-
Notifications
You must be signed in to change notification settings - Fork 21
/
model.py
686 lines (576 loc) · 28.5 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
import torch
import torch.nn.functional as F
from torch import nn
# from torchvision.ops import nms
import matplotlib.pyplot as plt
import math
import copy
from functools import partial
from torchmetrics.classification import BinaryJaccardIndex, F1Score, BinaryPrecisionRecallCurve
import lightning.pytorch as pl
from sam.segment_anything.modeling.image_encoder import ImageEncoderViT
from sam.segment_anything.modeling.mask_decoder import MaskDecoder
from sam.segment_anything.modeling.prompt_encoder import PromptEncoder
from sam.segment_anything.modeling.transformer import TwoWayTransformer
from sam.segment_anything.modeling.common import LayerNorm2d
import wandb
import pprint
import torchvision
# Only needed for the ablation experiment of using a ViT-B model without SA-1B pre-training.
# It depends on detectron2 library. Not super important.
# import vitdet
class BilinearSampler(nn.Module):
def __init__(self, config):
super(BilinearSampler, self).__init__()
self.config = config
def forward(self, feature_maps, sample_points):
"""
Args:
feature_maps (Tensor): The input feature tensor of shape [B, D, H, W].
sample_points (Tensor): The 2D sample points of shape [B, N_points, 2],
each point in the range [-1, 1], format (x, y).
Returns:
Tensor: Sampled feature vectors of shape [B, N_points, D].
"""
B, D, H, W = feature_maps.shape
_, N_points, _ = sample_points.shape
# normalize cooridinates to (-1, 1) for grid_sample
sample_points = (sample_points / self.config.PATCH_SIZE) * 2.0 - 1.0
# sample_points from [B, N_points, 2] to [B, N_points, 1, 2] for grid_sample
sample_points = sample_points.unsqueeze(2)
# Use grid_sample for bilinear sampling. Align_corners set to False to use -1 to 1 grid space.
# [B, D, N_points, 1]
sampled_features = F.grid_sample(feature_maps, sample_points, mode='bilinear', align_corners=False)
# sampled_features is [B, N_points, D]
sampled_features = sampled_features.squeeze(dim=-1).permute(0, 2, 1)
return sampled_features
class TopoNet(nn.Module):
def __init__(self, config, feature_dim):
super(TopoNet, self).__init__()
self.config = config
self.hidden_dim = 128
self.heads = 4
self.num_attn_layers = 3
self.feature_proj = nn.Linear(feature_dim, self.hidden_dim)
self.pair_proj = nn.Linear(2 * self.hidden_dim + 2, self.hidden_dim)
# Create Transformer Encoder Layer
encoder_layer = nn.TransformerEncoderLayer(
d_model=self.hidden_dim,
nhead=self.heads,
dim_feedforward=self.hidden_dim,
dropout=0.1,
activation='relu',
batch_first=True # Input format is [batch size, sequence length, features]
)
# Stack the Transformer Encoder Layers
if self.config.TOPONET_VERSION != 'no_transformer':
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=self.num_attn_layers)
self.output_proj = nn.Linear(self.hidden_dim, 1)
def forward(self, points, point_features, pairs, pairs_valid):
# points: [B, N_points, 2]
# point_features: [B, N_points, D]
# pairs: [B, N_samples, N_pairs, 2]
# pairs_valid: [B, N_samples, N_pairs]
point_features = F.relu(self.feature_proj(point_features))
# gathers pairs
batch_size, n_samples, n_pairs, _ = pairs.shape
pairs = pairs.view(batch_size, -1, 2)
batch_indices = torch.arange(batch_size).view(-1, 1).expand(-1, n_samples * n_pairs)
# Use advanced indexing to fetch the corresponding feature vectors
# [B, N_samples * N_pairs, D]
src_features = point_features[batch_indices, pairs[:, :, 0]]
tgt_features = point_features[batch_indices, pairs[:, :, 1]]
