT@$9VIV^3k_gODE zuSn22FG=3nPwB4Gtp&T!`A4!(*L&9_hd7&J;4>%$eK{bD3nH?mzf>NU}5!{=!~AC{q)2UX$Y@>89%q79H3!5Ei=iB;F**yJxs$zakib z>9`g0NCC5LvR9$akbUi1@%>1Hx#zLGF0a3RyjRyuEr3Ra6f#8eOEPLygxqp4=$4vd z*#1oYI)TB6+E@mzasEr&F3^0%inSlysYu zs)SlzADld0f8I0G1>&I3C>&|BOhEt-z~KUrw1WDBVlq=)Go7&$3gF?|7$z4Crsy<+BwPyucw>$ifl7v!7+6p(>S&Ao!ew|IA|3KE&8-ap^g5JB5Y|fyxhEdkO}g8%VpVUGiQX(yx97Au}PNh|pq@&&W&h z;=tR}+;XJQkeF$BQy3fy8FMvLtazj<$0hauc?V)(Lg~`#<k4O9h$DPVn~azNc=p>uWBY=jtZ;3 zITHhT1el$naKPe{=sr3{fGq~-T9DX0-?Jz&t|pPk(2S8b3B4t_F>-$F>M|WkGnNMX z&;3XWND?;S(%QQ~HeHXB1&*tY0i=n9|GgV>6^F?p$@}L065uf@7I+Pk4+;XN1VD!f zx@O1|x;jR6bDn#V@lRj^f~qEO^K29E@St|DDNG{4;)%VbQO z0=XeMT`p}gRXUu}SCW6zL*vYoyU2-6&QcG86aL3e3P|4nSu_(PQTn$Ng}*NhxSw%9 z{*Ci|e}5mQ632^yW820l2EJLfAyH7{;66yNB- zgDK|R(+yq=`V7SjgCQnJJSY(Cd5hfL_UT^PnbH_^;&AaKwomoS52J%h%!8cAv6FaM zI0EMv=ZSSiUfI3u7u{?++Q4T}${|4|=&Ij-Sz|Fk_a1)*I7+ks);)j z0Rm`{P2x$6r?e{*SI07$dto#In>o4|05)hcirFqc4h>}?bRa0@5^Z16rYUL+#tBB_e|yWtD~!Lsj}O9~WQj8SaxT0D-TAgyDm z2A`R~Q&d9dnt)G*WVC%>@Gw{h;b9R#u2`pS)8_bO;Mmp>?tS2)^_t{U4A=>qEe2Q* z-~lLvWhAhkh@NlAjDlw;nWlrzIZFYc=kZtr2PXOF+|+aQC@&(`gs+{c0P7G9LlX6^ z;|=@<)f%1)=rO8fye7|~kdG7tTUPGk3`59eJ>%F}?{-af2_6TmCBTTZA)@l323DjE zk(&cbM79KIURR+%a1cfY^tD(MQOiMP2Q-8h3lo48VWeg{=QKN+Mu5*pWry{Y$qHx* z9#4>u?3nJA!`W^%ajh;!rO~Z=_Eli)QPasYJ^^s5c209^SN@RC_$81uqm0Aru$FT? zB)Uumw5y$A%+7!~nT|b$gF$j=XFW5`bigz4EJ%^vE+8}k+3j{GNVEvVXoHsyxs4)rF~|PM9-%vU3{Ag%i`fYK);{rb08mQR0a= zRmmlGGQf!LixCmkB}NjC#DIkaSP>(AU0jAmaimd3QjrcK#_6P#a)exDyPa z${{+087jS5F4;1{rzT1eB1twl`Lsg-KG2aCOC0Z1uY5Z?Bp=?GC9n3)m#2CbC*sL# z4crLcfgR;@osEW$D*?=hf`BCc<=%zzPX9dlcyN|{I5=D0xiL?EKQLe8?E(4vJ|JJ= zt3ZLm`(;tI6AlPkNa0ZkkQ5l~GH@i*MPrQa=~$+ULUiL$)OhR~)A@b-hJ4k6rg#GT zjnWc@3@RQd6lI=Qt_cGYe;N)E5V=0&`(|}8#%R5g0&;QE6zSS>tVa7Y`p9X`I?72+ zlXOzh1YgcD4{k4ah6CcjBc5tt^N)U>5W(J@%dK|HqHeVqo?2@>*}EZ21bM!vo+)y6|jFNYk-l z0_}51UtEH-M`2^vBolU{he%9NxB|tqL6Kn#19O=tZ}u_qMxQ)=ZR8(`*Ls`(zttBP zax}|xw7B>~|7?{kq_7~EGJq+zxMCmyBoqXlyj_?K1>G9^Fun^kWYbRJ zfFl|>p~0^gbTOO(lz0fl1W1f+a*XE#UHSPJmFweptPL}PXcRiQwYw1zz$JK0n<5$6 z+Qf_wC6duODw*e-;Ce>q@J(*%u<%V2H_hC!qR9Fhzv}Mni^R?Zc(ses9M)1INA~ zRzC8qCiW!G6z8_1PjO8#K!Q(Fi?;k1!;lBh&_tasJB>Em5vO}k63*Y;222OO5eYIJ zB=%@c&Y9$mH1J|N>%enJ=pp?w;iDJ;7Q}P#ddQkmoNOK&kUcmX&j6E;I*(h|HSz%R z2&SJL4@CjNx<8j1m#ua-AxG zfWTyIf|1i?dP1Xui3HP5J~tA0l3ySwkYH7m1&#u;n^~zkT_s=PHMBT_Cosz-;@rM3 zjRMD`?+K3$U`v`TqsfmOGrj?y6rCO%Lfr?QeYl$h*D)O9b^R%_ZJJlU!mDGdSGX?| z2ZHQCs-Fu)zOi{R9 z3ENYxtSi$Slc?iUwPUhZ5hVK^{{-F_#9?4kbo)v4nQ$;Uu%0kg5S<-A0*WPW<8eHP z-RF3}dQ2s5sje`lXqAONshRIIzE=da0Z#Fvp=Q28!Q3+b?$aW%`hWXG`k#OMp8w>I z`}Q4>NT^uOKBK#Y&YvOA4xcSQ-nPh)hTmBx@jtGT_?N$x_*eH!{Lgnv{FB=y{---6 z{^{M$|JO?VtF;pUcAdn2cv#}!Jt*<7*P7x16{1%c3NRzX8(`v4Cb9Ln6VEf;gN^eg z_S|e~_+61S+?OK_w?Re@8f$C_#W1{!jqdA_B9By-2c@#auTFE71zsg0t1}+*O!|d5 zY<67mFmG^V0QZ97o9@vc;f@&|**e8wxmXnFLL_2TP`(=%knhI@969ruR z_M#0u9TvVzM?P9ThSOx9*QJ`eTd?Jx=+mwzMF^urV!zidhjP4fIL|AGb3L-#>yynB z{qohQko;*_#Kh2ad3QjzcKPW5QUKV1@MeQz08fP9_cPu8FK>>>&r|)fb(UX#P7TOU zPW&(>C|{2X>G6L)Bw{8agE9pZ7n=yZ)~7(bTPEo+(*_a*+fjqNz=)smJqgQ-?xli+ z-iL#-^tr#KD>^!;MHZvf=dUkRBIK$|%Vqf`QN=>vaXEep#_Wf#9Gr-G7nG&xI}HaSzTpLAj?QxG&cOHMwiwVZy+d2;$G zoi%ul=BHgG%a+{rPtKO(|Ncjx0Gxr3mcOVZVTi(yTvH;?_b!lE`{io<{>E(id}LU0 zuxz;dk-$?@f126gCLqD*mM=$!^7;*V8gJgv$mOw|9tr~DwcZ8t#5GK{;JuW} zy;qhBT!q^%GjZ1y7zyI(0kno9yIAlLVUmVx`14L+I`~?jd=q{1<(&b!^2b40CI)B8 z`@^#3y%8op9GNL!j}5Cj1PT#9jtwRn3ffe#lYznMs#^{W0XQDVN-V#mM124#0FG7* zqZ@BK&WkP~$v0CvCUqpSsF+bq5UdHDuXb`++BGVZf%K3Zw=GrvKpI{3j!fsuC3vpE z>~k)oSax(Es|i%dLXzmFXPs9r(>j#M&{nxJFgZtKXzLugxm}Koa$;P&e3{t3NMmyQ zVpTHYJrQ*938o1|TF0m!lT|nx*S0{0w@H^FZ9*F3+GlGgKL7lv+;TA;eG>>Dz=0wv zx<&Q4kTWJIqO24$Nj#GSh|3mYRMCz1#gvsK-84>^p4#u>*`CHV9_RSAJxZmxYnj3t zDV%J%H5C4VP68Y*1J@}C(Er~#!>h+h zA;iRk;)RYi$7DPE+Hv=p?l?#bj#HsI>WyHMXvn%0465woa+Hpk?oRf~&gov|Wobtr z2oa`h0jH~uS(nE&W$BQEt;d}h%>99|OLlv_vd`_(#9s>n$B|fFiYX9Ou_r|i_|p`7 zziqlt_Pb3I&*Wm;B-6BkR1BYl-vix#p5GFY>EJUlAo163y*JG`IpYMKYvOQ*OAh$m zT2xR_k;vnu%%p_-Kq%IPzQExV_zhf0IS&*nVMh&#;s8=KaH;_B*HIzLb4%^Ybg6%! zK!Qh#^0)ZZFXr}w(K9+kF+SX^D~mg*9Z)RcRrVdLZf*~!4ZeFr5oeYTv} z{8|ZhNt35W%#|PSU2c+o693Qck@(M#N_@*>CdvQeUWtEspTxg?K;l0=V*bxrUpQY)U<4YffG?6D0cwo%cT-$`mkZPP7oUI%8-WDAq`a* zDtBwe#fOY6RRgZacp1PaAeN#R>ryU(76VKN3Spxg-B-nMIR<4^l^VFdxn1hMXE4mB z3qU7;6G^+4GmL{Dkf1MyrmF_9l{4K>1*#({2kQpmBxtH%REzjQQQaatMet**lbF(1xBRLae{GL?;3y7TP&;^tWv>fZ0w#7c|UGL9ncQ zvAoeYSH8L_Yz$7Oy42+monvs)uk_7RSv}K2OwmY4w|{<*bvt$yujdC}*8^iL^hnubkgsR%hVm7pVXMAOJ~3K~(mX_RR;#s$~!Vi!JN;O@I3dPz=1abki?z?<7e4 zUI}CuKNy&$vV1J!bWRA<$?_eR;V&*u$v$Fm1De%p_QRfgEvi-By6)QXmeRG1&B~1hp1lv?V$DHmV0n7>LpylY?+Py>*W(yAjB82QF@HtD` zMEI<;l~W|=t6+&iDIBf zx!m6a(rvk9JH^0|);a1eg1<=rh@CX=~oGpWr^E7ZNAKRul0nvfP45680 zB1o{o_FIQ!uHzVNgQVL`9i#HQt4b4}HS5F!Jxn0!$z&tvd=oS%=;otzMxbB??8nN0 zF1#487l_f2dX0d>2mNy7!~P~HEa7kvFI-n73oa_v@bB;eC_Gj<+AU~rr#N(NKnB$@2t_d;uQ`ks`?wM|QnlwMTog|$5knDrZ zP_6;p{4j~Qk>}+9kYnM1LX-vLk0dDhO9Dzn_dgxpf?Fzc_)gq%AmWuRv%>Q8%!urd z_~k&lPj8Ml7W?LkZ0sTX+Xmls48?RiI|*@ z*Qr+dRG*saRu%iDs@Nyh^MX>pu25o|<{1&5HAwXK~jGSck#-TBj(BvYj2hKXLp4kfrw!mCSyTxYKNd$^X79eDLN`kie-f+>y-e67i!LYp2ncv| zA=z{x=b@3hStn_BQhPbEX)C=v?d0?1w39n) z@VHJbhRK@ckN$7_*74hq`UDzk8|2l+n^f`^LMcTg37q|%(UHgLn@wK3R&<@FfN#Y_ z#^7V=mOMYd0HVa+Oac$7+2Z}VT?-8g0mop>cK=z|;5LGrrwHNs$PLILfE_Uz0D}C< zkWAU4#A1UYQ0zbc1CE?2IR(YQz7&^s#p!O-Z3pT@w_3aWQ#^u8@;FR5;?sTci3rNrp28}kpssQD<Q-k+&58`Eyd_%>FVB;jJM*RHu6(IlohOwm^W^Y~d^xl%Uk)tI zm&!E-QhR@~)IU@r4Ud#a!^6eW@L-WTzUy<{ktKDvXG;BDS$Yhp&eb}{RJSrLHH$-1 zH8&_#6@IB%5S04c(^chCk7sF6>Q_gkc4<(mqaKC%)U5~#kE>e|mb%+ArT*?5ssC-B zG^{I>`iD4T1#dKl(P>#$X zZgNKjj&M=8R67O1p>$&l&dJLn!&r`Bk>JGDliJbnWn%ENgG&Sph)yriAB897xK%0& z{2Zi6NKTlZ;k>sGX)G5iC#H(janNF~76TApu+XOCq5cTN!tx0?<9@l0vnB492GaBB zH6@8o;X_xKDx~2rLo(#2aa8OOEkU|q0ULHj zus0MGk(PvB(tsqigbqQlQ5B?D3u5oOy1TlrtFF54+6%5?Z%9dk_jmnf&V*zBu*kZ^ z`1!ooHP?I2Tc+Ia%rj4$XT~+p(!-}@x<#1~!hc^0LznCbF^tgtCy#al1?BFlCR`oR`prIaf-;+W*8^kEV&ubrbVwMG{2XnT4jO~fNVI?_kSMv`@0 zWPnQ@A}KmD(o@YMUDc>YXVt5Ini|wNOATvwQlpxk)u?6{mm1dSbPU1(f+uTT zvfW~JCiM^=&~47;_6G55b`U1%LoauN+4ma&y3K&t2*_;)6uWe=_EsUK{2*eMalwF*>JC0`*H=URxe9qa2gM^@r zkbD10*)BbL%4iobAcR6?y#RX*&<+xNCm>whd!kRXj~wSB^{}}W>t;ylO+5n{cD_X@ zU<|^%lMvDosu1EyVfS*}dq~q-PjD8tun8FgKnUaMHqmP4g#oN1jLX=BP=VzpSV^!( zAWTswH1_OOLSl^rOnpdQ>k@{ zg+e79YW;Cyr(vQLt>`eut+Bu|N@90kf-#W(bVi2m>zG{}0u=!bfhmL<<$WwdVQ&Vs z`GjQ+i>!GbA&&1w;u{C+DC;p;u+94jP60cFG@=*5;FBh|W^+ityF3_zJ^d@JubSMN zH5B7DG|{JfX4$4=`%52x*l?#~)Sc_g75&}1A%c9k=s*_?buKR-bxU!92ypvFC}4vx z=4=>j{QqI_ovX|hevbeY4*X|sM;Ks^c8Un+E;P_DDvm}f!cxyYn06BRA`Gy`AP55} z)({5XzclKO!(!U2Qru3%l!ZGEu1L7BV6~v0-b*3aH#&>BgI({ z@FKvS2F?FZQeUrZWVc)*Dmq{Ks0N-WHDBWAPBfehA6=16$8eGUW{}_2mj%6eR^a1K z!gGL~Zh0PI0M80G;UZ2x%1x(Got)ysX7=yvHhtZ}&b(v1yEb{C}%Kimh2iF$ZAZ;%DUyywT

B<-+uW8tt8PnI zA?IjxOSjL}h8z{HXJg#xdF^PoFP4j5`M@LHB^%%3n$EL4vudPEtY1Yi*`AxC zo!1Ta?&))fI^J@}tby7&XRw@?3LE9l9qKmMExavF1@nh#2YVR6r_LYd_u9H;gs&fE z+&;#Y=OS=EG+BlBOmN}#UA-Qj;=N$-jG>O~;dS3c=SJ_I=RQ`0`zEPiO_qvYxJN21 z_}Rng7q1!k=F9JupT0`x)*h;iW?5Qs{uI5jVy#2*$uT!sgbKvW^-Wre+=pU;F=0qaHw@N}DgC|433nY#SsmzuUm##fvZ!xbfWIF-wm}cQ+>D5R(^v*f1g_ zm=oe#KXpc?UcX?7BXC=;@sXAA0}RQT2fGb$@z~L>pvh#70ImihG6@>TMaNEXp#cdg zNK}*9gnJMZyWh}gtj09U(LE=Qc9Ds^$<+HsvM3n_j{Oy2x&otui5_+0i^HMdgajqIvKTGuvKTY)yKSK?x zpQA?6)U@WsY8mOS1+(w^*#poXl-P7^g4e)yqu)vpv{4j|m7U#ks2I~Wi{>?{E5Q{uXM8jgUzh&)x z!Xg0U%cfuSPb>u_7UMtGF{?PS5dP7Vvt5Fb$MO)uW+H5$sbAA!oJ;iOXV@$)x@jT1 zqB<9%&ORj3nEXhfu|>W+0xKMQ{-4uO_jqI@gkPr%JV-NkHv#`g4+-{hJM3u ztV&?c_XyarkAYu6?A_0ZK!h-`)LB#}I4c4BvLLvTMm8HS)=ykfH`}E((;qg{u%8HQ zyW>vB*t(eVz5D4ScKp3`ke)jyO;4UN(gpW;{rq8WuYnJlgS+o$_?>%DG|X>UOw2-C zu45_qn9Za5dbb&@{V?p#G9TT~fW^Bo|5*Kln=rh93(H9!xC>o6&{+l$IuHgBKw?9j zx`o8JKqmX$Yl+oQE&%N_1fT3q^B^I#4 zaE~K4KjBRKxW%~6LXzymo4SZMnbG+EEZ)U`pU6I8SKv|JeHtNvSpK-^xQ)G>Fp#Vr z@LN$~fO~|`+)6n2;eJD}9h32_AX<+Pt?BN=Td_v~?#YDPMEOeO$LRY`s9>Y72}Jkl zuYx&)ybJieVUBNeZr%im3D;q|ZyfBEy$ArSN2%bJR29q{>KXIJsVcZFT?NZBRJc6T z3k(Pd>~pm|!!!Eqjm3t!>~Dpj5bh&PAcXM#k~9@88lj!D2l7 zyA(U7AEh&b$}L_naFH%iO5?76{a}|5f&&7J%YSj2--C-tnod~Bav}Pips+UE@5x0_ z9TN2mbzGn0*47rR%5uu_qNi>zUCY3?U;d!^nRlsY{TxkdJyv&KJW=ngnybP$miqL; zTJQez!y}&2e{Z!4|FKww&&-aRIkHu-E?b39&hm?g-(97m_g1Uu`MD~5V2X+!p6aC` zECesj_X#V(A7`uZfypXZF;Y9`3~`~A@bmwH729a=*?fVu0O?6i3-1QZp#E+}_BI5E zDFc0)jDJ;%zEATDdAIaR7RhPmqhXyGoGvU^Pal5klb*@?=;{=`Pbe?K2VR{b7Wmork-X`1lB-A#fXzM9=&WiIAmeFK~rm-vYvn5@#LP2GX0C4bdmP`|I<8 zDf)7FinjDm(T6?z>y?X!6))x`;>o6yvfZSGS(`?RlG?;|SM#__)gtZ+wTQdYrIvA5sdeNUwTxWl)*2+nU96^Y7pr-s zt6D{_R_jQQXu3viB0aTe&fWVtjs3nK_d5_jRO|u+Lpq}k4AXd*79TTCtJ;szhU0Ra zU=VilrVkS$lzl%!`U~;Dqv?-lrn|mIe@Y{IwO_ufb4 z37d5-I>x(?B^CPVswjuoEg{hIIxoSQEQ|V z4A^4?7bX(-*ark=o;0BaJB5#TjCNSt024bQ8nK3`H4|G;bk>a^3}79AVGnC>(B@+; z2s;+D7JxMe>_$$4p&faIPcZfP(KFWYd1tK0CYXQn3Ol6JMrZ-=VO79|hs3VH!N z!HS*XgB1viDOj$>wek3|&UFi1*fpKRBHxn2K;PUrr^-a#x_ zWzi>E^S@m%Tz@z#Q-3=*)vZ?}DjwQ?7VL)b;{HsGf09>@5haH7NiV-pm7Q@34g5j3 zf%>#>e|R{7S77+-|-Zo~$nir0CmJ)>N`{uHQY^Mcx_O$0O@-l4a&h&yPwemZ5!gPd zzufOU7OE!sC^_Sjot7R&EDU@Q6rAfdn>kMI?;_r8pXlT2v(VLP{G%>DKV3_%j;!r5Qc~C7OAdaqe>+!C=8~ z6)sNo0>ElEydC8=^Dz9*f-uTk0=T|3YE{4@Kt#*snLeuJ;xrX37~z=i?b8Qq+mu1t zaorHdi*BDWSlef!XddPi)dfp3RIn^F`fjEQmSn16F)72lJYgkRlCHw_IVxB=N(DZ!JJTS(g%3y5e`nJK7ffg8+~F#Ex|E{{egEYTT9&m* z!xG2ow)Rvi>F&zO~$^57()1>mxp~E`Y_u&s?X%yC$e$VXEIb_~v0MymNwz z{yNu35qkb66>iLR_Y0SgbkY$%Qf|>O3x^+@u0leO-Z|E-6JUP{j~eDf zT`^GH4#SrW)W_HO0sPI7Bz-&7Cw%t_mxUV<1CLODZ(KCgoje;h19D|FN4{arWg@if$sZVQC`L}N(UPc-o)G@-9uFkEk3I#h3U9imq+8m_-|PS?Yy5zS}!j=-!5z*pE! z&@sNyFa|+$$fUl!