-
Notifications
You must be signed in to change notification settings - Fork 16
/
sylvester.src.js
1254 lines (1132 loc) · 42.6 KB
/
sylvester.src.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// === Sylvester ===
// Vector and Matrix mathematics modules for JavaScript
// Copyright (c) 2007 James Coglan
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
var Sylvester = {
version: '0.1.3',
precision: 1e-6
};
function Vector() {}
Vector.prototype = {
// Returns element i of the vector
e: function(i) {
return (i < 1 || i > this.elements.length) ? null : this.elements[i-1];
},
// Returns the number of elements the vector has
dimensions: function() {
return this.elements.length;
},
// Returns the modulus ('length') of the vector
modulus: function() {
return Math.sqrt(this.dot(this));
},
// Returns true iff the vector is equal to the argument
eql: function(vector) {
var n = this.elements.length;
var V = vector.elements || vector;
if (n != V.length) { return false; }
do {
if (Math.abs(this.elements[n-1] - V[n-1]) > Sylvester.precision) { return false; }
} while (--n);
return true;
},
// Returns a copy of the vector
dup: function() {
return Vector.create(this.elements);
},
// Maps the vector to another vector according to the given function
map: function(fn) {
var elements = [];
this.each(function(x, i) {
elements.push(fn(x, i));
});
return Vector.create(elements);
},
// Calls the iterator for each element of the vector in turn
each: function(fn) {
var n = this.elements.length, k = n, i;
do { i = k - n;
fn(this.elements[i], i+1);
} while (--n);
},
// Returns a new vector created by normalizing the receiver
toUnitVector: function() {
var r = this.modulus();
if (r === 0) { return this.dup(); }
return this.map(function(x) { return x/r; });
},
// Returns the angle between the vector and the argument (also a vector)
angleFrom: function(vector) {
var V = vector.elements || vector;
var n = this.elements.length, k = n, i;
if (n != V.length) { return null; }
var dot = 0, mod1 = 0, mod2 = 0;
// Work things out in parallel to save time
this.each(function(x, i) {
dot += x * V[i-1];
mod1 += x * x;
mod2 += V[i-1] * V[i-1];
});
mod1 = Math.sqrt(mod1); mod2 = Math.sqrt(mod2);
if (mod1*mod2 === 0) { return null; }
var theta = dot / (mod1*mod2);
if (theta < -1) { theta = -1; }
if (theta > 1) { theta = 1; }
return Math.acos(theta);
},
// Returns true iff the vector is parallel to the argument
isParallelTo: function(vector) {
var angle = this.angleFrom(vector);
return (angle === null) ? null : (angle <= Sylvester.precision);
},
// Returns true iff the vector is antiparallel to the argument
isAntiparallelTo: function(vector) {
var angle = this.angleFrom(vector);
return (angle === null) ? null : (Math.abs(angle - Math.PI) <= Sylvester.precision);
},
// Returns true iff the vector is perpendicular to the argument
isPerpendicularTo: function(vector) {
var dot = this.dot(vector);
return (dot === null) ? null : (Math.abs(dot) <= Sylvester.precision);
},
// Returns the result of adding the argument to the vector
add: function(vector) {
var V = vector.elements || vector;
if (this.elements.length != V.length) { return null; }
return this.map(function(x, i) { return x + V[i-1]; });
},
// Returns the result of subtracting the argument from the vector
subtract: function(vector) {
var V = vector.elements || vector;
if (this.elements.length != V.length) { return null; }
return this.map(function(x, i) { return x - V[i-1]; });
},
// Returns the result of multiplying the elements of the vector by the argument
multiply: function(k) {
return this.map(function(x) { return x*k; });
},
x: function(k) { return this.multiply(k); },
// Returns the scalar product of the vector with the argument
// Both vectors must have equal dimensionality
dot: function(vector) {
var V = vector.elements || vector;
var i, product = 0, n = this.elements.length;
if (n != V.length) { return null; }
do { product += this.elements[n-1] * V[n-1]; } while (--n);