# [B, N_samples * N_pairs, 2]
src_points = points[batch_indices, pairs[:, :, 0]]
tgt_points = points[batch_indices, pairs[:, :, 1]]
offset = tgt_points - src_points
## ablation study
# [B, N_samples * N_pairs, 2D + 2]
if self.config.TOPONET_VERSION == 'no_tgt_features':
pair_features = torch.concat([src_features, torch.zeros_like(tgt_features), offset], dim=2)
if self.config.TOPONET_VERSION == 'no_offset':
pair_features = torch.concat([src_features, tgt_features, torch.zeros_like(offset)], dim=2)
else:
pair_features = torch.concat([src_features, tgt_features, offset], dim=2)
# [B, N_samples * N_pairs, D]
pair_features = F.relu(self.pair_proj(pair_features))
# attn applies within each local graph sample
pair_features = pair_features.view(batch_size * n_samples, n_pairs, -1)
# valid->not a padding
pairs_valid = pairs_valid.view(batch_size * n_samples, n_pairs)
# [B * N_samples, 1]
#### flips mask for all-invalid pairs to prevent NaN
all_invalid_pair_mask = torch.eq(torch.sum(pairs_valid, dim=-1), 0).unsqueeze(-1)
pairs_valid = torch.logical_or(pairs_valid, all_invalid_pair_mask)
padding_mask = ~pairs_valid
## ablation study
if self.config.TOPONET_VERSION != 'no_transformer':
pair_features = self.transformer_encoder(pair_features, src_key_padding_mask=padding_mask)
## Seems like at inference time, the returned n_pairs heres might be less - it's the
# max num of valid pairs across all samples in the batch
_, n_pairs, _ = pair_features.shape
pair_features = pair_features.view(batch_size, n_samples, n_pairs, -1)
# [B, N_samples, N_pairs, 1]
logits = self.output_proj(pair_features)
scores = torch.sigmoid(logits)
return logits, scores
class _LoRA_qkv(nn.Module):
"""In Sam it is implemented as
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0)
"""
def __init__(
self,
qkv: nn.Module,
linear_a_q: nn.Module,
linear_b_q: nn.Module,
linear_a_v: nn.Module,
linear_b_v: nn.Module,
):
super().__init__()
# self.qkv = qkv
self.weight = qkv.weight
self.bias = qkv.bias
self.linear_a_q = linear_a_q
self.linear_b_q = linear_b_q
self.linear_a_v = linear_a_v
self.linear_b_v = linear_b_v
self.dim = qkv.in_features
self.w_identity = torch.eye(qkv.in_features)
def forward(self, x):
# qkv = self.qkv(x) # B,N,N,3*org_C
qkv = F.linear(x, self.weight, self.bias)
new_q = self.linear_b_q(self.linear_a_q(x))
new_v = self.linear_b_v(self.linear_a_v(x))
qkv[:, :, :, : self.dim] += new_q
qkv[:, :, :, -self.dim:] += new_v
return qkv
class SAMRoad(pl.LightningModule):
"""This is the RelationFormer module that performs object detection"""
def __init__(self, config):
super().__init__()
self.config = config
assert config.SAM_VERSION in {'vit_b', 'vit_l', 'vit_h'}
if config.SAM_VERSION == 'vit_b':
### SAM config (B)
encoder_embed_dim=768
encoder_depth=12
encoder_num_heads=12
encoder_global_attn_indexes=[2, 5, 8, 11]
###
elif config.SAM_VERSION == 'vit_l':
### SAM config (L)
encoder_embed_dim=1024
encoder_depth=24
encoder_num_heads=16
encoder_global_attn_indexes=[5, 11, 17, 23]
###
elif config.SAM_VERSION == 'vit_h':
### SAM config (H)
encoder_embed_dim=1280
encoder_depth=32
encoder_num_heads=16
encoder_global_attn_indexes=[7, 15, 23, 31]
###
prompt_embed_dim = 256
# SAM default is 1024
image_size = config.PATCH_SIZE
self.image_size = image_size
vit_patch_size = 16
image_embedding_size = image_size // vit_patch_size
encoder_output_dim = prompt_embed_dim
self.register_buffer("pixel_mean", torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1), False)
self.register_buffer("pixel_std", torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1), False)
if self.config.NO_SAM:
