forked from marbl/MetaCarvel
-
Notifications
You must be signed in to change notification settings - Fork 0
/
layout.py
733 lines (645 loc) · 18.9 KB
/
layout.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
import networkx as nx
from collections import deque
import sys
#from networkx.drawing.nx_agraph import write_dot
import operator
import argparse
revcompl = lambda x: ''.join([{'A':'T','C':'G','G':'C','T':'A','N':'N','R':'N','M':'N','Y':'N','S':'N','W':'N','K':'N','a':'t','c':'g','g':'c','t':'a',' ':'','n':'n',}[B] for B in x][::-1])
def parse_fasta(fh):
fa = {}
current_short_name = None
# Part 1: compile list of lines per sequence
for ln in fh:
if ln[0] == '>':
# new name line; remember current sequence's short name
long_name = ln[1:].rstrip()
current_short_name = long_name.split()[0]
fa[current_short_name] = []
else:
# append nucleotides to current sequence
fa[current_short_name].append(ln.rstrip())
# Part 2: join lists into strings
for short_name, nuc_list in fa.iteritems():
# join this sequence's lines into one long string
fa[short_name] = ''.join(nuc_list)
return fa
def test_pair(G,source,sink,members):
# if G.has_edge(source,sink) or G.has_edge(sink,source):
# return []
visited = {}
visited_nodes = {}
# visited_nodes = set()
# visited_nodes.add(source)
visited_nodes[source] = True
Q = deque()
at_sink = False
for edge in G.out_edges(source):
Q.appendleft(edge)
visited[edge] = True
while not len(Q) == 0:
#print len(Q)
go_ahead = True
curr_edge = Q.pop()
u = curr_edge[0]
v = curr_edge[1]
if v not in members:
return False
visited_nodes[v] = True
if v == sink:
at_sink = True
continue
for edge in G.in_edges(v):
if edge not in visited:
go_ahead = False
break
if go_ahead:
visited[edge] = True
for edge in G.out_edges(v):
if edge not in visited:
Q.appendleft(edge)
visited[edge] = True
if at_sink:
return True
else:
return False
'''
This method finds out all shortest paths between source and sink in subg.
It returns a list of paths with first path being a heaviest path
'''
def get_all_shortest_paths(subg, source, sink):
all_paths = nx.all_simple_paths(subg,source,sink)
id2path = {}
id2weight = {}
id = 1
for path in all_paths:
id2path[id] = path
wt = 0
for i in xrange(0,len(path)-1):
wt += subg[path[i]][path[i+1]]['bsize']
id2weight[id] = wt
id += 1
sorted_path = sorted(id2weight, key=lambda k: id2weight[k], reverse=True)
ret = []
for key in sorted_path:
ret.append(id2path[key])
return ret
'''
Instead of finding all shortest paths, remove node on heaviest shortest path and repeat
'''
def get_variants(subg,source,sink):
#print subg.edges(data=True)
subg1 = subg.copy()
for u,v,data in subg1.edges(data=True):
if data['bsize'] == 0:
subg1[u][v]['bsize'] = 10
else:
subg1[u][v]['bsize'] = 1.0/data['bsize']
paths = []
path = nx.shortest_path(subg1,source,sink,weight='bsize')
paths.append(path)
# if len(path) == 2:
# return paths
# for each in path:
# if each != source and each != sink:
# subg1.remove_node(each)
# while True:
# print 'here'
# try:
# path = nx.shortest_path(subg1,source,sink,weight='bsize')
# paths.append(path)
# for each in path:
# if each != source and each != sink:
# subg1.remove(each)
# if len(path) == 2:
# return paths
# except:
# return paths
return paths
'''
This method takes a graph and makes it acyclic by removing lowest cost edge in a cycle
'''
def make_acyclic(G):
G_copy = G.copy()
F = []
original_G = G.copy()
while not nx.is_directed_acyclic_graph(G_copy):
#iterate through cycles in G
for cycle in nx.simple_cycles(G_copy):
min_weight = 100000
min_u = 0
min_v = 0
#Find minimum weight edge in the cycle, weight
#here is bundle size
#TODO: start with smallest cycle by sorting
#print G.edges(data=True)
for i in xrange(0,len(cycle)-1):
u = cycle[i]
v = cycle[i+1]
if G[u][v]['bsize'] < min_weight:
min_weight = G[u][v]['bsize']
min_u = u
min_v = v
if G[cycle[- 1]][cycle[0]]['bsize'] < min_weight:
min_weight = G[cycle[-1]][cycle[0]]['bsize']