{WvEmAV3gR=us>Rr;gUfj@i2FB%d~Q%+`G;XX|zr97gvgz#Ra_ z0_y?^jTq){F9_ti(0twMjd5WG2`zYD?F^k9KS(FX4^ij%Obuw9tsC2ob88rA?^CDy z^vEe$ZsRo~x#YM-cV1%#^AxL%go%nRlf4LV8Hi0V6W$Ur#)V15LVzG}S|n8+BdjGD zs*@r^iWAm?v*T0MxmJctXT%Rv$H+jnk0j~nNMD!QMy^%MIKS&D?n77&a4l*RxkkrC z`Z?Dl+>efm^i$hNZ{0HIp8cK2e%H?<4BS2Cq1_uq9pPQf@>=GKM7YceEhcDEOLoHD z&5*LLfbrrY{B+FL#*?zO{)8N@i>8&wjS)jOK}wnj5uLFVIqT7fravDoWmGq z+_NJ&?r@~rPZ;Bv_Tc|d$lU==STGAd6Mc$W18{XA!Q9Sn%bFeU=0f|hdIX^wp~71R ze27q(;%PBVDK0WW(4dT9fx!JIFs|VYE#dv(>Vk$FrW%U^V-qWeOEEtFSO#$CixuDr z$r&~k!@UUWUa%za8~^)YWe5TW8=H|}z+v2%cNpu|iiEXN&WdzKrgODo{RoPN@U7<_ z?X3cVCQ@hG8Y}}~fLj+r0Ld-Lc61fm>i?tFC(UZ>8GaTb4`wfeXrfKD5kZJVsASeq z@oh*bW^knp!l&CmrSa})M0d=zO~>|^C_2jk0XK&Eb$Iy1vzg%LYx?WmD+g+GkN*0& zCu{wZod%ypuB?~CMaC~cP11L%NiGECx5J~?(vzH<@%JN>eC+t)tQYjx2uSkX=oEdE zk*x2=4AA#u2RbhVH190@{SIb&Oo~g+yC5^k?WFtN*a7-}+yH%@*5CQee@U$U)Fih! z)~!**O(rMFxe>ECmo^Xr6W1RXsivQg%tK%iV&H#AR2yR0bq72J~M zec|T}*7m9Wy*tko)?#`Mx66mMmRWwYuAQ?6so>^eUXzZG{B-h+hQ+)Ix0<0&SSYpv zOiFfE05t4wC*UarPDye37cNQD&YOlhZ9MNe=KR)F?}mdmJut>AM|y2JZavF0RDeYQ zp&)8eD7blu3f=P~ce@Iqf#-RIfz@2k@8LK|PW z9>#sF3fGTS;q64d%vIq%c`C%6$GP<6sqmqxDtsc}r^oYExN(BFRBW8!TzrZio1wx- zru!(Gk4#k&u0OaevAHgc{)&g#p0z4jjqz&opalprDnVI_F}X2NSII>ecwbC+?wG#0a6nZ-!eWhW*btr^NB)ALsG=N^nFH>z8ug`AG4cqj}(_a z=r+J<>Cw#Nt4CxX++T?Q{bBb3yHmFTdjE=n`qza+^~yOT^y1lR&ZqdLE+dLHipULR)Q?m5*>7(2NK^FO-fk)eqn~U3(xMQ|s z8gRYAr3c?-CVqTVaVsF?9FunN#l=mA_gQdAgajrx^1=NFEqO>RLSv#1T0zb*>$m}g zNt8`|V7g(3@WuAb%2+KvX1s_KjxRom@SgLI9`EwT#GT*9U!T%yyvDciiI92&6SLH# z(MWZzpP>utq`Jksr$&Z|bbKUPt!s8u>zY^U*cv@`Y2CrfYBol5+9Fhp(aH`!Ek1Uv z<{dRo+0DnQPa_|boJE0z5S`xICw!Z8Ta8mz^D!ElI99zHW$B{2Bh;n#Fr8aFRp-@7 z^Qm@5)Dn^9+zc+Ro#hrPc8m;hjQcT>z6uG3|MbXkofkjaEn>W=R<`?nc6_Ezi43NH zr*HrOAOJ~3K~&R;k-;t<6W2#a)VxIXtDmJ>hn=8$)lV0$L#-lL>8MDbVxi&aNI#Ko zopbO0&SSsp=UFrG;IxNC%yv>)fJ69^%suqj_yT#5@) z*a4aGilq<1p7g-U-crY28>9^<Cw!gMd8>H=12RhdecnjjUyAb6(7hFJaN1ipn`Hd6F1s`!1 zgrXtdI-Xr>`@4uVJ8y_GyweA2$IL-a`H4okU{RX3O&{VG+-@C(raa1c<9Y&fK6QY$ zv7nYkw`}f}-Cy618l-PV4%T;B16{Nk7R{mv-7$Tjwoe%#Hk~3l0f6fW0XIZ_)6tBh zA-^@vyP2S5y$wb=&AHO-bd2&4?Z_W2G~GL{8|;Fu;G6G!?qP`UU=!GJDqNT2wByB$ z`E`SQJ}}%c>oW%m?LW~R(Z<8XI~SOR!;9TwT)im!wsd!GJ1$1!liWh!o%2&wuprex zi~s$M{(h|hZa-`=J7=iVs^iY%H1(8$>kkY(j4|4Dm}FdjVDQ(V`5)=E>I;TDe$qYf znEY`nBy|0w(;VOF+;Z64inRjdg@6Im&Enn1XZZB+6t{;Ko8CHR9mO>33m%;0|MTpV zGkxTr;z*d&JcG~XyR4DL%Y`%Lt{LUm0I&}B`RJZp1kQPSmWrO5>DSJ(ewJW4QP&_R zAUrZvg`38!Xww8QFi<9WP{tF}wd>8tN>>>8;j16CY5YB!*>=1hJ2Oq2lT!8F%BemA z5K(|$Tdcw@8(l=9BK8t^Y?gM;P4g1xO#J(OVqu6gr7ZP+Q#)o4_GY3GQgenMObjSD z_>d}z7?eNIths5L%AVf4BvZo;YQ+69$-oLWn`m z_`C=A8lvQ|7?%hiY&e5IGTMB!Y%uUlN=!&WGZp;&VJ4n9ZM1ujg@7;znMe3I;GALl z(UhTO3cmY<(_;ruHWMNxH5#kDmN5F>U5K*Ln8EOmZ0a>wOxPJs(YpCF8~Jc8HDQ91 z8jjUf^|D>MvfgNQsxw5#*XpZd<9n)I!?U~wT@h_cJV!QRD4gDI>h&LmWWQZ(w$E+ixba@AEo0XDQX_qRn6iq(-Co( zxWqpT{CaLbH#M3?qlD1^(+K zx6^Kn&pH}^+}OebT|$cn7aYzA-eD0aOgut%*z}2aamfi~y8RB0W3l}1dzybLII@$|FQgq-N|tQV)x^xPV>oaWX2|A#6)LD<8w$p+7UkQ2>sBF zyF)rLTN_Wz(%mOyYg07cb$pJq^dSI{ZaLPE>tG3>&aAlzu2uYJ-2j465Qf}(qNBVU z6B=v$-$_^*V0v-e!>WSiA~xZM_~qVtOdcRKWeez9TMw8umFX$qCJt5JYJN|uFvD5QG>#Q zVT34z$6JoU5Tox8WR@m^*M$3&QK%qsF_%*SKtv9<|V-`%M!IpV;V_d0b4K zU%O-OedHEgH(b<~>xcSiGt*(reY6+1Yb#;9*|_P(VJcXe<&=*u8Vo+&tU-jazK+dI zy-&IePJ*xct!du1gY&`>+PO4SJC}|WZW^p*EL;Oan(f>`ocjkFXtc}sPIOUf9P>VH zpbF*<_u6Z;*yJ;Jm}B%^v>Jqs`Kj7*Yo>NA86_gc>|Er_bBa=!>P4weYYu}B1CJ|= zbBkedDy}ZKrFqww+sAmOlzp1eTEpDKIIkJ40^DGtTJD0|GQ9R2&G?2K$B42x)iJqf zp6|_b7&$Hf+!0<-z-Jvdnt8*V_8-BZ@YYnXZC^Xu``XVNT8yD{Ik@7-#O?i#Bi z7-krH-a(^}k3B-don!ps+o!Kn;VX+&NMITmd_vVbH}pwfkYK^?i}QTAd|cF7ugY3h zB3lyL9)=x{6}0$h^I_s)=GkM5=Ln0>brOvF-xvCQwm3gJ-K|w{3xNrv|I&OFvM(3q z!Pp0Zfb-)sd>if>r=n+O`}<*`Gj-&dQ09{}OJ5k+xpjyBw*Cd(m$^>=n7CA5Em)%M zPu-ziZ{F|I`;V&VtLL=q>*uuV-%qOOrHv}sv{(hVFHqseg(|!|n(n_vMUO1;>ER_R z*tkeL*Ur<%#f^{JMpDZ}M$=D|gvX(z_Fv>VwI* z6{mM5F4Mnqmlvlua+mAP+~s;ZZ<$N~9KS+;AG=D==d976ve&xwO!hiGm98y3yn6_TG4&I%X z3|X(GL)UBBu=QFVO-qKZ*9`;KXnOK$mu?)eMyrRf*L@iq^u*}(dOTY8hSUu%uLXnF zi?oP*hpg8vgZ=-7(d%>iuhF!mRW40QTA}Qug-YvpgNFCJPDA_6)X;u2iqoLJla$me zTYaugSFfHUG@|z;O;28?xdYevdQ#V+zW(zDuGfr|l^UP4RI~c8a&@2{^9TBL(}1;_ zlDtCW`rYPIR=))r)^~;m_noR?{bp%+zu7LO_q$11{T3-VX{n|quhP_{Rhpc%Qd#}x zyLt`jH%){4O?7E#zv=G!#C|I@C23`}O)E7iX@&BVmMgcPPg#BEX;7a$^|>}f*IYeF zy{}2tfIbsk*}l!Rd#2L+-Jq;~3-!dkFYfn5_IrMzsGvyy+Vqkh8M)r2M@Ov}{X2}8 zKWDFX-5mb^?D%Fr-w(b*W;ttiR&buiye!vPgqerrr*kA%&*Yv<5#-$+W3_* zV|0xhQ?X<8FF9-U!k9IBam;F${^rK=8vT9TDn}~}!yU?Z0Qx@yvskgfH@2QKmdCKm*-ppGr#{0`-eR^fwDpBv(#;w$AV|{{7L8BPQ zByiyWb2)2@6Kx3zjKDS|XaG2dbZ^E6-IcyOK_?y^x!&bfOyi=oj(WT?VRoEq}T3$_4iB?{;Rg{di{A7-n~dW*DuhHmGeB` zaMwZ=-gAozA6TrSM{jef@cvs>_`t0ydVHyh9$PB+f72orz>hq9n~MIjRz-hat)j=5 zsqn$Y#k@ul?>yvr6y7hq?^YE(wOmEdu2IpG%YA--TBV|ASF7lWWiIXd%UbPvew~V* zS*cxrT%}!qU9Vj)-=STvZdB1Tt5tBPub->SlgoU5y!+^FuHKGMqVAMK-p{S^=ciYw zi04WC=6wDr zw4MLYtn}}2rVX#&tzG}R&!>NEa_<&Bv&!LJ_{dW2`s)Vm`ipO;ulpj86>aQ&RajeJ z({F$P0fH4M!9CDYAh>&rhGNB9C{T*Dlmf-wt!RL^?LqeDLOt|4(mQl0f zP5s5z)R(1AbcM~wUdQpyEf1kL+)Z!W6q^>kWt#526TjZqkDHyXn9ZK8|_V8DJc66gyx>^3V;MVd(^MyK(%Thq}*0O4scemrILNwri3LjsROF8jb+VdWB>(RT!k*bY^un9Q)4o^wu@p`P2QYIbomkxEiw)%LB2C&N~|h?}C_G zpUa7@hWoCN%-tJesTmgrPtCN}yJdo)^~xJd*V^~9)Lxkq_u9;vwu=vP#%&KlT}R;; ztt2~xN!=}nIah)1n#37brwf?{qlhG z{2gIGyj>FevcGibSwXyXKa?K6OIl8Rwz+^lnPeL{+wfW+X(eLVy{nV9cVf;&ZVub} z98~OkXSjGWXAbj@9uqy7k&QN=Ok2!E2`_o-*|uC|EV}J>St$LK`TqFw?|nn9*Y-p!Vtblc zO7ByS)H*{ddyV;)V&;LUs5{pFpLFl@CI&Y#1-HpK^10gIOEuz;>tr}Fy{otMpLIlB zy!#s%)jLjqe*(Ai_|$N_NQN+Uaf(`{eA9N+;{Cdi2gvm`U$NTh>6Lhm;5qyu^iG$} zM;mvxsZc1+r@mM8du@n2Vw2KJXyb$%g55|rV$$c8nb^y7PIH{ve0OoQ6z$S^qd&j@ zTOC;Ib$Es28Z;{XXV|Qrvt3){ewF`W?(PAOt`B}U%74Ui`*2Tice$`7-Gb}WDbB<& zVtDg?OZvicaYOR{MBH7STiQqcOOc{auk$3}Fu-YdJR>GJp4cg+{+y#baB9?djfOOnK&mpq}fXJqr3 zn@rIfTfU~BQgdvAqHq2Vs?$Y-6e=PmC~u57*oD5?TCv;MT`J6-E^J|XL^nt`*^*7@ z>W!RNo|$#jUEB8x(^Jm&{yK`Zx*4%$J!m4|u&Gn54(-T;6t+JcgAYTxfA(B?t_=cM zP%ZnMdLaxeac;p9a*Js`mjh<-RJr?gntk;H1DAAnuO}2T^4_<90=6j$u%w$^0{ig=`Ql-jqa5_j|MSkc ze0!kZc-O27-+y%Zzdz=`IrHCQ_TOXX|F1T?Fc`mB@~ISFbd~qH8ZfT+A`b-z7p=;!}Js4$rohLi*{jT;&zD-p3xma+y-jaUU z8Sq&RV>i5-v^4JB98RUPalPItJe$;3-^q=Znw{ZvUi!C6{mqV6%zI=x;~u{KUJH#* zDSYN%6{2X1d%`KL2fuUW>tUc3^JO~YQ9pYo2M>>WqT!dY$ItY$65qNj8+)DU6xYxf zcu$q+q`*x5gNYdq1|BZgqAv`D@clnb6nvO0(j4gPBa!o?3-)C)0sZp{JTK5%)%ff3 z!_i%3+x=^v<|BW4&m-9dx2^Q+iOl;v+qS!NAANswbM(`U?e&d^tv5AxD{{TBy0Q|# zQykn~EX~BSsnTj^#>eN;e6E*$xW8z-xH6^p*yClF0n>@S3cw+Jq>C;7Kef3Et{=J> zWXsJ#Q;+U~^!?xHhb4|rY7mZesnee-SATmMbY8t;6{8JXGW^+vrpbLB2vz|x!^XzW zml}aXE|8QI<*)^9jCn`ssaHo7z9=?&K!VpP8WbwH6XuKfA!DgWl(Zgt^Jb}QTH z&4BRvm4?Eecy>!XUOM6Tyx$jlbxc+4z;nToi_@0|jlqM*Xl56#MTx((o~dxEh{&gS zpZ#p*$fGzM4=evDKiLp%vvOrKnP|cY0u7pzQd4&y1DV}^O8IWfKErQ*xW93_*{|D8 zw#=|^9Ts;vAb*YH8R!6OvB>6v#vupGkv`9?L7dur+a zTzKov@VZq9)6tt3zJCL2KOf9DaPy7M*|u>(Z4o473}zpX*ZV&=+qYhArv5VR!ZCe> zcr}EsHW3O8UV2!ImOenNmKpqH@0*&i);pcb0yEQXR+4)}$#32xi=Yv-PevgNY;&EzmgChS(WEsilhhRKH) zEg>Rl($Ax}Iy)eR6-elI2Up$v>IhIY3qFhR-`p5X6gLbFL|fi=*wV+r2S}WOC?iT) z57)==51e6J`dz$U*N%z8Zu9oNbofg+HngYVH|vBpIg5wQCsDc4%alY`Gz6W+H$Th= z4ZVs6CyTY|)L6fgFNryiT~Zo*uGG|BEP7P#VlAs1`x1@oR-2=?D3?n9M`mtAqFVkrqV$;(077u?{=Z1gn3{)`) zF0;CfU0>fO7XC@~a=k=sVX=P&Y%CLLdrWEkAmNu3TCjnF!dtkurz z=3HlMB;DzBOtJKBi@Vrnl9}U55M?9YH>GF!zkVMBeCP-7UA_XoHEC&UJB=%|f7l#K zeu)eo3mDsuFIe&=6?;8p%|NK*NmrY3hkYn_jfnDDb^L5qZyKP@&l3xj!wWuqw_xM z;B0$Lo=(ist|ri)h)b4NrhfAGG8PQQ!K{zYdy^_`TY*DJT`$CkXozA41U)yAsGp4LlS?}&MdZ_On4TVx5J-j!>clZ+<>D$&dd%#Y?l2;HATCFv*?s%4 z%5p1Ccl{7&!NMVrm4r+6lZjW)A@W{rNiHUEXhR;XH{s5S7mfr`vz8Izo?#Vc@j%P4U7Gzdr0P>G1=vJ5X zcO0y}6)QqkU>US=>V+UoIXOLbH1ho0^BLZ8n$r@J6%vLao5m}b$B?9qm~D1DF?<)1 zV~!}tmCeb6$ru<0xCJFEm=SkHzQEk2@02vxtg~N3h>H2!Ntv_*glmi0o$@{{^>sorCSw-Pr;UBu#0+Th~}b!n%26zDv{XaLGPt?}N3;{9!BJc9nz zAkZE`D}mw2%E>txNpOrmAd6s|Rz-EVewr#tKuwqLBAA>kpYhUHjmv7g-fz*GC@fUt z$l(@=>k7wzpG@b4zv+mQeD&6CgTk^H$YMpKLV_aj0=OVPiez=@^JY~eO%YP3lC((L zvRIJtI`K%gu1Zx0LBKAD!;hao>C$oawn>&q-J>bKo#((X7>ELIf=qFzMyNAZrP+b$XE`|NPRWU-?2o) zs`>kQWqG}KXDSbqh@m3ecxGw+c-cYrU-=ky1Jr1c6!JXtAE&-lqPHFUe^E zFqt>i%voN6W4J6w&owa|(5C=j$%}sCaOh=DUY11CGjDCUIqp>s<{)62=X95_g3skgX(F z>oqys(0%D+D$y>C%C&WcWKBL_0aapn-H76v;m(+oKSFA_G9ef-$=67T@nG-M)(${s z#N40*lYnC^YiLcROO|X6;Vi@ouZG+d+cRrz#rL}`&$8Eu)XgVL%^*tr*Pd2boq8nm zMFhI0c0mmOwLg1RLFnQfAhC#8%(sNHUz^)$ga;WNWfZIATtljH)}nmX z?mIq)2$Ag49QNX4StXhXCB4t0fL%=zQ+MVCZie?KSZZ(w23RHyxn@`vi^ow8f#8yH z++>nuT>es+IA=uPG0K8q`!GTf*}5Xl2k}l)Few?A3KsO;ff+@wwoefj9Fi3YE1jgEe7=oo=Jya`I}Zut z4m24~x)xO=!O`~!1O%<-xg0K5z-PZ60hh4kqs8ejF4fbE*v~@xLmp&&v-gnz_eR7QSINlF&tE86i2;dBhfJqrqzA&=Rk zVswUJw&?&>@UdVcRx?cJ5sC;pGFXK8TFBq_Sxle}#0De|e-Z(WlU~Ez7mXWljY98K z;9}*eafe;pT3`lBwZju7im>3^aZ+R!dyqVCBnT>W9Kai*NsJpuVbi5TI{R3a5{bxe z@h9zY!a<0Du#imC9PN`b?47dS$Y;=xHO3r|Na#s~-ceaVUkU8P=&Xb^H3IQyEg0N^ zUJ(>;O%{_KtBIC>Mk|n6%Zg+fAZ3ymr@7lF<>fm7!?fQik|47bb1%KS3^grls^Zn? z*C_%q7W294-N)GXU_eYvSTrm+!suE8Lu}h&Xly7ENp#NwgION*k24(OZ!v-yePh}0 zqFVd(&FA@avtA56>?IMEcf1DdXBz@d;vI%=Oz#!!f<=RN0x|L{Szb-d^ryP>wQ7Db zxe8#&8Z~1BQ@a5DA9Mt=(S&JveiLmTSB={eNG#VEQk%8c{?YFp_6lA$wgjmJ$?