This repository has been archived by the owner on Jul 21, 2023. It is now read-only.
-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sponge.scm
781 lines (676 loc) · 21.5 KB
/
sponge.scm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
#lang racket
;(require control)
(require syntax/parse/define)
(define (fmt &rest xs)
(apply #'format '() xs))
;(define (out-repeat port n s)
; (dotimes (i n)
; (format port s)))
;;
(define-simple-macro (rec name args . body)
`(labels ((,name ,args ,@body))
(,name ,@args)))
(define-simple-macro (=> x . forms)
(rec aux (x forms)
(if (null forms)
x
(aux (append (car forms) (list x))
(cdr forms)))))
;;; numbers in befunge
;;; (in decimal fashion)
(define (bf-num n)
(cond
((< n 0) (fmt "0~A-" (bf-num (- n))))
((<= n 9) (fmt "~A" n))
(#t (fmt "~Aa*~A+" (bf-num (floor n 10))
(modulo n 10)))))
;;; implemented Lisp:
;;;
;;; - integers (limited by the befunge implementation)
;;; - booleans: true, false (not ##t and #f)
;;; - lambda, if, set!, begin
;;; - functions with variadic arguments are not supported
;;;
;;; error numbers:
;;;
;;; - 7: type error (primitive function applied to
;;; wrong object)
;;;
;;; format of the befunge output:
;;;
;;; main program (row 0)
;;; memory ("heap") (row 1)
;;; error handling (row 2)
;;; routine handlers (from row 3 on)
;;;
;;; - use "absolute delta" ("x") to simulate goto
;;; - the main program jumps to the appropiate routine handler,
;;; then the routine handler jumps back to the corresponding
;;; code in the main program
;;; - do so to avoid backpatching
;;; - keep the first 32 cells of the memory as registers
;;; 0 - pointer to next free space in the heap
;;; 1 - auxiliary register
;;; 2 - pointer to current environment
;;; 3 - yet another auxiliary register
;;; - allocate objects in our "heap"
;;; - no garbage collection -- should use Cheney on the MTA?
;;; - only compile calls and convert to CPS (no need to
;;; take care of returns)
;;;
(define *heap-offset* 1)
(define *routine-offset* 2)
(define *error-handler-position* '(2 . 0))
(defstruct compiler-state
;; program keeps the befunge code in a list of pairs (position . string)
(program
`( ((,*heap-offset* . 0) .
,(string (code-char 33))) ; next free space in the heap
(,*error-handler-position* . "<@,a.,k9a\"Error #\"a0")
))
;; pos tracks the last occupied cell in the main program
(pos '(0 . 0)))
(define (produce str cs)
(make-compiler-state
:program (acons (compiler-state-pos cs) str
(compiler-state-program cs))
:pos (cons
(car (compiler-state-pos cs))
(+ (length str) (cdr (compiler-state-pos cs))))))
(define (bf-jump-driver y0 x0 y1 x1)
(fmt "<x~A~A"
(reverse (bf-num (- y1 y0)))
(reverse (bf-num (- x1 x0 1)))))
(define (pos-for-id num)
(cons (+ num *routine-offset*) 0))
(define (define-function num cs)
(let ((p (pos-for-id num))
(cp (compiler-state-pos cs)))
(make-compiler-state
:program (acons p
(bf-jump-driver
(car p) (cdr p) (car cp) (cdr cp))
(compiler-state-program cs))
:pos cp)))
;;; =~ malloc
;;; leaves the address of the allocated vector in the stack
(define (bf-allocate size cs)
; increase register 0 by size
(produce
(fmt "0~Ag:~A+0~Ap"
(bf-num *heap-offset*)
(bf-num size)
(bf-num *heap-offset*))
cs))
;;; allocates an n-cell vector in the heap
;;; and fills it with the n top elements in
;;; the stack. (the top of the stack goes last).