min_u = cycle[-1]
min_v = cycle[0]
#reduce the edge weights by min_weight and remove the edge if its weight is 0
if min_weight != 100000:
for i in xrange(0,len(cycle)-1):
u = cycle[i]
v = cycle[i+1]
G[u][v]['bsize'] -= min_weight
G[cycle[-1]][cycle[0]]['bsize'] -= min_weight
G.remove_edge(min_u,min_v)
F.append((min_u,min_v,original_G.get_edge_data(min_u,min_v)))
G_copy = G.copy()
break
#Now try adding edges from F to G, TODO do in non-increasing order
if len(G.edges()) == 0:
continue
# if len(G.nodes()) == 0:
# continue
for edge in F:
u = edge[0]
v = edge[1]
G.add_edge(u,v,edge[2])
if not nx.is_directed_acyclic_graph(G):
G.remove_edge(u,v)
return G
'''
Helper to no_of_paths method
'''
def no_of_paths_helper(subg,source,sink,dp):
# print "source = " + source
# print "sink = " + sink
if source == sink:
return 1
if dp[source] != -1:
return dp[source]
ret = 0
for u,v in subg.out_edges(source):
#print u,v
ret += no_of_paths_helper(subg,v,sink,dp)
dp[source] = ret
return ret
'''
This method takes a DAG as input with source and sink and outputs number of paths
between source and sink
'''
def no_of_paths(subg,source,sink):
#subg = nx.topological_sort(subg)
dp = {}
dp[source] = -1
dp[sink] = -1
for node in subg.nodes():
dp[node] = -1
return no_of_paths_helper(subg,source,sink,dp)
'''
This method finds alternative paths in the bubble
'''
def get_alternative_paths(subg,path):
paths = []
subg1 = subg.copy()
for node in path:
subg1.remove_node(node)
for comp in nx.weakly_connected_component_subgraphs(subg1):
if len(comp.nodes()) == 1:
paths.append(comp.nodes())
else:
p = []
for node in comp.nodes():
if comp.out_degree(node) == 1 and comp.in_degree(node) == 0:
p.append(node)
for node in comp.nodes():
if comp.out_degree(node) == 0 and comp.in_degree(node) == 1:
p.append(node)
if len(p) == 2:
try:
paths.append(nx.shortest_path(comp,p[0],p[1]))
except:
continue
return paths
'''
This metod writes the graph in GFA format
'''
def write_GFA(G,file):
ofile = open(file,'w')
#write nodes first
ofile.write("H\t"+"VN:Z:Bambus3/Graph\n")
for node,data in G.nodes(data=True):
length = data['length']
ofile.write("S\t"+str(node)+"\t*\t"+"LN:i:"+str(length)+"\n")
for u,v,data in G.edges(data=True):
first = ''
second = ''
if data["orientation"] == 'BB':
first = '-'
second = '+'
if data["orientation"] == 'BE':
first = '-'
second = '-'
if data["orientation"] == 'EB':
first = '+'
second = '+'
if data["orientation"] == 'EE':
first = '+'
second = '-'
ofile.write('L\t'+u+'\t'+first+'\t'+v+'\t'+second+'\t'+str(data['bsize'])+'\n')
'''
This is main method
'''
def main():
parser = argparse.ArgumentParser()
parser.add_argument('-a','--assembly', help='Contig assembly', required=True)
parser.add_argument('-g','--oriented_graph', help='Oriented Graph of Contigs', required=True)
parser.add_argument('-s','--seppairs', help='Separation pairs detected in the graph', required=True)
parser.add_argument('-o','--output', help='Output file for scaffold sequences', required=True)
parser.add_argument('-e','--gfa', help='Output file for graph in GFA format', required=True)
parser.add_argument('-f','--agp', help='Output agp file for scaffolds', required=True)
args = parser.parse_args()
G = nx.read_gml(args.oriented_graph)
write_GFA(G,args.gfa)
#sys.exit()
#G = nx.read_gml("small.gml")
#nx.write_gexf(G,'original.gexf')
pairmap = {}
pair_list = []
with open(args.seppairs,'r') as f:
for line in f:
attrs = line.split()
if attrs[0] <= attrs[1]:
key = attrs[0] +'$'+ attrs[1]
else:
key = attrs[1] +'$'+ attrs[0]
pairmap[key] = attrs[2:]
pair_list.append(key)
validated = {}
contig2id = {}
cnt = 0
#write_dot(G,'graph.dot')
# for key in pairmap:
# print len(pairmap[key])
in_bubble = {}
valid_source_sink = []
all_bubble_paths = {} #stores all heaviest paths in bubble
source_and_sinks = {}
'''
Here, first validate each source sink pair. To do this, sort them with largest number of nodes in the
biconnected component.
