-
Notifications
You must be signed in to change notification settings - Fork 158
/
rulegen.py
executable file
·1091 lines (851 loc) · 48.8 KB
/
rulegen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python
# Rulegen.py - Advanced automated password rule and wordlist generator for the
# Hashcat password cracker using the Levenshtein Reverse Path
# algorithm and Enchant spell checking library.
#
# This tool is part of PACK (Password Analysis and Cracking Kit)
#
# VERSION 0.0.3
#
# Copyright (C) 2013 Peter Kacherginsky
# All rights reserved.
#
# Please see the attached LICENSE file for additional licensing information.
import sys
import re
import time
import operator
import enchant
from optparse import OptionParser, OptionGroup
from collections import Counter
import subprocess
import multiprocessing
VERSION = "0.0.4"
# Testing rules with hashcat --stdout
HASHCAT_PATH = "hashcat/"
# Rule Generator class responsible for the complete cycle of rule generation
class RuleGen:
# Initialize Rule Generator class
def __init__(self,language="en",providers="aspell,myspell",basename='analysis',threads=multiprocessing.cpu_count()):
self.threads = threads
self.enchant_broker = enchant.Broker()
self.enchant_broker.set_ordering("*",providers)
self.enchant = enchant.Dict(language, self.enchant_broker)
# Output options
self.basename = basename
# Finetuning word generation
self.max_word_dist = 10
self.max_words = 10
self.more_words = False
self.simple_words = False
# Finetuning rule generation
self.max_rule_len = 10
self.max_rules = 10
self.more_rules = False
self.simple_rules = False
self.brute_rules = False
# Debugging options
self.verbose = False
self.debug = False
self.word = None # Custom word to use.
self.quiet = False
########################################################################
# Word and Rule Statistics
self.numeric_stats_total = 0
self.special_stats_total = 0
self.foreign_stats_total = 0
########################################################################
# Preanalysis Password Patterns
self.password_pattern = dict()
self.password_pattern["insertion"] = re.compile('^[^a-z]*(?P<password>.+?)[^a-z]*$', re.IGNORECASE)
self.password_pattern["email"] = re.compile('^(?P<password>.+?)@[A-Z0-9.-]+\.[A-Z]{2,4}', re.IGNORECASE)
self.password_pattern["alldigits"] = re.compile('^(\d+)$', re.IGNORECASE)
self.password_pattern["allspecial"]= re.compile('^([^a-z0-9]+)$', re.IGNORECASE)
########################################################################
# Hashcat Rules Engine
self.hashcat_rule = dict()
# Dummy rule
self.hashcat_rule[':'] = lambda x: x # Do nothing
# Case rules
self.hashcat_rule["l"] = lambda x: x.lower() # Lowercase all letters
self.hashcat_rule["u"] = lambda x: x.upper() # Capitalize all letters
self.hashcat_rule["c"] = lambda x: x.capitalize() # Capitalize the first letter
self.hashcat_rule["C"] = lambda x: x[0].lower() + x[1:].upper() # Lowercase the first found character, uppercase the rest
self.hashcat_rule["t"] = lambda x: x.swapcase() # Toggle the case of all characters in word
self.hashcat_rule["T"] = lambda x,y: x[:y] + x[y].swapcase() + x[y+1:] # Toggle the case of characters at position N
self.hashcat_rule["E"] = lambda x: " ".join([i[0].upper()+i[1:] for i in x.split(" ")]) # Upper case the first letter and every letter after a space
# Rotation rules
self.hashcat_rule["r"] = lambda x: x[::-1] # Reverse the entire word
self.hashcat_rule["{"] = lambda x: x[1:]+x[0] # Rotate the word left
self.hashcat_rule["}"] = lambda x: x[-1]+x[:-1] # Rotate the word right
# Duplication rules
self.hashcat_rule["d"] = lambda x: x+x # Duplicate entire word
self.hashcat_rule["p"] = lambda x,y: x*y # Duplicate entire word N times
self.hashcat_rule["f"] = lambda x: x+x[::-1] # Duplicate word reversed
self.hashcat_rule["z"] = lambda x,y: x[0]*y+x # Duplicate first character N times
self.hashcat_rule["Z"] = lambda x,y: x+x[-1]*y # Duplicate last character N times