# Only needed for the ablation experiment of using a ViT-B model without SA-1B pre-training.
# It depends on detectron2 library. Not super important.
### im1k + mae pre-trained vitb
# self.image_encoder = vitdet.VITBEncoder(image_size=image_size, output_feature_dim=prompt_embed_dim)
# self.matched_param_names = self.image_encoder.matched_param_names
raise NotImplementedError((
"This ablation experiment depends on detectron2, "
"which is a bit messy and is not super important, "
"so not including in the release. "
"If you are interested, feel free to uncomment."))
else:
### SAM vitb
self.image_encoder = ImageEncoderViT(
depth=encoder_depth,
embed_dim=encoder_embed_dim,
img_size=image_size,
mlp_ratio=4,
norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
num_heads=encoder_num_heads,
patch_size=vit_patch_size,
qkv_bias=True,
use_rel_pos=True,
global_attn_indexes=encoder_global_attn_indexes,
window_size=14,
out_chans=prompt_embed_dim
)
if self.config.USE_SAM_DECODER:
# SAM DECODER
# Not used, just produce null embeddings
self.prompt_encoder=PromptEncoder(
embed_dim=prompt_embed_dim,
image_embedding_size=(image_embedding_size, image_embedding_size),
input_image_size=(image_size, image_size),
mask_in_chans=16,
)
for param in self.prompt_encoder.parameters():
param.requires_grad = False
self.mask_decoder=MaskDecoder(
num_multimask_outputs=2, # keypoint, road
transformer=TwoWayTransformer(
depth=2,
embedding_dim=prompt_embed_dim,
mlp_dim=2048,
num_heads=8,
),
transformer_dim=prompt_embed_dim,
iou_head_depth=3,
iou_head_hidden_dim=256,
)
else:
#### Naive decoder
activation = nn.GELU
self.map_decoder = nn.Sequential(
nn.ConvTranspose2d(encoder_output_dim, 128, kernel_size=2, stride=2),
LayerNorm2d(128),
activation(),
nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2),
activation(),
nn.ConvTranspose2d(64, 32, kernel_size=2, stride=2),
activation(),
nn.ConvTranspose2d(32, 2, kernel_size=2, stride=2),
)
#### TOPONet
self.bilinear_sampler = BilinearSampler(config)
self.topo_net = TopoNet(config, encoder_output_dim)
#### LORA
if config.ENCODER_LORA:
r = self.config.LORA_RANK
lora_layer_selection = None
assert r > 0
if lora_layer_selection:
self.lora_layer_selection = lora_layer_selection
else:
self.lora_layer_selection = list(
range(len(self.image_encoder.blocks))) # Only apply lora to the image encoder by default
# create for storage, then we can init them or load weights
self.w_As = [] # These are linear layers
self.w_Bs = []
# lets freeze first
for param in self.image_encoder.parameters():
param.requires_grad = False
# Here, we do the surgery
for t_layer_i, blk in enumerate(self.image_encoder.blocks):
# If we only want few lora layer instead of all
if t_layer_i not in self.lora_layer_selection:
continue
w_qkv_linear = blk.attn.qkv
dim = w_qkv_linear.in_features
w_a_linear_q = nn.Linear(dim, r, bias=False)
w_b_linear_q = nn.Linear(r, dim, bias=False)
w_a_linear_v = nn.Linear(dim, r, bias=False)
w_b_linear_v = nn.Linear(r, dim, bias=False)