=M9 zm9DR}*>`8)>mO~MfZwvjB+r+J+bK*z^V!DBihoSh{VVp>Ain1^GxlDcQ`FSpw&x7K zy7mk`1T~bq?2c^T6@pujtTWUgBJJA~np9=5O{M*3hVqy}*@|7DwaC-xyhu^%Ctr-e zV?Z83U*R~2Kt91&;q~wgs~*TaIOcbE-iV33b_Z~1x$p$n)VH5%6~IEud1hwu9y5Q0 zgmn?^4!A65*3g3Z`n_L$UK$xpY-|rPgX$xQBg8D+9z_VnNq|MxFms5p`s>@LERE44 z!NiUfvkKB#pL2(v{Yr5cINX4yfa?yCNb?~#`V?PAzu<3who6rI2AE?&gB$s-__D`^ ztTeI+t>#u&SJMhIEd4D=H|Y@pVN`4Y>QOsbN5^TFa@SsTFvD%ui;k3zpGbjO+4G8j2wYjrT|miYfuIJ9-gyek`o-}Yu||i48P9_9+Pzl>%q7Hx9VA$iFCna zSw8T8#s$&V2!pV!jIJKnvuP5GgZ+E~L+o&olV_hf^?SBYPRXt%&6v^uDkCCePu%)A z(Q~FRg0@sr!1tce%a4~`8fd!dwT;~=3g>jnhG*nHFgt2Lh6_0eUSwNal~76RlUM0> zZxWJ?KtdjyVEdkTRK{%ik>FU-m_-HMg0zr^C@iz6cNm)tiH!a^S)Ltj^iXO;H=;%Y zTdcdzUu3VTRaMV>)k68)7)${fARDROAN7yz2$y0l8)}730rdE@p=X%%1X5wwV?0F+ zOW)ASe1-9U2?7W9=?)023&DoI%d>-DSv_I`fL{e-LtUVYvE2btp@C>jIv9upx(W`6 zQn>f)VAKMQ3kEzDTHy(8$RrA%2IH_y^8uJl?O-3!vjKdPMCe#iK6KgiUn~EtJXpJk zOj9r(LjeUPAjvzaf7vXY;R&3FjBkzHly;aHYQ5-Z5KOf+LmG$yB)pyNr$qSohuZf5 z``7if9G=ttH4bvK_z`A4lw5?&V9HzDRc%R*fS@g#KY)Pt_x*CFvkKyvHd#bErMgb{ zUG>9RNuci-fplf0AmFnD0$eAcVp%dAi6q}P><_@p=#w)EjK$!ZYlYecQa&c`+%v=W zgT6B*#CoSU0$Py-0wKTJ$z*2R9Lea*QXSspupz%nmQ(q@Ju0`ulN0sD#Gns3 z11%G@U=SRIL}|^m;9;$IiQxiytZrMcK`yP zOLCT1z?3aaQP~u*g7HN3yMak(uYi)2<3|uK9DhayIuNYsn}iIbf_Lzt14d6AL7c04 zif9)5!idcJSpyo9u;0NS!M5Ns? zMphOn;cM`y>e<`}1qdT?jV|a3Y!}vFkGneid@c(ciHpMI2XOgw-{}Tn0D*yGfoz?P ztMr<&_kS~;*Z9IVNee*1Ou7&NZcPl@6I&|$(0ahHmm?AIA?U9>tgw>t6<=^Q-wFfK zNk3#ZF29ZSoh+n%HKaDp>FJ8Ea_joGRg|{gjfN|AvW8T4&q>b ze`#)|dc2h!vPC>gE0XXqDjryM1n#UWV<5&XK3(V2kX2@+uq%}-#1M-VN8>x6!UwFG zEOqzRn&TMuNkVEkt3eGAE`g}snBF zjKnWF{clKc#zoSyk{?bCahwMUPN#@sYDgG^4U1GGoC6++#NB>Da{WMK%E?`@1mg9xKKG-2BINsTxr6!8sW{bvN(vy-5XJC?q z>t})~IQLtyeUO_1q&?#$Ogc)uU3lzGNmHRKBCIHu)v- zI7V{Wb~9Wdsr^W`N7DCH745AMVb#pjuZfrS=r@t&?~{=yky#Dt&ypg6;^1Gv(UU7( z#}6KDP&_$K6=oJ`XZOhSE*}KfkU$)EoJJMCNdZwOU@go(LV+Za9Ev6I7WO^D0r(jK z!34avP8vn85g+40X@G#oopQKYxK@y4w7+AmjTDC?6}=uq-glJ2rpMlEN~1=6<{yr# z6UOu`3p%?JC7V?KTgaqJ`iS7J$icf9R_x=j(9dxt3)R+wZI_hnX1Akl~$f@us0 zhCqnb5Q(F{40z%QO@9AP20~UiRSlnKbi2e~qsxMNWj~BlD)*1*h$nT9`42wR<_TjH zK2j;u-=Y&fRi|B_-tB}$k>E3*RVs)YO6HG5 z7u9B_rKXHr+%j>}g{g&oVizHmdpCbgK!D}tu=o+C?B8}th*=q_KADN5=F@hO2Vq=u z#ux_BAiyox*Uy`U1gSg!P#@KaHPitK=iFrrfRVJ)2*ldraT~7DRs1D-OCv!XjdNIo zwiFtpI4QHAXXhj70&(qLU|@`-btE=l>6-8VOGl9kXaxS~0!LTUrYJ(q;a}mGO8br` zj}eTpz5X(#t!()Rc2i#q0swH4PD2^Wt`Al0wGpm{^dcwd-^jj`7xdt83(w47*>*5rA`y0+2c_vpM1w)t| zn0!xeGZ1gD@05#Hpjx3%Y5%=Jb#1x#H!~0;BS6;tUa=^M9=!y#tv={V<3Dsj>;i%? zU)!RTT8h}$sN6BtI>|6({hjTOz-^>LRUF6+JEW8q}WIa9;VS6x;79YFzj3B3M6eooSG`Up|~3lD{RgDy=MNaKX5pKJr=K&OGuS-ixj08ZA{3Xp6wu1$6Z zjI4%O7_^PifzIvGDG(T-Om_YJjfp2x;-FvsaU%vjj2ua8MRoSV8qWbUy_5M7jTcrU zkPr*E#>S*am_X6QyPg`dN)Pu-X7#59?BvmB{QA`9MUh!Z(m zr9Z3cA_0NgyV0Jdhf_<0_!^d~cw06h2N6kCHbp(rSRx5deN+(9C}5lLMAGb&aVNlB z-Z%>j^tiqiyHwh|i{EZj3jFMW>L!BJ6=NIc6t|SojF!67Awu<9#L*A*?uY}1Sdob% z_UU|$xtQCcuR7++GO1ChPtVj`S9sz_j#Gr?h;L3%^IZ@d^m19&E1RyYm*WXo2A%s@ zAJ;ATJOF#?kzrOFi0DY;Hn{dc4FWo)3%C^(Wqd(13m3V!n#L)N18bmp-0|6XfsqzRq@e zeiIqUA*=vNiW(7#m>SolM78tBk3zP*i&%8Q$EFb>wX(#RcPnCt--MkAbcwBiXSw&2 z=;G@#iLMz!{-lQq67|IN>uTOGoJj%;f6tEeMn7W_D*^$$6vc)1r{Dh+ezIGa+GmXZ z-7h#FlA*<8x84vV=hZ;GxU71A%g%%9u|=VmEhHqq4GJH8SHa=p1g7>2OmLpZ@&cW( zJW#RK^o|QG50+r{TUj5h31S9L^!h}>+LN-?nV&Pp=a#jX`X1XGtw&4&vMCXd-4)s_ zB4o&pk`+Z(q()7tz)lKrk?$U{fjqtiqTL(Ifb{Mhobq+LKu0CAtM1s#(-!)orj$d2Ujy5wfMwYz)?l3Nb`LH-)60OSuc_q2?E zVnVmgBR~|)uz_FkZoU74$@GH)hwRZiqrOGg`iHiL5uUa}F%zcJ5AZCviZyiA*c3S)Zw%*o>A_qAQP?L_@gdZW4nB z`b=fTv*8{B%$1NIc1uiSMB9>I2_YV+K(_c} z68FofWjXNM0EVz&F>7Cjcf_H64r>6CRs0HIqZJQ z(|OajiH=bjlX-E@p)m_86c|uCs0ox>Ksa!xOAtp*JaC@qU%0sQU;vzbnx{+w7Ozig zx~Fs-EJ{fIzDz}e*r+3?{e*+bHEKzJ$OKef+fiml7myukzG}9Mu`kyZ72~HtGC=Is z8Tf_HMHU4a{KTvTRDI(bEq21)iMwHj5%FtJ)5VI-Cf`Ux)n8XDB-Xrp`q%m);}B98 zr9{7Obi7P`mMgWaK<6q{c^!7rgYXL{7ZTod`j>P?lMmJ}p__%Ot!oyk*m zF`s_DM|kDUvBU-temTO%yGC^kRe#2rO~2mjvi15>s(K%P|3+{W3cgL*e)9*-dX1+b zATyD@B7Z<|upmZ~-`|Zu8UC?Z(|@oh|3FY~7tuh#<%{#4@|NKCLlO)DA+#O!-C%D3 zDzVqxFUJp`U=!46lMgNH|DTAJHf=Q6@G{-o)w-7H$U_b=2=LB)_P%F{d})kC6ql*v zzbFd!^J4K0C-I{QWk$Tye=K*%wW2rLs-SOX-&CEu$BbTN{<#y<R4=|j<`SB8o9JN}o@(qJ&hRJ&jhe0@{*xf~tj-4hi2INA3?FokjsX=U zHuLdqVK+Y$wR-Z0K%Mmm#-s2cKe{>m)4i?-WNh-q$Mg806cPIps9IXFa-2ou(!m4k z{gz^-eY$`=8qzS67sfB}Vf>lP=ARvH+wr~RK|wQAbJFfa&S;2>sQOHIm|>$UzuVod{=39wBEoh} zcU90#xwz5RyJWi3di6>zT|)6^!BU9<|97kD)1DNeje>0l3FBj$6C2M5CLYutN=+Jz zWo8t!wrT0?cYtPljHktmIdT*YilMc-@*!TCU(n6V$?@@k%3)GSgMN)KW6%iht&b&ox)854>&aE`!&m zwE*pB+ljLsSL2`lXnGIj8fa4_I60i2zZDk{esCThY?CKA78birT$j!=zaq9axR-yO z@(|M`B<+(+Lx%3aqc+O*B_mI0+troJ$B~GQ#?J_wM$=8|L~Lx$xvCo`ymTc;F$hoHgT>ts#=O9cLKl9=&C;m8yrziz{= z+?DXwQbp?V%x*#QuHhAbAs2G;$xkEc!A!9wNwkS-{2s0i-DlQhzn}1q?xCxAJDJQ^ z^iY0v(Xh@tw|?Ys=e{Y%)z>z-Q4RCS{hZb?J!Lu_(UY?%JYu+oQb=ZQ94l>8KwtNK7lL{&DYyE@ zcLObp0v-shi#fCA#VNv}2AA9$3zx@r$v?cVE}FdCU2>&;DSpp?_i1}P`a91+`*CCI z3x7e0W`R+vh@W8A6ce*6=(dC+YeZ$wQfmqWck3%eC z$S_3!>Wy+ArRDrwt@l9#kZ9 zx`YlSioe3u3w7A|&ZF03Bwa7pTq+-Q98xUjHV~$L^(CZuUKU;L)l*Q%@vOMu3$Bh< z(D796LxZ~ay6nQ0SEwg_NW+p2r=Z3fb^7G;(a%?BF&1Oa^r*#?LweL8k8#(Aa*O9e zv9#0XAC-f>!J@r^xkxH=y|CJlEn>}}FFLPC!GjDH#~Ve5raiyo#kVyQT#COAl#kLX z{TmCw@XCNZRtK63?#)N9{G#R?+Kxg{OK^d|rzt3Pyu;uMF<*o|b4F*y-Wu zYvPPvU+dZ@CGaRpmNx8e%uBYuX}(#U7q9muq%-uhRk`78a=EHCK^GQ{Tz`|V#WE#z z`+Ta{`^QHH?^vSJ`De3~D&A|<2jVyPWDIxS%alDywr~BUbQUCgg^9cZ57paNGae8% zJh#%5USu=413GcL@)gm@86usHfHj?mD(y+;FF{cer>`bZl-pG*!(I$d`?;RiSigOB zbY|L6dZGq&%y+-ukKB2rmF=x&kji9Ny}$KptU6cvRqmGjk9Z#IOXGDRnP zJUf9JbtIosYH+6N2xnFPCjl*VT(6u(uUIFqY4*AM_O=oO9VJzkHglJwE~~ty!nl(= zt4^;XPKi-o9SxZc%MAKYbX3&ol;$@nv8S!kQIYCeO?`r&4QDFtQ&JE{c`PiFj)r+{ zoP|c~um8z;bJ_<=r|Z|)>Qi!x0Bg-DsiQCMuJ^%y{K`O^>qjiBQMog1X{ zN6MXiv(>msDJcUR^!91r^IO*H? zNZru)i?nR6x3FGJu-Lw$gke_YtTe5N%o^Gm7iUrqm=K}}v}qx4ynoj4gv)qMu$P|~h^8@QoUbSsfmAqMd^((wdZfj=XRpRA0%oCz-tcq_seBBvnl*cu{ zy%iJXd!EjmEXEmI!OvV=VVp)Q4Y%yI+}^u%OovD-(XHO>US9f%aeMoUbr;q*YAwaB z;x^s8yDdD+7f8v9yo%m;tNK0F!VGiX6QOg|2(l8>$EACY|KPK8Ws)G?$DVn3zfOnx zQRwpSaDV5%71dJc;;o!feHi>hevb2A4lL)rLVLWRoxGCVlJ3$*(>i#-e+GWC-cskO z@^)$BM4HR`;bto1IM2{0-JKy+Vq${-!ul}H7@hI!W%5ktEt$0%3<=y zY=hL_rjP8u%4T11m1LAYKA3+|UVrHAq8tA4R(k1f>(AO+V~IlxD;>j(8dqt0;q=sq zPU^?>+))?J!IG`Ui#M+}W<@`0m&eV%67Mx)G4`(8y!yD+U~N<4L>lH6_+7p{GD)M@G(nfVrP z@GI`Mj^vwiqja%SonPD^HHT*se%$#Siz>$d8Ca1sa+zV6cg+M!l^aUldPU1qUT{18 zqtl$VXfEEe|B@^VZ=BpIFQq9&eO2gkl)ZbOu79F6!#(hc0_M=>CFyLYASsC>F_(i9 zJ-E_X+B~3M`Wg3Hf!7-Qyn@SwXk@vEKYeOG-(kH~=hWlqpjwc7jOrH}wddr%yC>G- zBxk7iKv?3ec~T;MhqyOFIc3}|#&5vBEF~QxT(CK>lMXFUu`+O34(?8ACK$GP?u|l1 z1}82^4}Mj8`-#o$ln>GnP3c5xJ89nCi`62`TZhMvz1ni3eWjPq4C#z>3&o~XCQzc$ zdrqA{XdWp2(&z9UFXD0IXB{K1*}%FNh#9n)zC}&f*Hu`}t0oHWWuKtlR-EiQ&m<7y zmRiPv&pyN!FRG1C@tf8+3ey*$U#EAW@BuaPJ};K+hX5m!;uEzm@sq4`MoqQKDc7t8 zPoLNaYNZqu`%E~pu@w{>ziW&o0{JOvUipAWKaHr9lJfJq!Dlbm7wy=D={8YQ;!J8@WaCpj zOxntLxs!$c97YQq+6y%1MIO0uqiK`CkxFU(1)BViGIHPD1(o&m^e)~TO&8Twe2&eL z3JaKGw-0q^C(_C6&PMIt6TiyrmL+P+>xQ4bgzH2@@0?zA9W*v-@}NJQL)0|hT}WB` zFc5sEPMg1oCqIAD{KMYX$$DIIA(eHf1p1`07Lm9@$J%m$r8Nv%^Rap@NxR>HjF^V3v|lFXX|D(Xqccm;vs z>Cghtx=&{xW3x-C3!jLZ)@Y@?-#)&Ubn;%PXsnkdHu}S1;Pq&Hl7~sB<^gKyX@#D=zieo%~SwYKQ5ENIi-^yp!ry5N)}h=HW{q5vePoc4@In$-nphc%6n)j_l=jE%7ufM|Qerz>MXj9Mb z?9M7BJe}4G!spl`(whp{E&iL`yAxVcSS*`BM((q%S@O0a`KeynN!H9 zIl+v=I6s|PXSU>X!rElfK>tU>4RXPqWL{&o2o$A34**_Bxa@P~9FCeO%e-)xz zwici7CtImiopE#SRO+bFA|I{&>uY2hCJDB+tBbAW^yKh04n-$)5 zx4ALB@u3&sb$MX#Y#*j_L3Lg}OK133S`te3`?$vL=r6MZ0w1>!(c{=XGj~6?dZKle z^kx`xv+){M=h?h#xXTjCRX=WQ-(HTP9#L(KG^>klO;MvSZEcUwii)-Aejjmp_~~T7 z|H&oVy4l0N{F9#aNaED_15YRe`YH3><5@FDQ?AUV7h^Z;E+4ouT{CxCD=x~Ubw8*% z2tMQ0lSD=8%!rv8W~^i595lQZt%$5ibl2u~%0};Ujo+!%oKgLFGG|6IfXNP9p$`)~ z=04jPk~}V;%Z8)e-RPh#e+O(53ahz})1@d*^42d{oUVO;($T;u0 zk$PmeMZe@^)d}1X7*)7HXeFpSbM$x=3S;EZMCAXAmbS5!3^tIZ7i6V;z>N#dT zbgu6Y?x_-L(tPULbL$_z>`JJ8Sj)^@5YiK-ODJtn-1@jUcDrb_7`cD!$bXR&wj}&( z&}n9qA-$AlZllp%V=>KHN>h3uTWZqAb1;m0f>~XZ>sAm&_sA(nswUw1oss0+`jdw~ ziLphR=mCeb)G48vsnq5tEKP0|vD7b-mya8AxNDediA=hEW^0zW@fur=DlC2tbH2Q? zIT6VJRfzj%_#}S9Ge?2`Tj5Gr!@!3O&RL)W+3S~%`p0`tHePdA(3!enhkaa{0YKYB z@1lqFjvL)Y2CKzl+R|2fngast8`jQ<>(40T3joD{hD2G+V0c+pZ(@r-8T??i?Eg-| zp&75V;kd!Nbk@@J>(`s6wtWV>{n-W8o$uDA?zUrHXHNNhP? z?3~yg?Mp3qNi|Nt4G107+zPJeU zevj99{1SK1shBcCoP5s%=;tTDP2FBmF`)Exj49~!^%L`6w!}TM4AC}tvr!6xc>XWf zkQ(xfZ6Xd*^1XI(5+{IutDJOBmNeO6tYNIEv+}dqyr%WPR=Mk10a^o}km(nna(MDA zeaE&Jx5J{8bVNoyKbFVyt;N1PRe3i1Yz*aI92VIJznA^<)?L#@&Ldng?@67}moO=e zq-)PXzLY4N8Hp!-z!oK^57_kzC111>GbR_5r>spgfjfk;p}&F=sg>Frf`&imn6(o1 z*{uUY%tc&fa01B2-$*=N=<#rLaeeBlVBx>@p3hb5`m18TRFg7>x4}!}+}#gmX#$&d zDpI0Z!3jP*5Gu(I(gg#0E-6N*Fhc6FFE{&POIBc$qYZ8OST&*|Dc-6qn#g$8RFs}1 zvyZ&H?&_G3An5nh<lpBd{Rb(l) zm&O|fbq^M1%MVw!wu6PEK59`S92G6kaCgD+i`wFajO4x>S&w1fHTPfrtpId~5Q5PB zQLJGC{91-jZ)4=0rvJ&kKH$+Vyhf!ct}D&cOS8G5bVp%x+bX=LZj2arRWPP*iw-_K zu+@+8_*UrsvhqT3h+w#P{*4}e@9&UQN($Gs9f24x<1YX65F7_H?uZS1B}b|xhLaaB z7nigx9ZYB)r;3VFCpZsbUkvq5|9T(E-*=rA@H@5}9-N2@4Gkubuwj!yfRr8;1G!w` z16W>i6KCz$^`6iN^QoV^#K=Jp*Do);sds^No81o77Xrq(*BtFcHxr4@Rp&p_tkMz- z=f1BuoSS2__F0PYc7=PF@g8@MUWpLT1Wl~d)5)YtMdVlG3{B1aZeyRmP~sr?!BGCw z*58e#7fUVtnvnb4DB*(eZGx(#>X#q=r;#I`k=er+9U||S2Y${-U9Y9ykJervZBn;G zE>oAhRHYEDf(sED3Xh;sZ&Q!tdcsjCO?V|Gj_$ylx*{AzTm2}t?dEoyH8T5=4v~* z(qIh!