return product;
},
// Returns the vector product of the vector with the argument
// Both vectors must have dimensionality 3
cross: function(vector) {
var B = vector.elements || vector;
if (this.elements.length != 3 || B.length != 3) { return null; }
var A = this.elements;
return Vector.create([
(A[1] * B[2]) - (A[2] * B[1]),
(A[2] * B[0]) - (A[0] * B[2]),
(A[0] * B[1]) - (A[1] * B[0])
]);
},
// Returns the (absolute) largest element of the vector
max: function() {
var m = 0, n = this.elements.length, k = n, i;
do { i = k - n;
if (Math.abs(this.elements[i]) > Math.abs(m)) { m = this.elements[i]; }
} while (--n);
return m;
},
// Returns the index of the first match found
indexOf: function(x) {
var index = null, n = this.elements.length, k = n, i;
do { i = k - n;
if (index === null && this.elements[i] == x) {
index = i + 1;
}
} while (--n);
return index;
},
// Returns a diagonal matrix with the vector's elements as its diagonal elements
toDiagonalMatrix: function() {
return Matrix.Diagonal(this.elements);
},
// Returns the result of rounding the elements of the vector
round: function() {
return this.map(function(x) { return Math.round(x); });
},
// Returns a copy of the vector with elements set to the given value if they
// differ from it by less than Sylvester.precision
snapTo: function(x) {
return this.map(function(y) {
return (Math.abs(y - x) <= Sylvester.precision) ? x : y;
});
},
// Returns the vector's distance from the argument, when considered as a point in space
distanceFrom: function(obj) {
if (obj.anchor) { return obj.distanceFrom(this); }
var V = obj.elements || obj;
if (V.length != this.elements.length) { return null; }
var sum = 0, part;
this.each(function(x, i) {
part = x - V[i-1];
sum += part * part;
});
return Math.sqrt(sum);
},
// Returns true if the vector is point on the given line
liesOn: function(line) {
return line.contains(this);
},
// Return true iff the vector is a point in the given plane
liesIn: function(plane) {
return plane.contains(this);
},
// Rotates the vector about the given object. The object should be a
// point if the vector is 2D, and a line if it is 3D. Be careful with line directions!
rotate: function(t, obj) {
var V, R, x, y, z;
switch (this.elements.length) {
case 2:
V = obj.elements || obj;
if (V.length != 2) { return null; }
R = Matrix.Rotation(t).elements;
x = this.elements[0] - V[0];
y = this.elements[1] - V[1];
return Vector.create([
V[0] + R[0][0] * x + R[0][1] * y,
V[1] + R[1][0] * x + R[1][1] * y
]);
break;
case 3:
if (!obj.direction) { return null; }
var C = obj.pointClosestTo(this).elements;
R = Matrix.Rotation(t, obj.direction).elements;
x = this.elements[0] - C[0];
y = this.elements[1] - C[1];
z = this.elements[2] - C[2];
return Vector.create([
C[0] + R[0][0] * x + R[0][1] * y + R[0][2] * z,
C[1] + R[1][0] * x + R[1][1] * y + R[1][2] * z,
C[2] + R[2][0] * x + R[2][1] * y + R[2][2] * z
]);
break;
default:
return null;
}
},
// Returns the result of reflecting the point in the given point, line or plane
reflectionIn: function(obj) {
if (obj.anchor) {
// obj is a plane or line
var P = this.elements.slice();
var C = obj.pointClosestTo(P).elements;
return Vector.create([C[0] + (C[0] - P[0]), C[1] + (C[1] - P[1]), C[2] + (C[2] - (P[2] || 0))]);
} else {
// obj is a point
var Q = obj.elements || obj;
if (this.elements.length != Q.length) { return null; }
return this.map(function(x, i) { return Q[i-1] + (Q[i-1] - x); });
}
},
// Utility to make sure vectors are 3D. If they are 2D, a zero z-component is added
to3D: function() {
var V = this.dup();
switch (V.elements.length) {
case 3: break;
case 2: V.elements.push(0); break;
default: return null;
}
return V;
},
// Returns a string representation of the vector
inspect: function() {
return '[' + this.elements.join(', ') + ']';
},
// Set vector's elements from an array
setElements: function(els) {
this.elements = (els.elements || els).slice();
return this;
}
};
// Constructor function