;;; leaves the address in the stack
(define (bf-create-vector n cs)
(=> cs
; allocate memory
(bf-allocate n)
; save address in register 1
(produce (fmt "1~Ap" *heap-offset*))
; set all values
(each=>
#'(lambda (i cs)
(produce
(fmt "1~Ag~A+~Ap"
(bf-num *heap-offset*)
(bf-num i)
(bf-num *heap-offset*))
cs))
(loop for i from (- n 1) downto 0
collecting i))
; restore address from register 1
(produce (fmt "1~Ag" *heap-offset*))))
;;; pushes i-th element of the vector at the top of the stack
(define (bf-vector-ref i cs)
; dereference memory
(produce (fmt "~A+~Ag" (bf-num i) (bf-num *heap-offset*))
cs))
;;; sets the i-th element of the vector to the value
;;; at the top of the stack
(define (bf-vector-set i cs)
(produce (fmt "\\~A+~Ap" (bf-num i) (bf-num *heap-offset*))
cs))
(define (bf-jump y0 x0)
(fmt ">#x;# \\-~A0-~A+~A;# <"
(reverse (bf-num (+ x0 2)))
(reverse (bf-num y0))
(reverse (bf-num *routine-offset*))))
;;; compiles the function and arguments, and the
;;; necessary code for the invocation
(define (call-function func args n-args cs)
(=> cs
(comp2-args args) ; compile the arguments
(comp2-expr func) ; compile the function
(invoke-function n-args)))
(define (invoke-function n-args cs)
(let ((cs
(=> cs
(produce ":")
(produce (fmt "3~Ap" *heap-offset*)) ; save the function
(bf-vector-ref 2) ; take the function env.
(bf-create-vector (1+ n-args)) ; arguments + pointer to parent env
(produce (fmt "2~Ap" *heap-offset*)) ; set it as the current env
(produce (fmt "3~Ag" *heap-offset*)) ; restore the function
(bf-vector-ref 1) ; take the function-code
)))
(let ((cp (compiler-state-pos cs)))
; call it
(produce (bf-jump (car cp) (cdr cp)) cs))))
;;; constructors for Scheme objects
(define (create-function num cs)
(=> cs
(produce (bf-num *function-tag*)) ; TAG
(produce (bf-num num)) ; function-code
(produce (fmt "2~Ag" *heap-offset*)) ; current env
(bf-create-vector 3)))
(define (push-number n cs)
(=> cs
(produce (bf-num *integer-tag*)) ; TAG
(produce (bf-num n)) ; value
(bf-create-vector 2)))
(define (make-number cs)
(=> cs
(produce (bf-num *integer-tag*)) ; TAG
(produce "\\") ; take value
(bf-create-vector 2)))
(define (push-unspecified cs)
(=> cs
(produce (bf-num *unspecified-tag*)) ; TAG
(bf-create-vector 1)))
(define (push-boolean v cs)
(=> cs
(produce (bf-num *boolean-tag*)) ; TAG
(produce (bf-num (if v 1 0)))
(bf-create-vector 2)))
;;; produce code to reference / set the variable
;;; bound by `name' in the given environment.
;;; the current environment is at register 2
(define (local-ref-base-offset env name cs)
(if (null env)
(assert (not "unbound variable"))
(let ((p (position name (car env))))
(if p
(bf-vector-ref p cs)
(let ((l (length (car env))))
(=> cs
(bf-vector-ref l) ; pointer to next
(local-ref-base-offset (cdr env) name)))))))
(define (local-ref env name cs)
(=> cs
(produce (fmt "2~Ag" *heap-offset*)) ; current env
(local-ref-base-offset env name)))
(define (local-set-base-offset env name value cs)
(if (null env)
(assert (not "unbound variable"))
(let ((p (position name (car env))))
(if p
(=> cs
(comp2-expr value)
(bf-vector-set p))
(let ((l (length (car env))))
(=> cs
(bf-vector-ref l) ; pointer to next
(local-set-base-offset (cdr env) name value)))))))
(define (local-set env name value cs)
(=> cs
(produce (fmt "2~Ag" *heap-offset*)) ; current env
(local-set-base-offset env name value)
(push-unspecified)))
;; Output
;; - emit befunge code to a file, from a list representation
(define (pos-< x y)
(or (< (car x) (car y))
(and (= (car x) (car y))
(< (cdr x) (cdr y)))))
(define (print-program cs &optional (port #t))
(let ((instructions
(sort
(compiler-state-program cs)
#'(lambda (x y) (pos-< (car x) (car y)))))
(last-row 0)
(last-col 0)
(last-size 0))
(dolist (i instructions)
(let ((row (caar i))
(col (cdar i))
(instr (cdr i)))
(out-repeat port (- row last-row) "~%")
(out-repeat port (- col last-col last-size) " ")
(format port "~A" instr)
(setf last-size (if (= last-row row)
(length instr)
0))
(setf last-row row)
(setf last-col col)))))
;;;; Compiler
(define *toplevel-forms* '())
(let ((c 0))
(define make-id ()
(incf c)))
(define *builtins* '())
(define *function-tag* 0)
(define *cons-tag* 1)
(define *integer-tag* 2)
(define *unspecified-tag* 3)
(define *boolean-tag* 4)
(define-simple-macro (defbuiltin name arity &rest rest)
`(push (list ',name ,arity #'(lambda ,@rest))
*builtins*))
(defbuiltin _write-int 1 (expr cs)
(=> cs
(comp2-expr (second expr))
(check-tag *integer-tag*)
(bf-vector-ref 1)
(produce ".")))