(9T~(H%!92K(+U;F$S|&fIjWQHOT(0>128*8~NOzEl<6^2&MqArz&zYLsX6? zCR(<;#haaF@Yqil40p6RITI~yg*YYXsNeW61#iMd8_5I zQFW@&F}CFAm8@nq_-|RJ1Rs@uj*NSCjlKkiJ$@kDnq!N2$ehh7_*2h=){TOt_ z8WVOaf>dFO)cHyD6LuY&o!rHPLrP+cRPOt8`Op^G$ne@#DM6g$Vp8nnTJac=z55>w6CG^=YxfqUXl1+pS@7qwMW>%30S{U=z!1S68 zXY1b6w7OsF zfLzW8%~06U5z3YaJjGHb`VLse`TkOX+7~BuZ0mWKzdwh}5epZ=msSr0dTXP2Gr|)& zV~Jj00R$G@4TndD%FJz)|Ij1$9)Em)p&0QZ`)}I)BE&_E*2QPdzg2pno}gZaZ^ z^xx<@?h;`_Dqe7ws?RkO!xuR+(dfYAFT_gkTOt1g$v`&0E6B;bk>BalpZU^w=KvMp z>axLK=Mc&U%}O57g7*3DrO;z}O}&&)wk;_Q2g#}{jEZnQRDaFv%-%tmqn-dDq6)gj|<)REqYfWC6gkqKSXTz;Pq z^K(7<+Og*7nCGkq-hY?bzbW3)Sl4r1fTnAz$AvyTv&N4x=m)y=Wh{E}C0N0;Rf*DcAPp~rQL zI%jm`-ws#S7oPOx9sNHywq!<$?u^)O4ZPIA&|MBQE}0MC1$tz?FuI`0m1l0)FkhZA zSKSF2Hsc4r@N}8DXC2WE--drzW#i!L>dwGB|4jVGC-d`53QCK~5dmN~=C?_ZS+Aio z2KoTlDeY5Lm6Le1S<-~*q(`)0DLbhkx+XgqrhD`EF@7P%vCDc*uEb$Zgi$m11U0+H>1wYw)D(t~o1{r6;7Pa8Q_QJl3Q+ zc7RcGIGMKtR<4#?SkxU9yyF01e;=<3q%*r)b9=~b>Mb0R+RUV+;vG_54Zww#d&naS zzR_tc(kO{|yYyuC%C6wN=Gl<*MBdg+@T`y*L<9hl7<+2Y%DU2n(vsUH$w;Fb6qdh< ztbl!^j}FjHF*z!o#e-6l8q-}Omz5ACGX_q{Nb#hU;v+WicVP@*aAuQzIxo#%T=C-9 zs-fDI+b5I3)6$*aFX)=SiFm7qRyqG0uk0?R6J2EkBg}gw)QInZ{5kT&J~aPV@9oaO z|NYGZjW_XADy`j02Z zz=O?;3VhXz9flvl*T=Fm;4<)>`ErFn^X5G?RUZ|*Cq6f>?(MdDhdVCeJa`XH=Ruz% z^>cEzYf*s^0D=&MhuCFto}s6mzP2{TpL=+Da~Zhj9rvsc4W2HW_6xoL{){oqjehip z5A)_d&+c!Wm*+Z`)ccMxz|KIW&QwPsPx^Czqx`nUCNKI^8MQBALFJt(eqX=F<@KqQ zw{i?S7lc<`8!$k5rFThAHrh^(&jp??1G2&2+7b#2pd7$62C&9Bz!jcWz@>pk16%+!r;DKhSmhoXj0LCx?4Sh?z?$=N zFZ&;;fnsBzM|cR0_W*cyE<6+oK#3dxMfySuz78NiJ!ZxS^KxSVuReX?4bW9k8Ujmz zFnoCDz*PIH5n~{dS`tc@iOnpn^) zylB3j@b~pV$A7kAK|VXSsNVpzm4CSNgRx1r+>$0kB;W%^v4W2=Vd*)2vpMPRCXQ1+L#Jl-z#z0)dJn+QVW@l_?AVPQw zUS_=Dc(D^wX$%lf1Q5ofPAjCxB$eovNOi4LR~vv1QtPF&ctE-ecT0EvfHdW{DzGQn z9uS^O^a}C$#E1hlDI9_^(3sn*;VXoK^b`;4eM5e$f^HJ_dxLwWD>x`E#XDBQgd&kT ziA5VF8DqDCor)g8<4;&lJ~^o2G%X~%7fy!>><`O8@jmG&+@*9eI$8^Rv=ECKHp7xj z4J&=Zn@Z_%O_;~Ktc{$7)UXzAfJR?%Obr)|pN9Mv=`QS(&B0T$t@NU-D?Kdj`8y;N zC+r8%jt8He3&8dDo^mr1@){mPC=*3c@TSueRkhNc*{cN~0ImatV^WuyHe;YF8-j6P zv#{Vtq+Vi?CW%E`q$|Bgb_D0t2%u;OMIuP%-x9neyTcG`b~46-)6$&Vt~&#^{uqS5 zD`GnjmM>9~LSjTZ3j3v$9KFsMU~Msy2t^t!-Y>POafw#f{MvjG2k^1#K#Hlgl1*Tg z5dy}pM78D-@U8Xc4{AtLdwRRXBMrLif#=_LCf>O#09}lMOrl$I$pPJUiA5Teb}lin zVho^@56^$;y*38^yL{s8YZ{A9jCMJ`+hXLg(kkP{i3=xg+w%+ToyB7lTYjqPiW&o_ zo3Dg1@fPRKI2tkA#CuoravJ`Q>q>u(X(z7To_Q?3!A48~V<};@AEDf*fzW zEEjv0Ova`~1@h2F2A?Zqq0cku`g?Ta`tjd7r%*PV6Z$fpRo?r2c;pHf3*Rkv9q8w|O zlV>}YjwKd?q)2v)$qscp;ukoetk^0N> zV&~F|F>tvDqi=3yja_HZ@VUYh!v~}GOCR~+yZN_kwNI!44HJ6xEd@blRl4Gcxjw`Pm%I(+se59u7$14PD02 zmp(e@5KOxsxiW@^9?;pJhC4AnKb`~bwO?o`xelO@(ZY@dvLc^@Sf^=yF)FUlzkoO6 zpux@ppqai7e$g5C4*r=_<-M;H@<9vU%0K*#TwfSpl&?%K$X|>jpS@>}=nz@}e0Em; za2Adjyp`hvb2Sj^3HQ9Pu~*2w5UgWU_{ zXD-P2Cn0U_p^w4xpMP)F7`W9xkn{7)8tYA127sHmc|v{&)o^fTI|PKyU=*7U?b?(yDZQ#UpAAu$w>yuFk>%=_yhXYrp0Wz`wex*1X@bR+XJ9S8k{f%a8XQ zuYG6XE}1AkDzm{0S}BamXvFe&6%XldLuYVMcO(GxjMEBjxoO=oAcTsY31qKqHQ7mN zFYHs$3n*^M@0P~=cIhnalgZ+vG95grUgxIlHVsokhZf&{bI{6;L$tb9645qE$9g1M zO~SENBurM-OK%3R_)}^S3>J<{y@pYdNLy(PU}z+Drz9Gw7aF@Yo#|b&JvgTZz}ny; ztsFKUJSm%k=e2SemA`hBUX+pI32Dr3kwm0E{01-p%n0yr!i+@Oady7aWfV=bDr?KFPXH6E#vQhL1_Vthx0O<|NIqD{h1RDa=!Yz|(OuGDr( zR@F(esz#DkMTzn4>COk?jo5D>wus?JS*B>kY7IK+b@p14vIW<(-W^C-*nu*W8nz{MPs4dR*S%;mHZG{Q8-7|oE;y^D5AUJNSok3?@9DoYlv!o1IjfZ~2r(e;_+0mr9BI6u^Q`3Q z^4j=wN(-Gp+jZpnvefd6U_U+jEP`c07*pktCw=yP_fw4TZ`PjN4kI8Ue=jiXDr8*7HY4S3^ z@2Wc|&vqi`|QIZ-XTu>-wMz{Z{PzK_+;zYd{#$S3kO%Kzu9zkYfyxK#Vuo zy{G^qKqf#-J;kA?91v!Jy9|Qq3qYd*-T;j>1JZ<)SmVC30o;5HSG>UQA6nK>AMy{} z6L0*?3k@&s@g@Vh0pAMJ-7pBR?p?3s$2_13aD;{%K9$A~zwO@U!2B5lNY&6C%_Fe! z>}~*{nJe^=!}1Wy-e|z3>ykOr7rm-SeLXt^OR`Le(2(hqKJWzO(ueRPf?*Kp3&}RMh z+gMv(3uH0_h40n$#ynUf)*M=@kI`lM+trBx4;KszF?REZU%e)jZ@D z<4#x%rGiN~)=;9{7OiZPj5bL+YL#>vva?d3-Kcp8gvfZ$z%1EDcBy6eEs0~LqZ zEvQLN$Uy$6mbD!!o|NvwAx%bY%I}a4b}-Z^IHUlZSaK@=P=O{%Wus`5Rila2hIFYu z)GpcNkmer{zEqQ*)EIVl0D|P0^yCl7K=EFkM_qQKBx9Yr`%wv+uh(&v@*$U@Au}t@ z*&R|y3=3XtlCqQ4jnb99Q%mix3m%jH!o9jPK-gA1+9cK05!Jd2{fr^cM*~ni4>{$#=aWz%$m2FsE$1S4%6C|4}(F zDn3yv8pCaXoq_a}?%Yt~{l+=pc+dI~QiY)xi!`f|h%rFbAHsr$@`n|B&Ey}JwV8u5 znmH(IGY6z2vrTGJ>m?N>WT+_QbWq`G%^J$++s;5X*{k0M-wLv%Vr{w`Mi>_*w*Os? z0RR>N)xaAdz6{I(V)ooU(&mu`DD#}L0IU;Da~el}s%bt1Z${I>oAtM`@G>A=HU@T; z0HzoN#)m#wiHt)Ywz?R@d+w?K>@qWscP_UX2GBMd^gY~IHU@}2KUjBJcGvhg8*4mm zUM`0k1a2Ue4A9dLd1=g#=JT=s=Vg28C4IK1#`J&;$X5ooHXa(h+f#d1p6$G%NpZwY zyDyZK$tKbKpFsxJ`NlK zwg5T68vu;o05(7t;K~gFfV=+IiapS{s{H_A4lKzrAh~v-*9>VwfS?EHrNI+G>LENI zsR##wH+%a-)qtj6*JT zN=TOjcjQG*WCGOl938NG@@E?s^@?mh-oG!t1-=u_wFnIf#?nuX0d}R_01I~(m=`ke zoVoA~@{An?#xSp+ttJrP%AXMJyS(&4NyJFZosic2ZUupa*N{ML;X!~)k3)A4v0csk zTvRVBIRt=G;>Zb0$;5i4HM?C#Yfj5Ra74NacSvn=gQOxIl8m-$?g1Wak~ul2#sOip zDlb85M4EHkq^o$BG-jqHrb(oPy(A?=^_tAIG-PMg5^$kB&-za9kSG8zolFc|4p=#92G< zY{;34wn-teR%wuMTa(%#`S^fjqFqvqk4RU3uk;6p^*j#@m`tKyqFP$CGUVoZpq(eY zrbu`VAo@P3&uo+=)t#zqB^ha!?(9B2Zv)^uRIvA~mnP9xv(rKd5=IZfcB zkT1ZF0EPfN1nWzW%2eq|A$b^MV4!$J>eLvheaDV~uM=yAfs#)Q=yy{jcVi`#s7lM8 zVqolBLt}udPnAaIJAY#gU=XS?5N*|}O=b+#>GR?IVZ}P&imjy=WLtpT zPs?!exHRW>N;cl71}+8?WnVF1SwkvQQT2$#Xp*scmWj2ij{6Ju$aL_Od~E)!@BPle z@11?k;=+kL4|4&C^#&Z>Q&)~1=NaBpVytN%Z_aamlSe?V06PPx!_X1p&#Cm|eYs~W zR~j+$yoWB05D(|c7~;A$W<0zettYm-9IwwkbO=-7Iro*#>BEEH54D6j16`Ittcj=% z_U>@K$wR^{GJ4nuiL@Fsuhn^szRLtnWJdP=#OH_d6LW9#v-$Izm~@lh^AC7u?~Tr! z9B-V{oeTfRcdmC?9%-f8lE<`{=f|9APP39Hx*KNUDsQ;P(4a5nRS(yh z4v<&NZ?eu|c~+x0Cm4Fqv@dIz5V83rjeGpPe+%f#o3AbW>Bn5)sn1o0xs}R8JX2kJ zK1H~ue2aubVZ1Tk*PQ3}&4f87^~iTca|S3uh!^v6&yt1-L7Vxz-k^hF!@aGIC5W$9 z6S}p3$1w)J|Nd{Q=NnK4NOe%^K#u1CJHQhSFlGSCKq22dpwNv4@5dN`832v`24szg z16{n|^uhBENM+5Tr94A^{02M%A^~#Hq529pFa;r~*Wh zLGup6oe-X*1I92nivnANW8UT`DLJ zD?vfu*H3jG@}Qh4^MW@zW9=w|%6g(3=dh{8e-(%7lsRZVy*c$7|UAGxM#c?fZ;Rb^!0)-&A&g_C$hLfuxbq4+TRd* zzwheDrH~$#?%Y0EUwlyd3x}m8yF)#`cvmgSm6&ahZ^t;W90I@~3B#FWpYAA7StlB4 zkYZv~IsmP~Y1v!%lI*U1PIlBhDdUBc(v!JMim?IpRs&K2kdlE%R)1=duFM{dKp;c|+Sa(VG)t-~_(nHdg-7Tp|bA=&z zJ!r?XPW7mU^hTX~V``Hg80+!V6+AAxOK0WN3$F_YdcNEL{>`ODNg)2@xz`kcSyE-W1SKI8wEeYq2Ed&) z7v%2RODkm`6+njI%|I5_gs9}QESfV=L;UufdRqZ)chz20FsNlP>&)2j$}xa%Xjp|8 z;|cKd$~jb>p`y%#O-piL{esq>rwR=BBme`1sb=$FlUEb+Yq_crRfF(oQ*Q2JwXc%)$OQD*)$P73IY+6O3E2=Z*tW|2lN<~zv zG5O~eV54vPGcT)vv?vcWFKW^-o+?V_Q96*C`N*UtIP0&hR6x>7MO4N?o(5|1UsC-- z3;9?##wgDQEAL98FZyEbFrfGi9R>fjm$XU`@*q3oeT^{)SR?vVHkPuYBoC8_O|>J& zprd^?7p-5N@q;elp0V&|zP`rjlSY*y=#nqNJ^j!P<9LVse1{kV^gG?OxWbG1p&N92 ztlrk{@s=gI(0x^N1^{Oy5R)?iJ^zmQuC!87)1rQ3E(3hOvKl7zZvXyhKa7DNzW>|m z{Rb2Rl-%15h@t`N0ASt#tMmn&eL$>x z;Fz!(p1}){PvbYVpvk=9%^cvV&qoN+v6y|<1bG0yywkB^Y(6^>++)nRVOCy$Gq#}V z4KR+*(b-b}H66!%kk966{Nc%*O|MsVzVN~*z#u^m-r3q4AN0Ylz+X-*$X6!kRnLHa z{6U!v zo{-_<{Tkb!PYi1no$BgZslt0tth-hfBH5Qxn;eQ&ue$*l6C?x|Q|q*Te_eV;`U}To zw)CVNs=Fk2*Im#s(#@r(Wo_Z4)Wp|n9K3-w%4?RBXgRElsy7qGM`TOs85zwVvBR}u zZ5ry+k=ZV@n)v#-<{?lY9uG3ris~|x(wW^OBe{EJeeQml$eof&TK=?5Ww3ZcPY<68p3qa)*B2j=$pBt2$==$t>TzFNxL+Exo7Ko5FCrOjkwl~^496lw z3NLHXWAO;FYbsl5EL(*M5tcl9?RB}p>>Gw!TSG>AL8_CG*7!me`Awg1eXa0at zmXutQ*4z$RTR0(`f~PeX@-qu>{QDRKRt?BNKOr5Ib^<&Ba0#i{QhHHlOV7)$nltK& z#&X+Pb4K>moKwIE5akfD2b!nz0Q?m7c>chsJf-8E-4 z85JN2=!73Y@!p0j8oINu_JV#GJOiXVXg(eq1AH(5a{wGb(Sak+0EmpCFa7up9e^u` z|6J;(N)P2qF$R|OJ%AN($$0)~FyFiCF35e2^Rln@yoM-ocoiU$`C}X%Z@8j$_wTB` zAa~T9SCGma3DqIwhxhRIvZ`iC%xhI1_o4&bc}_nn^<3^=(tm&e7St1erky0>d4Y%O z1V9~vZ|dzM58m+|rI+N++VcwN@2r+H`;21ua8{u63PRYhB|-d8}ng*OwBN z0JJN;_6<7m7D<$&9FFa06PH5fTRI1 z0HA?718ckkY*iWqfNDS{{pb&H1DN6Y1vHY#>a@86&S(HNK%4<*1GN06!2?49P>+EP zNVT1V5MYN!N+m#qH++?U7?J`gL}oy-%f~%^ym1e}g%b^}-R@ki^8zsegLbo>TXGk@r?lgE{3><;i;V~em)(KCnpn`?5oF=L8yt*h&it)KZa0L`3%~j9pvl}Yw9p}XW*kPF z@5(@vrfWI2yjo4@U-8%Q>hgyaKmk;Hi}y%tey7Ib6WgyLKN@P$tiYdpz$FR0oFhOI zCLt=dnQ5)cLx@J83A@vp^gCQQrvH9#EIlRTC93xv(UO(<1m0V#{KKilgyT3sj8zq- zHnl<8^LwPXaJRH%W)(D3D<6+~DKRYlg+nT9M{%Dfnv&EU(^&qJq$7=zi?m50(jmo2 zr?w#4Ej6)WX-rN_kB06Xl&-=)Y02-BhTN=P`+|F=KRBlK<{PrJ3Z6OmE3Wwm^cD}v`rsj%C_N^l6=6xu`JK{`-K+_^Ex8?f z@-2n{vHjK6C8OZsmy&OiQb-&}f51`Efe zl%y1DvnGZc&63h1(Hot!BSfMx)q)z+TlAZtv@2_=I|HQ?Iv0JP-K?^aYvODDtFG4_ zIu>bK$r&K`qm-Qxb^@3Op;DZ;z`<#)g}s77P?MRI#_X)LXEkAzgiI_=Kp9?X!d>v}KHM^|wecTpos+$F=j2%9oR!9GxFCD#UeZKP zz~uh=^Rln*tmYWtX~qD6jso1asc>|7w`_?CS(Q=Jo17#rx#6SbQ;d8M5qVizg%m*5PYV>n|<7K(C?u;C)zo7IFH(Zikq5O}uENM8* z-r94zM(ns8zzbhzJ2%iF>6Y~%Oo?`9-C5aH%eE>BxffKw?3N(!1I-+awyfTF3_o@W z9&TRJ^@1ns#!1h}3s1(N7p}fe%!lnj8o#OX#P@Mm{W(Erc<%iS0(3)?G6on|baTMLE@EvSXxRJn$XS*j1r1{%8XR4937}HKAMi zw_K|U{jOCL0^kvfg0~y64){_qAA&i+k^?xv6Ynqp0Am1jzI%Wr?*L&Avbi!2V*pSF z5QIL>z2SgVb_Ag5h5@vpiBSO1^iU#x(;tur4F{I|W)AQ|cAnGV50FPL?g8RnLCE_! z0A)PQ>H2%~VjK7cjKbdyAKpQmD}WOn0y^Pg`Z9p)@2HOR=NlHZ54=dctqcKzrvYsX zrBN_j;n{ZJ%)F3;bwS^Nd~}9>X#D@<^VT(~@WKO@H3X=F20CLGhR`bVbpXuh0S~>; z2i@^~=y$SiQRQUKSR1bN#~6U0H#ZEB1-?A@Inp0`0DpgmPSBO>i(L^yrQmJGhOH0x z&KtS?+wt82j1Kzq-MP%@{WD{WDla=A=n#335&p=tT21Iy{(@NFtIMxSD&DQ0ea;!6 z-aejoz#mDc@mPzN45h+QCf*;m0m&wYB%fTX2W=60L5w@qbO2x;-hmc&}CkYA@a? zjfHKJP4tHcf)U148OmaL4ba7#jdz)O)@NtcJ516r=L(dv8+6Xp$|qr&NkEDqj;|j2KUKu>6A32 zCWO*t_h^+Pc7#Zt z=9Fm4z_PPamzq*Tk?e`J?k+d2e$D{@;IkTRwmJb$PN4pt_*ImMe#b0lFS;S=2m$2V3UV>;G`;yn2E; zybDkW_-8Er0nGr{#lCCuLg$jk=kty*m&aNc1R77YS*Q-N``q&$fX;L8%jvd{wsJt& zf{uNzeM$S!