We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
您好,首先很高兴你们能有这样伟大的工作!其次,我想提两个问题: 1、在BevFormer的decoder中: query_pos, query = torch.split( object_query_embed, self.embed_dims, dim=1) # [900,256], [900,256] query_pos = query_pos.unsqueeze(0).expand(bs, -1, -1) query = query.unsqueeze(0).expand(bs, -1, -1) # [B,900,256] reference_points = self.reference_points(query_pos) # linear [B,900,3] reference_points = reference_points.sigmoid() 这个reference_points是否可以理解为anchor的坐标? 它是全局坐标系下的坐标还是bev自车坐标系下的坐标呢?
2、当使用reg_branches时,预测的10个量分别表示什么,看上去像是6层xy的偏移加上reference_points的xy,tmp[ ..., 4:5]+reference_points的z表示什么呢?predicted_3dbbox的坐标是全局坐标系下的坐标还是bev自车坐标系下的坐标? if reg_branches is not None: tmp = reg_brancheslid # 6个回归的头,每个都是2层mlp [B,900,10] assert reference_points.shape[-1] == 3 new_reference_points = torch.zeros_like(reference_points) new_reference_points[..., :2] = tmp[ ..., :2] + inverse_sigmoid(reference_points[..., :2]) new_reference_points[..., 2:3] = tmp[ ..., 4:5] + inverse_sigmoid(reference_points[..., 2:3]) new_reference_points = new_reference_points.sigmoid() reference_points = new_reference_points.detach()
The text was updated successfully, but these errors were encountered:
No branches or pull requests
您好,首先很高兴你们能有这样伟大的工作!其次,我想提两个问题:
1、在BevFormer的decoder中:
query_pos, query = torch.split( object_query_embed, self.embed_dims, dim=1) # [900,256], [900,256]
query_pos = query_pos.unsqueeze(0).expand(bs, -1, -1)
query = query.unsqueeze(0).expand(bs, -1, -1) # [B,900,256]
reference_points = self.reference_points(query_pos) # linear [B,900,3]
reference_points = reference_points.sigmoid()
这个reference_points是否可以理解为anchor的坐标? 它是全局坐标系下的坐标还是bev自车坐标系下的坐标呢?
2、当使用reg_branches时,预测的10个量分别表示什么,看上去像是6层xy的偏移加上reference_points的xy,tmp[
..., 4:5]+reference_points的z表示什么呢?predicted_3dbbox的坐标是全局坐标系下的坐标还是bev自车坐标系下的坐标?
if reg_branches is not None:
tmp = reg_brancheslid # 6个回归的头,每个都是2层mlp [B,900,10]
assert reference_points.shape[-1] == 3
new_reference_points = torch.zeros_like(reference_points)
new_reference_points[..., :2] = tmp[
..., :2] + inverse_sigmoid(reference_points[..., :2])
new_reference_points[..., 2:3] = tmp[
..., 4:5] + inverse_sigmoid(reference_points[..., 2:3])
new_reference_points = new_reference_points.sigmoid()
reference_points = new_reference_points.detach()
The text was updated successfully, but these errors were encountered: