-
Notifications
You must be signed in to change notification settings - Fork 21
/
graph_utils.py
757 lines (633 loc) · 28 KB
/
graph_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
import numpy as np
from scipy import interpolate
from shapely.geometry import LineString
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
import networkx as nx
from sklearn.cluster import DBSCAN
from shapely.geometry import Point, LineString
from shapely.strtree import STRtree
from collections import deque
import unittest
import igraph as ig
import rtree
import scipy
def inspect_graph(node_array, edge_array):
# node_array: [N_node, 2] coordinates of nodes.
# edge_array: [N_edge, 2] (src_idx, dst_idx) tuples.
edge_set = set()
for edge in edge_array:
src, dst = edge[0], edge[1]
edge_set.add((src, dst))
one_way_edge_count = 0
for src, dst in edge_set:
if (dst, src) not in edge_set:
one_way_edge_count += 1
print(f"DEBUG: One-way-edge count {one_way_edge_count}")
node_dist_matrix = node_array[:, np.newaxis, :] - node_array[np.newaxis, :, :]
node_dist_matrix = np.sum(node_dist_matrix**2, axis=-1)**0.5
node_num = node_array.shape[0]
pair_is_close = node_dist_matrix < 0.1
duplicate_node_count = (np.sum(pair_is_close.astype(int)) - node_num) / 2
print(f"DEBUG: duplicate_node_count: {duplicate_node_count}")
def filter_nodes(node_array, edge_array, keep_node):
# Filters nodes, removes edges connecting to them,
# and updates indices in edges.
# node_array: [N_node, 2] coordinates of nodes.
# edge_array: [N_edge, 2] (src_idx, dst_idx) tuples.
# keep_node: [N_node, ] boolean mask.
new_nodes = node_array[keep_node, :]
old_node_num = node_array.shape[0]
keep_indices = np.where(keep_node)[0]
new_node_num = keep_indices.shape[0]
old_to_new_indices = np.full((old_node_num,) , fill_value=-1, dtype=np.int32)
old_to_new_indices[keep_indices] = np.arange(start=0, stop=new_node_num, step=1, dtype=np.int32)
# Replaces node indices in edge_array
edge_nodes = edge_array.flatten()
new_edge_nodes = old_to_new_indices[edge_nodes]
new_edges = new_edge_nodes.reshape(-1, 2)
# Filters disconnected edge
keep_edge = np.all(new_edges > -1, axis=-1)
new_edges = new_edges[keep_edge, :]
return new_nodes, new_edges
def edge_list_to_adj_table(edges):
# edges: [[src_idx, dst_idx], ...] node indices must start from 0 and
# be continuous.
# Returns:
# adj_table: list of sets. len(adj_table) = num_nodes, adj_table[i]
# = neighbor node indices of node i. Empty if no neighbors.
nodes = set()
for edge in edges:
start_idx, end_idx = edge[0], edge[1]
nodes.add(start_idx)
nodes.add(end_idx)
node_num = len(nodes)
adj_table = [set() for i in range(node_num)]
for edge in edges:
start_idx, end_idx = edge[0], edge[1]
adj_table[start_idx].add(end_idx)
return adj_table
def edge_list_to_adj_table(nodes, edges):
# edges: [[src_idx, dst_idx], ...] node indices must start from 0 and
# be continuous.
# Returns:
# adj_table: list of sets. len(adj_table) = num_nodes, adj_table[i]
# = neighbor node indices of node i. Empty if no neighbors.
node_num = len(nodes)
adj_table = [set() for i in range(node_num)]
for edge in edges:
start_idx, end_idx = edge[0], edge[1]
adj_table[start_idx].add(end_idx)
return adj_table
def trace_segment(start_edge, adj_table):
segment_nodes = [start_edge[0], start_edge[1]]
visited_nodes = set(segment_nodes)
while True:
curr_node = segment_nodes[-1]
unvisited_neighbor_num = 0
next_node = -1
for neighbor in adj_table[curr_node]:
if neighbor not in visited_nodes:
unvisited_neighbor_num += 1
next_node = neighbor
if unvisited_neighbor_num != 1:
break
segment_nodes.append(next_node)
visited_nodes.add(next_node)
return segment_nodes
def unique_edge(src, dst):
return (min(src, dst), max(src, dst))
def find_segments_in_road_graph(adj_table):