self.hashcat_rule["q"] = lambda x: "".join([i+i for i in x]) # Duplicate every character
self.hashcat_rule["y"] = lambda x,y: x[:y]+x # Duplicate first N characters
self.hashcat_rule["Y"] = lambda x,y: x+x[-y:] # Duplicate last N characters
# Cutting rules
self.hashcat_rule["["] = lambda x: x[1:] # Delete first character
self.hashcat_rule["]"] = lambda x: x[:-1] # Delete last character
self.hashcat_rule["D"] = lambda x,y: x[:y]+x[y+1:] # Deletes character at position N
self.hashcat_rule["'"] = lambda x,y: x[:y] # Truncate word at position N
self.hashcat_rule["x"] = lambda x,y,z: x[:y]+x[y+z:] # Delete M characters, starting at position N
self.hashcat_rule["@"] = lambda x,y: x.replace(y,'') # Purge all instances of X
# Insertion rules
self.hashcat_rule["$"] = lambda x,y: x+y # Append character to end
self.hashcat_rule["^"] = lambda x,y: y+x # Prepend character to front
self.hashcat_rule["i"] = lambda x,y,z: x[:y]+z+x[y:] # Insert character X at position N
# Replacement rules
self.hashcat_rule["o"] = lambda x,y,z: x[:y]+z+x[y+1:] # Overwrite character at position N with X
self.hashcat_rule["s"] = lambda x,y,z: x.replace(y,z) # Replace all instances of X with Y
self.hashcat_rule["L"] = lambda x,y: x[:y]+chr(ord(x[y])<<1)+x[y+1:] # Bitwise shift left character @ N
self.hashcat_rule["R"] = lambda x,y: x[:y]+chr(ord(x[y])>>1)+x[y+1:] # Bitwise shift right character @ N
self.hashcat_rule["+"] = lambda x,y: x[:y]+chr(ord(x[y])+1)+x[y+1:] # Increment character @ N by 1 ascii value
self.hashcat_rule["-"] = lambda x,y: x[:y]+chr(ord(x[y])-1)+x[y+1:] # Decrement character @ N by 1 ascii value
self.hashcat_rule["."] = lambda x,y: x[:y]+x[y+1]+x[y+1:] # Replace character @ N with value at @ N plus 1
self.hashcat_rule[","] = lambda x,y: x[:y]+x[y-1]+x[y+1:] # Replace character @ N with value at @ N minus 1
# Swappping rules
self.hashcat_rule["k"] = lambda x: x[1]+x[0]+x[2:] # Swap first two characters
self.hashcat_rule["K"] = lambda x: x[:-2]+x[-1]+x[-2] # Swap last two characters
self.hashcat_rule["*"] = lambda x,y,z: x[:y]+x[z]+x[y+1:z]+x[y]+x[z+1:] if z > y else x[:z]+x[y]+x[z+1:y]+x[z]+x[y+1:] # Swap character X with Y
########################################################################
# Common numeric and special character substitutions (1337 5p34k)
self.leet = dict()
self.leet["1"] = "i"
self.leet["2"] = "z"
self.leet["3"] = "e"
self.leet["4"] = "a"
self.leet["5"] = "s"
self.leet["6"] = "b"
self.leet["7"] = "t"
self.leet["8"] = "b"
self.leet["9"] = "g"
self.leet["0"] = "o"
self.leet["!"] = "i"
self.leet["|"] = "i"
self.leet["@"] = "a"
self.leet["$"] = "s"
self.leet["+"] = "t"
########################################################################
# Preanalysis rules to bruteforce for each word
self.preanalysis_rules = []
self.preanalysis_rules.append(([],self.hashcat_rule[':'])) # Blank rule
self.preanalysis_rules.append((['r'],self.hashcat_rule['r'])) # Reverse rule
#self.preanalysis_rules.append((['{'],self.hashcat_rule['}'])) # Rotate left
#self.preanalysis_rules.append((['}'],self.hashcat_rule['{'])) # Rotate right
############################################################################
# Calculate Levenshtein edit path matrix
def levenshtein(self,word,password):
matrix = []
# Generate and populate the initial matrix
for i in xrange(len(password) + 1):
matrix.append([])
for j in xrange(len(word) + 1):
if i == 0:
matrix[i].append(j)
elif j == 0:
matrix[i].append(i)
else:
matrix[i].append(0)
# Calculate edit distance for each substring
for i in xrange(1,len(password) + 1):
for j in xrange(1,len(word) + 1):
if password[i-1] == word[j-1]:
matrix[i][j] = matrix[i-1][j-1]
else:
insertion = matrix[i-1][j] + 1
deletion = matrix[i][j-1] + 1
substitution = matrix[i-1][j-1] + 1
matrix[i][j] = min(insertion, deletion, substitution)
return matrix
def levenshtein_distance(self, s1, s2):
"""Calculate the Levenshtein distance between two strings.