@9DN>J^dDMH22WvH}Y`*Jg4HeFY9x50iI}OjP-rG-MrZ(!f|TnvmMJi z7BCA9K=l)?ivqtVS{HP_$PL{`S{F3*37Pc11wgr=|MaG~_?kd_@~)N3g!yui5xt>b@#-J$7m<2YjJJbOleY z$P0bG5ynB2ZwZ-wJ&+ao&qqp#CM&o6c? z>y8QllYih}8KCmfqC6UY(~q~>cLU!i(0TZMuonC=TCFB@YyXgA4E+4nHx=A{e#3%% zVcb9}AYDOb2o?cM03|DJX`r5ycpdaR5OZ+lK#=z|Kr!P1XMipT-1Ku$>mFq8p+^Jk z;`Meu1||W}22d+OG=LT0$kjos{WjhXF8^YDUTDnM6I30bLyvyY=Qj-+R+6&3vw?1C z%*lB$4*h*;VqU&Fc}4ze++yA71E0SbUyv_OP=a$IESG5^D(C_}^n)hA71@|Wr6B-) z`nmzdJC_4Jx`D#qA9RP&KwEi7xRO3Ed*vCAZY$}SA!Ryr9l)1$^L2E6;kid%WTG(# zHwFmFV!at_-;Mt^{qhXmp)(prk@gLBzM}i}rk}C_Wr@X%fxdqyI*+gd6LU7>%nUE* zf$otPUD4lV_AC5Xje%SH8$xf-8Ng#r)t{z3-u?9knAYU^JY=G-nVok{u3 z=G<pODmBpP80uRWUq_D<`GIsK%&w7Y{1v#z?V~f^Rei9Kc(ZA}Y%O zkUMhw6r^jVB1(v6Cp7e=y|_>3!;;WdOG;d#dx0OVr~ zj22JpL1By~zoAd76&+AR24jven6~_0>B#TX)}FglcVilITV*^rDTi^Kh9SX(XyYUW zAK;uNbeXX7O*PNTQ1L!#$gtZmszwuY#CReU2Lmog6{Xx}X({Yc-a(QRhW(V{D#<7N z^$~rD$3!OZ>Dlc|im6tlN%GoZi%L)J~Ey+DK=K)v5;=gae zPR{kdfJJ^Y{!HgpP3~kI^u1O+iKx&a`Ir+k>36pCs-7gvc<0GDc=L=gdJ1mk*e>2d zYgy>aoV*Xb2oEA$z(BUm1AYL=XWFb>CS&n@zfdt>mABn!LI>Faz|eMi`OPyL{k_p2 z`EQh$_weNE^78wA{RU$2%HiGS;4$SH(uNNWBZT=OD~&Z`JkP9M71oZv+_Sc<5siMV zi9hEa9_6v+_2-$@(GfGDw}AivAOJ~3K~(qX zg+E4be0;T<(5?Ja{{Q{*U*sP@{4M#*@p(z60z<@Kp6^5uznjY$V+ z;@O7BmnJbpOvmVun01$nD>~s|F8Tmk;iI|>cMt%~+|wL5qfcbw89Kyx!U*6!4gRbT zy7sl?Ir#@%ot|Hji#hqcO)l#PE%@pCP)-gV)AiV3Af5imLt_q=-;Mo7pQZ!!LS6v6 z=N)6czpana{NlvCd~Iq@*Nw60hc%=>b3#viA3kTEnGTE|wBS)WC-nT6;dcNXZ~wS@ z&cLnw3DLgf3;=)u_yBsm+hzT}Za1rab_W#%~V1B18ypdsBA18Vnp3 zMQk>7sNHVH!1EfqIvYGAm?zf0 zF+HpC`FMQs;sY{M(RM96nvS+eHrgh+XuDq15#sXeB@RdgxTmLNxNuxH1dpmmy{m9Q zT64P;2omDM!Dua+tx}g*FNJ8Yfb``K$#C|F3}+9^Q09=-$HXVZKfTi>)_4zRd^66pq zYO@0aNT(9e2F>p{sa|nk3n~C%JT+!ENpoha&V~7~UgSMY2FEl+7bAdO0Cwxib;Kdd zjy+++J8E8(@zSHxQ#hoacFvL@@s=GL60`yNiCD9q`fIy4dvvX+CS;Y2*paD{VscOq zh9iWht8h?5b2!zRaHw}<45SmC8mdJ&S(TQ#HDdrHi*PoKDsnrRTaXwQ)`UC^c0$@x zn`J0-Q2I0br6avVI0GRa@3fM(@viV&X_hp37>PbJvUmQQV#&M49vO53w*hvUFx|OhKbm7!bJdVi+xt6?d5^1GS_SGE_GiM`uli( zU+lgn=fg30zTrnB1|3=eOnB1Q$MOykc)rWtaSzXnJ;a66uRLD+hDM9iq%Yw?o}g!m z#5RU^7z9eM`)a6zvdk{8879_`-^c=eWQRZU(U=3z0l@%G-n))?j=cUJo%0T3f%ZFt z=4HcM#Wpmh1CfhHUmCyR!xcKVW~NgBF+4B!*gZ5E8Ry=5 zKq-KZ_dKV;3xK%-HrFl57snSAe1C1~iYA)^5}AtuKLeeBXvP5m0hV~^nJXZl-;Ck< z`4Fh{ocZ#M{thBtHZ@Ety!g7S5&~%Cd2MoD<>KVzPlh2&@MhNlTB=)s|M~^_0y2%m z-x{*R-wiHwM1R+_gLY&=M%K=a48S$-P3L7`4L$m!1KzK!M};xO++D}ahsHg+gEzlf zKl=H6^_x*yZCB*0Q}en8Uk-Ob)M#+ee`xG5f98rlke7R(Gjc+kd)9=xaiH0^X6EEa zn=i<>W-h4?nJT(0+Z!**>(g_pN8Ym*|MipK z`;Yu5;a@fPm#=yVK@7f?rX++VsY#g8s)Ckeq%5QUt|pegLE_O? zNyfS)5owWVRUo-UzwQk57w^?%RlL}=p~7)Z*v!SdwHzqbZ?x(Q^s4PJvs`LW>%J2r z1d!%HFFev5_(cd4)qm`;u%mkD7yz7H1rkC#^ZTSXe@F)NN2M=+NIG--v|c|4sgdB^ zk-tNxgGaR-4;lteAvq%1SdU~P?UJr;mQ;1UMAhqUAyRm& z34_8gV^@Um8V*YW4vy(A2`2!P8vyM{RZbiE9V8QL{C;L!!=f;D zZaj3XKDk~-N)O0L@IZJ1@s#F?yqj|dEKI0Ra}ualMXm_dgi^5<{T8VHvn6;@CW?>A zaN&e-&#A=Z3J?aAiMB~f40Eoor5~9Hv-qDY%kN0uZtOiKZoF~tqrDF%mJQ#y)3%wQsqC6SfyR7}MXT4?XD9_vQX&`N*)As@}@0_1&u z&{g{MA26Nye0aAI>YGG1JeqhrDYf^$0b2*>M;MW>jnji4veL(Sx{fM&_*m^90(tr~ zhf4X8$LC~ySqqc@(T47lyzn6YxDcbr+)gb{|8*{D1tHYUq1Y;6~OD@ zPrEPxcoKm}+6Yy!6U)-eJIqgerE8x|DE`mVrd#+DVl14a!98Z8Ij&~gClpwr|i z16zM?fVS)j2IwIh;2VGkKm;H|o4$+#%)0RaT?Ks#`pY{207RZUU5D7|dMyOV$C_@9m&&hTyKEFe)4?n<>YPHO$$>3% zcOyt;488R}j(#-eZ-#=+o%hHKXs5x;_?bac`8~i_je)QqF~GdOHZ?DA&dkXVXD`aPW-jYk!muzrm^1oQ zI^*GbjoXd^I_JBBry3UFntW+uLB2k9MQMJ2(?xkxY1+3#zyIa;SB-&N{oA;_^t&34 zQJ3AQ2XEo+#TX#57Z8|=G)Y#y;+>L@c1cdX<#^0Hr4Z|tAT}bU_?XlrsIfn&-q~!T zPd(Wk8hUYBLpsKSM+D;l0M?kCkW#c)GSLyu>8%;_;`%Wpid$+A`avGqYRTGCQO>y;*8f>l6gma#FCy+@F@| z;0X=4;RN6Q{1H8fY@~3XmIfWk9g~6VVd=^4m#)m6(wW(#tt+!zXwYuY?3C8bcJ;~w zgx3~NYceaqm%IRgd~5Me4WR*O+KI*!nzNvXuEn~vQcp43E6M6Qx&5|kEelF=ZIE0m z9R)&}j_S$9oVtu5L|i-JQ$3+Ez@cFrpcW)Jn2Ylo@*80(Qzv`?>v zSeIo|XR0pI`2!%Z`1}L;bE+xAH?3(lz4{Nv=c^#A`#V`a+(*Wvt_oLM%$;7)g z*&O4im>jyUDpYN9Oy#F!D|0C&*K6&6&nftIy91nl&576~D955Cn3HrI(Qk!(5=y@k z2DCPRzaGNYnY}~WGCTF02X=rsshG10+=!ukZKMjC16o0dMC_)_tnQ$2vNa)Xt;M~% zZm-P$;d^Tg{NkV9mTzBuLzAI67{~!0AkV8M@Qmh3Wxwv8Y7d@-c4I%r-}G5nS6g|8 zd@B3#oA`OIuMUMr&inl^z|Rr`^?ik$go#*l+06(b35`ZPIiWZ{FKB!J>v&f7c?V4! zPk-ZYG%D{o80fltmp80nvBF>FagTO6PS+}YK(|6x{au##I^F6#%6%~|%46RtA9Jph z&voEqc*ok%cn3WUKGxaldzX1#Cr2o6C2hvK&iy&pN?yvZa?R1L>+B{p{hKg4CLeL( z9(&Fe`YM0L8Y|Ctd{0;9@BU!b7`T;x$jKS_hY!7}9@;-!@g85lE5LI=qk_!PK)_qg z+W0yVmI25FfB}AqO((&Y#vx;XVn7+dkx(80A^@IyKr!#x1;BvdH+1lfD;N!9(tYQ_ z4H5VJa_?S#LROF$Ui5b(!;Jw9186$PHLthH#uyA5`XU#A6HmSaUY&mkvMc-2pL=Nf zPKp~&&^PdHGSSZ)ym*i7Zfvm=;bRrRRsd=T)yTsf(GRo;@j_1e)A$VyUo*fp^U-k? zyDG@7YZmU#pmXM6#zE+5S6zm?H{lw(?o{q^Gkm@=bw%Eonv-u%&k4UV2EI9SMc&#t zCvR??lW)$PM_Ek{0>caLjr+)&jMkVZ zEQ#F#tMo&D!=0M^%3*7z^ad?U%AsL}_^@PSeUgfHO0v3H;#IX0uPRBLGZiXm$E!!ZsdXB|PwCE){Qc6H7}qeNXe7`u z7OiX(JfLMisg{EQMIHc&x`YW~2yt@oWbm|%6&{f0>{hLmLwr3u4`>!(w3dw#U4})+o&xll%di|4H-*C+9XlkDDmoAO*F@-#2~<+&8G%6JP2cx-GyYlT|?gZ zo}yJbZRuFM8e14NBs>4k{GZA%-^-nWU;Oji^4+U%C_p1=%qwp=s0Z-*Gk@<_e^+^5 zd19!S^`qa-`ucOO^mTw)+1LBPgWq0F!ulGh2P`8mecQNOi+anjc0&r!bkv!?zskFtFaLRdXwA2j~sZz z0~!EOb_ZN<(B!%IoLEYS7c1Hx<=XY!dY0n-=*JVRD= z?M8xwZTNXZF6M#WeSKIHZ^+3U+(5&4p+8sN!3SXd*36uG+5y~eOka`Lr_G!H-A$L} zdz&uFcQ;*9Z#;8*V;TeDvVwa6J@Z4)d=n~TxC=#J=Kr0Im*uUEmo-#~{_q3z!v_yP zW6=x!dB-#DqkQ0fQNFkFl6+_8vb?GC&FOokz3H-id*fx@9l(%*?*F!G4BX0}5be9L z@Uq5ab669ecJc?(iEc^8T7^TtC@ycutPj@Zyv2HzKHW%-bhV-;_fF<=3B1A$l6^c@cZVjQTNv)Tr^hS$kkM(H?42O6nVolPX*&!39Cl&0IZ!s90 zP~DN>O-K~R0AW(>Mi3fPlN#6a7dUA*6YG$=)VQusYkG^)?@sTQ!5pV9KcZ#C57pYP z0EeBDH$bUxDhXi>?5cf9sQg6!1V#=y8YEt);vJgf0m!C;5{J=|)Jr249|JI#=+m{k zEd=`*2k00B6T^*I{@ZW!lb6fM!Z$MrF#7oZNG@krz)m)(pJDb)|>(H0Jum zgp}f=Qiu;oHr6HNm#{NM(mS%Tc2!k5H3s;u3&~+A#fPLeX01NCK@Ba!(OA3R{`W8j zzJKkF6>#Jr>DOH;yGHXq2B-|seLOt5k}K~WG&*3t*;of;3T|(tt=>W7SII~FhG4&P zJiwHud|ZYKn!Lm72mn}-slsS@hrA)^y;)zIpMg);#jm>FOkM}2yi=J&eOc0)dD4*e zMq|KfU8moQ^|(<6(~qskjql$5J?m|2jxLZ1qsk2{m)~Wo)W40Z_+Bd3L;L@Vd!MJv z4`9D>eO!M3uIQ_^!NW=@p9^c2<6U0q3!Ms{(Bz)?@K`klZtdT3jDeqi@Gbo&0DJ&H z03{w(fH+_i!07SoYBYo%X`U z;>C-5@lxD9SSb{DDB40P?oM%cr+6q{+#OE7Gjq<*%+6%;XFqe_&sytRLeCw252Joi z7U*=>FTW6~u=6#G>pSdIq?L0lb!_Lpy?)v}7OeG}A!`(9p&+$Be8?!z3BGLkt6g3tMX6`JEgmCxFnE=a#q;=R|r*~t_rl^aPp1AE7!6X)wkj)KDHECTq zF4|7cE-4z!L~P%Y(2SIp<`UjxBu+*dP>l)c?4vLtyY3Y;>Nu4xvJ%g5T)CCmV3dl9a1P|4 zce4`QK&>U&c528;%Kg+#OG+GuDHY1iC&<9{I)1?`dvaM#z%;&N8Ik_;T-LvvDkDQ$ zU-wqL3k<*zVGuk&rL+Luy~L>n?an_l8XU2I#3~yqB@r0>q>iT=T@yH1bwMb3Ajs?#x|G)PLB7!K2 zwmpWyRpcF>z$_7^ri^+_uyR_??=N5$7%u@XO+y=m*X7wM7Xh79;4*T z{3A`rfVuR`W5XkSNs!Re=N1KqX10}2am??bRueLFda1N#_e+7aqDTDYR|_|wP|yKk zhmuU}?dF(teuqdxQmiKTH)Hy*HkeUfRnjO2IUN#r%Ggy>DiBgvX(7scAJNJFBMcY5 ze~icXY4-B*nNWSJuWR*u>5@Gax8wF!KIL5JU$nvM;Jcvy&8Zz46_TcL!>f$5<;E0tkT0BI^3|$-GPeA~7Kjs|C+-Et1HjeUu7Y2k=%&0n!>jXqLp2 z&+bX{OZV+}u*!4CX|Hxp4=NOUvMr}5SS#nw4JZxOy5+$+J!yrIBCTAkcyZmTxWylc zQa5O+Ur*}}kF=fbL2}TkK!@N8Zue6$den=2P{S0y9KoiM&83G006`*SLnr;6M?Yf6 z^|U0!Pl%S?eL&?~3F_f%TN&KIwg9RQse_Qa5i_hgn4SDGfuyL*ZZzk>T zEK7I_?FsbD0?Qohv50+_=+BGUb>i`>rfLwbH%|~bovcy*fGW}^7YY|cd&f}cGp>M1 z^2wOd^a=#4;>59T=QBX3`tpF_fBav8;wxrHA)LZV0!9)irr7n~Ilmiw`#+FP2S*zu z6g1((CoQC=YSCknV2wUaF-zK6st{y3A~=I~HMZy1D-8%1b^4Zn5; zB(3%9r;LvZxg4^~-BVY9FEZ=~^~PTOWdmOK3E{=!Ews@Y7u2K3O3a6c`L@|GIgpF7 zQ|JJX0hs{SZQ(ioE*NM)z{aj}@TmT-79-6jujh-tO6EIaSz})f5A{9gh@48s*uLCx z5udv;U&Ir8{i9299~-BXE(||G1zUkqa~Br#>LGei0| zyTyhwXidSJQ9V;%4&vVHA3ah`$T9Uk@Zp-ZTsBdk4$=MG!g9_b+9lmLukhHts^T6_ z!9f}*eAB4q5Vc#dIVzXFA*B%X$LoFg=a z*kki#M-*vtH_RS~tJW!W@;_x-hQ@H20RiNR{R~XV9sP7ltFl3jXnCeK>F`@0z125g zywK4P3bzapK8ob}z6VRcF*jG6BVlniPvtS*Zo%#ri>7w5myDZv(%Wsx4tB}5YiwlW z-uKH=DkzT%;GbBGv_oBtx-eoOStxLgEWSpI5v1EOObQ&fa6=_;xv7D@3GB<17?7<@ z9Evw2x?&J7WQ$^e2L%s30H?-i{f5gK$bLaKB7ak5`i`E-Z|g&jg#G zAc!&g&MO1dA2?imjXBUc1L71hYafI@{?1OM_~$m*$#e<4JC#!lM8i8UufK4hE+e`T z>A-t8lM4xopSxg-4-dS&VS%2atjxsiUYf`5g|64ysqM&{-v0{h_B#jCaSy;$ zTT(U%o#U2^G4KbCnAm9R3`Y`Q$>eM zLDxIjCAhgt>g*%|UxfV*)`kho0gtvh?=U-&U|@-aNY+Qtu6F?XzDw1FXtX01_#WJ} zDvA@-SvnEn*FP0u6K$o+*Y7;>7(bO{3K|^j(Sz~ADV!aE<-}BR4blKQ!3(7LcKnbJ zSm>AAL1|6hm=b)pJ*Y6;szTvEH-3SR2IGI&gG;2jU ztg4n9jLSE({}hn*`2c%0pTzy=0pan#ThbjR)A{uns>;-`6;jPXbmIkji@T@t{Soqp zo>=KZjh+=Q2EJ&f=v}W$aZz-{NFn7##5OzNEfg>xyaJ|@$C+$< zfpqkoB$Y1A8ewk@>$!{Py8dl~1GOLT-zbhFaDrD#AsliL?9)}l7TwKRd1YKy&f7Cb z5pSJ_6qCf&!i$yNI`kDmy&e!N;hT1%{wE5o)C0cJ}}lv+MV zdi&Y#x$m{yqxZ%P4H2z+phh6$sios^KM4e3g$$qkI&UNk_Y8b%;6*WsZEiog&rF$o zRX9-R`##>J$c9?a)-WQcZq&(LItSUt6gZ!v*UlAK5Tlo;;Ml*z2$Nqm4*H)H-A-87 zvnsXH|NJ*UiURHP_?#0{Cu9$#3TlQyVL#R)@(AF)Zm8#%x>bXbNisUt(_Og`sZR3F zq}@x9!Z{Xo^lmd)EdccoCnM4fiO8$ZIRBpu5M5Lb%*8WwUbIxR4&}@B_z0Kwk~jm%G%j>$?>DW4BFlkjQ24;ht$GT?c7c0N?d+;<5_bC7ifjCm|$OJT_aj~#5X_#kza`JHzl47dB@>xSacSu-0`j?G-u9)QgjOXed zE%DTrv0+Z_`E8_)I?NQ}2Vgc0jAB_3sR#d?4SWl+fv z#U8z{LmsbE-Od{gCyJ#2Y%GkNYOT(SE;Yg2w3oWOHgd94b3stX%Y>vJHbG0Fl+%I4fPb z9aQ}&`{8KQA@epv8Qb<1dt^&b;SBkY^^A2+mHqPR^rhD^Lw0s*4k>H191h~e#?u)~ z%*GkNd5rQTUN%|tNFX2xU?9`Q%nu0dVQz-RC&eC`*r_+1e0moBgaDxwgigw!?C9PCunxOG7iF@RoBgWeM&w7|mwPN!~{l ziDdEe$ln=nJ3hN6ICU}iMe4PF{!-mDldx3go6aH5ZqXHLpqc8->4_?&NFEAQb{vCO za@{b9(RLQj41ZCI6Gs*KLzWaeE)Q#2&M+f;i6Y!J=}n z&Fv7)4$Ou91sviW4vX2-xgE;$yCq>x+g&w((tB17TWU6@R!