Skip to content

Latest commit

 

History

History
130 lines (93 loc) · 5.26 KB

README.rst

File metadata and controls

130 lines (93 loc) · 5.26 KB

COAL

COAL is a Python library for processing hyperspectral imagery from remote sensing devices such as the Airborne Visible/InfraRed Imaging Spectrometer (AVIRIS) and AVIRIS-Next Generation enabling scientific analysis of Coal and Open-pit surface mining impacts on American Lands.

Introduction and Context

Mountain-top Mining (MTM) is a method of open surface mining with the primary aim of exploring and exploiting coal seams present within the land and solid earth (LSE) on mountaintops. Amongst other surface mining activities, MTM is known to be an extremely destructive mining procedure predominantly limited to the spatial boundaries of the Southern Appalachians (Eastern Kentucky, West Virginia and very small sections of Virginia and Tennessee). MTM is known to have caused irreparable damage to mountain landscapes and significant immediate and longer-term damage to key streams and watersheds. Larger afield, the rest of the U.S.A has some extensive surface mining in various places for exploitation of resources such as gravel/sand, various metals, other minerals and even radioactive materials, etc. Several studies have provided important scientific understanding related to the local, regional and state-level impacts of such environmentally destructive practices, however a similar understanding on the national and continental levels are very much lacking.

Project Motivation & Statement

COAL provides a suite of algorithms (written in Python) to identify, classify, characterize, and quantify (by reporting a number of key metrics) the direct and indirect impacts of MTM and related destructive surface mining activities across the continental U.S.A (and further afield).

More information on COAL can be seen at the Project Website as well as the docs directory.

Installation

The Python COAL package ``pycoal` can be installed from the cheeseshop

pip install pycoal

or from conda

conda install -c conda-forge pycoal

or from source

git clone https://github.com/capstone-coal/pycoal.git && cd pycoal
python setup.py install

Tests

COAL uses the popular nose testing suite for unit tests.

You can run the COAL tests simply by running

nosetests

Additonally, click on the build sticker at the top of this readme to be directed to the most recent build on travis-ci.

Quickstart

See the examples directory for some Jupyter notebook examples with specific applications of coal.

Documentation

COAL documentation can be found at Readthedocs however you can also build documentation manually.

$ cd docs/source && make html

Documentation can then be located in _build/html/index.html

Community and Development

Mailing list

GoogleGroup

To become involved or if you require help using the project request to join our mailing list.

Issue Tracker

If you have issue using COAL, please log a ticket in our Github issue tracker.

License

COAL is licensed under the license a copy of which ships with this source code.