This is straight from Wikipedia.
"""
if len(s1) < len(s2):
return self.levenshtein_distance(s2, s1)
if not s1:
return len(s2)
previous_row = xrange(len(s2) + 1)
for i, c1 in enumerate(s1):
current_row = [i + 1]
for j, c2 in enumerate(s2):
insertions = previous_row[j + 1] + 1
deletions = current_row[j] + 1
substitutions = previous_row[j] + (c1 != c2)
current_row.append(min(insertions, deletions, substitutions))
previous_row = current_row
return previous_row[-1]
def levenshtein_print(self,matrix,word,password):
""" Print word X password matrix """
print " %s" % " ".join(list(word))
for i,row in enumerate(matrix):
if i == 0: print " ",
else: print password[i-1],
print " ".join("%2d" % col for col in row)
def generate_levenshtein_rules(self, word, password):
""" Generates levenshtein rules. Returns a list of lists of levenshtein rules. """
# 1) Generate Levenshtein matrix
matrix = self.levenshtein(word, password)
# 2) Trace reverse paths through the matrix.
paths = self.levenshtein_reverse_recursive(matrix,len(matrix)-1,len(matrix[0])-1,0)
# 3) Return a collection of reverse paths.
return [path for path in paths if len(path) <= matrix[-1][-1]]
def levenshtein_reverse_recursive(self,matrix,i,j,path_len):
""" Calculate reverse Levenshtein paths.
Recursive, Depth First, Short-circuited algorithm by Peter Kacherginsky
Generates a list of edit operations necessary to transform a source word
into a password. Edit operations are recorded in the form:
(operation, password_offset, word_offset)
Where an operation can be either insertion, deletion or replacement.
"""
if i == 0 and j == 0 or path_len > matrix[-1][-1]:
return [[]]
else:
paths = list()
cost = matrix[i][j]
# Calculate minimum cost of each operation
cost_delete = cost_insert = cost_equal_or_replace = sys.maxint
if i > 0: cost_insert = matrix[i-1][j]
if j > 0: cost_delete = matrix[i][j-1]
if i > 0 and j > 0: cost_equal_or_replace = matrix[i-1][j-1]
cost_min = min(cost_delete, cost_insert, cost_equal_or_replace)
# Recurse through reverse path for each operation
if cost_insert == cost_min:
insert_paths = self.levenshtein_reverse_recursive(matrix,i-1,j,path_len+1)
for insert_path in insert_paths: paths.append(insert_path + [('insert',i-1,j)])
if cost_delete == cost_min:
delete_paths = self.levenshtein_reverse_recursive(matrix,i,j-1,path_len+1)
for delete_path in delete_paths: paths.append(delete_path + [('delete',i,j-1)])
if cost_equal_or_replace == cost_min:
if cost_equal_or_replace == cost:
equal_paths = self.levenshtein_reverse_recursive(matrix,i-1,j-1,path_len)
for equal_path in equal_paths: paths.append(equal_path)
else:
replace_paths = self.levenshtein_reverse_recursive(matrix,i-1,j-1,path_len+1)
for replace_path in replace_paths: paths.append(replace_path + [('replace',i-1,j-1)])
return paths
def load_custom_wordlist(self,wordlist_file):
self.enchant = enchant.request_pwl_dict(wordlist_file)
def generate_words(self,password):
""" Generate source word candidates."""