Vector.create = function(elements) {
var V = new Vector();
return V.setElements(elements);
};
// i, j, k unit vectors
Vector.i = Vector.create([1,0,0]);
Vector.j = Vector.create([0,1,0]);
Vector.k = Vector.create([0,0,1]);
// Random vector of size n
Vector.Random = function(n) {
var elements = [];
do { elements.push(Math.random());
} while (--n);
return Vector.create(elements);
};
// Vector filled with zeros
Vector.Zero = function(n) {
var elements = [];
do { elements.push(0);
} while (--n);
return Vector.create(elements);
};
function Matrix() {}
Matrix.prototype = {
// Returns element (i,j) of the matrix
e: function(i,j) {
if (i < 1 || i > this.elements.length || j < 1 || j > this.elements[0].length) { return null; }
return this.elements[i-1][j-1];
},
// Returns row k of the matrix as a vector
row: function(i) {
if (i > this.elements.length) { return null; }
return Vector.create(this.elements[i-1]);
},
// Returns column k of the matrix as a vector
col: function(j) {
if (j > this.elements[0].length) { return null; }
var col = [], n = this.elements.length, k = n, i;
do { i = k - n;
col.push(this.elements[i][j-1]);
} while (--n);
return Vector.create(col);
},
// Returns the number of rows/columns the matrix has
dimensions: function() {
return {rows: this.elements.length, cols: this.elements[0].length};
},
// Returns the number of rows in the matrix
rows: function() {
return this.elements.length;
},
// Returns the number of columns in the matrix
cols: function() {
return this.elements[0].length;
},
// Returns true iff the matrix is equal to the argument. You can supply
// a vector as the argument, in which case the receiver must be a
// one-column matrix equal to the vector.
eql: function(matrix) {
var M = matrix.elements || matrix;
if (typeof(M[0][0]) == 'undefined') { M = Matrix.create(M).elements; }
if (this.elements.length != M.length ||
this.elements[0].length != M[0].length) { return false; }
var ni = this.elements.length, ki = ni, i, nj, kj = this.elements[0].length, j;
do { i = ki - ni;
nj = kj;
do { j = kj - nj;
if (Math.abs(this.elements[i][j] - M[i][j]) > Sylvester.precision) { return false; }
} while (--nj);
} while (--ni);
return true;
},
// Returns a copy of the matrix
dup: function() {
return Matrix.create(this.elements);
},
// Maps the matrix to another matrix (of the same dimensions) according to the given function
map: function(fn) {
var els = [], ni = this.elements.length, ki = ni, i, nj, kj = this.elements[0].length, j;
do { i = ki - ni;
nj = kj;
els[i] = [];
do { j = kj - nj;
els[i][j] = fn(this.elements[i][j], i + 1, j + 1);
} while (--nj);
} while (--ni);
return Matrix.create(els);
},
// Returns true iff the argument has the same dimensions as the matrix
isSameSizeAs: function(matrix) {
var M = matrix.elements || matrix;
if (typeof(M[0][0]) == 'undefined') { M = Matrix.create(M).elements; }
return (this.elements.length == M.length &&
this.elements[0].length == M[0].length);
},
// Returns the result of adding the argument to the matrix
add: function(matrix) {
var M = matrix.elements || matrix;
if (typeof(M[0][0]) == 'undefined') { M = Matrix.create(M).elements; }
if (!this.isSameSizeAs(M)) { return null; }
return this.map(function(x, i, j) { return x + M[i-1][j-1]; });
},
// Returns the result of subtracting the argument from the matrix
subtract: function(matrix) {
var M = matrix.elements || matrix;
if (typeof(M[0][0]) == 'undefined') { M = Matrix.create(M).elements; }
if (!this.isSameSizeAs(M)) { return null; }
return this.map(function(x, i, j) { return x - M[i-1][j-1]; });
},
// Returns true iff the matrix can multiply the argument from the left
canMultiplyFromLeft: function(matrix) {
var M = matrix.elements || matrix;
if (typeof(M[0][0]) == 'undefined') { M = Matrix.create(M).elements; }
// this.columns should equal matrix.rows
return (this.elements[0].length == M.length);
},
// Returns the result of multiplying the matrix from the right by the argument.