self.w_As.append(w_a_linear_q)
self.w_Bs.append(w_b_linear_q)
self.w_As.append(w_a_linear_v)
self.w_Bs.append(w_b_linear_v)
blk.attn.qkv = _LoRA_qkv(
w_qkv_linear,
w_a_linear_q,
w_b_linear_q,
w_a_linear_v,
w_b_linear_v,
)
# Init LoRA params
for w_A in self.w_As:
nn.init.kaiming_uniform_(w_A.weight, a=math.sqrt(5))
for w_B in self.w_Bs:
nn.init.zeros_(w_B.weight)
#### Losses
if self.config.FOCAL_LOSS:
self.mask_criterion = partial(torchvision.ops.sigmoid_focal_loss, reduction='mean')
else:
self.mask_criterion = torch.nn.BCEWithLogitsLoss()
self.topo_criterion = torch.nn.BCEWithLogitsLoss(reduction='none')
#### Metrics
self.keypoint_iou = BinaryJaccardIndex(threshold=0.5)
self.road_iou = BinaryJaccardIndex(threshold=0.5)
self.topo_f1 = F1Score(task='binary', threshold=0.5, ignore_index=-1)
# testing only, not used in training
self.keypoint_pr_curve = BinaryPrecisionRecallCurve(ignore_index=-1)
self.road_pr_curve = BinaryPrecisionRecallCurve(ignore_index=-1)
self.topo_pr_curve = BinaryPrecisionRecallCurve(ignore_index=-1)
if self.config.NO_SAM:
return
with open(config.SAM_CKPT_PATH, "rb") as f:
ckpt_state_dict = torch.load(f)
## Resize pos embeddings, if needed
if image_size != 1024:
new_state_dict = self.resize_sam_pos_embed(ckpt_state_dict, image_size, vit_patch_size, encoder_global_attn_indexes)
ckpt_state_dict = new_state_dict
matched_names = []
mismatch_names = []
state_dict_to_load = {}
for k, v in self.named_parameters():
if k in ckpt_state_dict and v.shape == ckpt_state_dict[k].shape:
matched_names.append(k)
state_dict_to_load[k] = ckpt_state_dict[k]
else:
mismatch_names.append(k)
print("###### Matched params ######")
pprint.pprint(matched_names)
print("###### Mismatched params ######")
pprint.pprint(mismatch_names)
self.matched_param_names = set(matched_names)
self.load_state_dict(state_dict_to_load, strict=False)
def resize_sam_pos_embed(self, state_dict, image_size, vit_patch_size, encoder_global_attn_indexes):
new_state_dict = {k : v for k, v in state_dict.items()}
pos_embed = new_state_dict['image_encoder.pos_embed']
token_size = int(image_size // vit_patch_size)
if pos_embed.shape[1] != token_size:
# Copied from SAMed
# resize pos embedding, which may sacrifice the performance, but I have no better idea
pos_embed = pos_embed.permute(0, 3, 1, 2) # [b, c, h, w]
pos_embed = F.interpolate(pos_embed, (token_size, token_size), mode='bilinear', align_corners=False)
pos_embed = pos_embed.permute(0, 2, 3, 1) # [b, h, w, c]
new_state_dict['image_encoder.pos_embed'] = pos_embed
rel_pos_keys = [k for k in state_dict.keys() if 'rel_pos' in k]
global_rel_pos_keys = [k for k in rel_pos_keys if any([str(i) in k for i in encoder_global_attn_indexes])]
for k in global_rel_pos_keys:
rel_pos_params = new_state_dict[k]
h, w = rel_pos_params.shape
rel_pos_params = rel_pos_params.unsqueeze(0).unsqueeze(0)
rel_pos_params = F.interpolate(rel_pos_params, (token_size * 2 - 1, w), mode='bilinear', align_corners=False)
new_state_dict[k] = rel_pos_params[0, 0, ...]