if self.debug: print "[*] Generating source words for %s" % password
words = list()
words_collection = list()
# Let's collect best edit distance as soon as possible to prevent
# less efficient pre_rules like reversal and rotation from slowing
# us down with garbage
best_found_distance = 9999
#######################################################################
# Generate words for each preanalysis rule
if not self.brute_rules:
self.preanalysis_rules = self.preanalysis_rules[:1]
for pre_rule, pre_rule_lambda in self.preanalysis_rules:
pre_password = pre_rule_lambda(password)
# Generate word suggestions
if self.word: suggestions = [self.word]
elif self.simple_words: suggestions = self.generate_simple_words(pre_password)
else: suggestions = self.generate_advanced_words(pre_password)
# HACK: Perform some additional expansion on multi-word suggestions
# TODO: May be I should split these two and see if I can generate
# rules for each of the suggestions
for suggestion in suggestions[:self.max_words]:
suggestion = suggestion.replace(' ','')
suggestion = suggestion.replace('-','')
if not suggestion in suggestions:
suggestions.append(suggestion)
if len(suggestions) != len(set(suggestions)):
print sorted(suggestions)
print sorted(set(suggestions))
for suggestion in suggestions:
distance = self.levenshtein_distance(suggestion,pre_password)
word = dict()
word["suggestion"] = suggestion
word["distance"] = distance
word["password"] = pre_password
word["pre_rule"] = pre_rule
word["best_rule_length"] = 9999
words.append(word)
#######################################################################
# Perform Optimization
for word in sorted(words, key=lambda word: word["distance"], reverse=False):
# Optimize for best distance
if not self.more_words:
if word["distance"] < best_found_distance:
best_found_distance = word["distance"]
elif word["distance"] > best_found_distance:
if self.verbose:
print "[-] %s => {edit distance suboptimal: %d (%d)} => %s" % \
(word["suggestion"], word["distance"], best_found_distance, word["password"])
break
# Filter words with too big edit distance
if word["distance"] <= self.max_word_dist:
if self.debug:
print "[+] %s => {edit distance: %d (%d)} = > %s" % \
(word["suggestion"], word["distance"],best_found_distance, word["password"])
words_collection.append(word)
else:
if self.verbose:
print "[-] %s => {max distance exceeded: %d (%d)} => %s" % \
(word["suggestion"], word["distance"], self.max_word_dist, word["password"])
if self.max_words:
words_collection = words_collection[:self.max_words]
return words_collection
def generate_simple_words(self,password):
""" Generate simple words. A simple spellcheck."""
return self.enchant.suggest(password)
def generate_advanced_words(self,password):
""" Generate advanced words.
Perform some additional non-destructive cleaning to help spell-checkers:
1) Remove non-alpha prefixes and appendixes.
2) Perform common pattern matches (e.g. email).
3) Replace non-alpha character substitutions (1337 5p34k)
"""
# Remove non-alpha prefix and/or appendix
insertion_matches = self.password_pattern["insertion"].match(password)
if insertion_matches:
password = insertion_matches.group('password')
# Pattern matches
email_matches = self.password_pattern["email"].match(password)
if email_matches:
password = email_matches.group('password')
# Replace common special character replacements (1337 5p34k)
preanalysis_password = ''
for c in password:
if c in self.leet: preanalysis_password += self.leet[c]
else: preanalysis_password += c
password = preanalysis_password
if self.debug: "[*] Preanalysis Password: %s" % password
return self.enchant.suggest(password)
############################################################################
# Hashcat specific offset definition 0-9,A-Z
def int_to_hashcat(self,N):
if N < 10: return N
else: return chr(65+N-10)
def hashcat_to_int(self,N):
if N.isdigit(): return int(N)
else: return ord(N)-65+10
def generate_hashcat_rules(self, suggestion, password):
""" Generate hashcat rules. Returns a length sorted list of lists of hashcat rules."""