// If the argument is a scalar then just multiply all the elements. If the argument is
// a vector, a vector is returned, which saves you having to remember calling
// col(1) on the result.
multiply: function(matrix) {
if (!matrix.elements) {
return this.map(function(x) { return x * matrix; });
}
var returnVector = matrix.modulus ? true : false;
var M = matrix.elements || matrix;
if (typeof(M[0][0]) == 'undefined') { M = Matrix.create(M).elements; }
if (!this.canMultiplyFromLeft(M)) { return null; }
var ni = this.elements.length, ki = ni, i, nj, kj = M[0].length, j;
var cols = this.elements[0].length, elements = [], sum, nc, c;
do { i = ki - ni;
elements[i] = [];
nj = kj;
do { j = kj - nj;
sum = 0;
nc = cols;
do { c = cols - nc;
sum += this.elements[i][c] * M[c][j];
} while (--nc);
elements[i][j] = sum;
} while (--nj);
} while (--ni);
var M = Matrix.create(elements);
return returnVector ? M.col(1) : M;
},
x: function(matrix) { return this.multiply(matrix); },
// Returns a submatrix taken from the matrix
// Argument order is: start row, start col, nrows, ncols
// Element selection wraps if the required index is outside the matrix's bounds, so you could
// use this to perform row/column cycling or copy-augmenting.
minor: function(a, b, c, d) {
var elements = [], ni = c, i, nj, j;
var rows = this.elements.length, cols = this.elements[0].length;
do { i = c - ni;
elements[i] = [];
nj = d;
do { j = d - nj;
elements[i][j] = this.elements[(a+i-1)%rows][(b+j-1)%cols];
} while (--nj);
} while (--ni);
return Matrix.create(elements);
},
// Returns the transpose of the matrix
transpose: function() {
var rows = this.elements.length, cols = this.elements[0].length;
var elements = [], ni = cols, i, nj, j;
do { i = cols - ni;
elements[i] = [];
nj = rows;
do { j = rows - nj;
elements[i][j] = this.elements[j][i];
} while (--nj);
} while (--ni);
return Matrix.create(elements);
},
// Returns true iff the matrix is square
isSquare: function() {
return (this.elements.length == this.elements[0].length);
},
// Returns the (absolute) largest element of the matrix
max: function() {
var m = 0, ni = this.elements.length, ki = ni, i, nj, kj = this.elements[0].length, j;
do { i = ki - ni;
nj = kj;
do { j = kj - nj;
if (Math.abs(this.elements[i][j]) > Math.abs(m)) { m = this.elements[i][j]; }
} while (--nj);
} while (--ni);
return m;
},
// Returns the indeces of the first match found by reading row-by-row from left to right
indexOf: function(x) {
var index = null, ni = this.elements.length, ki = ni, i, nj, kj = this.elements[0].length, j;
do { i = ki - ni;
nj = kj;
do { j = kj - nj;
if (this.elements[i][j] == x) { return {i: i+1, j: j+1}; }
} while (--nj);
} while (--ni);
return null;
},
// If the matrix is square, returns the diagonal elements as a vector.
// Otherwise, returns null.
diagonal: function() {
if (!this.isSquare) { return null; }
var els = [], n = this.elements.length, k = n, i;
do { i = k - n;
els.push(this.elements[i][i]);
} while (--n);
return Vector.create(els);
},
// Make the matrix upper (right) triangular by Gaussian elimination.
// This method only adds multiples of rows to other rows. No rows are
// scaled up or switched, and the determinant is preserved.