# adj_table: road graph represented as adj table of nodes, as produced
# by edge_list_to_adj_table.
# Returns:
# segments: list of lists, segments[i] = list of nodes forming the i-th
# segment.
segments = list()
visited_edges = set()
# Goes over each edge in the graph.
node_num = len(adj_table)
for node in range(node_num):
# See if node is a segment end point.
if len(adj_table[node]) == 2:
continue
# Trace down an unvisited edge.
for neighbor in adj_table[node]:
edge = unique_edge(node, neighbor)
if edge in visited_edges:
continue
# Needs edge direction for correct tracing.
segment = trace_segment((node, neighbor), adj_table)
for i in range(len(segment) - 1):
visited_edge = unique_edge(segment[i], segment[i+1])
visited_edges.add(visited_edge)
segments.append(segment)
all_unique_edges = set()
for node in range(node_num):
for neighbor in adj_table[node]:
all_unique_edges.add(unique_edge(node, neighbor))
total_edge_num = len(all_unique_edges)
if len(visited_edges) < total_edge_num:
diff = total_edge_num - len(visited_edges)
print(f'!!! Warning: Isolated loop detected. {diff} edges are missing.')
return segments
def normalize_segments(coords, segments):
# A segment has two endpoints. Makes sure the one with smaller x goes
# first. If tie, The one with smaller y goes first.
# coords: [N_node, 2] node coords.
# segments: [list_of_segment_node_indices, ...]
normalized_segments = []
for i in range(len(segments)):
segment = segments[i]
first = coords[segment[0], :]
last = coords[segment[-1], :]
if first[0] > last[0] or (
first[0] == last[0] and first[1] > last[1]):
segment = segment[::-1]
normalized_segments.append(segment)
return normalized_segments
def get_resampled_polylines(coords, segments, num_points):
# Uniformly resamples each polyline defined by segments to num_points.
# coords: [N_node, 2] node coords.
# segments: [list_of_segment_node_indices, ...]
# Returns:
# list of [num_points, 2].
resampled_polylines = []
for segment in segments:
polyline_coords = coords[segment]
polyline = LineString(polyline_coords)
# Uniform parameter values
dists = np.linspace(0, polyline.length, num_points)
# Resample polyline
resampled_polyline = np.array([list(polyline.interpolate(d).coords)[0] for d in dists])
resampled_polylines.append(resampled_polyline)
return resampled_polylines
def get_polylines_from_road_graph(coords, edges, num_points_per_segment):
adj_table = edge_list_to_adj_table(edges)
segments = find_segments_in_road_graph(adj_table)
segments = normalize_segments(coords, segments)
polylines = get_resampled_polylines(
coords, segments, num_points_per_segment)
return polylines
def get_polyline_connectivity(polylines, dist_threhsold):
# Gets undirected connectivity between polylines by checking if endpoints
# overlap.
# polylines: list of [N_points, 2] arrays.
# dist_threshold: points closer than this are considered connected.
# Returns:
# connected_pairs: [N_pairs, 2] (src_idx, dst_idx). The reverse pair will also be
# here.
# connected_point_indices: [N_pairs, 2] indices of overlapping points in
# their polylines.
connected_pairs = []
connected_point_indices = []
polyline_num = len(polylines)
for i in range(polyline_num):
for j in range(i+1, polyline_num):
a, b = polylines[i], polylines[j]
endpoint_indices = [
(0, 0), (0, b.shape[0]-1),
(a.shape[0]-1, 0), (a.shape[0]-1, b.shape[0]-1)]
for a_idx, b_idx in endpoint_indices:
if np.linalg.norm(a[a_idx] - b[b_idx]) < dist_threhsold:
connected_pairs.append((i, j))
connected_pairs.append((j, i))
connected_point_indices.append((a_idx, b_idx))
connected_point_indices.append((b_idx, a_idx))
return connected_pairs, connected_point_indices
def visualize_polylines(image, polylines):