return new_state_dict
def forward(self, rgb, graph_points, pairs, valid):
# rgb: [B, H, W, C]
# graph_points: [B, N_points, 2]
# pairs: [B, N_samples, N_pairs, 2]
# valid: [B, N_samples, N_pairs]
x = rgb.permute(0, 3, 1, 2)
# [B, C, H, W]
x = (x - self.pixel_mean) / self.pixel_std
# [B, D, h, w]
image_embeddings = self.image_encoder(x)
# mask_logits, mask_scores: [B, 2, H, W]
if self.config.USE_SAM_DECODER:
sparse_embeddings, dense_embeddings = self.prompt_encoder(
points=None, boxes=None, masks=None
)
low_res_logits, iou_predictions = self.mask_decoder(
image_embeddings=image_embeddings,
image_pe=self.prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=sparse_embeddings,
dense_prompt_embeddings=dense_embeddings,
multimask_output=True
)
mask_logits = F.interpolate(
low_res_logits,
(self.image_encoder.img_size, self.image_encoder.img_size),
mode="bilinear",
align_corners=False,
)
mask_scores = torch.sigmoid(mask_logits)
else:
mask_logits = self.map_decoder(image_embeddings)
mask_scores = torch.sigmoid(mask_logits)
## Predicts local topology
point_features = self.bilinear_sampler(image_embeddings, graph_points)
# [B, N_sample, N_pair, 1]
topo_logits, topo_scores = self.topo_net(graph_points, point_features, pairs, valid)
# [B, H, W, 2]
mask_logits = mask_logits.permute(0, 2, 3, 1)
mask_scores = mask_scores.permute(0, 2, 3, 1)
return mask_logits, mask_scores, topo_logits, topo_scores
def infer_masks_and_img_features(self, rgb):
# rgb: [B, H, W, C]
# graph_points: [B, N_points, 2]
# pairs: [B, N_samples, N_pairs, 2]
# valid: [B, N_samples, N_pairs]
x = rgb.permute(0, 3, 1, 2)
# [B, C, H, W]
x = (x - self.pixel_mean) / self.pixel_std
# [B, D, h, w]
image_embeddings = self.image_encoder(x)
# mask_logits, mask_scores: [B, 2, H, W]
if self.config.USE_SAM_DECODER:
sparse_embeddings, dense_embeddings = self.prompt_encoder(
points=None, boxes=None, masks=None
)
low_res_logits, iou_predictions = self.mask_decoder(
image_embeddings=image_embeddings,
image_pe=self.prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=sparse_embeddings,
dense_prompt_embeddings=dense_embeddings,
multimask_output=True
)
mask_logits = F.interpolate(
low_res_logits,
(self.image_encoder.img_size, self.image_encoder.img_size),
mode="bilinear",
align_corners=False,
)
mask_scores = torch.sigmoid(mask_logits)
else:
mask_logits = self.map_decoder(image_embeddings)
mask_scores = torch.sigmoid(mask_logits)
# [B, H, W, 2]
mask_scores = mask_scores.permute(0, 2, 3, 1)
return mask_scores, image_embeddings
def infer_toponet(self, image_embeddings, graph_points, pairs, valid):
# image_embeddings: [B, D, h, w]
# graph_points: [B, N_points, 2]
# pairs: [B, N_samples, N_pairs, 2]
# valid: [B, N_samples, N_pairs]
## Predicts local topology
point_features = self.bilinear_sampler(image_embeddings, graph_points)