toRightTriangular: function() {
var M = this.dup(), els;
var n = this.elements.length, k = n, i, np, kp = this.elements[0].length, p;
do { i = k - n;
if (M.elements[i][i] == 0) {
for (j = i + 1; j < k; j++) {
if (M.elements[j][i] != 0) {
els = []; np = kp;
do { p = kp - np;
els.push(M.elements[i][p] + M.elements[j][p]);
} while (--np);
M.elements[i] = els;
break;
}
}
}
if (M.elements[i][i] != 0) {
for (j = i + 1; j < k; j++) {
var multiplier = M.elements[j][i] / M.elements[i][i];
els = []; np = kp;
do { p = kp - np;
// Elements with column numbers up to an including the number
// of the row that we're subtracting can safely be set straight to
// zero, since that's the point of this routine and it avoids having
// to loop over and correct rounding errors later
els.push(p <= i ? 0 : M.elements[j][p] - M.elements[i][p] * multiplier);
} while (--np);
M.elements[j] = els;
}
}
} while (--n);
return M;
},
toUpperTriangular: function() { return this.toRightTriangular(); },
// Returns the determinant for square matrices
determinant: function() {
if (!this.isSquare()) { return null; }
var M = this.toRightTriangular();
var det = M.elements[0][0], n = M.elements.length - 1, k = n, i;
do { i = k - n + 1;
det = det * M.elements[i][i];
} while (--n);
return det;
},
det: function() { return this.determinant(); },
// Returns true iff the matrix is singular
isSingular: function() {
return (this.isSquare() && this.determinant() === 0);
},
// Returns the trace for square matrices
trace: function() {
if (!this.isSquare()) { return null; }
var tr = this.elements[0][0], n = this.elements.length - 1, k = n, i;
do { i = k - n + 1;
tr += this.elements[i][i];
} while (--n);
return tr;
},
tr: function() { return this.trace(); },
// Returns the rank of the matrix
rank: function() {
var M = this.toRightTriangular(), rank = 0;
var ni = this.elements.length, ki = ni, i, nj, kj = this.elements[0].length, j;
do { i = ki - ni;
nj = kj;
do { j = kj - nj;
if (Math.abs(M.elements[i][j]) > Sylvester.precision) { rank++; break; }
} while (--nj);
} while (--ni);
return rank;
},
rk: function() { return this.rank(); },
// Returns the result of attaching the given argument to the right-hand side of the matrix
augment: function(matrix) {
var M = matrix.elements || matrix;
if (typeof(M[0][0]) == 'undefined') { M = Matrix.create(M).elements; }
var T = this.dup(), cols = T.elements[0].length;
var ni = T.elements.length, ki = ni, i, nj, kj = M[0].length, j;
if (ni != M.length) { return null; }
do { i = ki - ni;
nj = kj;
do { j = kj - nj;
T.elements[i][cols + j] = M[i][j];
} while (--nj);
} while (--ni);
return T;
},
// Returns the inverse (if one exists) using Gauss-Jordan
inverse: function() {
if (!this.isSquare() || this.isSingular()) { return null; }
var ni = this.elements.length, ki = ni, i, j;
var M = this.augment(Matrix.I(ni)).toRightTriangular();
var np, kp = M.elements[0].length, p, els, divisor;
var inverse_elements = [], new_element;
// Matrix is non-singular so there will be no zeros on the diagonal
// Cycle through rows from last to first
do { i = ni - 1;
// First, normalise diagonal elements to 1
els = []; np = kp;
inverse_elements[i] = [];
divisor = M.elements[i][i];
do { p = kp - np;
new_element = M.elements[i][p] / divisor;
els.push(new_element);
// Shuffle of the current row of the right hand side into the results
// array as it will not be modified by later runs through this loop
if (p >= ki) { inverse_elements[i].push(new_element); }
} while (--np);
M.elements[i] = els;
// Then, subtract this row from those above it to
// give the identity matrix on the left hand side
for (j = 0; j < i; j++) {
els = []; np = kp;
do { p = kp - np;
els.push(M.elements[j][p] - M.elements[i][p] * M.elements[j][i]);
} while (--np);
M.elements[j] = els;
}
} while (--ni);
return Matrix.create(inverse_elements);
},
inv: function() { return this.inverse(); },
// Returns the result of rounding all the elements
round: function() {
return this.map(function(x) { return Math.round(x); });
},
// Returns a copy of the matrix with elements set to the given value if they
// differ from it by less than Sylvester.precision
snapTo: function(x) {
return this.map(function(p) {
return (Math.abs(p - x) <= Sylvester.precision) ? x : p;
});
},
// Returns a string representation of the matrix
inspect: function() {
var matrix_rows = [];
var n = this.elements.length, k = n, i;
do { i = k - n;
matrix_rows.push(Vector.create(this.elements[i]).inspect());
} while (--n);
return matrix_rows.join('\n');
},
// Set the matrix's elements from an array. If the argument passed
// is a vector, the resulting matrix will be a single column.