(define (check-tag tag cs)
(let ((cs
(=> cs
(produce ":")
(bf-vector-ref 0)
(produce (bf-num tag)))))
(let* ((y (car (compiler-state-pos cs)))
(x (cdr (compiler-state-pos cs)))
(dy (- y (car *error-handler-position*)))
(dx (- (+ x 2) (cdr *error-handler-position*))))
(produce (fmt "-;x~A~A7;# _"
(reverse (bf-num dy))
(reverse (bf-num dx)))
cs))))
(define (bf-tagged tag cs)
(=> cs
(bf-vector-ref 0)
(produce (bf-num tag))
(produce "-!")
(produce (bf-num *boolean-tag*)) ; TAG
(produce "\\")
(bf-create-vector 2)))
(define (operator operation elems result-tag cs)
(let ((cs (if (eq result-tag #t)
cs
(produce (bf-num result-tag) cs))))
(let ((cs
(=> cs
(each=>
#'(lambda (x cs)
(let ((cs (comp2-expr (second x) cs)))
(let ((cs (if (eq (first x) #t)
cs
(check-tag (first x) cs))))
(bf-vector-ref 1 cs))))
elems)
(produce operation))))
(if (eq result-tag #t)
cs
(bf-create-vector 2 cs)))))
(define-simple-macro (defoperator name operation args result)
(let ((gexpr (gensym))
(gcs (gensym))
(n 0))
`(defbuiltin ,name ,(length args) (,gexpr ,gcs)
(operator ,operation
,(cons 'list
(mapcar #'(lambda (x)
(list 'list x (list 'nth (incf n) gexpr)))
args))
,result
,gcs))))
(defoperator _+ "+" (*integer-tag* *integer-tag*) *integer-tag*)
(defoperator _- "-" (*integer-tag* *integer-tag*) *integer-tag*)
(defoperator _* "*" (*integer-tag* *integer-tag*) *integer-tag*)
(defoperator _/ "/" (*integer-tag* *integer-tag*) *integer-tag*)
(defoperator _% "%" (*integer-tag* *integer-tag*) *integer-tag*)
(defoperator _not "!" (*boolean-tag*) *boolean-tag*)
(defoperator _= "-!" (*integer-tag* *integer-tag*) *boolean-tag*)
(define-simple-macro (defpredicate name tag)
(with-gensyms ("" ge gc)
`(defbuiltin ,name 1 (,ge ,gc)
(=> ,gc
(comp2-expr (second ,ge))
(bf-tagged ,tag)))))
(defpredicate _pair? *cons-tag*)
(defpredicate _integer? *integer-tag*)
(defpredicate _procedure? *function-tag*)
(defpredicate _boolean? *boolean-tag*)
(defpredicate _unspecified? *unspecified-tag*)
(defbuiltin _cons 2 (expr cs)
(=> cs
(produce (bf-num *cons-tag*)) ; TAG
(comp2-expr (second expr)) ; car
(comp2-expr (third expr)) ; cdr
(bf-create-vector 3)))
(defbuiltin _car 1 (expr cs)
(=> cs
(comp2-expr (second expr))
(check-tag *cons-tag*)
(bf-vector-ref 1)))
(defbuiltin _cdr 1 (expr cs)
(=> cs
(comp2-expr (second expr))
(check-tag *cons-tag*)
(bf-vector-ref 2)))
;;; desugar:
;;; - convert (let ...) and (letrec ...) to lambdas
(define (desugar expr)
(cond
((consp expr)
(case (car expr)
((let)
(unless (>= (length expr) 3)
(assert (not "malformed let")))
(unless (every #'(lambda (x) (and (consp x) (= (length x) 2)))
(second expr))
(assert (not "malformed bindings")))
`((lambda ,(mapcar #'first (second expr))
,@(mapcar #'desugar (cddr expr)))
,@(mapcar #'desugar (mapcar #'second (second expr)))))
(#t (mapcar #'desugar expr))))
