-
Notifications
You must be signed in to change notification settings - Fork 5
/
gpu_memory.py
35 lines (28 loc) · 1.2 KB
/
gpu_memory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
"""
Set max GPU memory usage (if GPUs are found)
This allows running multiple at once on the same GPU. See:
https://www.tensorflow.org/alpha/guide/using_gpu#limiting_gpu_memory_growth
https://www.tensorflow.org/guide/using_gpu#allowing_gpu_memory_growth
https://github.com/tensorflow/tensorflow/issues/25138
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/framework/config.py#L524
Note: GPU options must be set at program startup.
"""
import tensorflow as tf
def set_gpu_memory(gpumem):
"""
Set max GPU memory usage (if using a GPU), use 0 for all memory, i.e. don't
limit the usage.
Note: now gpumem is in MiB not a percentage of the total.
"""
# Skip if we wish to use all the GPU memory
if gpumem == 0:
return
gpus = tf.config.experimental.list_physical_devices("GPU")
if gpus:
# Restrict TensorFlow to only allocate 1GB of memory on the first GPU
try:
tf.config.experimental.set_virtual_device_configuration(gpus[0],
[tf.config.experimental.VirtualDeviceConfiguration(memory_limit=gpumem)])
except RuntimeError as e:
# Virtual devices must be set at program startup
print(e)