# 2) Generate Levenshtein Rules
lev_rules = self.generate_levenshtein_rules(suggestion, password)
# 3) Generate Hashcat Rules
hashcat_rules = []
hashcat_rules_collection = []
#######################################################################
# Generate hashcat rule for each levenshtein rule
for lev_rule in lev_rules:
if self.simple_rules:
hashcat_rule = self.generate_simple_hashcat_rules(suggestion, lev_rule, password)
else:
hashcat_rule = self.generate_advanced_hashcat_rules(suggestion, lev_rule, password)
if hashcat_rule == None:
print "[!] Processing FAILED: %s => ;( => %s" % (suggestion,password)
print " Sorry about that, please report this failure to"
print " the developer: iphelix [at] thesprawl.org"
else:
hashcat_rules.append(hashcat_rule)
best_found_rule_length = 9999
#######################################################################
# Perform Optimization
for hashcat_rule in sorted(hashcat_rules, key=lambda hashcat_rule: len(hashcat_rule)):
rule_length = len(hashcat_rule)
if not self.more_rules:
if rule_length < best_found_rule_length:
best_found_rule_length = rule_length
elif rule_length > best_found_rule_length:
if self.verbose:
print "[-] %s => {best rule length exceeded: %d (%d)} => %s" % \
(suggestion, rule_length, best_found_rule_length, password)
break
if rule_length <= self.max_rule_len:
hashcat_rules_collection.append(hashcat_rule)
return hashcat_rules_collection
def generate_simple_hashcat_rules(self,word,rules,password):
""" Generate basic hashcat rules using only basic insert,delete,replace rules. """
hashcat_rules = []
if self.debug: print "[*] Simple Processing %s => %s" % (word,password)
# Dynamically apply rules to the source word
# NOTE: Special case were word == password this would work as well.
word_rules = word
for (op,p,w) in rules:
if self.debug: print "\t[*] Simple Processing Started: %s - %s" % (word_rules, " ".join(hashcat_rules))
if op == 'insert':
hashcat_rules.append("i%s%s" % (self.int_to_hashcat(p),password[p]))
word_rules = self.hashcat_rule['i'](word_rules,p,password[p])
elif op == 'delete':
hashcat_rules.append("D%s" % self.int_to_hashcat(p))
word_rules = self.hashcat_rule['D'](word_rules,p)
elif op == 'replace':
hashcat_rules.append("o%s%s" % (self.int_to_hashcat(p),password[p]))
word_rules = self.hashcat_rule['o'](word_rules,p,password[p])
if self.debug: print "\t[*] Simple Processing Ended: %s => %s => %s" % (word_rules, " ".join(hashcat_rules),password)
# Check if rules result in the correct password
if word_rules == password:
return hashcat_rules
else:
if self.debug: print "[!] Simple Processing FAILED: %s => %s => %s (%s)" % (word," ".join(hashcat_rules),password,word_rules)
return None
def generate_advanced_hashcat_rules(self,word,rules,password):
""" Generate advanced hashcat rules using full range of available rules. """
hashcat_rules = []
if self.debug: print "[*] Advanced Processing %s => %s" % (word,password)
