Skip to content

Latest commit

 

History

History
278 lines (232 loc) · 9.71 KB

README.md

File metadata and controls

278 lines (232 loc) · 9.71 KB

hpa.spatial

R-CMD-check

The goal of hpa.spatial is to make relevant shape files and data easily available and include helpful functions for the analysis of spatial data, focusing on the Australian (health) context.

Notes on other packages

Most shape files are available within {absmapsdata} and can be loaded using {strayr}.

The way that data are accessed with hpa.spatial both uses these packages as well as replicating their approach to access data from {hpa.spatial.data}.

Installation

hpa.spatial is only available here on GitHub. You can install the development or release versions of it using the code below:

# install.packages("remotes")
remotes::install_github("healthpolicyanalysis/hpa.spatial") # development version
remotes::install_github("healthpolicyanalysis/hpa.spatial@*release") # latest release version
library(hpa.spatial)
library(sf)
library(dplyr)
library(ggplot2)

Getting shapefiles

get_polygon() is used to get shape files from the abs.

sa2_2016 <- get_polygon(area = "sa2", year = 2016)
head(sa2_2016)
#> Simple feature collection with 6 features and 14 fields
#> Geometry type: MULTIPOLYGON
#> Dimension:     XY
#> Bounding box:  xmin: 149.0781 ymin: -36.00922 xmax: 150.2157 ymax: -34.98032
#> Geodetic CRS:  WGS 84
#>   sa2_code_2016 sa2_5dig_2016                   sa2_name_2016 sa3_code_2016
#> 1     101021007         11007                       Braidwood         10102
#> 2     101021008         11008                         Karabar         10102
#> 3     101021009         11009                      Queanbeyan         10102
#> 4     101021010         11010               Queanbeyan - East         10102
#> 5     101021011         11011               Queanbeyan Region         10102
#> 6     101021012         11012 Queanbeyan West - Jerrabomberra         10102
#>   sa3_name_2016 sa4_code_2016  sa4_name_2016 gcc_code_2016 gcc_name_2016
#> 1    Queanbeyan           101 Capital Region         1RNSW   Rest of NSW
#> 2    Queanbeyan           101 Capital Region         1RNSW   Rest of NSW
#> 3    Queanbeyan           101 Capital Region         1RNSW   Rest of NSW
#> 4    Queanbeyan           101 Capital Region         1RNSW   Rest of NSW
#> 5    Queanbeyan           101 Capital Region         1RNSW   Rest of NSW
#> 6    Queanbeyan           101 Capital Region         1RNSW   Rest of NSW
#>   state_code_2016 state_name_2016 areasqkm_2016 cent_long  cent_lat
#> 1               1 New South Wales     3418.3525  149.7932 -35.45508
#> 2               1 New South Wales        6.9825  149.2328 -35.37590
#> 3               1 New South Wales        4.7634  149.2255 -35.35103
#> 4               1 New South Wales       13.0034  149.2524 -35.35520
#> 5               1 New South Wales     3054.4099  149.3911 -35.44408
#> 6               1 New South Wales       13.6789  149.2028 -35.37760
#>                         geometry
#> 1 MULTIPOLYGON (((149.7606 -3...
#> 2 MULTIPOLYGON (((149.2192 -3...
#> 3 MULTIPOLYGON (((149.2315 -3...
#> 4 MULTIPOLYGON (((149.2315 -3...
#> 5 MULTIPOLYGON (((149.2563 -3...
#> 6 MULTIPOLYGON (((149.2064 -3...

sa2_2016 |>
  ggplot() +
  geom_sf() +
  theme_bw() +
  ggtitle("SA2 (2016)")

lga_2016 <- get_polygon(area = "lga", year = 2016)
head(lga_2016)
#> Simple feature collection with 6 features and 7 fields
#> Geometry type: MULTIPOLYGON
#> Dimension:     XY
#> Bounding box:  xmin: 142.4523 ymin: -37.50503 xmax: 153.6076 ymax: -28.7043
#> Geodetic CRS:  WGS 84
#>   lga_code_2016         lga_name_2016 state_code_2016 state_name_2016
#> 1         10050            Albury (C)               1 New South Wales
#> 2         10130 Armidale Regional (A)               1 New South Wales
#> 3         10250           Ballina (A)               1 New South Wales
#> 4         10300         Balranald (A)               1 New South Wales
#> 5         10470 Bathurst Regional (A)               1 New South Wales
#> 6         10550       Bega Valley (A)               1 New South Wales
#>   areasqkm_2016 cent_long  cent_lat                       geometry
#> 1      305.9459  146.9704 -36.02660 MULTIPOLYGON (((147.0967 -3...
#> 2     8620.6990  151.8291 -30.33634 MULTIPOLYGON (((150.9923 -3...
#> 3      484.9389  153.4861 -28.85288 MULTIPOLYGON (((153.4496 -2...
#> 4    21690.6753  143.6116 -33.95034 MULTIPOLYGON (((143.5525 -3...
#> 5     3817.8646  149.5256 -33.43010 MULTIPOLYGON (((149.8696 -3...
#> 6     6278.8811  149.7176 -36.82594 MULTIPOLYGON (((149.9763 -3...