# Draws all polylines on the image, each with a different color.
# image: [H, W, C]
# polylines: list of [length, 2] float arrays, each entry a (row, col)
# tuple in pixel coordinates.
# Generate a color map with as many colors as there are polylines
cmap = plt.cm.get_cmap('hsv', len(polylines))
# Display the image
plt.imshow(image)
# Draw each polyline with a different color
for idx, polyline in enumerate(polylines):
plt.plot(polyline[:, 1], polyline[:, 0], color=cmap(idx), linewidth=2)
plt.show()
def visualize_polyline_graph(
image, polylines, connected_pairs, connected_point_indices):
# Draws each connected pair, one by one, red->green
for pair_idx, (pair, endpoints) in enumerate(zip(connected_pairs, connected_point_indices)):
print(f'pair {pair_idx+1}/{len(connected_pairs)}')
plt.imshow(image)
idx_a, idx_b = pair
line_a, line_b = polylines[idx_a], polylines[idx_b]
plt.plot(line_a[:, 1], line_a[:, 0], color='red', linewidth=2)
plt.plot(line_b[:, 1], line_b[:, 0], color='green', linewidth=2)
end_a, end_b = line_a[endpoints[0], :], line_b[endpoints[1], :]
plt.plot(end_a[1], end_a[0], marker='o', markersize=8, color='blue')
plt.plot(end_b[1], end_b[0], marker='o', markersize=8, color='blue')
plt.show()
## Utils for aggregating the large map.
def remove_isolate_nodes(nodes, edges):
node_indices = np.arange(nodes.shape[0])
graph = nx.Graph()
graph.add_nodes_from(node_indices)
graph.add_edges_from(edges)
isolated_nodes = list(nx.isolates(graph))
graph.remove_nodes_from(isolated_nodes)
remaining_node_indices = list(graph.nodes())
remaining_node_indices.sort()
remaining_nodes = nodes[remaining_node_indices, :]
new_graph = nx.convert_node_labels_to_integers(graph)
new_edges = list(new_graph.edges())
return remaining_nodes, new_edges
def merge_nodes(nodes, edges, distance_threshold):
clustering = DBSCAN(eps=distance_threshold, min_samples=1).fit(nodes)
node_cluster_indices = clustering.labels_
num_clusters = len(np.unique(node_cluster_indices))
cluster_centers = np.zeros((num_clusters, 2), dtype=np.float32)
cluster_size = np.zeros((num_clusters, ), dtype=np.float32)
for node_index, node in enumerate(nodes):
cluster_index = node_cluster_indices[node_index]
cluster_centers[cluster_index, :] += node
cluster_size[cluster_index] += 1
cluster_centers = cluster_centers / cluster_size[:, np.newaxis]
unique_edges = set()
for (start, end) in edges:
new_start = node_cluster_indices[start]
new_end = node_cluster_indices[end]
# Removes self-loops
if new_start == new_end:
continue
new_edge = (min(new_start, new_end), max(new_start, new_end))
unique_edges.add(new_edge)
return cluster_centers, list(unique_edges)
def split_edges(nodes, edges, distance_threshold):
points = [Point(x, y) for x, y in nodes]
point_tree = STRtree(points)
edge_queue = deque()
for edge in edges:
edge_queue.appendleft(edge)
new_edges = list()
while len(edge_queue) > 0:
start, end = edge_queue.pop()
start_pt, end_pt = nodes[start, :], nodes[end, :]
line_segment = LineString([start_pt, end_pt])
nearby_region = line_segment.buffer(distance=distance_threshold, cap_style='flat')
nearby_point_indices = point_tree.query(nearby_region).tolist()
min_dist = distance_threshold + 88.8
nearest_point_index = None
for index in nearby_point_indices:
if index == start or index == end:
continue
point = points[index]
dist = line_segment.distance(point)