# Dynamically apply and store rules in word_rules variable.
# NOTE: Special case where word == password this would work as well.
word_rules = word
# Generate case statistics
password_lower = len([c for c in password if c.islower()])
password_upper = len([c for c in password if c.isupper()])
for i,(op,p,w) in enumerate(rules):
if self.debug: print "\t[*] Advanced Processing Started: %s - %s" % (word_rules, " ".join(hashcat_rules))
if op == 'insert':
hashcat_rules.append("i%s%s" % (self.int_to_hashcat(p),password[p]))
word_rules = self.hashcat_rule['i'](word_rules,p,password[p])
elif op == 'delete':
hashcat_rules.append("D%s" % self.int_to_hashcat(p))
word_rules = self.hashcat_rule['D'](word_rules,p)
elif op == 'replace':
# Detecting global replacement such as sXY, l, u, C, c is a non
# trivial problem because different characters may be added or
# removed from the word by other rules. A reliable way to solve
# this problem is to apply all of the rules the source word
# and keep track of its state at any given time. At the same
# time, global replacement rules can be tested by completing
# the rest of the rules using a simplified engine.
# The sequence of if statements determines the priority of rules
# This rule was made obsolete by a prior global replacement
if word_rules[p] == password[p]:
if self.debug: print "\t[*] Advanced Processing Obsolete Rule: %s - %s" % (word_rules, " ".join(hashcat_rules))
# Swapping rules
elif p < len(password)-1 and p < len(word_rules)-1 and word_rules[p] == password[p+1] and word_rules[p+1] == password[p]:
# Swap first two characters
if p == 0 and self.generate_simple_hashcat_rules( self.hashcat_rule['k'](word_rules), rules[i+1:],password):
hashcat_rules.append("k")
word_rules = self.hashcat_rule['k'](word_rules)
# Swap last two characters
elif p == len(word_rules)-2 and self.generate_simple_hashcat_rules( self.hashcat_rule['K'](word_rules), rules[i+1:],password):
hashcat_rules.append("K")
word_rules = self.hashcat_rule['K'](word_rules)
# Swap any two characters (only adjacent swapping is supported)
elif self.generate_simple_hashcat_rules( self.hashcat_rule['*'](word_rules,p,p+1), rules[i+1:],password):
hashcat_rules.append("*%s%s" % (self.int_to_hashcat(p),self.int_to_hashcat(p+1)))
word_rules = self.hashcat_rule['*'](word_rules,p,p+1)
else:
hashcat_rules.append("o%s%s" % (self.int_to_hashcat(p),password[p]))
word_rules = self.hashcat_rule['o'](word_rules,p,password[p])
# Case Toggle: Uppercased a letter
elif word_rules[p].islower() and word_rules[p].upper() == password[p]:
# Toggle the case of all characters in word (mixed cases)
if password_upper and password_lower and self.generate_simple_hashcat_rules( self.hashcat_rule['t'](word_rules), rules[i+1:],password):
hashcat_rules.append("t")
word_rules = self.hashcat_rule['t'](word_rules)
# Capitalize all letters
elif self.generate_simple_hashcat_rules( self.hashcat_rule['u'](word_rules), rules[i+1:],password):
hashcat_rules.append("u")
word_rules = self.hashcat_rule['u'](word_rules)
# Capitalize the first letter
elif p == 0 and self.generate_simple_hashcat_rules( self.hashcat_rule['c'](word_rules), rules[i+1:],password):
hashcat_rules.append("c")
word_rules = self.hashcat_rule['c'](word_rules)
# Toggle the case of characters at position N
else:
hashcat_rules.append("T%s" % self.int_to_hashcat(p))
word_rules = self.hashcat_rule['T'](word_rules,p)
# Case Toggle: Lowercased a letter
elif word_rules[p].isupper() and word_rules[p].lower() == password[p]:
# Toggle the case of all characters in word (mixed cases)
if password_upper and password_lower and self.generate_simple_hashcat_rules( self.hashcat_rule['t'](word_rules), rules[i+1:],password):
hashcat_rules.append("t")
word_rules = self.hashcat_rule['t'](word_rules)
# Lowercase all letters
elif self.generate_simple_hashcat_rules( self.hashcat_rule['l'](word_rules), rules[i+1:],password):
hashcat_rules.append("l")
word_rules = self.hashcat_rule['l'](word_rules)
# Lowercase the first found character, uppercase the rest
elif p == 0 and self.generate_simple_hashcat_rules( self.hashcat_rule['C'](word_rules), rules[i+1:],password):
hashcat_rules.append("C")
word_rules = self.hashcat_rule['C'](word_rules)
# Toggle the case of characters at position N
else:
hashcat_rules.append("T%s" % self.int_to_hashcat(p))
word_rules = self.hashcat_rule['T'](word_rules,p)
# Special case substitution of 'all' instances (1337 $p34k)
elif word_rules[p].isalpha() and not password[p].isalpha() and self.generate_simple_hashcat_rules( self.hashcat_rule['s'](word_rules,word_rules[p],password[p]), rules[i+1:],password):