'''
#pair_list = sorted(pairmap, key=lambda k: len(pairmap[k]), reverse=True)
# for key in pair_list:
# print pairmap[key]
comp_to_id = {}
id_to_comp = {}
comp_to_pair = {}
id_to_longest_path = {}
comp2pairs = {}
prev_comp = ''
id = 1
for key in pair_list:
comp = pairmap[key]
if comp[0] == prev_comp:
continue
comp_to_id[comp[0]] = str(id)
comp2pairs[str(id)] = []
id_to_comp[str(id)] = comp
comp_to_pair[str(id)] = []
id_to_longest_path[str(id)] = -1
id += 1
prev_comp = comp[0]
for key in pair_list:
c = pairmap[key][0]
comp_id = comp_to_id[c]
comp_to_pair[comp_id].append(key)
valid_comps = {}
for key in pair_list:
contigs = key.split('$')
'''
First find the subgraph of bicomponent. Check if current source sink pair is longer that previously
validated source sink pair. If yes then only validate current source sink pair.
'''
subg = G.subgraph(pairmap[key])
comp_id = pairmap[key][0]
comp_id = comp_to_id[comp_id]
res = test_pair(G,contigs[0],contigs[1],pairmap[key])
if res:
cnt += 1
#validated[contigs[0]] = 1
source_and_sinks[contigs[0]] = 1
source_and_sinks[contigs[1]] = 1
#validated[contigs[1]] = 1
#subg = G.subgraph(comp)
valid_comps[comp_id] = 1
source = {}
sink = {}
source_sink_to_comp = {}
#print len(valid_comps)
cnt = 0
bubble_to_graph = {}
for key in valid_comps:
pairs = comp_to_pair[key]
#print "Length of pairs = " + str(len(pairs))
subg = G.subgraph(id_to_comp[key])
if not nx.is_directed_acyclic_graph(subg):
subg = make_acyclic(subg)
if nx.is_directed_acyclic_graph(subg):
#print subg.nodes()
max_path = 0
max_pair = -1
#print pairs
for pair in pairs:
#print pair
pair1 = pair.split('$')
no_paths = no_of_paths(subg,pair1[0],pair1[1])
if no_paths > max_path:
max_path = no_paths
max_pair = pair
if max_pair != -1:
# print "max_path = " + str(max_path)
# print "max_pair = " + str(max_pair)
# paths = get_variants(subg,max_pair.split('$')[0],max_pair.split('$')[1])
# print paths
cnt += 1
bubble_to_graph[key] = subg
valid_source_sink.append(max_pair)
source[max_pair.split('$')[0]] = 1
sink[max_pair.split('$')[1]] = 1
source_sink_to_comp[max_pair.split('$')[0]] = key
source_sink_to_comp[max_pair.split('$')[1]] = key
for contig in id_to_comp[key]:
in_bubble[contig] = 1
validated[contig] = 1
# else:
# subg = make_acyclic
#print cnt
'''
Here, find now the new graph by collapsing bubbles
TODO: Preserve node and edge attributes from the original non-collapsed graph
'''
#node to info map
node_info = {}
for node in G.nodes(data=True):
node_info[node[0]] = node[1]
G_new = nx.DiGraph()
# print source
# print sink
# for each in source:
# print len(G.in_edges(each))
# for each in sink:
# print len(G.out_edges(each))
# print source
# print sink
for key in valid_comps:
G_new.add_node(str(key))
for u,v,data in G.edges(data=True):
if u not in validated and v not in validated:
G_new.add_edge(u,v,data)
for node in G.nodes():
if node not in source and node not in sink:
for each in source:
if G.has_edge(node,each):
#print 'here'
data = G.get_edge_data(node,each)
G_new.add_edge(node,source_sink_to_comp[each],data)
for each in sink:
if G.has_edge(each,node):
#print 'here'
data = G.get_edge_data(each,node)
G_new.add_edge(source_sink_to_comp[each],node,data)
for s in source:
for t in sink:
if source_sink_to_comp[s] != source_sink_to_comp[t]:
if G.has_edge(s,t):
