comments | difficulty | edit_url |
---|---|---|
true |
简单 |
请完成一个函数,输入一个二叉树,该函数输出它的镜像。
例如输入:
4
/ \
2 7
/ \ / \
1 3 6 9
镜像输出:
4
/ \
7 2
/ \ / \
9 6 3 1
示例 1:
输入:root = [4,2,7,1,3,6,9] 输出:[4,7,2,9,6,3,1]
限制:
0 <= 节点个数 <= 1000
注意:本题与主站 226 题相同:https://leetcode.cn/problems/invert-binary-tree/
我们先判断根节点是否为空,如果为空,直接返回空。如果不为空,我们交换根节点的左右子树,然后递归地交换左子树和右子树。
时间复杂度
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def mirrorTree(self, root: TreeNode) -> TreeNode:
if root is None:
return None
root.left, root.right = root.right, root.left
self.mirrorTree(root.left)
self.mirrorTree(root.right)
return root
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public TreeNode mirrorTree(TreeNode root) {
if (root == null) {
return null;
}
TreeNode t = root.left;
root.left = root.right;
root.right = t;
mirrorTree(root.left);
mirrorTree(root.right);
return root;
}
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* mirrorTree(TreeNode* root) {
if (!root) {
return root;
}
swap(root->left, root->right);
mirrorTree(root->left);
mirrorTree(root->right);
return root;
}
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func mirrorTree(root *TreeNode) *TreeNode {
if root == nil {
return root
}
root.Left, root.Right = root.Right, root.Left
mirrorTree(root.Left)
mirrorTree(root.Right)
return root
}
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function mirrorTree(root: TreeNode | null): TreeNode | null {
if (root == null) {
return root;
}
const { left, right } = root;
root.left = right;
root.right = left;
mirrorTree(left);
mirrorTree(right);
return root;
}
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std::rc::Rc;
use std::cell::RefCell;
impl Solution {
fn dfs(root: &mut Option<Rc<RefCell<TreeNode>>>) {
if let Some(node) = root {
let mut node = node.borrow_mut();
let temp = node.left.take();
node.left = node.right.take();
node.right = temp;
Self::dfs(&mut node.left);
Self::dfs(&mut node.right);
}
}
pub fn mirror_tree(mut root: Option<Rc<RefCell<TreeNode>>>) -> Option<Rc<RefCell<TreeNode>>> {
Self::dfs(&mut root);
root
}
}
/**
* Definition for a binary tree node.
* function TreeNode(val) {
* this.val = val;
* this.left = this.right = null;
* }
*/
/**
* @param {TreeNode} root
* @return {TreeNode}
*/
var mirrorTree = function (root) {
if (!root) {
return null;
}
const { left, right } = root;
root.left = right;
root.right = left;
mirrorTree(left);
mirrorTree(right);
return root;
};
/**
* Definition for a binary tree node.
* public class TreeNode {
* public int val;
* public TreeNode left;
* public TreeNode right;
* public TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public TreeNode MirrorTree(TreeNode root) {
if (root == null) {
return root;
}
TreeNode t = root.left;
root.left = root.right;
root.right = t;
MirrorTree(root.left);
MirrorTree(root.right);
return root;
}
}
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def mirrorTree(self, root: TreeNode) -> TreeNode:
if root is None:
return root
left = self.mirrorTree(root.left)
right = self.mirrorTree(root.right)
root.left = right
root.right = left
return root