# If we have already detected this rule, then skip it thus
# reducing total rule count.
# BUG: Elisabeth => sE3 sl1 u o3Z sE3 => 31IZAB3TH
#if not "s%s%s" % (word_rules[p],password[p]) in hashcat_rules:
hashcat_rules.append("s%s%s" % (word_rules[p],password[p]))
word_rules = self.hashcat_rule['s'](word_rules,word_rules[p],password[p])
# Replace next character with current
elif p < len(password)-1 and p < len(word_rules)-1 and password[p] == password[p+1] and password[p] == word_rules[p+1]:
hashcat_rules.append(".%s" % self.int_to_hashcat(p))
word_rules = self.hashcat_rule['.'](word_rules,p)
# Replace previous character with current
elif p > 0 and w > 0 and password[p] == password[p-1] and password[p] == word_rules[p-1]:
hashcat_rules.append(",%s" % self.int_to_hashcat(p))
word_rules = self.hashcat_rule[','](word_rules,p)
# ASCII increment
elif ord(word_rules[p]) + 1 == ord(password[p]):
hashcat_rules.append("+%s" % self.int_to_hashcat(p))
word_rules = self.hashcat_rule['+'](word_rules,p)
# ASCII decrement
elif ord(word_rules[p]) - 1 == ord(password[p]):
hashcat_rules.append("-%s" % self.int_to_hashcat(p))
word_rules = self.hashcat_rule['-'](word_rules,p)
# SHIFT left
elif ord(word_rules[p]) << 1 == ord(password[p]):
hashcat_rules.append("L%s" % self.int_to_hashcat(p))
word_rules = self.hashcat_rule['L'](word_rules,p)
# SHIFT right
elif ord(word_rules[p]) >> 1 == ord(password[p]):
hashcat_rules.append("R%s" % self.int_to_hashcat(p))
word_rules = self.hashcat_rule['R'](word_rules,p)
# Position based replacements.
else:
hashcat_rules.append("o%s%s" % (self.int_to_hashcat(p),password[p]))
word_rules = self.hashcat_rule['o'](word_rules,p,password[p])
if self.debug: print "\t[*] Advanced Processing Ended: %s %s" % (word_rules, " ".join(hashcat_rules))
########################################################################
# Prefix rules
last_prefix = 0
prefix_rules = list()
for hashcat_rule in hashcat_rules:
if hashcat_rule[0] == "i" and self.hashcat_to_int(hashcat_rule[1]) == last_prefix:
prefix_rules.append("^%s" % hashcat_rule[2])
last_prefix += 1
elif len(prefix_rules):
hashcat_rules = prefix_rules[::-1]+hashcat_rules[len(prefix_rules):]
break
else:
break
else:
hashcat_rules = prefix_rules[::-1]+hashcat_rules[len(prefix_rules):]
####################################################################
# Appendix rules
last_appendix = len(password) - 1
appendix_rules = list()
for hashcat_rule in hashcat_rules[::-1]:
if hashcat_rule[0] == "i" and self.hashcat_to_int(hashcat_rule[1]) == last_appendix:
appendix_rules.append("$%s" % hashcat_rule[2])
last_appendix-= 1
elif len(appendix_rules):
hashcat_rules = hashcat_rules[:-len(appendix_rules)]+appendix_rules[::-1]
break
else:
break
else:
hashcat_rules = hashcat_rules[:-len(appendix_rules)]+appendix_rules[::-1]
####################################################################
# Truncate left rules
last_precut = 0
precut_rules = list()
for hashcat_rule in hashcat_rules:
if hashcat_rule[0] == "D" and self.hashcat_to_int(hashcat_rule[1]) == last_precut:
precut_rules.append("[")
elif len(precut_rules):
hashcat_rules = precut_rules[::-1]+hashcat_rules[len(precut_rules):]
break
else:
break
else:
hashcat_rules = precut_rules[::-1]+hashcat_rules[len(precut_rules):]