if dist < min_dist:
min_dist, nearest_point_index = dist, index
if nearest_point_index is None or min_dist >= distance_threshold:
new_edges.append((start, end))
continue
else:
e1, e2 = (start, nearest_point_index), (nearest_point_index, end)
edge_queue.appendleft(e1)
edge_queue.appendleft(e2)
# TODO(congrui): share the edge dedup logic
unique_edges = set()
for (start, end) in new_edges:
new_edge = (min(start, end), max(start, end))
unique_edges.add(new_edge)
return nodes, list(unique_edges)
def combine_graphs(graphs):
# graphs: list of (nodes, edges)
offset = 0
combined_nodes, combined_edges = [], []
for nodes, edges in graphs:
combined_nodes.append(nodes)
edges_np = np.array(edges)
edges_np += offset
combined_edges.append(edges_np)
offset += nodes.shape[0]
combined_nodes = np.concatenate(combined_nodes, axis=0)
combined_edges = np.concatenate(combined_edges, axis=0)
return combined_nodes, combined_edges
def merge_into_large_graph(nodes, edges, merge_node_dist_thresh, split_edge_dist_thresh):
nodes1, edges1 = remove_isolate_nodes(nodes, edges)
nodes2, edges2 = merge_nodes(nodes1, edges1, distance_threshold=merge_node_dist_thresh)
nodes3, edges3 = split_edges(nodes2, edges2, distance_threshold=split_edge_dist_thresh)
nodes4, edges4 = remove_isolate_nodes(nodes3, edges3)
return nodes4, edges4
def convert_to_sat2graph_format(nodes, edges):
# Converts a graph to the same format as the labels
# in Sat2Graph.
# nodes: [N_node, 2] of the (row, col) image coordinates.
# edges: [N_edge, 2] pairs of (start, end) node indices.
# Returns: A dict. Keys are (row, col) coordinates of each node. Float inputs will be rounded to int.
# Values are lists, each item being a (row, col) of a neighbor node.
# Edges are not directed. Input edges will be combined with reverse edges.
reverse_edges = edges[:, ::-1]
all_edges = np.concatenate((edges, reverse_edges), axis=0)
adj_table = edge_list_to_adj_table(nodes, all_edges)
int_nodes = [(round(x), round(y)) for x, y in nodes]
result = dict()
for node_idx, neighbor_indices in enumerate(adj_table):
# Notice, we expect the input graph has gone through node-merging so
# there shouldn't be two nodes at the same pixel location.
key = int_nodes[node_idx]
value = [int_nodes[neighbor_idx] for neighbor_idx in neighbor_indices]
result[key] = value
return result
def convert_from_sat2graph_format(graph):
# Converts a graph from the Sat2Graph label format to nodes and edges.
# graph: A dict. Keys are (row, col) coordinates of each node. Float inputs will be rounded to int.
# Values are lists, each item being a (row, col) of a neighbor node.
# Edges are not directed and ARE NOT DE-DUPLICATED.
# Returns:
# nodes: [N_node, 2] of the (row, col) image coordinates.
# edges: [N_edge, 2] pairs of (start, end) node indices.
node_to_idx = dict()
for node, neighbors in graph.items():
if node not in node_to_idx.keys():
node_to_idx[node] = len(node_to_idx)
for neighbor in neighbors:
if neighbor not in node_to_idx.keys():
node_to_idx[neighbor] = len(node_to_idx)
edges = list()
for node, neighbors in graph.items():
for neighbor in neighbors:
src_idx, dst_idx = node_to_idx[node], node_to_idx[neighbor]
edges.append((src_idx, dst_idx))
num_nodes = len(node_to_idx)
nodes = [None] * num_nodes
for node, idx in node_to_idx.items():
nodes[idx] = node
return np.array(nodes), edges
def convert_from_nx(graph):