lga_2016 |>
  ggplot() +
  geom_sf() +
  theme_bw() +
  ggtitle("LGA (2016)")

This is used in the same way as strayr::read_absmap() except it also includes a simplify_keep argument for simplifying the polygon.

sa2_2016_simple <- get_polygon(area = "sa2", year = 2016, simplify_keep = 0.1)

sa2_2016 |>
  filter(gcc_name_2016 == "Greater Brisbane") |>
  ggplot() +
  geom_sf() +
  scale_x_continuous(limits = c(152.9, 153.1)) +
  scale_y_continuous(limits = c(-27.4, -27.6)) +
  theme_bw()

sa2_2016_simple |>
  filter(gcc_name_2016 == "Greater Brisbane") |>
  ggplot() +
  geom_sf() +
  scale_x_continuous(limits = c(152.9, 153.1)) +
  scale_y_continuous(limits = c(-27.4, -27.6)) +
  theme_bw()

Other shapefiles

Aside from the built in shapefiles that are hosted by {absmapsdata}, get_polygon() can also access shapefiles for local hospital networks (LHNs) and Primary Health Networks (PHNs).

For example, these can be accessed by the "area" or "name" arguments as “LHN”.

qld_hhs <- get_polygon(area = "LHN") |> filter(state == "QLD")
#> The data for the Local Hospital Networks (LHN) are from here: <https://hub.arcgis.com/datasets/ACSQHC::local-hospital-networks/explore>
head(qld_hhs)
#> Simple feature collection with 6 features and 3 fields
#> Geometry type: MULTIPOLYGON
#> Dimension:     XY
#> Bounding box:  xmin: 137.9975 ymin: -29.1779 xmax: 153.5522 ymax: -15.90277
#> Geodetic CRS:  GDA2020
#> # A tibble: 6 × 4
#>   LHN_Name              state STATE_CODE                                geometry
#>   <chr>                 <fct> <chr>                           <MULTIPOLYGON [°]>
#> 1 Cairns and Hinterland QLD   3          (((146.1522 -17.99844, 146.1524 -17.99…
#> 2 Central Queensland    QLD   3          (((150.0524 -22.13545, 150.0573 -22.13…
#> 3 Central West (Qld)    QLD   3          (((143.2272 -21.31218, 143.2364 -21.31…
#> 4 Darling Downs         QLD   3          (((150.245 -25.4072, 150.2493 -25.4081…
#> 5 Gold Coast            QLD   3          (((153.4123 -27.9313, 153.4128 -27.931…
#> 6 Mackay                QLD   3          (((147.7665 -19.70548, 147.7666 -19.70…

qld_hhs |>
  ggplot() +
  geom_sf() +
  theme_bw()

Mapping data between ASGS editions

map_data_with_correspondence() is used to map data across ASGS editions.

When used with unit level data, it will randomly allocate the value to the code of the updated edition based on the population-weighted proportions (as probabilities) on the relevant correspondence table.

map_data_with_correspondence(
  codes = c(107011130, 107041149),
  values = c(10, 10),
  from_area = "sa2",
  from_year = 2011,
  to_area = "sa2",
  to_year = 2016,
  value_type = "units"
)
#> # A tibble: 2 × 2
#>   SA2_MAINCODE_2016 values
#>   <chr>              <dbl>
#> 1 107011547             10
#> 2 107041548             10

When used with aggregate data, it will split the value among the codes of the updated edition based on the population-weighted proportions on the relevant correspondence table.

map_data_with_correspondence(
  codes = c(107011130, 107041149),
  values = c(10, 10),
  from_area = "sa2",
  from_year = 2011,
  to_area = "sa2",
  to_year = 2016,
  value_type = "aggs"
)
#> # A tibble: 5 × 2
#>   SA2_MAINCODE_2016 values
#>   <chr>              <dbl>
#> 1 107011545           4.82
#> 2 107011546           3.62
#> 3 107011547           1.57
#> 4 107041548           4.49
#> 5 107041549           5.51

Example

Suppose we have counts of patients within SA2s (2011) and we want to aggregate these up into SA3s (2016 edition). Here is how we could do this with map_data_correspondence() mapping up both to a higher level of ASGS and to a more recent edition.

sa2_2011 <- get_polygon("sa22011")
sa2_2011$patient_counts <- rpois(n = nrow(sa2_2011), lambda = 30)

sa3_counts <- map_data_with_correspondence(
  codes = sa2_2011$sa2_code_2011,
  values = sa2_2011$patient_counts,
  from_area = "sa2",
  from_year = 2011,
  to_area = "sa3",
  to_year = 2016,
  value_type = "aggs"
) |>
  rename(patient_counts = values)
#> Error in get(filename) : object 'CG_SA2_2016_SA3_2016' not found

sa3_2016 <- get_polygon("sa32016") |>
  left_join(sa3_counts)
sa2_2011 |>
  ggplot() +
  geom_sf(aes(fill = patient_counts)) +
  ggtitle("Patient counts by SA2 (2011)") +
  theme_bw()

sa3_2016 |>
  ggplot() +
  geom_sf(aes(fill = patient_counts)) +
  ggtitle("Patient counts by SA3 (2016)") +
  theme_bw()