forked from hasbiida/deep_learning_notes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
2 - MNIST Logistic Regression L2 Regularization.py
85 lines (68 loc) · 2.89 KB
/
2 - MNIST Logistic Regression L2 Regularization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import sys, os
sys.path.append(os.getcwd())
import math
import tensorflow as tf
import tf_helpers as helpers
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
### helper functions
def layer(layer_name, x):
# image_dimension = [784]
image_dimension = helpers.get_shape_array(x)
assert isinstance(image_dimension, list), 'dimension has to be list.'
with tf.name_scope(layer_name):
# initializing at 0 is no-good.
weight = tf.Variable(
tf.truncated_normal(image_dimension[1:] + [10],
stddev=1.0 / math.sqrt(float(image_dimension[1]))),
name='weight')
bias = tf.Variable(tf.zeros([10]), name='bias')
activation = tf.matmul(x, weight) + bias
return weight, bias, activation
def inference():
image = tf.placeholder(tf.float32, shape=[None, 784], name='input')
w, b, output = layer('output_layer', image)
return image, output
def loss(logits):
batch_labels = tf.placeholder(tf.float32, name='labels')
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits, tf.argmax(batch_labels, dimension=1), name='xentropy')
# cross_entropy = - tf.reduce_sum(
# batch_labels * tf.log(logits),
# reduction_indices=[1]
# )
return batch_labels, tf.reduce_mean(cross_entropy, name='xentropy_mean')
def training(loss, learning_rate):
# tf.scalar_summary(loss.op.name, loss)
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
train_op = optimizer.minimize(loss)
return train_op
def evaluation(logits, labels):
correct = tf.nn.in_top_k(logits, tf.cast(tf.argmax(labels, dimension=1), dtype=tf.int32), 1)
# Return the number of true entries.
return tf.reduce_sum(tf.cast(correct, tf.int32))
BATCH_SIZE = 250
if __name__ == "__main__":
with tf.Graph().as_default() as g:
input, logits = inference()
labels, loss_op = loss(logits)
train = training(loss_op, 1e-3)
eval = evaluation(logits, labels)
init = tf.initialize_all_variables()
with tf.Session() as sess:
sess.run(init)
for i in range(30000):
batch_xs, batch_labels = mnist.train.next_batch(BATCH_SIZE)
sess.run(train, feed_dict={
input: batch_xs,
labels: batch_labels
})
if i % 1000 == 0:
print('---------------------------------')
output, loss_value, accuracy = sess.run([logits, loss_op, eval], feed_dict={
input: batch_xs,
labels: batch_labels
})
print("accuracy is ", accuracy / BATCH_SIZE)
# print("loss is ", loss_value)
# print("output is ", output[0], batch_labels[0])