# nx graph, node being (x, y)
# Returns:
# nodes: [N_node, 2] of the (row, col) image coordinates.
# edges: [N_edge, 2] pairs of (start, end) node indices.
node_to_idx = dict()
nodes = list()
edges = list()
for node in graph.nodes():
if node not in node_to_idx.keys():
node_to_idx[node] = len(node_to_idx)
x, y = node
nodes.append((y, x)) # to rc
for node_0, node_1 in graph.edges():
edges.append((node_to_idx[node_0], node_to_idx[node_1]))
return np.array(nodes), np.array(edges)
### igraph utils for performance
def igraph_from_adj_dict(graph, coord_transform):
# Edges will be de-duped
nodes, edges = convert_from_sat2graph_format(graph)
n_vertices = nodes.shape[0]
if n_vertices == 0:
nodes = np.zeros((0, 2), dtype=nodes.dtype)
edges = set([(min(src, tgt), max(src, tgt)) for src, tgt in edges])
g = ig.Graph(n_vertices, list(edges))
try:
g.vs['point'] = coord_transform(nodes) # to xy
except Exception:
print("==================")
print(nodes.shape)
print(nodes)
import pdb
pdb.set_trace()
return g
def get_line_bbox(line):
(x0, y0), (x1, y1) = line
l = min(x0, x1) - 1
b = min(y0, y1) - 1
r = max(x0, x1) + 1
t = max(y0, y1) + 1
return (l, b, r, t)
def find_intersection(segment1, segment2):
"""
Finds the intersection point of two line segments, if it exists.
Parameters:
segment1 (tuple): A tuple representing the first line segment ((x1, y1), (x2, y2)).
segment2 (tuple): A tuple representing the second line segment ((x3, y3), (x4, y4)).
Returns:
A tuple (x, y) representing the intersection point, or None if there is no intersection.
"""
(x1, y1), (x2, y2) = segment1
(x3, y3), (x4, y4) = segment2
line1 = LineString([segment1[0], segment1[1]])
line2 = LineString([segment2[0], segment2[1]])
# Check for intersection
intersection = line1.intersection(line2)
if not intersection.is_empty and intersection.geom_type == 'Point':
if not (
intersection.equals(Point(x1, y1)) or
intersection.equals(Point(x2, y2)) or
intersection.equals(Point(x3, y3)) or
intersection.equals(Point(x4, y4))
):
return (intersection.x, intersection.y)
# geom_type could be line if two parallel lines overlap
# or just no intersection
# or intersection is at endpoints
return None
def find_crossover_points(graph):
# takes igraph
# y axis shall point upwards for rtree to work properly
# crossover points are counted twice: A cross B, B cross A
# - which is fine for now just be aware
points = graph.vs['point']
edges = graph.es
lines = [(points[edge.source], points[edge.target]) for edge in edges]
line_bboxes = [get_line_bbox(line) for line in lines]
line_index = rtree.index.Index()
for idx, bbox in enumerate(line_bboxes):
line_index.insert(idx, bbox)
crossover_points = []
tested_pairs = set()
for i, line_0 in enumerate(lines):
bbox = line_bboxes[i]
nearby_indices = list(line_index.intersection(bbox))
for ni in nearby_indices:
pair = (min(i, ni), max(i, ni))
if pair in tested_pairs:
continue
line_1 = lines[ni]
itsc = find_intersection(line_0, line_1)
if itsc is not None:
crossover_points.append(itsc)
tested_pairs.add(pair)
return crossover_points
def subdivide_graph(graph, resolution):
# takes igraph
new_points = [p for p in graph.vs['point']]
new_edges = []
for edge in graph.es:
p0, p1 = graph.vs['point'][edge.source], graph.vs['point'][edge.target]
length = np.linalg.norm(p1 - p0)
sample_pieces = max(1, int(length / resolution))
# [N, ]
samples = np.linspace(0.0, 1.0, sample_pieces + 1, endpoint=True)
# [N, 2] = [1, 2] + [N, 1] @ [1, 2]
sampled_pts = np.expand_dims(np.array(p0), axis=0) + np.expand_dims(samples, axis=1) @ np.expand_dims(p1 - p0, axis=0)
# [N-2, 2]
sampled_pts = sampled_pts[1:-1, :]
new_point_indices = []
for new_pt in sampled_pts:
new_point_indices.append(len(new_points))
new_points.append(new_pt)
new_edges_sources = [edge.source] + new_point_indices
new_edges_targets = new_point_indices + [edge.target]
new_edges += list(zip(new_edges_sources, new_edges_targets))
new_graph = ig.Graph(len(new_points), new_edges)
new_graph.vs['point'] = np.array(new_points)
return new_graph
def nms_points(points, scores, radius, return_indices=False):
# if score > 1.0, the point is forced to be kept regardless
sorted_indices = np.argsort(scores)[::-1]
sorted_points = points[sorted_indices, :]
sorted_scores = scores[sorted_indices]
kept = np.ones(sorted_indices.shape[0], dtype=bool)
tree = scipy.spatial.KDTree(sorted_points)
for idx, p in enumerate(sorted_points):
if not kept[idx]:
continue
# neighbor_indices = tree.query_radius(p[np.newaxis, :], r=radius)[0]
neighbor_indices = tree.query_ball_point(p, r=radius)
neighbor_scores = sorted_scores[neighbor_indices]
keep_nbr = np.greater(neighbor_scores, 1.0)
kept[neighbor_indices] = keep_nbr
kept[idx] = True
if return_indices:
return sorted_points[kept], sorted_indices[kept]
else:
return sorted_points[kept]
def bfs_with_conditions(graph, start_node, stop_nodes, max_depth):
"""
Perform BFS on an igraph graph (directed or undirected) from a given start node.