setElements: function(els) {
var i, elements = els.elements || els;
if (typeof(elements[0][0]) != 'undefined') {
var ni = elements.length, ki = ni, nj, kj, j;
this.elements = [];
do { i = ki - ni;
nj = elements[i].length; kj = nj;
this.elements[i] = [];
do { j = kj - nj;
this.elements[i][j] = elements[i][j];
} while (--nj);
} while(--ni);
return this;
}
var n = elements.length, k = n;
this.elements = [];
do { i = k - n;
this.elements.push([elements[i]]);
} while (--n);
return this;
}
};
// Constructor function
Matrix.create = function(elements) {
var M = new Matrix();
return M.setElements(elements);
};
// Identity matrix of size n
Matrix.I = function(n) {
var els = [], k = n, i, nj, j;
do { i = k - n;
els[i] = []; nj = k;
do { j = k - nj;
els[i][j] = (i == j) ? 1 : 0;
} while (--nj);
} while (--n);
return Matrix.create(els);
};
// Diagonal matrix - all off-diagonal elements are zero
Matrix.Diagonal = function(elements) {
var n = elements.length, k = n, i;
var M = Matrix.I(n);
do { i = k - n;
M.elements[i][i] = elements[i];
} while (--n);
return M;
};
// Rotation matrix about some axis. If no axis is
// supplied, assume we're after a 2D transform
Matrix.Rotation = function(theta, a) {
if (!a) {
return Matrix.create([
[Math.cos(theta), -Math.sin(theta)],
[Math.sin(theta), Math.cos(theta)]
]);
}
var axis = a.dup();
if (axis.elements.length != 3) { return null; }
var mod = axis.modulus();
var x = axis.elements[0]/mod, y = axis.elements[1]/mod, z = axis.elements[2]/mod;
var s = Math.sin(theta), c = Math.cos(theta), t = 1 - c;
// Formula derived here: http://www.gamedev.net/reference/articles/article1199.asp
// That proof rotates the co-ordinate system so theta
// becomes -theta and sin becomes -sin here.
return Matrix.create([
[ t*x*x + c, t*x*y - s*z, t*x*z + s*y ],
[ t*x*y + s*z, t*y*y + c, t*y*z - s*x ],
[ t*x*z - s*y, t*y*z + s*x, t*z*z + c ]
]);
};
// Special case rotations
Matrix.RotationX = function(t) {
var c = Math.cos(t), s = Math.sin(t);
return Matrix.create([
[ 1, 0, 0 ],
[ 0, c, -s ],
[ 0, s, c ]
]);
};
Matrix.RotationY = function(t) {
var c = Math.cos(t), s = Math.sin(t);
return Matrix.create([
[ c, 0, s ],
[ 0, 1, 0 ],
[ -s, 0, c ]
]);
};
Matrix.RotationZ = function(t) {
var c = Math.cos(t), s = Math.sin(t);
return Matrix.create([
[ c, -s, 0 ],
[ s, c, 0 ],
[ 0, 0, 1 ]
]);
};
// Random matrix of n rows, m columns
Matrix.Random = function(n, m) {
return Matrix.Zero(n, m).map(
function() { return Math.random(); }
);
};
// Matrix filled with zeros
Matrix.Zero = function(n, m) {
var els = [], ni = n, i, nj, j;
do { i = n - ni;
els[i] = [];
nj = m;
do { j = m - nj;
els[i][j] = 0;
} while (--nj);
} while (--ni);
return Matrix.create(els);
};
function Line() {}
Line.prototype = {
// Returns true if the argument occupies the same space as the line
eql: function(line) {
return (this.isParallelTo(line) && this.contains(line.anchor));
},
// Returns a copy of the line
dup: function() {
return Line.create(this.anchor, this.direction);
},
// Returns the result of translating the line by the given vector/array
translate: function(vector) {
var V = vector.elements || vector;
return Line.create([
this.anchor.elements[0] + V[0],
this.anchor.elements[1] + V[1],
this.anchor.elements[2] + (V[2] || 0)
], this.direction);
},
// Returns true if the line is parallel to the argument. Here, 'parallel to'
// means that the argument's direction is either parallel or antiparallel to
// the line's own direction. A line is parallel to a plane if the two do not
// have a unique intersection.
