diff --git a/CHANGELOG.md b/CHANGELOG.md index fd9b4676..65fdbcd1 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -1,6 +1,6 @@ # Changelog -## ???? - ???? +## 0.2.4 - 2022-05-17 ### Features diff --git a/documentation/learners.md b/documentation/learners.md index a5203669..8d96b36e 100644 --- a/documentation/learners.md +++ b/documentation/learners.md @@ -161,6 +161,21 @@ the gradient of the loss relative to the model output). trained with the Random Forest algorithm with a sampling without replacement. +#### [honest_fixed_separation](../yggdrasil_decision_forests/learner/decision_tree/decision_tree.proto?q=symbol:honest_fixed_separation) + +- **Type:** Categorical **Default:** false **Possible values:** true, false + +- For honest trees only i.e. honest=true. If true, a new random separation is + generated for each tree. If false, the same separation is used for all the + trees (e.g., in Gradient Boosted Trees containing multiple trees). + +#### [honest_ratio_leaf_examples](../yggdrasil_decision_forests/learner/decision_tree/decision_tree.proto?q=symbol:honest_ratio_leaf_examples) + +- **Type:** Real **Default:** 0.5 **Possible values:** min:0 max:1 + +- For honest trees only i.e. honest=true. Ratio of examples used to set the + leaf values. + #### [in_split_min_examples_check](../yggdrasil_decision_forests/learner/decision_tree/decision_tree.proto?q=symbol:in_split_min_examples_check) - **Type:** Categorical **Default:** true **Possible values:** true, false @@ -540,6 +555,21 @@ It is probably the most well-known of the Decision Forest training algorithms. trained with the Random Forest algorithm with a sampling without replacement. +#### [honest_fixed_separation](../yggdrasil_decision_forests/learner/decision_tree/decision_tree.proto?q=symbol:honest_fixed_separation) + +- **Type:** Categorical **Default:** false **Possible values:** true, false + +- For honest trees only i.e. honest=true. If true, a new random separation is + generated for each tree. If false, the same separation is used for all the + trees (e.g., in Gradient Boosted Trees containing multiple trees). + +#### [honest_ratio_leaf_examples](../yggdrasil_decision_forests/learner/decision_tree/decision_tree.proto?q=symbol:honest_ratio_leaf_examples) + +- **Type:** Real **Default:** 0.5 **Possible values:** min:0 max:1 + +- For honest trees only i.e. honest=true. Ratio of examples used to set the + leaf values. + #### [in_split_min_examples_check](../yggdrasil_decision_forests/learner/decision_tree/decision_tree.proto?q=symbol:in_split_min_examples_check) - **Type:** Categorical **Default:** true **Possible values:** true, false @@ -801,6 +831,21 @@ used to grow the tree while the second is used to prune the tree. trained with the Random Forest algorithm with a sampling without replacement. +#### [honest_fixed_separation](../yggdrasil_decision_forests/learner/decision_tree/decision_tree.proto?q=symbol:honest_fixed_separation) + +- **Type:** Categorical **Default:** false **Possible values:** true, false + +- For honest trees only i.e. honest=true. If true, a new random separation is + generated for each tree. If false, the same separation is used for all the + trees (e.g., in Gradient Boosted Trees containing multiple trees). + +#### [honest_ratio_leaf_examples](../yggdrasil_decision_forests/learner/decision_tree/decision_tree.proto?q=symbol:honest_ratio_leaf_examples) + +- **Type:** Real **Default:** 0.5 **Possible values:** min:0 max:1 + +- For honest trees only i.e. honest=true. Ratio of examples used to set the + leaf values. + #### [in_split_min_examples_check](../yggdrasil_decision_forests/learner/decision_tree/decision_tree.proto?q=symbol:in_split_min_examples_check) - **Type:** Categorical **Default:** true **Possible values:** true, false diff --git a/yggdrasil_decision_forests/learner/random_forest/random_forest_test.cc b/yggdrasil_decision_forests/learner/random_forest/random_forest_test.cc index e2292c3d..a66a8a1c 100644 --- a/yggdrasil_decision_forests/learner/random_forest/random_forest_test.cc +++ b/yggdrasil_decision_forests/learner/random_forest/random_forest_test.cc @@ -273,8 +273,7 @@ TEST_F(RandomForestOnAdult, Base) { CHECK_NE(description.find("Label: \"income\""), -1); // Check the oob predictions. - const auto oob_predictions = - file::GetContents(oob_prediction_path, file::Defaults()).value(); + const auto oob_predictions = file::GetContent(oob_prediction_path).value(); EXPECT_TRUE(absl::StartsWith(oob_predictions, "<=50K,>50K\n")); EXPECT_EQ(std::count(oob_predictions.begin(), oob_predictions.end(), '\n'), train_dataset_.nrow() + 1 /*the header*/); @@ -608,8 +607,7 @@ TEST_F(RandomForestOnAbalone, Base) { EXPECT_NEAR(metric::RMSE(evaluation_), 2.0825, 0.01); // Check the oob predictions. - const auto oob_predictions = - file::GetContents(oob_prediction_path, file::Defaults()).value(); + const auto oob_predictions = file::GetContent(oob_prediction_path).value(); EXPECT_TRUE(absl::StartsWith(oob_predictions, "Rings\n")); EXPECT_EQ(std::count(oob_predictions.begin(), oob_predictions.end(), '\n'), train_dataset_.nrow() + 1 /*the header*/);