The search stops if it visits a node from a given set of stop nodes or if the depth reaches a threshold.
The function returns the set of visited nodes, including stop nodes if encountered.
Args:
- graph (ig.Graph): The graph to search.
- start_node (int): The index of the node to start the BFS from.
- stop_nodes (set): A set of node indices where the search will stop if visited.
- max_depth (int): The maximum depth to search.
Returns:
- set: The set of visited node indices.
"""
visited = set() # To keep track of visited nodes
queue = deque()
queue.append((start_node, 0)) # Queue of (node, depth)
while queue:
current_node, current_depth = queue.popleft() # Dequeue the next node and its depth
# Mark node as visited
visited.add(current_node)
# Check if the current node is a stop node or if the current depth exceeds max_depth
if current_node in stop_nodes or current_depth >= max_depth:
# Stop condition met, do not extend
continue
# Get neighbors and enqueue them with incremented depth, considering all edges
neighbors = graph.neighbors(current_node, mode="all")
for neighbor in neighbors:
if neighbor not in visited:
queue.append((neighbor, current_depth + 1))
return visited
##### Unit tests #####
class TestGraphUtils(unittest.TestCase):
def test_remove_isolated_nodes(self):
nodes = np.array([[0.0, 0.0], [1.0, 1.0], [2.0, 2.0]])
edges = [[0, 2]]
new_nodes, new_edges = remove_isolate_nodes(nodes, edges)
gt_new_nodes = np.array([[0.0, 0.0], [2.0, 2.0]])
gt_new_edges = np.array([[0, 1]])
np.testing.assert_array_equal(new_nodes, gt_new_nodes)
np.testing.assert_array_equal(np.array(new_edges), gt_new_edges)
def test_merge_nodes(self):
nodes = np.array([[0.0, 0.0], [1.0, 1.0], [1.1, 1.1], [2.0, 2.0], [0.1, 0.1]])
edges = [[0, 1], [1, 2], [1, 3], [2, 3], [2, 4]]
new_nodes, new_edges = merge_nodes(nodes, edges, 0.2)
gt_new_nodes = np.array([[0.05, 0.05], [1.05, 1.05], [2.0, 2.0]])
gt_new_edges = np.array([[0, 1], [1, 2]])
np.testing.assert_almost_equal(new_nodes, gt_new_nodes)
np.testing.assert_array_equal(np.array(new_edges), gt_new_edges)
def test_split_edges(self):
nodes = np.array([[0.0, 0.0], [1.01, 1.01], [2.0, 2.0], [2.0, 0.0]])
edges = [[0, 1], [1, 2], [0, 2], [2, 3]]
new_nodes, new_edges = split_edges(nodes, edges, 0.2)
gt_new_nodes = nodes
gt_new_edges = np.array([[0, 1], [1, 2], [2, 3]])
np.testing.assert_almost_equal(new_nodes, gt_new_nodes)
np.testing.assert_array_equal(np.array(new_edges), gt_new_edges)
def test_combine_graphs(self):
nodes0 = np.array([[0.0, 0.0], [1.0, 0.0]])
edges0 = [[0, 1]]
nodes1 = np.array([[2.0, 2.0], [3.0, 3.0]])
edges1 = [[0, 1]]
new_nodes, new_edges = combine_graphs([(nodes0, edges0), (nodes1, edges1)])
gt_new_nodes = np.array([[0.0, 0.0], [1.0, 0.0], [2.0, 2.0], [3.0, 3.0]])
