forked from megvii-research/ML-GCN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
voc.py
executable file
·266 lines (216 loc) · 8.82 KB
/
voc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import csv
import os
import os.path
import tarfile
from urllib.parse import urlparse
import numpy as np
import torch
import torch.utils.data as data
from PIL import Image
import pickle
import util
from util import *
object_categories = ['aeroplane', 'bicycle', 'bird', 'boat',
'bottle', 'bus', 'car', 'cat', 'chair',
'cow', 'diningtable', 'dog', 'horse',
'motorbike', 'person', 'pottedplant',
'sheep', 'sofa', 'train', 'tvmonitor']
urls = {
'devkit': 'http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCdevkit_18-May-2011.tar',
'trainval_2007': 'http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar',
'test_images_2007': 'http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar',
'test_anno_2007': 'http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtestnoimgs_06-Nov-2007.tar',
}
def read_image_label(file):
print('[dataset] read ' + file)
data = dict()
print(os.getcwd())
with open(file, 'r') as f:
for line in f:
tmp = line.split(' ')
name = tmp[0]
label = int(tmp[-1])
data[name] = label
# data.append([name, label])
# print('%s %d' % (name, label))
return data
def read_object_labels(root, dataset, set):
path_labels = os.path.join(root, 'VOCdevkit', dataset, 'ImageSets', 'Main')
labeled_data = dict()
num_classes = len(object_categories)
for i in range(num_classes):
file = os.path.join(path_labels, object_categories[i] + '_' + set + '.txt')
data = read_image_label(file)
if i == 0:
for (name, label) in data.items():
labels = np.zeros(num_classes)
labels[i] = label
labeled_data[name] = labels
else:
for (name, label) in data.items():
labeled_data[name][i] = label
return labeled_data
def write_object_labels_csv(file, labeled_data):
# write a csv file
print('[dataset] write file %s' % file)
with open(file, 'w') as csvfile:
fieldnames = ['name']
fieldnames.extend(object_categories)
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writeheader()
for (name, labels) in labeled_data.items():
example = {'name': name}
for i in range(20):
example[fieldnames[i + 1]] = int(labels[i])
writer.writerow(example)
csvfile.close()
def read_object_labels_csv(file, header=True):
images = []
num_categories = 0
print('[dataset] read', file)
with open(file, 'r') as f:
reader = csv.reader(f)
rownum = 0
for row in reader:
if header and rownum == 0:
header = row
else:
if num_categories == 0:
num_categories = len(row) - 1
name = row[0]
labels = (np.asarray(row[1:num_categories + 1])).astype(np.float32)
labels = torch.from_numpy(labels)
item = (name, labels)
images.append(item)
rownum += 1
return images
def find_images_classification(root, dataset, set):
path_labels = os.path.join(root, 'VOCdevkit', dataset, 'ImageSets', 'Main')
images = []
file = os.path.join(path_labels, set + '.txt')
with open(file, 'r') as f:
for line in f:
images.append(line)
return images
def download_voc2007(root):
path_devkit = os.path.join(root, 'VOCdevkit')
path_images = os.path.join(root, 'VOCdevkit', 'VOC2007', 'JPEGImages')
tmpdir = os.path.join(root, 'tmp')
# create directory
if not os.path.exists(root):
os.makedirs(root)
if not os.path.exists(path_devkit):
if not os.path.exists(tmpdir):
os.makedirs(tmpdir)
parts = urlparse(urls['devkit'])
filename = os.path.basename(parts.path)
cached_file = os.path.join(tmpdir, filename)
if not os.path.exists(cached_file):
print('Downloading: "{}" to {}\n'.format(urls['devkit'], cached_file))
util.download_url(urls['devkit'], cached_file)
# extract file
print('[dataset] Extracting tar file {file} to {path}'.format(file=cached_file, path=root))
cwd = os.getcwd()
tar = tarfile.open(cached_file, "r")
os.chdir(root)
tar.extractall()
tar.close()
os.chdir(cwd)
print('[dataset] Done!')