isParallelTo: function(obj) {
if (obj.normal) { return obj.isParallelTo(this); }
var theta = this.direction.angleFrom(obj.direction);
return (Math.abs(theta) <= Sylvester.precision || Math.abs(theta - Math.PI) <= Sylvester.precision);
},
// Returns the line's perpendicular distance from the argument,
// which can be a point, a line or a plane
distanceFrom: function(obj) {
if (obj.normal) { return obj.distanceFrom(this); }
if (obj.direction) {
// obj is a line
if (this.isParallelTo(obj)) { return this.distanceFrom(obj.anchor); }
var N = this.direction.cross(obj.direction).toUnitVector().elements;
var A = this.anchor.elements, B = obj.anchor.elements;
return Math.abs((A[0] - B[0]) * N[0] + (A[1] - B[1]) * N[1] + (A[2] - B[2]) * N[2]);
} else {
// obj is a point
var P = obj.elements || obj;
var A = this.anchor.elements, D = this.direction.elements;
var PA1 = P[0] - A[0], PA2 = P[1] - A[1], PA3 = (P[2] || 0) - A[2];
var modPA = Math.sqrt(PA1*PA1 + PA2*PA2 + PA3*PA3);
if (modPA === 0) return 0;
// Assumes direction vector is normalized
var cosTheta = (PA1 * D[0] + PA2 * D[1] + PA3 * D[2]) / modPA;
var sin2 = 1 - cosTheta*cosTheta;
return Math.abs(modPA * Math.sqrt(sin2 < 0 ? 0 : sin2));
}
},
// Returns true iff the argument is a point on the line
contains: function(point) {
var dist = this.distanceFrom(point);
return (dist !== null && dist <= Sylvester.precision);
},
// Returns true iff the line lies in the given plane
liesIn: function(plane) {
return plane.contains(this);
},
// Returns true iff the line has a unique point of intersection with the argument
intersects: function(obj) {
if (obj.normal) { return obj.intersects(this); }
return (!this.isParallelTo(obj) && this.distanceFrom(obj) <= Sylvester.precision);
},
// Returns the unique intersection point with the argument, if one exists
intersectionWith: function(obj) {
if (obj.normal) { return obj.intersectionWith(this); }
if (!this.intersects(obj)) { return null; }
var P = this.anchor.elements, X = this.direction.elements,
Q = obj.anchor.elements, Y = obj.direction.elements;
var X1 = X[0], X2 = X[1], X3 = X[2], Y1 = Y[0], Y2 = Y[1], Y3 = Y[2];
var PsubQ1 = P[0] - Q[0], PsubQ2 = P[1] - Q[1], PsubQ3 = P[2] - Q[2];
var XdotQsubP = - X1*PsubQ1 - X2*PsubQ2 - X3*PsubQ3;
var YdotPsubQ = Y1*PsubQ1 + Y2*PsubQ2 + Y3*PsubQ3;
var XdotX = X1*X1 + X2*X2 + X3*X3;
var YdotY = Y1*Y1 + Y2*Y2 + Y3*Y3;
var XdotY = X1*Y1 + X2*Y2 + X3*Y3;
var k = (XdotQsubP * YdotY / XdotX + XdotY * YdotPsubQ) / (YdotY - XdotY * XdotY);
return Vector.create([P[0] + k*X1, P[1] + k*X2, P[2] + k*X3]);
},
// Returns the point on the line that is closest to the given point or line
pointClosestTo: function(obj) {
if (obj.direction) {
// obj is a line
if (this.intersects(obj)) { return this.intersectionWith(obj); }
if (this.isParallelTo(obj)) { return null; }
var D = this.direction.elements, E = obj.direction.elements;
var D1 = D[0], D2 = D[1], D3 = D[2], E1 = E[0], E2 = E[1], E3 = E[2];
// Create plane containing obj and the shared normal and intersect this with it
// Thank you: http://www.cgafaq.info/wiki/Line-line_distance
