forked from borglab/gtsam
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Pose3Localization.cpp
83 lines (70 loc) · 2.76 KB
/
Pose3Localization.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Pose3Localization.cpp
* @brief A 3D Pose SLAM example that reads input from g2o, and initializes the Pose3 using InitializePose3
* Syntax for the script is ./Pose3Localization input.g2o output.g2o
* @date Aug 25, 2014
* @author Luca Carlone
*/
#include <gtsam/slam/dataset.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
#include <gtsam/nonlinear/Marginals.h>
#include <fstream>
using namespace std;
using namespace gtsam;
int main(const int argc, const char* argv[]) {
// Read graph from file
string g2oFile;
if (argc < 2)
g2oFile = findExampleDataFile("pose3Localizationexample.txt");
else
g2oFile = argv[1];
NonlinearFactorGraph::shared_ptr graph;
Values::shared_ptr initial;
bool is3D = true;
boost::tie(graph, initial) = readG2o(g2oFile, is3D);
// Add prior on the first key
auto priorModel = noiseModel::Diagonal::Variances(
(Vector(6) << 1e-6, 1e-6, 1e-6, 1e-4, 1e-4, 1e-4).finished());
Key firstKey = 0;
for (const Values::ConstKeyValuePair& key_value : *initial) {
std::cout << "Adding prior to g2o file " << std::endl;
firstKey = key_value.key;
graph->addPrior(firstKey, Pose3(), priorModel);
break;
}
std::cout << "Optimizing the factor graph" << std::endl;
GaussNewtonParams params;
params.setVerbosity("TERMINATION"); // show info about stopping conditions
GaussNewtonOptimizer optimizer(*graph, *initial, params);
Values result = optimizer.optimize();
std::cout << "Optimization complete" << std::endl;
std::cout << "initial error=" << graph->error(*initial) << std::endl;
std::cout << "final error=" << graph->error(result) << std::endl;
if (argc < 3) {
result.print("result");
} else {
const string outputFile = argv[2];
std::cout << "Writing results to file: " << outputFile << std::endl;
NonlinearFactorGraph::shared_ptr graphNoKernel;
Values::shared_ptr initial2;
boost::tie(graphNoKernel, initial2) = readG2o(g2oFile);
writeG2o(*graphNoKernel, result, outputFile);
std::cout << "done! " << std::endl;
}
// Calculate and print marginal covariances for all variables
Marginals marginals(*graph, result);
for (const auto& key_value : result) {
auto p = dynamic_cast<const GenericValue<Pose3>*>(&key_value.value);
if (!p) continue;
std::cout << marginals.marginalCovariance(key_value.key) << endl;
}
return 0;
}