(#t expr)))
;;; convert an expression to CPS
(let ((k (gensym))
(r1 (gensym)))
(define cpsify-application (expr)
(let* ((gen-exprs (mapcar (lambda (x) (gensym)) expr))
(e expr)
(g gen-exprs))
(list 'lambda (list k)
(rec aux (e g)
(if (null e)
(list* (car gen-exprs) k (cdr gen-exprs))
`(,(cpsify (car e))
(lambda (,(car g))
,(aux (cdr e) (cdr g)))))))))
(define cpsify-builtin-application (builtin args)
(let* ((gen-args (mapcar (lambda (x) (gensym)) args))
(a args)
(g gen-args))
(list 'lambda (list k)
(rec aux (a g)
(if (null a)
`(,k (,builtin ,@gen-args))
`(,(cpsify (car a))
(lambda (,(car g))
,(aux (cdr a) (cdr g)))))))))
(define cpsify-progn (expr)
(if (consp expr)
(if (consp (cdr expr))
`(lambda (,k)
(,(cpsify (car expr))
(lambda (,r1)
(,(cpsify-progn (cdr expr)) ,k))))
(cpsify (car expr)))
(assert (not "empty progn"))))
(define cpsify (expr)
(cond
((consp expr)
(if (assoc (car expr) *builtins*)
(cpsify-builtin-application (car expr) (cdr expr))
; else (not a builtin)
(case (car expr)
; special forms
((lambda)
(unless (>= (length expr) 3)
(assert (not "malformed lambda")))
`(lambda (,k)
(,k (lambda (,k ,@(second expr))
(,(cpsify-progn (cddr expr)) ,k)))))
((begin)
(unless (>= (length expr) 2)
(assert (not "malformed begin")))
(cpsify-progn (cdr expr)))
((set!)
(unless (= (length expr) 3)
(assert (not "malformed set!")))
(princ
`(lambda (,k)
(,(cpsify (third expr))
(lambda (,r1)
(,k (set! ,(second expr) ,r1)))))))
((if)
(unless (member (length expr) '(3 4))
(assert (not "malformed if")))
`(lambda (,k)
(,(cpsify (second expr))
(lambda (,r1)
(if ,r1
(,(cpsify (third expr)) ,k)
(,(if (= (length expr) 4)
(cpsify (fourth expr))
(cpsify 0)) ,k))))))
(#t (cpsify-application expr)))))
(#t `(lambda (,k) (,k ,expr)))))
(define cps (expr)
`(,(cpsify expr) (lambda (x) x))))
;;; comp1:
;;;
;;; - flatten lambdas
;;; each (lambda ...) form
;;; gets into (%use-lambda ID)
;;; plus a toplevel function definition (%def-lambda ID ...)
;;;
;;; - check arities of special forms and builtins
(define (valid-constant-p x)
(numberp x))
(define (comp1 expr env)
(cond
((consp expr)
(if (assoc (car expr) *builtins*)
; builtins
(progn
(unless (= (length (cdr expr))
(second (assoc (car expr) *builtins*)))
(assert (not "builtin: wrong arity")))
(cons (car expr) (comp1-seq (cdr expr) env)))
; else (not a builtin)
(case (car expr)
; special forms
((lambda)
(unless (>= (length expr) 3)
(assert (not "malformed lambda")))
(let ((cbody
(comp1
`(begin ,@(cddr expr))
(env-extend env (cadr expr))))
(lambda-id (make-id)))
(push
`(%def-lambda ,lambda-id ,(cadr expr) ,cbody)
*toplevel-forms*)
`(%use-lambda ,lambda-id)))
((begin)
(unless (>= (length expr) 2)
(assert (not "malformed begin")))
(cons (car expr) (comp1-seq (cdr expr) env)))
((set!)
(unless (= (length expr) 3)
(assert (not "malformed set!")))