# [B, N_sample, N_pair, 1]
topo_logits, topo_scores = self.topo_net(graph_points, point_features, pairs, valid)
return topo_scores
def training_step(self, batch, batch_idx):
# masks: [B, H, W]
rgb, keypoint_mask, road_mask = batch['rgb'], batch['keypoint_mask'], batch['road_mask']
graph_points, pairs, valid = batch['graph_points'], batch['pairs'], batch['valid']
# [B, H, W, 2]
mask_logits, mask_scores, topo_logits, topo_scores = self(rgb, graph_points, pairs, valid)
gt_masks = torch.stack([keypoint_mask, road_mask], dim=3)
mask_loss = self.mask_criterion(mask_logits, gt_masks)
topo_gt, topo_loss_mask = batch['connected'].to(torch.int32), valid.to(torch.float32)
# [B, N_samples, N_pairs, 1]
topo_loss = self.topo_criterion(topo_logits, topo_gt.unsqueeze(-1).to(torch.float32))
#### DEBUG NAN
for nan_index in torch.nonzero(torch.isnan(topo_loss[:, :, :, 0])):
print('nan index: B, Sample, Pair')
print(nan_index)
import pdb
pdb.set_trace()
#### DEBUG NAN
topo_loss *= topo_loss_mask.unsqueeze(-1)
# topo_loss = torch.nansum(torch.nansum(topo_loss) / topo_loss_mask.sum())
topo_loss = topo_loss.sum() / topo_loss_mask.sum()
loss = mask_loss + topo_loss
self.log('train_mask_loss', mask_loss, on_step=True, on_epoch=False, prog_bar=True)
self.log('train_topo_loss', topo_loss, on_step=True, on_epoch=False, prog_bar=True)
self.log('train_loss', loss, on_step=True, on_epoch=False, prog_bar=True)
return loss
def validation_step(self, batch, batch_idx):
# masks: [B, H, W]
rgb, keypoint_mask, road_mask = batch['rgb'], batch['keypoint_mask'], batch['road_mask']
graph_points, pairs, valid = batch['graph_points'], batch['pairs'], batch['valid']
# masks: [B, H, W, 2] topo: [B, N_samples, N_pairs, 1]
mask_logits, mask_scores, topo_logits, topo_scores = self(rgb, graph_points, pairs, valid)
gt_masks = torch.stack([keypoint_mask, road_mask], dim=3)
mask_loss = self.mask_criterion(mask_logits, gt_masks)
topo_gt, topo_loss_mask = batch['connected'].to(torch.int32), valid.to(torch.float32)
# [B, N_samples, N_pairs, 1]
topo_loss = self.topo_criterion(topo_logits, topo_gt.unsqueeze(-1).to(torch.float32))
topo_loss *= topo_loss_mask.unsqueeze(-1)
topo_loss = topo_loss.sum() / topo_loss_mask.sum()
loss = mask_loss + topo_loss
self.log('val_mask_loss', mask_loss, on_step=False, on_epoch=True, prog_bar=True)
self.log('val_topo_loss', topo_loss, on_step=False, on_epoch=True, prog_bar=True)
self.log('val_loss', loss, on_step=False, on_epoch=True, prog_bar=True)
# Log images
if batch_idx == 0:
max_viz_num = 4
viz_rgb = rgb[:max_viz_num, :, :]
viz_pred_keypoint = mask_scores[:max_viz_num, :, :, 0]
viz_pred_road = mask_scores[:max_viz_num, :, :, 1]
viz_gt_keypoint = keypoint_mask[:max_viz_num, ...]
viz_gt_road = road_mask[:max_viz_num, ...]
