-
Notifications
You must be signed in to change notification settings - Fork 5
/
GeodesicSaliency.m
68 lines (56 loc) · 2.57 KB
/
GeodesicSaliency.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
function geoDist = GeodesicSaliency(adjcMatrix, bdIds, colDistM, posDistM, clip_value)
% The core function for Geodesic Saliency Algorithm:
% Y.Wei, F.Wen,W. Zhu, and J. Sun. Geodesic saliency using background
% priors. In ECCV, 2012.
% Code Author: Wangjiang Zhu
% Email: [email protected]
% Date: 3/24/2014
spNum = size(adjcMatrix, 1);
% Set background super-pixels
bgIds = BoundaryAnalysis(colDistM, posDistM, bdIds);
% Calculate pair-wise geodesic distance
adjcMatrix_lb = LinkBoundarySPs(adjcMatrix, bdIds); %adjacent matrix with boundary SPs linked
[row,col] = find(adjcMatrix_lb);
% Here we add a virtual background node which is linked to all background
% super-pixels with 0-cost. To do this, we padding an extra row and column
% to adjcMatrix_lb, and get adjcMatrix_virtual.
adjcMatrix_virtual = sparse([row; repmat(spNum + 1, [length(bgIds), 1]); bgIds], ...
[col; bgIds; repmat(spNum + 1, [length(bgIds), 1])], 1, spNum + 1, spNum + 1);
% Specify edge weights for the new graph
colDistM_virtual = zeros(spNum+1);
colDistM_virtual(1:spNum, 1:spNum) = colDistM;
adjcMatrix_virtual = tril(adjcMatrix_virtual, -1);
edgeWeight = colDistM_virtual(adjcMatrix_virtual > 0);
edgeWeight = max(0, edgeWeight - clip_value);
geoDist = graphshortestpath(sparse(adjcMatrix_virtual), spNum + 1, 'directed', false, 'Weights', edgeWeight);
geoDist = geoDist(1:end-1); % exclude the virtual background node
doRenorm = true; %re-normalize saliency map, normalize saliency value of the top 2% pixels to 1
topRate = 0.02;
if doRenorm
tmp = sort(geoDist, 'descend');
pos = round(topRate * length(tmp));
maxVal = tmp(pos);
geoDist = geoDist / maxVal; %minVal = 0
geoDist(geoDist > 1) = 1;
end
function backgroundIds = BoundaryAnalysis(colDistM, posDistM, bdIds)
% 1-D saliency analysis for boundary SPs, using method in the CVPR10
% paper: S.Goferman, L.manor, and A.Tal. Context-aware saliency
% detection. In CVPR, 2010.
spNum = size(colDistM, 1);
neighborNum = round(spNum / 200 * 5);
c = 3;
colDist_bnd = colDistM(bdIds, bdIds);
colDist_bnd(1:length(bdIds) + 1:end) = inf;
posDist_bnd = posDistM(bdIds, bdIds);
cmbDist_bnd = colDist_bnd ./ (1 + c * posDist_bnd);
cmbDist_bnd = sort(cmbDist_bnd, 2, 'ascend');
meanDist_bnd = mean(cmbDist_bnd(:, 1:neighborNum), 2);
minDist_bnd = min(meanDist_bnd);
maxDist_bnd = max(meanDist_bnd);
if (maxDist_bnd - minDist_bnd > 1)
meanDist_bnd = ( meanDist_bnd - minDist_bnd ) / (maxDist_bnd - minDist_bnd);
backgroundIds = bdIds(meanDist_bnd <= 0.5);
else
backgroundIds = bdIds;
end