gt_new_edges = np.array([[0, 1], [2, 3]])
np.testing.assert_almost_equal(new_nodes, gt_new_nodes)
np.testing.assert_array_equal(np.array(new_edges), gt_new_edges)
def test_buffer_region(self):
start_pt, end_pt = np.array([0.0, 0.0]), np.array([10.0, 0.0])
line_segment = LineString([start_pt, end_pt])
nearby_region = line_segment.buffer(distance=2.0, cap_style='flat')
# Get the vertices of the polygon as a list of tuples
vertices_list = list(nearby_region.exterior.coords)
# Convert the list of tuples to a NumPy array
vertices_array = np.array(vertices_list)
gt_vertices = np.array([[10.0, 2.0], [10.0, -2.0], [0.0, -2.0], [0.0, 2.0], [10.0, 2.0]])
np.testing.assert_almost_equal(vertices_array, gt_vertices)
def test_convert_to_sat2graph_format(self):
nodes = np.array([[0.0, 0.0], [1.1, 1.1], [1.6, 1.6]])
edges = np.array([[0, 1], [1, 2]])
result = convert_to_sat2graph_format(nodes, edges)
gt_result = {(0, 0): [(1, 1)], (1, 1): [(0, 0), (2, 2)], (2, 2): [(1, 1)]}
for k, v in result.items():
self.assertTrue(k in gt_result.keys())
self.assertSetEqual(set(v), set(gt_result[k]))
def test_convert_from_sat2graph_format(self):
graph = {(0, 0): [(1, 1)], (1, 1): [(0, 0), (2, 2)], (2, 2): [(1, 1)]}
nodes, edges = convert_from_sat2graph_format(graph)
gt_nodes = np.array([[0, 0], [1, 1], [2, 2]])
gt_edges = np.array([[0, 1], [1, 0], [1, 2], [2, 1]])
np.testing.assert_almost_equal(nodes, gt_nodes)
np.testing.assert_almost_equal(np.array(edges), gt_edges)
def test_convert_from_nx(self):
graph = nx.Graph()
graph.add_edge((1, 2), (3, 4))
graph.add_edge((3, 4), (5, 6))
nodes, edges = convert_from_nx(graph)
gt_nodes = np.array([[2, 1], [4, 3], [6, 5]])
gt_edges = np.array([[0, 1], [1, 2]])
np.testing.assert_almost_equal(nodes, gt_nodes)
np.testing.assert_almost_equal(edges, gt_edges)
def test_igraph_from_sat2graph_format(self):
adj = {
(1, 2) : [(3, 4), (5, 6)],
(3, 4) : [(1, 2), (5, 6)],
}
rc2xy = lambda x : x[:, ::-1]
g = igraph_from_adj_dict(adj, rc2xy)
self.assertEqual(len(g.es), 3)
self.assertEqual(len(g.vs), 3)
self.assertEqual(g.vs[0]['point'][0], 2)
self.assertEqual(g.vs[0]['point'][1], 1)
def test_find_crossover_points(self):
adj = {
(0, 1) : [(10, 1), ],
(2, -2) : [(2, 10), ],
(10, 1) : [(20, 1), ],
}
rc2xy = lambda x : x[:, ::-1]
g = igraph_from_adj_dict(adj, rc2xy)
pts = find_crossover_points(g)
self.assertEqual(len(pts), 1)
gt = np.array([1.0, 2.0])
pd = np.array(pts[0])
np.testing.assert_almost_equal(gt, pd)
def test_subdivide_graph(self):
adj = {
(0, 0) : [(10, 0), ],
(10, 0) : [(20, 0), ]
}
rc2xy = lambda x : x[:, ::-1]
g = igraph_from_adj_dict(adj, rc2xy)
g1 = subdivide_graph(g, resolution=2.0)
self.assertEqual(len(g1.vs['point']), 11)
self.assertEqual(len(g1.es), 10)
if __name__ == '__main__':
unittest.main()