var x = (D3 * E1 - D1 * E3), y = (D1 * E2 - D2 * E1), z = (D2 * E3 - D3 * E2);
var N = Vector.create([x * E3 - y * E2, y * E1 - z * E3, z * E2 - x * E1]);
var P = Plane.create(obj.anchor, N);
return P.intersectionWith(this);
} else {
// obj is a point
var P = obj.elements || obj;
if (this.contains(P)) { return Vector.create(P); }
var A = this.anchor.elements, D = this.direction.elements;
var D1 = D[0], D2 = D[1], D3 = D[2], A1 = A[0], A2 = A[1], A3 = A[2];
var x = D1 * (P[1]-A2) - D2 * (P[0]-A1), y = D2 * ((P[2] || 0) - A3) - D3 * (P[1]-A2),
z = D3 * (P[0]-A1) - D1 * ((P[2] || 0) - A3);
var V = Vector.create([D2 * x - D3 * z, D3 * y - D1 * x, D1 * z - D2 * y]);
var k = this.distanceFrom(P) / V.modulus();
return Vector.create([
P[0] + V.elements[0] * k,
P[1] + V.elements[1] * k,
(P[2] || 0) + V.elements[2] * k
]);
}
},
// Returns a copy of the line rotated by t radians about the given line. Works by
// finding the argument's closest point to this line's anchor point (call this C) and
// rotating the anchor about C. Also rotates the line's direction about the argument's.
// Be careful with this - the rotation axis' direction affects the outcome!
rotate: function(t, line) {
// If we're working in 2D
if (typeof(line.direction) == 'undefined') { line = Line.create(line.to3D(), Vector.k); }
var R = Matrix.Rotation(t, line.direction).elements;
var C = line.pointClosestTo(this.anchor).elements;
var A = this.anchor.elements, D = this.direction.elements;
var C1 = C[0], C2 = C[1], C3 = C[2], A1 = A[0], A2 = A[1], A3 = A[2];
var x = A1 - C1, y = A2 - C2, z = A3 - C3;
return Line.create([
C1 + R[0][0] * x + R[0][1] * y + R[0][2] * z,
C2 + R[1][0] * x + R[1][1] * y + R[1][2] * z,
C3 + R[2][0] * x + R[2][1] * y + R[2][2] * z
], [
R[0][0] * D[0] + R[0][1] * D[1] + R[0][2] * D[2],
R[1][0] * D[0] + R[1][1] * D[1] + R[1][2] * D[2],
R[2][0] * D[0] + R[2][1] * D[1] + R[2][2] * D[2]
]);
},
// Returns the line's reflection in the given point or line
reflectionIn: function(obj) {
if (obj.normal) {
// obj is a plane
var A = this.anchor.elements, D = this.direction.elements;
var A1 = A[0], A2 = A[1], A3 = A[2], D1 = D[0], D2 = D[1], D3 = D[2];
var newA = this.anchor.reflectionIn(obj).elements;
// Add the line's direction vector to its anchor, then mirror that in the plane
var AD1 = A1 + D1, AD2 = A2 + D2, AD3 = A3 + D3;
var Q = obj.pointClosestTo([AD1, AD2, AD3]).elements;
var newD = [Q[0] + (Q[0] - AD1) - newA[0], Q[1] + (Q[1] - AD2) - newA[1], Q[2] + (Q[2] - AD3) - newA[2]];
return Line.create(newA, newD);
} else if (obj.direction) {
// obj is a line - reflection obtained by rotating PI radians about obj
return this.rotate(Math.PI, obj);
} else {
// obj is a point - just reflect the line's anchor in it
var P = obj.elements || obj;
return Line.create(this.anchor.reflectionIn([P[0], P[1], (P[2] || 0)]), this.direction);
}
},
// Set the line's anchor point and direction.
setVectors: function(anchor, direction) {
// Need to do this so that line's properties are not
// references to the arguments passed in
anchor = Vector.create(anchor);
direction = Vector.create(direction);
if (anchor.elements.length == 2) {anchor.elements.push(0); }