columns = ['rgb', 'gt_keypoint', 'gt_road', 'pred_keypoint', 'pred_road']
data = [[wandb.Image(x.cpu().numpy()) for x in row] for row in list(zip(viz_rgb, viz_gt_keypoint, viz_gt_road, viz_pred_keypoint, viz_pred_road))]
self.logger.log_table(key='viz_table', columns=columns, data=data)
self.keypoint_iou.update(mask_scores[..., 0], keypoint_mask)
self.road_iou.update(mask_scores[..., 1], road_mask)
valid = valid.to(torch.int32)
topo_gt = (1 - valid) * -1 + valid * topo_gt
self.topo_f1.update(topo_scores, topo_gt.unsqueeze(-1))
def on_validation_epoch_end(self):
keypoint_iou = self.keypoint_iou.compute()
road_iou = self.road_iou.compute()
topo_f1 = self.topo_f1.compute()
self.log("keypoint_iou", keypoint_iou)
self.log("road_iou", road_iou)
self.log("topo_f1", topo_f1)
self.keypoint_iou.reset()
self.road_iou.reset()
self.topo_f1.reset()
def test_step(self, batch, batch_idx):
# masks: [B, H, W]
rgb, keypoint_mask, road_mask = batch['rgb'], batch['keypoint_mask'], batch['road_mask']
graph_points, pairs, valid = batch['graph_points'], batch['pairs'], batch['valid']
# masks: [B, H, W, 2] topo: [B, N_samples, N_pairs, 1]
mask_logits, mask_scores, topo_logits, topo_scores = self(rgb, graph_points, pairs, valid)
topo_gt, topo_loss_mask = batch['connected'].to(torch.int32), valid.to(torch.float32)
self.keypoint_pr_curve.update(mask_scores[..., 0], keypoint_mask.to(torch.int32))
self.road_pr_curve.update(mask_scores[..., 1], road_mask.to(torch.int32))
valid = valid.to(torch.int32)
topo_gt = (1 - valid) * -1 + valid * topo_gt
self.topo_pr_curve.update(topo_scores, topo_gt.unsqueeze(-1).to(torch.int32))
def on_test_end(self):
def find_best_threshold(pr_curve_metric, category):
print(f'======= {category} ======')
precision, recall, thresholds = pr_curve_metric.compute()
f1_scores = 2 * (precision * recall) / (precision + recall)
best_threshold_index = torch.argmax(f1_scores)
best_threshold = thresholds[best_threshold_index]
best_precision = precision[best_threshold_index]
best_recall = recall[best_threshold_index]
best_f1 = f1_scores[best_threshold_index]
print(f'Best threshold {best_threshold}, P={best_precision} R={best_recall} F1={best_f1}')
print('======= Finding best thresholds ======')
find_best_threshold(self.keypoint_pr_curve, 'keypoint')
find_best_threshold(self.road_pr_curve, 'road')
find_best_threshold(self.topo_pr_curve, 'topo')
def configure_optimizers(self):
param_dicts = []
if not self.config.FREEZE_ENCODER and not self.config.ENCODER_LORA:
encoder_params = {
'params': [p for k, p in self.image_encoder.named_parameters() if 'image_encoder.'+k in self.matched_param_names],
'lr': self.config.BASE_LR * self.config.ENCODER_LR_FACTOR,
}
param_dicts.append(encoder_params)
if self.config.ENCODER_LORA:
# LoRA params only
encoder_params = {
'params': [p for k, p in self.image_encoder.named_parameters() if 'qkv.linear_' in k],
'lr': self.config.BASE_LR,
}
param_dicts.append(encoder_params)
if self.config.USE_SAM_DECODER:
matched_decoder_params = {
'params': [p for k, p in self.mask_decoder.named_parameters() if 'mask_decoder.'+k in self.matched_param_names],
'lr': self.config.BASE_LR * 0.1
}
fresh_decoder_params = {
'params': [p for k, p in self.mask_decoder.named_parameters() if 'mask_decoder.'+k not in self.matched_param_names],
'lr': self.config.BASE_LR
}
decoder_params = [matched_decoder_params, fresh_decoder_params]
else:
decoder_params = [{
'params': [p for p in self.map_decoder.parameters()],
'lr': self.config.BASE_LR
}]
param_dicts += decoder_params
topo_net_params = [{
'params': [p for p in self.topo_net.parameters()],
'lr': self.config.BASE_LR
}]
param_dicts += topo_net_params
for i, param_dict in enumerate(param_dicts):
param_num = sum([int(p.numel()) for p in param_dict['params']])
print(f'optim param dict {i} params num: {param_num}')
# optimizer = torch.optim.AdamW(param_dicts, lr=self.config.BASE_LR, betas=(0.9, 0.999), weight_decay=0.1)
optimizer = torch.optim.Adam(param_dicts, lr=self.config.BASE_LR)
# warmup = torch.optim.lr_scheduler.LinearLR(optimizer, start_factor=0.1, end_factor=1.0, total_iters=10)
step_lr = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[9,], gamma=0.1)
return {'optimizer': optimizer, 'lr_scheduler': step_lr}