Skip to content

Latest commit

 

History

History
233 lines (196 loc) · 7.05 KB

File metadata and controls

233 lines (196 loc) · 7.05 KB
comments difficulty edit_url rating source tags
true
Medium
1752
Biweekly Contest 5 Q3
Union Find
Graph
Minimum Spanning Tree
Heap (Priority Queue)

中文文档

Description

There are n cities labeled from 1 to n. You are given the integer n and an array connections where connections[i] = [xi, yi, costi] indicates that the cost of connecting city xi and city yi (bidirectional connection) is costi.

Return the minimum cost to connect all the n cities such that there is at least one path between each pair of cities. If it is impossible to connect all the n cities, return -1,

The cost is the sum of the connections' costs used.

 

Example 1:

Input: n = 3, connections = [[1,2,5],[1,3,6],[2,3,1]]
Output: 6
Explanation: Choosing any 2 edges will connect all cities so we choose the minimum 2.

Example 2:

Input: n = 4, connections = [[1,2,3],[3,4,4]]
Output: -1
Explanation: There is no way to connect all cities even if all edges are used.

 

Constraints:

  • 1 <= n <= 104
  • 1 <= connections.length <= 104
  • connections[i].length == 3
  • 1 <= xi, yi <= n
  • xi != yi
  • 0 <= costi <= 105

Solutions

Solution 1: Kruskal's Algorithm

Kruskal's algorithm is a greedy algorithm used to compute the minimum spanning tree.

The basic idea of Kruskal's algorithm is to select the smallest edge from the edge set each time. If the two vertices connected by this edge are not in the same connected component, then add this edge to the minimum spanning tree, otherwise discard this edge.

For this problem, we can sort the edges in ascending order of connection cost, use a union-find set to maintain connected components, select the smallest edge each time, and if the two vertices connected by this edge are not in the same connected component, then merge these two vertices and accumulate the connection cost. If a situation occurs where the number of connected components is $1$, it means that all vertices are connected, and we return the accumulated connection cost, otherwise, we return $-1$.

The time complexity is $O(m \times \log m)$, and the space complexity is $O(n)$. Here, $m$ and $n$ are the number of edges and vertices, respectively.

Python3

class Solution:
    def minimumCost(self, n: int, connections: List[List[int]]) -> int:
        def find(x):
            if p[x] != x:
                p[x] = find(p[x])
            return p[x]

        connections.sort(key=lambda x: x[2])
        p = list(range(n))
        ans = 0
        for x, y, cost in connections:
            x, y = x - 1, y - 1
            if find(x) == find(y):
                continue
            p[find(x)] = find(y)
            ans += cost
            n -= 1
            if n == 1:
                return ans
        return -1

Java

class Solution {
    private int[] p;

    public int minimumCost(int n, int[][] connections) {
        Arrays.sort(connections, Comparator.comparingInt(a -> a[2]));
        p = new int[n];
        for (int i = 0; i < n; ++i) {
            p[i] = i;
        }
        int ans = 0;
        for (int[] e : connections) {
            int x = e[0] - 1, y = e[1] - 1, cost = e[2];
            if (find(x) == find(y)) {
                continue;
            }
            p[find(x)] = find(y);
            ans += cost;
            if (--n == 1) {
                return ans;
            }
        }
        return -1;
    }

    private int find(int x) {
        if (p[x] != x) {
            p[x] = find(p[x]);
        }
        return p[x];
    }
}

C++

class Solution {
public:
    int minimumCost(int n, vector<vector<int>>& connections) {
        vector<int> p(n);
        iota(p.begin(), p.end(), 0);
        sort(connections.begin(), connections.end(), [](auto& a, auto& b) { return a[2] < b[2]; });
        int ans = 0;
        function<int(int)> find = [&](int x) -> int {
            if (p[x] != x) {
                p[x] = find(p[x]);
            }
            return p[x];
        };
        for (auto& e : connections) {
            int x = e[0] - 1, y = e[1] - 1, cost = e[2];
            if (find(x) == find(y)) {
                continue;
            }
            p[find(x)] = find(y);
            ans += cost;
            if (--n == 1) {
                return ans;
            }
        }
        return -1;
    }
};

Go

func minimumCost(n int, connections [][]int) (ans int) {
	p := make([]int, n)
	for i := range p {
		p[i] = i
	}
	sort.Slice(connections, func(i, j int) bool { return connections[i][2] < connections[j][2] })
	var find func(int) int
	find = func(x int) int {
		if p[x] != x {
			p[x] = find(p[x])
		}
		return p[x]
	}
	for _, e := range connections {
		x, y, cost := e[0]-1, e[1]-1, e[2]
		if find(x) == find(y) {
			continue
		}
		p[find(x)] = find(y)
		ans += cost
		n--
		if n == 1 {
			return
		}
	}
	return -1
}

TypeScript

function minimumCost(n: number, connections: number[][]): number {
    const p: number[] = Array.from({ length: n }, (_, i) => i);
    const find = (x: number): number => {
        if (p[x] !== x) {
            p[x] = find(p[x]);
        }
        return p[x];
    };
    connections.sort((a, b) => a[2] - b[2]);
    let ans = 0;
    for (const [x, y, cost] of connections) {
        if (find(x - 1) === find(y - 1)) {
            continue;
        }
        p[find(x - 1)] = find(y - 1);
        ans += cost;
        if (--n === 1) {
            return ans;
        }
    }
    return -1;
}