data = G.get_edge_data(s,t)
G_new.add_edge(source_sink_to_comp[s],source_sink_to_comp[t],data)
if G.has_edge(t,s):
data = G.get_edge_data(t,s)
G_new.add_edge(source_sink_to_comp[t],source_sink_to_comp[s],data)
for node in G_new.nodes(data=True):
if node[0] in node_info:
info = node_info[node[0]]
for each in info:
node[1][each] = info[each]
node[1]['type'] = 'contig'
else:
node[1]['type'] = 'bubble'
#node[1]['size'] = len(bubble_to_graph[node[0]].nodes())
# '''
# Output the simplified Graph
# '''
# # for node in G_new.nodes(data=True):
# # #print node
# # m = node[1]
# # node[1]['color'] = colmap[node[0]]
# #nx.set_node_attribute(G_new,'color',colmap)
# print len(G_new.nodes())
# print len(G_new.edges())
# #nx.write_gexf(G_new,'simplified.gexf')
# #write_dot(G_new,'simplified.dot')
# nx.write_gml(G_new,'simplified.gml')
'''
In this simplified, for each weakly connected component, find out the heaviest linear path. If path
goes through the bubble, choose the heaviest path in the bubble and continue
'''
alternative_contigs = [] #this stores all variants. Tag these as variants while writing to file
primary_contigs = []
for subg in nx.weakly_connected_component_subgraphs(G_new):
# print len(subg.nodes())
# print 'here'
#First get all edges
edges = subg.edges(data=True)
#sort edges by weights
sorted_edges = sorted(edges,key = lambda tup: tup[2]['bsize'], reverse=True)
#print sorted_edges
#create a new graph
G_sorted = nx.Graph()
#add edges to this graph until for is created, this will be undirected graph and it will have
#'B' and 'E' nodes
nodes = set()
for edge in sorted_edges:
u = edge[0]
v = edge[1]
data = edge[2]
orientation = data['orientation']
u = u + '$' + orientation[0]
v = v + '$' + orientation[1]
if not G_sorted.has_node(u) and not G_sorted.has_node(v):
G_sorted.add_edge(u,v,data)
nodes.add(u.split('$')[0])
nodes.add(v.split('$')[0])
#add edges between B and E nodes of same contig
for node in nodes:
G_sorted.add_edge(node+'$B',node+'$E')
#print len(G_sorted.edges())
#print G_sorted.edges(data=True)
#now trace out all linear paths in this, each will be a scaffold
for small_subg in nx.connected_component_subgraphs(G_sorted):
#print small_subg.edges()
p = []
for node in small_subg.nodes():
if small_subg.degree(node) == 1:
p.append(node)
if len(p) == 2:
path = nx.shortest_path(small_subg,p[0],p[1])
#if path has a bubble node, insert the contigs on the heaviest path on the bubble
new_path = []
new_path_ind = 0
for i in xrange(1,len(path),2):
node = path[i].split('$')[0]
if node not in bubble_to_graph:
new_path.append(path[i-1])
new_path.append(path[i])
new_path_ind += 2
continue
bubble_graph = bubble_to_graph[node]
curr_source = ''
curr_sink = ''
for node in bubble_graph.nodes():
if node in source:
curr_source = node
if node in sink:
curr_sink = node
try:
bubble_paths = get_variants(bubble_graph,curr_source,curr_sink)
except:
continue
heaviest = bubble_paths[0]
if len(new_path) > 0:
# print new_path[new_path_ind-1].split('$')[0]
# print new_path
if G.has_edge(new_path[new_path_ind-1].split('$')[0],heaviest[0]):
continue
else:
heaviest.reverse()
for each in heaviest:
#print 'appending heaviest'
orient = G.node[each]['orientation']
if orient == 'FOW':
new_path.append(each+'$B')
new_path.append(each+'$E')
new_path_ind += 2
if orient == 'REV':