%xa?nrg#Zd}wZeKVHug=8YEd9QT zF5TL{Vdayd>YQ1p>lnerT@%JOK8dp2Og;P@vS~w%Niqp%J!3SNF z{Q>W^frS_e4jHSU`_)eplV{b>Yj*Uw2M^Wtx>u*KJz4fPpZ1Faob+(Fe)=D(>GXs- z?ytLWvSZ{Se*tBlCcg^F-=OgJs<&i3JAD6z4(IXvybUT8EO$n^`DO=T>@4-EIBE=; ztbT)h*LHF1hdK!uBJ^~D$_Bq&ZXUizMx<(te<|(SKe`^GvjDZWw%z~&FjxpF5B%9Q zH*=v^>)$LyXU-OF#Q8r_l*u%PPZc`o1KqBtCatI$w{CF}sLub@hNxWyev^VWVNyFF zH<(Ye!c&C2GQs*WFSyt-%%wk(*!%w;J$vq9574St`jVz@$&t16I-846z5%j?f$@Zh zw}#y&d3{D-ig$eqrGm%bGaT8Q3m%g#6s*S(%g0HGZxEjz0a<6NNv!^Dpg%zkS6Pp? z*CD-s{o%L9%a_TIHVNx~+x+4~^RQFqtM9J1#MN-%ibWifr}MkA zev#}-T}%A4*5}9~RLfV0?(=BSIzDZrr}1h0eCRrUR*E=m5+41DO`=e-hLWQ{vd%k$ zov>G|CwZVCM}l!#GnH4NGDSgK=NIwY|Lm2mzm;)HunaDnwy6D^=0%WG)vLT89NxcH zQkpv=D{c`l2Wneb;w|fBaAoO@z9c5Y91`7&L!Id42drLu4~m|@~R+zvb7uUN>twxB{wn>vwrqY~4kd_&CE!ty3v zipaL!-Z&zfWQQ*ORXX!sbNT&fN;HBD^Wt!nfX2^<;*JG>bFKm+_UMws7ARN28Z^S5r zeCmnNC@23e4hP&C4v3QCfOzVBRD*J9I(~Bpxo@AJFN?*tc0U<=~9{guEO zLIS%O0=;9cUP*R+kM~8eF{=*!7mB~R5a5q6K(&F^dwn5zc5PblceZ0fChiyafm+xx z!ZC|Kt;GV0NnZM+L4GjSI@`%Ny(j>dkY}b5!YK7=3xcG{jS>oQihf4Oo;z?@f{=Uv zG>y744SC%P@5CeU;%M|M7{s+^i~f6W&_FnYDD38FHe&7;QxM}sagN##+;ArhxhuNDFCV;hdr z*z~jsYzX*i>NK7p7DBpfc*dzCjnXdj{wZ;toATe(D{qYt}@1BLbwm;I$^+4 z0J~<=f4g0F6Q#E8N?+4JeMaHW>+$hKG3Y<1+Iy7WL-}u zp9<~ddUc9b^w;>GqO~rp$?xw(WBeYO7(GGP4;}+Cx`1YgW|C3S6Bi#Ap_V%8-xql4eb>V!e_p77LZn2wU?1ppFrVV1UUqt0-mF zgmRIK6`0EmzI_JFCBz_AkeUV5IOaXai4(0*#GflpOj5r5s5tZCgSt{=y=D?=(&w!L ztnJv33b=F%e4Z3}5Cj^!>e~?9B}QJpD49f7e($}ES>3tn_AxZ2j#01}zcb$;dbiG8 zIuT9#KYttLec?s@i^O*+Iq~g}=FElj%PR{79=dPv9p-NX=A>RxVf`~VqKxfV?epYE z$yxX)YpBdQlwJ7M!0{467N&mNP`UGc2giBPKw_TLo{7$Yh{;T_2b-RuL{x_TE<2NU zMQ4SPKZ9AZf2DI|*vvPMft5gnU(4S>#LbU?H#8f6)x0VDlqMR?@`UtpQnvJN?W0FT zu%)MT>0oUh4^clf;G^6^j&U%A->s(gT6WRsq2OJrkl1k`f{!pGv-ImriejSjR0#?e zihNzB%z#{7jh0Ggc8+4PvZ|8Tj%o&r1P5=6r`mADZpY;sIV73*N!5EC2Ki5{luuOX zUuJlJ7#*FMS6=^I4;x?uuu98_J%6JDqeiVEj8Ujr?AOLgg@}yEGHjU6)@TOO%!l+E z$@$U(>k@qv%CY9QopVD&iZV*Zeh;e2|2^rYB1H|2^Xtr`5&6uv(v$1Ofw?(_EXJ~J z6{}3ACZ5cS6gPNy&Us@@Kz{xo$s;IzQVJy{2%b5tOtaP%x5LvWVyQUZy9@r9!RXHN z;1b6sL2XhNbD^HmedprJc|JX`KW(kG-VuXg=>t?J8{3qPqJ#gj+W{t-UXF(ULDnC~a7RL@gR=q86;6qUfWy$Jt3Em8G|;@n6+BL;$mV0FVprMPdW*0hUG?sP>#OX8M2+%=x$)E<=#(ZR7=X z!1O?x&8glMK5SchW1yi?Y%^4U8O${}J}{I8Qwo%U96bA4_Ql3iz6{_^_5y36LXv(r=PHE-l7>JVGorP`>9g0h%368zF3afGZ){ zZ9eBQs}yR>Af_y=enuTD-tf|#@*u4{0cr94o5$bpJ-*+=-{d@0{feMa84UIyKA&Jl zcMT!2b;aIB4QH?%ct)5+gs~U0)#gm*uTl{AX(yk5|NWNqDqinp5!W*2({1~nGMu{x zijw~)plPS%dXGjRyS~y%*ur$peOy96NYNgK;=jSsJJhvaDd`l{xTeOgZseGa^%(NP zWwLSQw0bchfZ&2GI`7!vE|-l`BP_S-%~thdF4$c~l8-G;Y2Q#WzyQhQ=dXk5%caOm z=dz`Q(O-Fhyu#^|(L=|HvZP65OYj$Q9a^x`z@OXYlCl=}-($naI^Xn`Yzg|`5iq^3 zolKt9X}&TWDoRlNGMn9029Ot1;1$1PenwW`&Z#dSypEzN+tgd7x5w?II*`BscYd1z zKaQgNXJ;*z{Hr4@3}LK60gXno!>I3`g+Xv7HZbv1%b`BAR4>P@HR>nT{)J=zas1mi zld12&apH`&kNs5rm4X24W|=kdOwx^9of{Q7uuD3Lj#MuFTtPO>ktqJF-?wSKbX2Lv z>P^zzPVJSmfPZUPmP*y32b$7*6ts@m4ndljjF4wLlxJ8|FVXmj2f)(`WA!}`!HsJj zvCy^eulbpxmK}6NJU{aYCve*;S$~`Eta)i%)v35*XIpeE-`2J2GfmmAwktGz-}vD% z-46Vi)#Tg_^_~7gk1&fV^-tS^@l~(w?Q#Y+!F;)EA&ZA2~?;6jB8yA?n&x zu2QX0Mp7UkVjCGzpf-sHXRKnT-LnAx=r!!izcGW+*&`FWZ3}mv%RUn8<^S)S_Wje6 zx40Qy1QYus_wlk!@5Bbab8P>oq3%s=aTX+x|0U0Ap2BTluiMRlB=_Xpj=Eg6-mXho`*|VtnfJ&%kLirgGa4h56Exh6mHE zR~>=^SYfwB&qf`O7RkX6fd@U{ah#vO|2t4FKWZcR67z{WGEQ(}Z-hww3k7~BLHsr2 zhFW__R3)G=@mHFL5DYWXJ5ZEC&m)Xi!%#LqlOqGR%*%I;^=32>(O0xT+X1Ig8t;55 znm3*0BNad%65!a35?@3EqnyOXL+u0`?MHZIu2V<*P6donaKti^WHD8tXxf0ihjJ(G zA+$ew;f%O?5%MrTC~=N3zB$z(@>k*K1HF0u(ly3v^g+x;Bw8B@gv;zcpN$)Jm{`SL zs$Em((US2xqFxFAm&fVE5^!1;=g|{kaE=w|9mke8!k=6kUtZyQa0XkQ5Pa?WN>Wu) z6)7FJ^GPs<>2sh#x5?y(n5DR_E%03}0w{aYy98YES(4X8&wz5OX^y|Uk3R?Y+~FhR z8XOXI(lovy4B_O%QofGj)(h&Q_St0@%ujn+|C^Hg{ExF^wM6LvxdznPl%xKd72};E zT@zKfS@#!1%thxxhR_s}1=`127koMb{P{nZVSNI{pMGcta13R|TT$Zuyv!~x*U{E= z+CJ|w<-mOQUXdZp6ER6~Ko`?VC?}kY&{dp*F4EHDlDR7|M-_gP3;$3V1AF6Lqn$E~ zKB{#m5Ct0>p^n#XWAIa|Py);zcZBJFjpYzC$w|SVYCfg);}^Vxvv#_8dd9gB@k-ZNB__0|Z8XjfsnL9o$pQj|^jZPCcla`NQGkKHBeh4@&^Il19wah{}Wb63Q%2J`v1YwJrX@?4|_j-ZdO3eKBwE-9~lT3-SL(M^=M*d{fs2}(} zor2=k1zilpf_mB-<=R9GL*))~Kl@TGFauZkw%o$m*)pb+7 zfzjTy;hG31d^t0+gX!q!HLE3~?tqy-Xvf}+_AOEF-S4AJfX#SFHi7xeO<{LXLK(C7 z_OKiIlkF)5&#Ml_p!r_6A*?)6aLzgtykt~NZ=7IJ>g!z|Hs|Pw$&>4cxz7TZA5^^y z`yP$2GLr=AE&*-V%M69a((i06wwqI?POBdNlILVkhXg6aScwwsOX%@cwV7fl5WuIN64MZd&o z3H&CEFX1S{w^VgWYHO@>JgApI$K{4Q%mpT%jLdcim_oS_eWnm3G&d_%+ZkY_Y$K^2 znEHAhDRQ%l%Z2&Hl7nrsZ1HL4x0Bv2s9bLhVX*>hbkuFMJ*oUf>G5Vc{_pEeg-hw< zF8SxA7JzyH_5m!}t7z7|BY4o`8t3o+{kwN?DR?idGw-zvi%d}CyXZ+ zY9%rrmqT|HcTlz%=(Gs1DHq9CT*+;s(LljqzlrI&Ui|!3GY~Fw;Apm*lbQ4|xCe3A zBCq*ivU3SD_Cg1LIY25rPHcT}CQkq!I@X=LY?)XO`Nf)RHjszYBeXDXAC0K?r4m|m z*_zJ(y79gYeAHlC?TdDTo$RdD&oVX@K+RWz^&pSaTMfxfU_{EBeXJZEI`YMoUXYMnuT|uuNCo zPi~%n1a>&|l7^(RFg#g!m+eu2v{Ni887_A=AUUWN5yi^^?VQnZtx} zl}dAM6g^#f7HP6+^I5KX@a?A4BWzmy!_>gX@f6y5TT7>WSq2hKnM7-z9C_*oQsqfj z3m+PvJvkf)Q6YUqM=;N4hYe-4i>-2}ZGl-(QmV@ z^~lZXcOfG5F1gGZc)$puNvtO~BTn^zY2Ow>K2#6NYf<0vX8}$16lPKUseyn8@Zk4L z1sePEx=9EselnYgB?NfwSccSQk2#H5{H&zU?3GC17>V%fSz|hd(@~b;CtI!AJwd$ z2o#i|TA|)wzHtl*q+?Y@-W$j)Y?_7lZ`J8@MnRjv`M3TB{T5{ENCktl(f7l(I$Mz3 zvQS_(Zow!ugcg~D<$}Sj*nJiDEK*Dk-?-D+ULSiKO9f5uN69Z;zE9+#%@hZ_w+;)3OPwdM0V?Uf0fE0eWm&X}8kis^edE;PuZnv zHi90cuCHm|BnFa>Bx0gz>@DeMum9&V^6C6mTcEXW=y;I2x^R)8;lBkt`wMX$tu=f5 zi&exYbFZyfyCc|SWbu^%bL|`SIuj-mHvet$q-lo|i7ZxQJFkKp5+=y*Yu1%ip+a~V zxDQ1Z$U7;b_e<9Q;*AQE+}DT<)e8Y9AJmWCxrrddXG3qpi553qE9tU#tO;R{MEZ*w zc+Lll`l_Ry@z?er>_RchRo*#F7UMkd7f0tgmR&mr+r;S`w%A72$ZU+u!0%@NVn^lU zRc3_h=#NTFDEQy59_?NA3b)byut7@NT!;&K8?7)D=EFk$xjXWKWF5MHdnYG0)O{I< z{BvQ~w~WJURwo~i**Z_L!gdf@HWCI8U)&U7{(fuJU|U=`z*$vt#_BM9TQ3kG9W%zV z_zO$cjmPiVEh<(vI~d5**o*ShJbyBgLN@9ongHoeHO1MKY-PZ>?!lS+18xQE%wlB!Ml?(on$ZVCyaR$&1su3Y62e;^Lvu zZ&YYXr9I&fjkn)E^#J84!8*9Z0%soCc{k?_qv|JhPhu<9;%SaoqKYd`jTvqT!&5-u z-t7&+WqO=&`|Y*ia3|;Ei1DQPTQVS?QMN)I11JVuI5oHD?@s6Xr?DoH!=}5XpNdM) zRy`%J74V1o*;W7>LQnYIc)p;|yLSYJ`QJB+yx_+LonZZMmpiXjKDp(0C1ScA_qz8WyE8h9)?@!&R zAWAci%Y**nMF`FY=V96Yu6P6tGL(x5_>XgtCnm#mw|a!GL$RPth{>sA5N8`A!bApm zvmNTqYOopMOp=X3Ul-EtN5~==!&0GMeCb984F8V{V9SjQTY7pDXA&yA$)RJ;_=+Wc zb(|<8Kz(oFfcoo2`)J$JNt)rfrBLF4bMOhH8FHx6pr@N<3a!#{Ks#ObfJQ(~+jbN02?>dQe5p7$6L}YQFf~ zI@C5Qp+B9rwG{K8#hldvyJ?M*BWIb-Vfv8gH`mS9xQ7FiU9#}C(|hz(c7rl+qz~x8 zVU}laNw$A{Uxc(>O0jRLs?#(PZA^E8$M5#HjF8R#_rIE!LS`MaG4S@jQY6_B zfG4SwOA|v^ER;eOQ}gT;ah^nZ20q#SlyOwe!YdoUG?4Ke%siik(th5kW1mnrZW<%D ziu)5~6vw|aJ}CQ3I7n9F){*c?Ga$Gc>UUA_rsC+74FZ1 zMslg<&4E{kqWT%Z3?!9m|Af>h?c-`BR7gc)B8D^019K`HaAczL!rv_VY#S{;v|U;%)b9Yz3;>PG}S zI@_QoQj##I4c>dXQ0hD^a_|Cr=htR1ygv){?{CiCCRxCG4$OIH%LnGVvn#Q;FQ^2a zmb{k>+Uths_P5nZaVCTMKO2SMEWl&dyEr@S%4n!V9ZyLvlueNNW;r)Va+*;Kz>aoK z%J;A-wM83xgC8aHAb;Z9|J zL|VVZrS?W0%cHRPAa3L{K=d4fYTM_#NpGAei$E6Vpz7?O>+SXv4ef^zgaz}6ni!J5Bv1X ze~?ZT+nL;E4K74APXYnBIkBw6%yi9vyuJFVF2Lb{>>*;zX4{Ly?A@BL(MR%#BVNQF zVrOLkigqYdkDjmE1d_9@7B~9J1l$B(QJlhnqrgApe_oFxXnJ=|c{gC%5XV@JIf;?E z@iVk-Z$#86q`ivT^wB)nxRdL$>OO)MKMHvm>tgEr1Y>pV$kBlD*F4!WXck6iZ7#|! zvtk=+`~}Ww9466xpe52EgB;*I773j13a%q65YxDg=19_hzV-x3kYXCI{dgab{{{Zh z_9Djv(V;ZPZi95akHBzucSiP-2id%u}sKwp{4q%$^DU?lSYf zHm{`2WG>LA$ZN465#<}#XTk(RmT$I;XUd=C^lQi79aZgHjp>-Q$ql1EANGNhle7~^ z)&_aP!i5dnW~~dn2EWH@YJL-cWBM#wGq8n&)VWg!E)^Z_N}eSymzVvMT>J$~2**TQ zJmX)h)1ZNeOF8>6H4%H+@z+{LA~P{YKWG#T@VD+5d)J8mN%frr9!v+sqm7eO*7g|q zpJoZm_{>+ql2el41tv(A9@}_5Bl3LguW9bZj6tkAJbUk-+Ah=tUk_po@ZZbH31}$^ zEY1Fv`=&8#R;whid{{$lm@51UyE(9r%2^Ytf~1NjurtnDil-fEI8v$S;0UctfK*7G z56R~<7gvvl6{7r7Q`7r?kM73nw>`{P@BVcwMwG;lzt!?<4R!fMZiC25;q*gUi)Cm^ zjA|OaI!@#5}MQie=IwtD`GCjLgDHF6UsbCY#idq*s+&wSWFv{>*pY@m>7)15L`eWhedl=ym zaBVgMtCR9C1^8?V2OI2x*b;DQN%UPj)I~EFs6|G@#XvuS zTjyFSl#hz{%JU#9C`Vn--nTLU*6cn7BYl&z%t1H!yPgb@FG5}UYTl5DXH%Vbc&j*{*O zc4W7;)#k3@ep9ntm3@PExXXXRL;(gZ`t2Kftv1O5`a^n>g`G-9`tL2oZrr~ye)5f~ zOD!#Hvn=-?$Tt)-_xxVK#y=gp^Hukwqo$jt4bavW99qO`ARAP|?2TDJlW>!oK*m1QSZ@VjNqh zG~nRdBFh1#&T5r&H1FGd{6-saSa#{y{2KpV3{NBiX-^Kl23rxd{2Y}Z^HHVn{p9Hz zS0mn>7}?jcG?QAg2586d4$Hm0{&80vU|{I+aq|nN=5|N%r4wQWTSTKsmTEn+s{<7U4 z6y%T+oZEIfaos1lZXZ-P&H7OjIoTorW2()*IW3W~GuF@5b3nA>M5li8+qv@gAIcY# zijC5!I8KY-raaW-C4cq{_guoeju`edy}u0SSl;HvP!3eK<$r$*$P+Ot9fSNPi-wtX zz12M?i3DXy?oU)%!upL)WkYdfBS|5+ZJcExC07h{>UY@2_uP!SG=5qZdW>!7S=Xqn zSrP&H69#bHMsm&yK7%O&5&F75P9hEY?H*F{yXk$*0Ph%^$xs2mUZ+mZfETmoT|Ig0 zrs-Qfn#$)v`{tSZ(1LUON$gCQtKYBlW_%D5-enQ)LqzmnipZO?kq#PD+_nzZ{4Otb zq1b@GIn{iR+57{V>smQ<7CT>k;1O5dk`^)oCyM9usA}A)H;1V1i}sd1DL0eQpQZu3 z>{jr(M>=^j?=AKlmUR)@+2H?Z=Yl^XrGVceJ0@vCV4T5y8qt_lxTkYXa=6#YJhY85 z_ADr$A22$ze$q~fbQIALyXN${l}+$Lxt=t{fO;kxzQRT}1xdx~YP4G`D$_M*Re*>K zovI(+AG(Z3?2-H#9)1H;=ww7LZeQkm{RTetWPH7sL;cV-9{6xSKLb7lY?5J>P7O=t7cRftfyMRt@3-+Ol=nXNoo*EP6bYQLK^Pe>J!F1(gZI5S_?i(4Wm%Y+E zM)%UnjHfieHFgp_j4+VIkV$Bqq`n^-7Q;7OC_0SHskk6%C|#1O+W!Z@02hj!Mf0sRQMti zH4n_~0oXqFH|9Xi0Z|N4j4vjVh?_{4FB}tDb}s&FTBJbmG!vEOyUcHA7!6rM@hHjP zEigU)LNPQ|$#MQ9*NlCS2nx{F|DmGfkor!z9v&7>`vF{ZmXfQdY5&!ApuiHCciGiX zJW#)17>uf8Sg1_Gy2eN=CI2V9rTXXIsFi=mw_IS^igiZbLH}PoJF}=6tET)XhtGVO zt5J)S#n9_I9{Oq%LR^dk^b6QL+>vpH8C4j{}6N^mF#wc0W`&mcI`V4&uIv z(xP0cRwqVmdC_C6Yd^h_qQ*92-x7WNi#^D*NEl>{ zXskT)4j%XEP^#flXPe`#aRReco6$bAOnSW;1bSs8QNoKh}| z0YCD&djG_e*&|u>$&Xn*1KxAj<1+w`4HOfTXn_&vYwTDxkTD=XWTojYy80Uq!YR!9GRg08fr_*_Jy)< z&;CVvJR89%;zw~?dk5jTmVKFj{b2J8j?9osj4TDRTjOMqSC6w7winU8^aokwNpnTy zcV}36=$*-P)R<2q(*`E5xZGZj-N0c?c=>o}rwg~@I)PA03*Z5En?Qhs9N$uyBW&Ad zgOd$J8*RSs{%Yfbh|W*~5@w`Tm_k3hICVa@6EH*Sk5jvOJ81ztXHqDQ6&$tv>3Xl7 z`eCC&;^BE5ggB9SaTo-fh$t6`I+^kaXc3o4ZICR`j|#3V{B+dhA6Tc9n1Z@xi=+BN zoKcu3K>g{fzAC3}o z)FaX52suEILumbvzctb)EvefP*ikRl7mq-z8U2Ur1})E^nLL;bgBMEb=0<0Rg5_9%FGYXv4Jr!6}NBggc(Wx+X{VL z#H}!0c9paD$+Lp`S97fGe^co1Bv?mY$6N;-)%|x5H_AUrSN`k3^LP$A_KAC#u@QaG zgy}3qKl2lA%C?!LNr7B8s4CMQs2TQG2B)eoH|vlGwlhc`hAVu+qHLdh{mNO4^|$i; zlKT`7D^*7)Luxt6q&wHL1>&?RM0=;)sG#_zjDIVW5lYrb`1m610XV;kfck3qw`pJu z-q$j@&88N_EhcNm$pE7h3MX~48T8=amdh@0@^tgEm%uApb0jx-U?