`(%local-set ,env ,(second expr) ,(comp1 (third expr) env)))
((if)
(unless (= (length expr) 4)
(assert (not "malformed if")))
`(%if ,(comp1 (second expr) env)
,(comp1 (list 'lambda '() (third expr)) env)
,(comp1 (list 'lambda '() (fourth expr)) env)))
; else (application)
(#t (comp1-seq expr env)))))
; variables
((symbolp expr)
(if (member expr '(true false))
`(%boolean-constant ,(eq expr 'true))
`(%local-ref ,env ,expr)))
; constants
((valid-constant-p expr) expr)
; else
(#t (assert (not "unimplemented type of constant")))))
(define (comp1-seq exprs env)
(mapcar #'(lambda (e) (comp1 e env)) exprs))
(define (each=> f list x)
(if (null list)
x
(=> x
(funcall f (car list))
(each=> f (cdr list)))))
(define (env-empty )
'())
(define (env-extend env names)
(cons names env))
;;; comp2:
;;; - produce befunge code in list representation
(define (comp2 exprs cs)
(comp2-progn exprs cs))
(define (comp2-progn exprs cs)
(=> cs
(comp2-expr (car exprs))
(each=>
#'(lambda (e cs1)
(=> cs1
(produce "$")
(comp2-expr e)))
(cdr exprs))))
(define (comp2-args exprs cs)
(each=> #'comp2-expr exprs cs))
(define (comp2-expr expr cs)
;(princ expr) (terpri)
(cond
((consp expr)
(if (assoc (car expr) *builtins*)
(let ((func (third (assoc (car expr) *builtins*))))
(funcall func expr cs))
; else (not a builtin)
(case (car expr)
; special forms
((begin)
(comp2-progn (cdr expr) cs))
((%def-lambda)
(=> cs
(define-function (second expr))
(produce ">")
(comp2-expr (fourth expr))
(produce "q")
))
((%use-lambda)
(=> cs
(create-function (second expr))))
((%main)
(=> cs
(produce ">")
(comp2-expr (second expr))
(produce "q")))
((%if)
(=> cs
;; the "then" and "else" parts get protected
;; by (lambda () ...) in comp1.
;; here we select the thunk and then invoke it.
(comp2-expr (third expr)) ; then
(comp2-expr (fourth expr)) ; else
(comp2-expr (second expr)) ; condition
; transform scheme boolean -> befunge boolean
; for it to be false...:
(produce ":")
(bf-vector-ref 1)
(produce "!\\") ; 1. value must be 0
(bf-vector-ref 0)
(produce (bf-num *boolean-tag*))
(produce "-!*!") ; 2. tag must be boolean
; if true then drop "else" else drop "then"
(produce ";x0a$;# _\\$>")
(invoke-function 0)))
((%local-set)
(let ((env (second expr))
(name (third expr))
(value (fourth expr)))
(local-set env name value cs)))
((%local-ref)
(let ((env (cadr expr))
(name (caddr expr)))
(local-ref env name cs)))
((%boolean-constant)
(push-boolean (second expr) cs))
; else (application)
(#t
(=> cs
(call-function (car expr) (cdr expr) (length (cdr expr)))))
)))
((numberp expr)
(push-number expr cs))
; else (constant)
(#t (format #t "~A~%" expr)
(assert (not "unimplemented type of constant")))))
(define (comp expr)
(let ((expr (cps (desugar expr))))
(pprint expr)
(let ((main-expr (comp1 expr (env-empty))))
(comp2
(cons `(%main ,main-expr) *toplevel-forms*)
(make-compiler-state)))))
(define (sponge-compile* output-file code)
(with-open-file (f output-file :direction :output)
(print-program (comp code) f)))
(define-simple-macro (sponge-compile output-file code)
`(sponge-compile* ,output-file ',code))
;;;; Tests
(sponge-compile "out.bf"
(let ((fact false))
(set! fact
(lambda (n)
(if (_= n 0)
1
(_* n (fact (_- n 1))))))
(_write-int (fact 5))))
#|
(sponge-compile "out.bf"
(_write-int
(((lambda (x)
(lambda (y) (_+ x y)))
11) 31)))
(sponge-compile "out.bf"
((lambda (x y w) (x y w))
(lambda (x z)
(set! z (_+ x z))
(_write-int z))
10
3))
(sponge-compile "out.bf"
(_write-int
((lambda (x) (set! x 1) x) 4)))
(sponge-compile "out.bf"
(if
(if
(if false
(begin (_write-int 4) false)
(begin (_write-int 9) true))
(begin (_write-int 9) false)
(begin (_write-int 4) 0))
(begin (_write-int 4) false)
(begin (_write-int 9) false)))
(sponge-compile "out.bf"
(if false
(begin (_write-int 4) false)
(begin (_write-int 9)
(if true
(begin (_write-int 9)
(if false
(begin (_write-int 4))
(begin (_write-int 9))))
(begin (_write-int 4) false)))))
(sponge-compile "out.bf"
(if true
(_write-int (_+ 10 5))
(_write-int 20)))
(sponge-compile "out.bf"
(_write-int
(let ((x (let ((y 5)) (_+ y 2))))
(let ((y 10))
(_+ x y)))))
(sponge-compile "out.bf"
(let ((sum false))
(set! sum
(lambda (x)
(if (_pair? x)
(_+ (_car x) (sum (_cdr x)))
0)))
(_write-int (length (_cons 10 (_cons 20 (_cons 30 false)))))))
|#