# train/val images/annotations
if not os.path.exists(path_images):
# download train/val images/annotations
parts = urlparse(urls['trainval_2007'])
filename = os.path.basename(parts.path)
cached_file = os.path.join(tmpdir, filename)
if not os.path.exists(cached_file):
print('Downloading: "{}" to {}\n'.format(urls['trainval_2007'], cached_file))
util.download_url(urls['trainval_2007'], cached_file)
# extract file
print('[dataset] Extracting tar file {file} to {path}'.format(file=cached_file, path=root))
cwd = os.getcwd()
tar = tarfile.open(cached_file, "r")
os.chdir(root)
tar.extractall()
tar.close()
os.chdir(cwd)
print('[dataset] Done!')
# test annotations
test_anno = os.path.join(path_devkit, 'VOC2007/ImageSets/Main/aeroplane_test.txt')
if not os.path.exists(test_anno):
# download test annotations
parts = urlparse(urls['test_images_2007'])
filename = os.path.basename(parts.path)
cached_file = os.path.join(tmpdir, filename)
if not os.path.exists(cached_file):
print('Downloading: "{}" to {}\n'.format(urls['test_images_2007'], cached_file))
util.download_url(urls['test_images_2007'], cached_file)
# extract file
print('[dataset] Extracting tar file {file} to {path}'.format(file=cached_file, path=root))
cwd = os.getcwd()
tar = tarfile.open(cached_file, "r")
os.chdir(root)
tar.extractall()
tar.close()
os.chdir(cwd)
print('[dataset] Done!')
# test images
test_image = os.path.join(path_devkit, 'VOC2007/JPEGImages/000001.jpg')
if not os.path.exists(test_image):
# download test images
parts = urlparse(urls['test_anno_2007'])
filename = os.path.basename(parts.path)
cached_file = os.path.join(tmpdir, filename)
if not os.path.exists(cached_file):
print('Downloading: "{}" to {}\n'.format(urls['test_anno_2007'], cached_file))
util.download_url(urls['test_anno_2007'], cached_file)
# extract file
print('[dataset] Extracting tar file {file} to {path}'.format(file=cached_file, path=root))
cwd = os.getcwd()
tar = tarfile.open(cached_file, "r")
os.chdir(root)
tar.extractall()
tar.close()
os.chdir(cwd)
print('[dataset] Done!')
class Voc2007Classification(data.Dataset):
def __init__(self, root, set, transform=None, target_transform=None, inp_name=None, adj=None):
self.root = root
self.path_devkit = os.path.join(root, 'VOCdevkit')
self.path_images = os.path.join(root, 'VOCdevkit', 'VOC2007', 'JPEGImages')
self.set = set
self.transform = transform
self.target_transform = target_transform
# download dataset
download_voc2007(self.root)
# define path of csv file
path_csv = os.path.join(self.root, 'files', 'VOC2007')
# define filename of csv file
file_csv = os.path.join(path_csv, 'classification_' + set + '.csv')
# create the csv file if necessary
if not os.path.exists(file_csv):
if not os.path.exists(path_csv): # create dir if necessary
os.makedirs(path_csv)
# generate csv file
labeled_data = read_object_labels(self.root, 'VOC2007', self.set)
# write csv file
write_object_labels_csv(file_csv, labeled_data)
self.classes = object_categories
self.images = read_object_labels_csv(file_csv)
with open(inp_name, 'rb') as f:
self.inp = pickle.load(f)
self.inp_name = inp_name
print('[dataset] VOC 2007 classification set=%s number of classes=%d number of images=%d' % (
set, len(self.classes), len(self.images)))
def __getitem__(self, index):
path, target = self.images[index]
img = Image.open(os.path.join(self.path_images, path + '.jpg')).convert('RGB')
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return (img, path, self.inp), target
def __len__(self):
return len(self.images)
def get_number_classes(self):
return len(self.classes)