-Q0u97&}EdIP? zfK~%dPq*E@oRE%(eE*WZe#+X$vosc5jixu4zhB2>Jzw~*fk}snV6xx?Z;dnxlDyln zG#>XEq)9-9W7X`d+knHHGsM1TSv(V z9@Gh!h72;&6LJ$@@U)h53tBF_l4u(O&*~xiye>3O?avhp0@m;%$!D8~oyy<3?Ueu< zR2Sgxq=23T+z$SW%L`?Bbl8^(dKPkJ!{EYHXF4!U#H4_Ju4I3*8!pZ+AVwFmcx&4FWQwq~l$oP9jKurD5tPn}E|Jd3Qk$0gKf4%Q$5EjWr%s`p z1Z^bWQ<_CFbu{m|l-&AmQChw^Y1f9SCDrVv2 zj7(hv58rIhqzddtx10s2jKLWLjq^mHk8=pll>&3*MxmY zKHn|RbJov{Pk(pIz=DqTMct%-oceuGy+2<|;nlS!g>(#tB!vVuZ8KaV#F>`|wPzJa zX+WV9Kh?6V*8I%?52ga<=^#<(l^2B^Zyj7jItX?a5cz=he`q?Zs3`dF>(4O2Py&+D zAP-#<(lMZjfOHHE($ZZ+3?QILr}Th?ba!`$AThLbcjr65^{)Q~H(UX0aprsW+558r zq$c1FnNA3=>fT6@0_q^kN)ge&8TL#rY>zN*AP%{FT9@|&{E<%plVGL#?lLm%iB9^) zRbtvU2FsT80-ml}3e|S$a6%V#;sBF6Li=W;*Y;8<0cDF@8elN9Zn7kel00t#K@`Dw zfcT3|ilg_ez-+uXv>^&@SLU_y2Ht>tfL<9dxFfC6nw9V~kWP(^C{G$9w%bqJ=OwY? zrTow%4?Lf=`il90EBtGsAyKmA&_Ioh+B$3M81>}hU!%m3f;%VB_L+txGqqVvw9WFF ztSs;%hyi^QMldgE7RmQx!Nv%YUO2(VA9@HbyxI6%v)W*d@gyLy)FrYU=k7&?yq`Ac5onI%3E+a-ztHvxVA5x>jAT~^suO}`AslJz3wU{IsTortN#^ZRPnfaXiYDVoT>M>L8yW@j#qN> z^Z>?p87GARBaw6T_`rd?4~t3bLnZ@HxDHtcD_Q!H#Lh14AxLWBEy` z@%-$z0E;5=oBRvWM!R1e|H=p5`Mp5ClX*} zOW>c~$`mlB$H9%v9O4)f|C;Cv#8I;>u)%U#>vn{^#lgndn+pi~?%e#^GRVYC8J~S< z??VwL54&w5pA3G0xj0L!{t6}^lZiwX`b)Dn%4N{_4ovPsQ=-Xq`%OzL5UbR8d5c4!9;A6Pm<@S^M_m?_o&WON=7 zbV4?SyAB*|=^moFKw#4ZZsewZIk^wxaF%zjC)wd8KQp1-0vVVsfqO6st!PeAB=c^b zef(k3a}0usMj?5oodTfbN&r>L)Gp!`FQ!jK81xFA;*|Ps1WceDwxYA`_%W%ifACAl zjf;s=z|7@J{ON?W(aE?McDpyS}M|-FCsncPvQQcpR4D7^Xt^DAEyPUM zYE-8O*usi75M{NpEcu@Z>as4ojbjXVMGIx~xXgR8y)k)_h`#viQv=2VkOPuBMMhbp zOAL{KG;e(}h(p^s=Z1@!%`vj!$oCp<{cWKdA0)+sbHp?Fa9y8e%IUp@yszyFn zk@2u5+i3K?E>iqOT~W{KsOD&@W>f#~_4|lmcGUt;_TSV$q$)8Eh;8NA=;LFANVo_d zmt>%W@}$b>Yfdh~uRu1qv+t#XOn?~*YifBx7WDZMqGERP}ZC!Q-#D&e>8X;8L?vn!)l+{tF@mN@LV@2I{b@cq+6L0?71ON9a zzVY!1c>6lJGWXmLbi|I|fpR@ZnFfVWoLoQ7_&44?AWFyE8XprNB4oaOYj+^~Qon8Z zqX{(Y(McssqNRS8c4@^nn&#lt1JUo_K;@bJ^wN{EWMvT~3~WV9)~Tt_i2H$4#@5ib z7>%pE7TPUgE9=}LN-z69tkYL*StRd*2IsR+#k1l0f(DxjTeIf4oTuHbo%OyCi6y9*PGz*Z{hzW?fKj`+Tb ziR$LtF>o1sXEQAhrn+`TT%cm0hJ(K2c|HFN20J_jNnHK?#|`sR$=YB`5hRd5eSaI_ zsJyOs|Mof_+;s5$amj_p=k8;{AKHZ#`{={{N)~*N1+#nDVRoJW;Y#qqXZ@_UmkE(! z*BA5AE9Y&{>*yVAN7%5$abml`5uXB0iUW}oy1g-!7ya0(jet%3kD1?TY0SS)96=yl5IU&P;&Nu^qHDLeK-oPjxkk3kW3ZtwU zel+8$!_ zi4gLkjB8-58YakJ*Ky(qm`r%!WaJhmMg!D*-rmI~-ar#jQn)6@Y3LhP0BrTkAwdI( zL6RZ_&WAmQd(joeSU3Rgd7Ps!^vrH!Xj0vfQOZqrV(jB{TW2U~nr?CzR3+UY%C8(0cc(D$+zNRnFYN6dp+ zHE;F{`bMkcc=>a&lu}jAY$qi|DHwE8INDk-Zp1j>I%HRoX_3z&X%wWJpewV6v;O^0o5oLUIvn3Ctibc6%wtg&jFrSimZ1HRPYOwANH6NH#Pc7$W`UKp&01|50~NG_Q9 z)WLzY*`ZsF6A2)X{N4Z+~*ETVLc6 zv=i{|qMX^cKbYaFlh$@@Z5Jm|}GoBF6a3D_L7CahF zG{nqIdHG!!EKg7gUe)d?(kWCG{kTe#65J3bM0p)??S3P4>T-{_Gn+{tjFut|N_mrM z8)3mcL*&{cwE7U~PuyaK2i*Zn+*P*SJgw2DG8o?xKSasE`QYlC>vGq^cQPD(GCxK> z)-QfF`X}`R>h;j>f2IL@dcN0av=?tGn5A8r<$}nra;{<#K1>|>-#?WBn*;h|{0eRp zAP{g-Muad*RnD_L=L;5v@*!=+fWdNE1&OGbH1`^)-FR%rEcvwBX z4)Ar1#t`m#i?KTNsst%zz3*vzeq;pm4XBs!YnaLuSvy3o(_Hz&!X!L%x-%taKC93i z#MM$&{LrGhrROMvLxGR>1+sLAA3t!0&>nY#74eR^B4lIfy~t?)YtDG*@mz+|eHLPt zRz%HLKq&Pmw-!%fW}?S4Q$*+5FRuT~;7wpgupaS#e)jJQmXYAaw#LI6zk)9xTcoAD zwnP+g6kfv49|c!zZzhB$W>_dMK4+;B&cR4ZRqN)&Is{#M`sq^muR3WS)kANXRrz8? z!hdO1Q>a~U zugWUQV_qYyMZ&YBJ5y{q8+HYS%`bmZq1mr1h`JLBtpc{Ae(f47e9!skhxm4{kN~cF z+V(hf|MN_#I&Wlf)lpn;7yt^$;5--ts=&8NEc~-W0p9Z#6m&v{$j}zyzjm9ps8ij0 zDp&onNn$eQBawUbwu1aR>=EFRLjQQ}$k*N^9=*?6vc)AfT`r2z85T_SDs__!1$sUQ z2E)lE0&5rp&zT%Xg}&!HkKdVeQWtnEOjI_t7PP#zb~!4~R$?V=s`>2Ef>Uzx@X`9m z;`mgJs`S`|T208?9!NGt3qQ;&FNWDv7uf4=v+foG}v2&=stHWG1j>Y{Z?R$&${Ik#c1qy@UT=WqI`+8lr$x=b&MU_2HPU!Pw z&aJutpoN5i@q?LnUAOj@sJ(lczBBe;UixVpv!nEqBUVr@XD>mPMx2d$c+#|9omUFZ zXe1r~U}9j7o_^wPTpIqDqGS$V!U+R`q?&5} zUh*#r*e1+cY@I{9r#}+!+?$lSDG$qR+aKrILFUAF3$SIL3G9!U?}7Q&0JW+$EMFEJ zK*#s(ix-gIV`~6Z51`IBziLFhn&uf1Ei#Zwd_*~cb<&p(7`-m(NnT!(-U%xv^2_15 zZtyf|WKP55<`OUn$oZ$x^)uFU@aHO%fsfN;HqSbOpdrL@rwbPz*SJH+2j}*Ec{7~) z@b_PS$>K>5jB>oOiziX5Qj;I-W~#hH7!O|{aNs$*Tjzeu!05FlR3_Nq93n=DgZ|LT zb0l#*LwD8m9k4nUp+d(Gr>lfN_2*toZ=Bo^fShRUonO$3lg6 zx31qp_b_%J1CDQkLkPN&Xj|bbM}51h|Ef9Q`WFo7wp7(1i7qTPXQo1P7*|V9cy&>! z4BL7iCgIvLmHF@b4>#<}yr6Yr;q$Zb+~;Snrf&bgvurD;{rDcuxZi?&ma1@tKQMI8 zQx5^I8{z>owMmbLcQ5F{4IuM>7#zH-FFE+25XKiF@cn4f`Nt=xf*tWp_+OSQ5Owpx z?z@aCIDaySZ152`<24DCY=;Bk{d+i5e832$|B9)Rx8za_-c4u+nNL{6?A z`;fkgjDF&05j*_ez0{Va^Y^-`>)lF4nUpsxvYT=6QZ-q^uVyM!;tzwOcn4)8pEgcc zr|OZY`?#z1gzA5}0Okh}DiUzKb~}dehdb`+KF@#nL?b!7WHIh>(l(VTI?1#d+-fPg z)nAL%B#w&_J)%0W9+HWFUyzOZ;?KB>uF;^uw7<$~WA%T2C_ufZ|9=iFPH6xXT+gAz zNaou?>AzG3SLracj4gOY!;jopAI0wYX>;opO~tQ!yNP}D-vZ$mYT&TW_tV*an-UY` zYw+Lo{!g{?y)QiE?qW)ZYxE@on+qQW3reQ9k`F5zEt(T}GAkRh2pJ(mY6kv*AJs#3 z`hE@_f*a#(y_Tp%mG5(+H_HN7u^=xtx+FAlW?vvkAp0hcXN0!S9qHc-j!`C-dJscx zn9fJJXaULQ%Iwud5E>CgOa(qqN!<)6oL_81@SQkXEiRck{%~^E4QLN-)urb3f^D&j zL|x-Ux;+P7-Q{hyc9vLa%af*fW?&j&!K+@yT-8`pVhgxt8Se1Bo&J%FI_XW7{g7b- zUxffny-=?{DJxMwIx8Z*dh}MKE-?Pv0esr>-cBihVXMGH-+L`8o?XwndN@_nE#g(6 zQlqOnvxl}p&4=5?>w$u-4l9Fi6*Vx7_4x2ndSVh}q7$ggJ>mlylQK**jlomB?dpIx zoMFa)hX0pWF$t%6M4FE5A3Y3w(33M$mn?gD*D0Q?bol015rr3uK00gsH*GO5Sonw) z_iMw7U0dg2%4Q$C_1=wyT~#lr;(YtF`aamtj6m%*Qck&2*cmeBa!<*xdr71kguU12 zx34t2ays9HosIYKn08D9Gza8(Vz-EV1c?J505)(Q@DlzE^?zqD0V;y^F90+6f9pV7 zaa>un31+7x^Y7SBO2+Uvs}bI>x^*)D34$O`=hOIKWra{Y39&o0r;Yurh(8VQMd0}B zU*J#(vspu2GAym65?z1c)HJ<*TFLfPfc9E~tm%2T|uef?_E8 zxN^#ZI#NU@%?oPx^?Xdse9Prh;-A=RX6>2e)vJ&Y5o@${6saiqIGC)8feeuM(*Iwy zgk``S!Ht~9K$4$@<7--kDg{>C?zpQtiIQ2oM5n}&w#^^tQ}CmUBWk&XZD$Rd;yMKo z!F?-+6VW>6V;x{;UiA|0Ir<&AF`Gz3>WUn^foGUXd2kizNbh{W2)x{22)F>Gqs4=L zsI6%`41e|0g579$XR2B7v+XYCh~<0^QlhwFbp^wj`}rK~@sj{%y z$=il%{F(1W-RS~spk|l=*g+`$jR{SE?e1x}MBJuXm``raAd@9s0g(i@)Dm+Dvl{Db zIJAI_6&JNQVqe|s)HhEZoI4*-xjNZ&$iH;`To{nhD*o4=^>ymANj-_^R-!>%Z4Ly1 z1zc1kNs$|3M)X z5Ws9+?7}|#qyp?ayW+TCA9i(t)aY+MY|P|_eU6#=BDHr+QYt(R`FukcaJHO$U*NKj z9FOfNUpc?WL1TW)*x3$eX$&Fk(Qg@IPAr20e-Dz>vKLjd_0|eDT4!jf=vWZTz6$>EuANtp9RX`E;Sw@OY9Yx-LsZW<)F=hJ@Sph0N_dsD=+F;krQ8s_~ zK!MS>X4M{rriFZmir7Q6513NS1chp+EEDW2znIUOQi^PJo;bU#e?rnYQ5|K;{>5FKD@UqSU5Z39V#%xoMFF&1tK& zqPx<@y$Jh4%8I5T;<~aRXPBK~uY*3ca@dCbTE~7`vbbE-@`aY6w!Zh@8BOYnx0`Zy zhTbR>0yvU>nXB=0!{)x)D236`ckD!Y_wP|h_>Q|G;#Az14cyvfW-49{1k z;w3Mxk}D})EBbu9tmZ#mx2=Zdw6a^L)rf*Ydv``DwG?`|t-WX*J}7ONy3#bLHYA1G zSz!d$F4YOYW6rbpkn>1;n?zUts0Af4Z($6WzJe}(>1ST9m>K#}SNV`&&n{(8HKd|z z@89uJUm=FCOog`K4Sn+KA~K$lqiR_ss7@I6serx5gi{@HByAD6R`WH-RA+5FsmA({ z{Um9(W^WDC0$Ta6;1SQS6npJ%ngM)I^aO(q>%^|^jc>1w#c`@zWh}k z*XDN5{n*gw!`-VhT&b37`c|{;;e32bRc=3 zxc@x;bZP8==K9pzax?v0m!_JI2S@@~!leMz9X~XJgxLTC&FQ&;HrE=>v0BtrhWv5q9MM&{b_X(CV0GaJ$Z`K z;v>#QG8`ecaQ7LGCX5Gud_DMQwh!1puVBaH$1yM9+MTFp<9`obUfcsaVkL2w< z6vGcAFQoprs?MPM0buE@9cky=ur57oRI9s83a{kVPmLG^c@^pz=xQNuo8K9B+IFe zU=%Csv;$h`w zV|A6e<3MKBrS8KW_BRQuFlM9b_4qRV{tYTY;m7ESJA*TP{^h@gLVL z??UZN`k2J{_j5AR{Qhu{v{{pH8`LPeX1n&@SsBzmQ9w&P?=1Fz`XHl}+DySLMx?L6 z9qaQ`+Rn0(37Pst!;-eyt5E%33)@oaI2fzUz|YuVSt6rBGGh&ya8L9rs89&{YJfKFEGvT;1>drHD$ytdxb^pN(zNl3`5aX5ptz|l? zlmVV;OpOY1RLdc&{4ZqP1 z3_xeEgj}-VW;?)_47c_)%5U zly>LwipFz+eB}w5^{D8+Kggl5y7GLva*$o$Vyx>>!56>vk`VI-vm!n*6aWnp1G>Wx z0BrzSG#U3zPu#{m6>m&BG)>%8xKG^E%O4)-i7p|6(5)O}^Ds5SlCwEj(?W$=;U+f|1ZloF69(7_-eB7tyDCA@9{AwW^tbj}zp+cX`tgzP7a8$&?= zhqauq)JG~+|5n==Epq8k$b3p(O6u~sA*jxne$NG$N(>~om4H-f5JoO6_AC(C0vls< ztQ9e3DLpkZtj0?IjWer#(_T#{DJc}ar40^;#eGP;td<**UZ<6X*Q5#T(Y>!@zDlcP z^$(YW(8`azA4meYZG|2?ZJJUKVTwB?^2OX768nC-+!lTrE2h0>bm>IJqTWW3!_wO& zEj2`?Kvf`~{=0%88xPU){t?*MyEvi}->e^Zb`c`ga!vZ&y6AIyMszbO^q4)Wbgb^o z4Oke_{4x6J_)QS6A%(Cd;G8l@Y14R_D>zE_wAaQyd%A^(A1ZG zK11!S{rau&a}V=1cQKXp-^&6|Z4xGnrCT=MYMD|c6x zvi0NVUg)?Gvv+FZAOKA{=&jUHq5hkiE;wX0ptt zh5ieEB*s>jv{xd1oY6$uiWS|J*ssBBl@IEZiX?3_giT<~FOb=6RtGnKaXk=sakZP} zY>%u%-KXD$++>_`?m{<^dd{*fXb-lmV@bPJi76h86+Z6y-FtJ*cIBnRSG#Et3i_qp zB7=GqL}BnqYhI`0YUn`CmZRN9$^6|=MrC86Hh~}u<}d5mpsD^vqr#tn#o!?l@fK9W zjHYkCFh!xIh;+wz*3a0z$x8*Zrb^QeW#y(X;36J9+iA81u`dJopD1dQiu@Nemu;y~ zS!c=d>n=~Xt}Uyp`4NGTy(`uoO7b^0uMibPbK+9f#)Ve8!;S{e>$7z`uZB8SmR!pL z{2ftnWpE1q0oHFk!~o295SR?8@FMRx_9TbF->m-v_5h6Fl6|fOP9QHJHP8|`m&0?s z6uxf;Os(;vU5$kK%b8{VX*&|^7H=WQq=AdlN3CitcgmH}P?qq(%g&Fr&HB1oT0mvH z{jki+t$Hq|fjN+~T<0DuoM$8DdH@gkrhsz_!;Eot7@B+PRB zYS{njuFJTJr{yq-@8m3?%=n3Is3W-j5t!G69)mUy_<-JsIe>4%PMEk64_=LRAgLI5 z>ko2L!+8z%Z6SD50t<(*J&Pm1ApXfV|EByDO2s$xeg-v*0AE<~P^CWDGhfKlscI+28`Y zxfaMXs-~|Jeo4*Qkw&r_1itG6*@l9Zp*jTjef-PW6>sDYP&PdSRmlX}T4$Xv8Wh23 z*iKfh7iN+M@v2FxaShw`9O$5@5(|_68bnQBZ_p<6eEupH-(Tjor^&pSE29SSekYmx zD)Klfo`;-m;Z^HC>)AK3wKNJZ8;+@s#>FO8XpL9Y_&sm%g0V_D@KWJ z!9+tN%}&`expdfbu-4kM_bte7b{l5rOj~^9k(T06v0LaaSZi0Sq*z+3yZb>ub-}83 zv$Zbop`4yvjzR114lce?