new_path.append(each+'$E')
new_path.append(each+'$B')
new_path_ind += 2
alt_paths = get_alternative_paths(bubble_graph,heaviest)
if len(alt_paths) > 0:
for i in xrange(0,len(alt_paths)):
#print 'in alternate path'
alt_path = []
curr_path = alt_paths[i]
for each in curr_path:
o_node = G.node
if G.node[each]['orientation'] == 'FOW':
alt_path.append(each+'$B')
alt_path.append(each+'$E')
if G.node[each]['orientation'] == 'REV':
alt_path.append(each+'$E')
alt_path.append(each+'$B')
alternative_contigs.append(alt_path)
primary_contigs.append(new_path)
#print new_path
print len(primary_contigs)
print len(alternative_contigs)
assembly = open(args.assembly,'r')
sequences = parse_fasta(assembly.readlines())
ofile = open(args.output,'w')
scaffolded = {}
agpfile = open(args.agp,'w')
scaffold_id = 1
for scaffold in primary_contigs:
scaff_string = ''
line = ''
scaff_len = 0
begin = 1
local_comp = 0
curr_contig = ''
for i in xrange(0,len(scaffold) - 1,2):
line += 'scaffold_'+str(scaffold_id)
line += '\t'
line += str(begin) +'\t'
curr = scaffold[i]
next = scaffold[i+1]
curr_len = len(sequences[curr.split('$')[0]])
scaff_len += curr_len
last = curr_len + begin - 1
line += str(last)+'\t'
begin = last + 1
line += str(local_comp)+'\t'
local_comp += 1
scaffolded[curr.split('$')[0]] = True
scaffolded[next.split('$')[0]] = True
contig = curr.split('$')[0]
line += ('\tW\t' + contig +'\t1\t'+str(curr_len)+'\t')
start = curr.split('$')[1]
end = next.split('$')[1]
if start == 'B' and end == 'E':
scaff_string += sequences[contig]
line +='+'
else:
scaff_string += revcompl(sequences[contig])
line += '-'
agpfile.write(line+'\n')
line=''
if i != len(scaffold) -2:
for j in xrange(0,100):
scaff_string += 'N'
chunks = [scaff_string[i:i+80] for i in xrange(0,len(scaff_string),80)]
ofile.write('>scaffold_'+str(scaffold_id)+'\n')
for chunk in chunks:
ofile.write(chunk+'\n')
scaffold_id += 1
for scaffold in alternative_contigs:
scaff_string = ''
line = ''
scaff_len = 0
begin = 1
local_comp = 0
curr_contig = ''
for i in xrange(0,len(scaffold) - 1,2):
line += 'scaffold_'+str(scaffold_id)
line += '\t'
line += str(begin) +'\t'
curr = scaffold[i]
next = scaffold[i+1]
curr_len = len(sequences[curr.split('$')[0]])
scaff_len += curr_len
last = curr_len + begin - 1
line += str(last)+'\t'
begin = last + 1
line += str(local_comp)+'\t'
local_comp += 1
scaffolded[curr.split('$')[0]] = True
scaffolded[next.split('$')[0]] = True
contig = curr.split('$')[0]
line += ('\tW\t' + contig +'\t1\t'+str(curr_len)+'\t')
start = curr.split('$')[1]
end = next.split('$')[1]
if start == 'B' and end == 'E':
scaff_string += sequences[contig]
line +='+'
else:
scaff_string += revcompl(sequences[contig])
line +='-'
agpfile.write(line+'\n')
line = ''
if i != len(scaffold) -2:
for j in xrange(0,100):
scaff_string += 'N'
chunks = [scaff_string[i:i+80] for i in xrange(0,len(scaff_string),80)]
ofile.write('>scaffold_'+str(scaffold_id)+'_variant\n')
for chunk in chunks:
ofile.write(chunk+'\n')
scaffold_id += 1
for contig in sequences:
if contig not in scaffolded:
scaff_string = sequences[contig]
chunks = [scaff_string[i:i+80] for i in xrange(0,len(scaff_string),80)]
ofile.write('>scaffold_'+str(scaffold_id)+'\n')
for chunk in chunks:
ofile.write(chunk+'\n')
scaffold_id += 1
ofile.close()
if __name__ == '__main__':
main()