$=seY&>1@W8WEnov7#HmQ|XakwY`rfY3saLHy{r zeZ4nIZBFYBZyB`A6Pn*Ua1QkCcSh@LnbXPH}#a(q|ds5HPsf`5q7m-W1cu1^ohlp~xUC+(#>KkMutj73$-zl=Eks zF@l9I&9oV;3KlVvz)palGTLHTK-7xRpFLh~ znDsy7k$UugHaEIBdj6I+k-Y4C{LMB3#0Y@u`RO&8h=!aM>lK*56=y* z#k&WlvX2ucMq41w^C;evVKFbW$dThmz;PKm`glZMfPi&H|6cn8cZSgkp3g<3bEnjU zwA6C1fur%BpDvv^q}yW4|8XMrUir0DAE;+{7==>08uOM}riC()XZ=@ZnrnRE+C^{? zi+y35CHy@*;N)A0jAVlaFD9)a!>Po^{oSL5(1B<2qJ?prmes24^WZ}c6^cAKcCYo4 z+yw6%=4u=UW(PWJkLZh^n5-fuXI?-^QIHN}nyR`X8Ie$ruWzA6|d^%?LxRF!`C03^_qt!Kap63j1KgG7#iHR601Ci9@`K%lZL`kTnYMS47V7uAY4~WqA18r9wvn zu9)TL?WA%^I7`Sy<`VJjhsweEj)BOkGe=R|m9CI{dx-SxO;xwlS^t?*yseU{7G2_a z%m%Qbw=^u&H^Hcuz75R+95P(`Tp+t2W{>|hn`Zx8JjtQHsf1h^E4j{`n)XjnhZ4?2 z0f9SPCfs>|;tj!@XNEE%7)%Z=rE*WIrg}V!MYjK@%;{MTzz1CH|3-1rVT)l*cTmMb zS{-ZNq+m)9c#L3VBy~Mosv2j-ZQzioE1%62Uo34PU(-<4`N?5E_LTFAfzhDH`l1nK z@BQ&KdxN|__Bl6Z7m_^UOsnc7SH`J85E*>xWGg8+pSrj6Xi}ObMMmWkYDWiI zW8d_)e)9?z+11vn%^M(v|Ih0PmoE!g{DyTD>3g0F>oEi=a-~=@C(R&pE*QmZW z*IU`ZFQy<(YR;8nQzH@psKH?{3wlLc^e;{?fxS`Fr;OcR)n{~|sQNW*;!4w~dMU97 zV4!8o)&ANdXbQt125`p3D$@vLBh5A7;?duJ3!F?V5p7ii4mEsHTgA%@{#&_U1)8@l z|9HTy)I-=oC!qVz?5T$Hv4JyIcMw!)8xL7@FXD^9r4V`CcX`w!PmG$iY!-mJ+XSmO zI{X%Pc+@zq!soovg4%g|7^@4J#*zTki-@E;mNow9>IU?A&(PbvImvM1>wQ3v*7#;; zGsw)w!D`fCRyyj=F+kmm;lEXIJ(vDhIZa2;mg0{Q_rBB$YiEiUPy3tR!h)#4pW0}ertM>EMrnN$IUjRoc5)=VL-fY1vJLO$-BJUa0X zmX<#|;BVjx8FHVR7z#jApAQyil!zafQ9{J^#1#aZ74Mx5^4pTmM@ONGDhMhE~GIBl8dh|Vas7vFQtc0Xzo7*Y*_}ZI)4rON;_`NfV=V|X2rUX`G#mk{u#w| zvnhM;KR}i_SB!XJEO7VdVc|@~Od=u})jJr?z_=w#W{@3dXFc&REsyTLUjn6V`9;fF z{4hv4SAlvnG~D|?Ym}diAI_{N#{+ml(e0P5Xl**FbauN!2D}vqXb_+>fYU%I!Fe;r zYK9?()MT@5)xi&3gEoP+aq;Or&Co)$B3595`8Nj01@cNcFBDx<4$euB_vQnD-$6mA z$oUjfY2qK~17QU4%l|=9C+P_x-yCm=!A%>lQF$Dp7G7f(ZW-GvH2N-<8-|#cmUsjfs1S3)e(O79hzHMj);F7yxOUNX zOsf#a;WR0|yBc^hve0}TuaP_06HRL}LW%@eSPkR(OYR!+G z#xnM^HuJU`H>CAv?-Y+%r*TP&sOX9A`F!%w58D!s<4}81*$@lV82^?kaDa z4$j2>QKBhz#G=GW5iagZQWdM-Q#je@s{WcTOqrE7BOeSACvTy+Fc`cm2M*?17_pr+mfSh1C|j#0q~J8DPsv1<`u4 zr|epsmgBt=_4i;8fk_i>AmTbR_7 zJxdBf^yZW5(ejXOXu0?)fqAm@%hV*~XAOQOL6Pd-qN%i8Jk2~xdj+3g_GLS9S^oFA zX&xnaO$pyw2|wWbKHQ(~t{8h8c9somZm%}jP>(?G#ta#U;83KYjr(R;scm?$wShMl zQK*%&3|3uVUV$qg;J(RzFiQ=>lj4s;xkUnW&2igVu`)+@;Z-2-y(xb68$j!5okox5PH)qJ+ElLOGE#Eura zt4ABAJ$?|AT6fsb^eLFurcR8LVGu$4_MK)`Uz+zT^vcK`5KdkU(a~)B&#~Jry5U6O^@1Nj4o7Jz9*C8cJ0irTXP=6&2Z^MHHn6 zXu*0V^<1Zy+qY8voDSbg+z+P~UuDEB;YYC)=M|EDGV!ew>9%FN zH21yY0c|*XZAMqI`F{EBl-DKwyML0e>B{pAXO0QZB}$s}S9p^y19IU38$;~Y5pINw&4%WV~pH1upzvav)p)eBRi?11OKOH^Q1FB3LxyCFk2Gn(#8b?Wyf z^Oj=x8c1+#yx-DATqCLGIY@gK-2UVpQ0>qP`;LyfTly~;V^IUqfm(2HKu++ka2HPvZ*EJPhRkQX>MCvjPDUkaVkSXOn(0-;RGQ zTX_VX<#0X94txNX)E{s~wAe>hkPpk7-5KK}V95#YM>#e)dCA^J6N`qjc}t*U6~jw6 zoKl%5#o~694#&nHG@;HmleGTb-w*sh+=y&fj`d+FDG4{e3q0G_ub ztg72+N92ptkyzmcf;DSMrson8$Oj46NErJsgH=4d{J;IUJq+s0R5X;a#Nk=suLF-8 zELF$)EK;JSe3sUZu>AAI7B<>R3kStP6d?F0o~~9XrUs! z9YM;XpC&_1mHOhOn5viZ&Fk2DnO9*S@&^UAE~0LhewjF}Rq*b+1648cH4TY>u0Xw) z^iX5hOhu{9xKLc}_fIn$Bw66W#Wa+Cb#5FF|VFor2nK^G#>(>iFtclFYB>9xk}`e<$R?P&?)4(#_-uVQf>h zk0}aHJiYzQc|yptLBlJ>^JVK~%g4A&rB(+j_U2rZN-0)u62o8R90dCAIl=q*ks9c2k|*Xbnu?e129?n{0MvOr z#1e^Q_;EoOjaXc{r2<=lqw+2k%&2-a?tC z#^2&C6c9`55bVp9o%9(96jh*j4*#xkBgx<6`tPb3XBO)1`z#yQsQfkLo#8fK3H^L3 zE7gX5^YvNfKRyc@faA_omUBcHzIe4`2|>zh$D3{BcKqc@RNu0H!U}8VTj<4$O69hK z=vhOuV{WtOG1O1VvodMSv=Z7DOBvATIok9SI^;O2b^obb_H_KwijsSG;JNVnVVdWm z+r7B^H+q8J1x>)#5iM-s=X&D|@I%9Iz+6|{k00RG7xhGN&KYMo^^B>(M<>tD5Oh!S zMSs90XqP0{dV!J2$=~&R9;<)Ao(lsMa)k<fSKXmpUuD#8nS!EJ^1co7+~ttRy;r zfM;kM@+LejMGVP|_;r;{&kY4j{(qNIldpDPC}e)8|1!h@e64dY|8B@9*Mxd!((ww* z8{s9sf?pbM6Ol)Eex9zul$_ms_LUD|)qo!B{Y?XlB<5F}amfqW)qr$|dUBt6xr9tB zua!S##JGKhPY}=Mgc!Q(teSw<>v6f~z{R^ux;RKWp554sVM-MR`Lhks6}e^f5LdA8 zQ3G@}pPvWzG09#T{TsPX$|1jc(Asd+!V8BFfcF4q?ZfqHA$!|i5&fidjX;b>P@U`A z#Pj$vtPkm}b^Y|5e7#IkB4Xu}C_s5>shDKvJ{ZTTJH2ObshqY96SMkoL>dgjMxXpG z$c*7cge6EQgO&Z?hKsAC11q*kL~)7HNUQGi_;r1z1b@up;!fKeo{1mZu45Wk%eKdl zBk3!8`}H$b`9o^9X(Bc$MbZmKe;srlIhH-bSgD84Y!c_=64Dhd(_>ykXki^&dk?vs zH~0T?`oR`2K9Ir1u1}R&sU{=1&`$WzuU=jJ=kmufQu@Unlr~^KbVPKps^qO!)bL&# zN5I5Dzsj;-lvX8KpojQ>04V2iL~u|AL%S|5W((d$En~ohAgWEf8Nes|2cJB0@VtY+ zhY7-=S3Zwb8XB|#>>0KjjPOI7Wl@mJ#S?%=>APBtMUh9d?9K(mg)FUYB&q zVrMFz{8l^mA7SbNZBeO@%)}>qr*(EwkhYdlWFo=ip+k$!s-W|5oj8m1 zJ7=-0@L8nf=(p2XE9Ux^kpRXX?>(6FFaAzfvo{BvhIgz3R{KG!HyrhaHoVKsS8)(y zYfabXI*sMR_q_;-3X{dYttgK8zfPkK7TZz!*9Xpu+7Za8E(d)Y+drN6ErK&;H%Tul z9oW!WDGyjkD)i5zk>Ayg$y=0;>0no-TA0h?us=`z-R(S1V5jcL$HW&BXk7`-+j1%6 zCp4P?0QlP$vVHk47hup`xYGPPgaM+4km_&(p!frS^E_&v_mw2}()1!K7wj+cS~Fsd=Bb`J=G*aQd5g0n+%9OMQpz5uIQlmNVddFJ(y55QY%NdqhK zK6+pAoo1G2Px@MhMBuDfDUs;tmjQQ|Em*eS)uZ0^vNWo!S9eNc} zUg$cES8(2){=~A6*oOPzQT5w2r`JC`&ur70-{!ZgfP7SHms#u6d`J#%_T(hb>F!RO zPGid9?1UOt^f+jwPN9N)*d|L|c&ZpC;2$tRkxp&pYH<~3p{%FaGo7LkJ&mHM_(g|A z|2@5J#iXm?kOJ-w<~Ke;?SQ_u7&PGKj`fgHWC9RnA(XLDvxD?xcrr1ug3Is#KaJtb z=m_vg)~9bCAd`zzgIh>SprDM;*ztj_wi2l0jT=)Y$Y2jabjmAEMFDGNupn=W^T=kg zaI7gf>|Gy=?!UvQ!8W19i9e+%ne!s9=xg_S{cGIB*%K#%L&fO?*zYAP6Uz%N$>%`R z7y_7xdKsx2bv?Wyp73YZK2gotH#x#ksxYQE#SC^A(GbIB53%`81fo_XC`8ykkoz z8bXZGI1?|{UNL&ay<7du;?V=q(tDLGG}jq!DW->XU>R)CKo$o_NPa(46VsL<8Vvpl1-gpOO1%Z`Im^pUfQheJ#jfS+`= zD{LTYaz8wOSXPyA$ga5GP|Ru8tUxu*LV|#Z$WXw$f@I#S^48FrVxre6_9fs8Xz{YA z=xX%M>BLld3mw+lhkUUu8qvEhNsk<%sJ9z!h#U*#-hgND4m?c>!4_RySxT&C8pQt} z0L?%$zXW&*_&zajT{wN;)m1fHL*<|)%ST09LJ{bg1xU|Y zvV6=MDzZ{MP(E5JbJjj{+&X5m9zF)#|5U}8v2LfzNadN;`lFmc0i&)0F(fDi0C=Yf zrER2UTx&}T*lj2%v3h0oDVwp?X2teeP3(~BP>_L&_zt`R1Q1honj&%KH*HhR3OoZS z3rq42*j)v^);Vj$o?J3+_s$=e=V55hgbmMenN#IiJ6bwy`-=x`U-5v_rSd-F@!1^j zkupKt$*Oq0t%{$r%>|8iplHx`753Wtc#Azb_RL$GO$cS++mAjYfCSJZa|Im8Z;*|G zoX~dwAiM0FTe#<0Hv)(ZL2&?3@>CO$2YCGYrf&PjX3t2$vjF|CZT7xU9=P^5cXTTF z?<)~to^G*r&ee~HIe=&63c!_TQE~!c2J9lg zz$^DQ_Gs=rPkYXpJN+^S&l4;LU_}n*OYkCd;XX&Ledv=h z7!yl8ZTJKvBLnxoywO1~0e2j<=U@!R3rY`dnGZ7Z$^4L;zP`T2(-DS%#?aOQf0z2@ z8eo|=AzKK+pUjg!wPsP8$fUV3PvU_fcKGu z|4%3d^eq5)B(nG)cPlku6adS30BR1t6FdrVB?mpvAg5?OQHG(=X8_E2EU?mZj-v5e z9W<3XS*ZcW0DAy)0L@s3@kpQ)s14k93RQ{nLvXA=E7}W{iPQCVu|H{7?@ig&2Qzkg zqQPEGPpuVe2FRx!;5p38t@MEJgk9(WjN%n=D}I=>#y^&lRUN<#2zU8{B7nEUJqA3> zT7>uo#blgx#f7o4tYh5=`~!kztp~t2)v3BN>mct2;5jNL2QbDu4qb;e<6!-e0}sZ_ zkupI4^vSdIcdik@AD(xm>uh7fE_OrHsk3tpb@m2yq567_O-umRe-3CwZ#34~h0c1r zG?1{%V@bP`OWKvOq+K56NT^aU%3Sc$ps1Wl)!8d3Xm|snJ%(a*CY?|n0oDfP=8beh zN(PDsiVsQw;2%W>F9}qli+%NWc{rglfAZNI%E0yhQ~b~apAmN+st^IW+al{ZK$i5K zfWpz52?0&4u@5aAw}%&v+oOxd?XgAU_V}W4yMMuijnteLI3?}nU4_I5v?}NoddpDt zsQuP*l7SFg=fycmlJU+Z<95&d3G14bQ?Mzy|EU?!ISVRG&KfFmcCe)1ZjUz^-U+-H zM@ojRV^+@kswZr4&S?Q- zq3dUHOomovkn|w=RRYS*Pr);z+>JW>L}o$SxhFP_+i^s+N$=@nn(ppkvRDJ zvu?Ue)_!6!=8#<~c0g8o3e}+u{K|ist17`%XvV`pP&tYKu>-f|pR|)DBQ`e2vlKos z-{nNsu36)HUkF&nv%wtko=}egZwQJh?+?fBd@sO;>|95QyFK14`p{cmbnGW*FWUDW z`*_?I6x%d0g?0r$mF0+0Dtrcz{WEX+9MD> z0hCkc4t9AC3Iq26{;ZMY-{jr}6aY^F=qdNO#~c|a%sJ%NMqcK|efmVPU`(Fl8e=mr zKA9KK^BraDziw@pg20^kj$8m=o}n!VG9n*+qdYM8us`e(*V)goN7~to+zGWZI~bZ zhx4#jtU1@Y&pf#w){FfP3Ki>(yo|x~$jke}cgChIW0S`4^{4*ydVj}$p`ZVkYuD`j z2cHu6n~J=$#>;x`!InW80FY8?_Jt!#Tt);;t8S( zw$v}cIt)MtT=J=4<65`SQepPxlYns#8diRP#SZuwfL3I|6F@8i8HND$cZ$kt|1-exo*Q+c~Dm5qx(2lV7LnjH;7icj}DLd1awsSoxJKL4A z7mhQ&R~{Cg_^zy>A< z3kOtCtFC<5k`=?2svNRZ<)Edj2Cb=TL^PkynOSSC%Bt8E#lY@T1>6o>8F%^+X(vyV z^~+k_JiFa8vm32tcDuFB?zPO!eygn*Fj?P=`|Ut!uN^7xv)b|zQFbUwMqPnh;t9JY zmJ;1#S7D#1F`-b_v5IaxT#2`$$&Obw*{RAdtFIWe`ifzBE3ka0BU%gqv2Etmf#n+z z3GD_T45-9PPMdma7?h35gHTsKVs#b6s!4z+0i^;Z$&Z|Mum&^7ELkxs>-o`=5pnXd zoZ}TZP&BG@Y7(3%AFyK;J$A6X!*-W7+q!}}TX@s7IC_`>03ZNKL_t(R+fZ0Ex7q5;t+7qKszqOtLl!5O*{Rcud;*l=qhu^G_mV48CP9#&xhT>z_Cg@Xr! z9N&Oo0AjHG(~k6a|4o406%Bwf?P<&NKA$#?NzQWSE3mo|WyJ5R-%Z_;hqV#d-rOan ziRT3-84K_|Ew?#+2O#}-TRY`h3G#;Vxerz0?*Pas7?Hw(oLJeBm3|q6@8nYFV0{4B ztTo^qFv~Oa=VQ7eK;Nt*>%ymK5m5!zkP?yS!`?CCy6W zP^f}(#JrGC?->e;6dU(uF(<&%nWt|k1K0CIjxuoNV;>Pu8<0wHB_J7VE%X|ID%oV< z$OFEx{=y9xKOD<(0{*$vJ^+9K+F-fH+O0s+h-)ruGQh01USM2`MwCGaKnA}X>+S0q zIPM;J%sWE9eXP950uTk5(iYA<*8C8Z%O~dmL7qop;GOWSKyLM)1m4Ui;)!cM0NQA7 zvRFq}XtE&jZb5@$T)-q8c|a{O6|bNW)hFz``>49xD!L8;AE3?LQLcjZ9*PtI6$J(P zQHFR9ndA{Tk(4D~Ny!+wrnt4LgLg^szmUN#4KL-jHbH-Z`yglJrz=WaQw-2qR1?#zc2W0K%U5FGo);~~@*iX(`6L|+(>a>S|ZpK1B=u0RY#9Z(! ziVBsB`JW+=PIRApqE=za&p3adeSzY0v6J(9do7A{5dG<-XCA`S!+{K}8(E1c{sx^5 z<&b%@#!`F~>p-xy$Dc^yBEuDm1>OnXhfJMa`NJDA1K0CEgl9kSfCmthMQ2T{WAa!V z>$LT;E`w*iG1jAl^EI({;~vjrQH5s>pPh^{P-AY7wJR;?&GEDp0(k!fuda`E8imPb z=j~VaA+p=7rl44?O>OvG5pS^D@|$gELBA~RWI0+NZ?lE5ZX3ClFwK zb1Y%iF;aEz)3Gc@@iKD8_b5I9pbC%{7oNaeti=^M6|Ev@mTJDxU;xBWOvo&RrJI-n z6eO(tp%O2#5C;pLUr)d>R&qQW4=k97yd!Q&M_Hg>&jRFGi>McX2LKK`H53-aPKY8y zMO--Xq%tMb(wca)))G06MLd4!K?FLp&K$@`>;u`Imc&n4P5iJZH(1$O2Qnd%QWQ>n z@!Qs0&5V7D?_eJYa9$VdRCXugJPs8)b*QN#Cw@O(i-9@gMqxJM0`AbBwi)|H`~-0n z>@5eL08)`UHO#9mLzCiw$~9bbTI)(|1A9OLGU_laRP4Y$Wfvmb58i-Z`p>iNm;Tc% z`{n;!ZLwdz*@$(3ZiEs*+yKX#g5#DdA5~yA7JobrC^zge?*z3NR>qoaSuAA>@leDL zi;hI#_x#vC+g{MFn2M&VthH2SEra4$mX)`} zxXZ`n6X3voKq`GApR$k8H{5E;)S_{DmiuAN04{-h?Q(daqW9yLNm=}~Prk=I&mQwU z-*qrI0u}G(@I6H)? z)urvVWU$EN6-bIMA`lCwyphAHEXXFhOk=`cu1(qZ4>YPT&6DS#*)%2X^`?})(Uj2f zYGcM;N;gP;*=JxF6;kVJsEzIx`qsR zV~7)Yr7kHt4wiYqx2QbqRTMleC9%$_Jz68Y0u3Ay{RRq7#(_0^Ouw&XQg*gIW#{pr zv?lGfRMLKUtik^IaHIXWHe;_f@NV(WCH3yTp7M7K%Fu=0gk9`Uh&qI);9NWF;_|RY z7kZPj=mX?Y&R7@yCh`9YBJN0p7(laRdI&;&njjIN$E$UHj7;o`LKA zr}*?kpH&tef=g9vAl@tRONvYmY7cOb(h4*3e<^(1ZL)-OjePyADKP@XTO2QO>owSQbE|%Y#?PRR3Ioqq*o<~80Cm{AsC!=uB38>GPELg#10h?O?q9n7j)X~`3