####################################################################
# Truncate right rules
last_postcut = len(password)
postcut_rules = list()
for hashcat_rule in hashcat_rules[::-1]:
if hashcat_rule[0] == "D" and self.hashcat_to_int(hashcat_rule[1]) >= last_postcut:
postcut_rules.append("]")
elif len(postcut_rules):
hashcat_rules = hashcat_rules[:-len(postcut_rules)]+postcut_rules[::-1]
break
else:
break
else:
hashcat_rules = hashcat_rules[:-len(postcut_rules)]+postcut_rules[::-1]
# Check if rules result in the correct password
if word_rules == password:
return hashcat_rules
else:
if self.debug: print "[!] Advanced Processing FAILED: %s => %s => %s (%s)" % (word," ".join(hashcat_rules),password,word_rules)
return None
def check_reversible_password(self, password):
""" Check whether the password is likely to be reversed successfuly. """
# Skip all numeric passwords
if password.isdigit():
if self.verbose and not self.quiet: print "[!] %s => {skipping numeric} => %s" % (password,password)
self.numeric_stats_total += 1
return False
# Skip passwords with less than 25% of alpha character
# TODO: Make random word detection more reliable based on word entropy.
elif len([c for c in password if c.isalpha()]) < len(password)/4:
if self.verbose and not self.quiet:print "[!] %s => {skipping alpha less than 25%%} => %s" % (password,password)
self.special_stats_total += 1
return False
# Only check english ascii passwords for now
# TODO: Add support for more languages.
elif [c for c in password if ord(c) < 32 or ord(c) > 126]:
if self.verbose and not self.quiet: print "[!] %s => {skipping non ascii english} => %s" % (password,password)
self.foreign_stats_total += 1
return False
else:
return True
def analyze_password(self,password, rules_queue=multiprocessing.Queue(), words_queue=multiprocessing.Queue()):
""" Analyze a single password. """
if self.verbose: print "[*] Analyzing password: %s" % password
words = []
# Short-cut words in the dictionary
if self.enchant.check(password) and not self.word:
word = dict()
word["password"] = password
word["suggestion"] = password
word["hashcat_rules"] = [[],]
word["pre_rule"] = []
word["best_rule_length"] = 9999
words.append(word)
# Generate rules for words not in the dictionary
else:
# Generate source words list
words = self.generate_words(password)
# Generate levenshtein reverse paths for each suggestion
for word in words:
# Generate a collection of hashcat_rules lists
word["hashcat_rules"] = self.generate_hashcat_rules(word["suggestion"],word["password"])
self.print_hashcat_rules(words, password, rules_queue, words_queue)
def print_hashcat_rules(self, words, password, rules_queue, words_queue):
best_found_rule_length = 9999
# Sorted list based on rule length
for word in sorted(words, key=lambda word: len(word["hashcat_rules"][0])):
words_queue.put(word["suggestion"])
for hashcat_rule in word["hashcat_rules"]:
rule_length = len(hashcat_rule)
if not self.more_rules:
if rule_length < best_found_rule_length:
best_found_rule_length = rule_length
elif rule_length > best_found_rule_length:
if self.verbose:
print "[-] %s => {best rule length exceeded: %d (%d)} => %s" % \
(word["suggestion"], rule_length, best_found_rule_length, password)
break
if rule_length <= self.max_rule_len:
hashcat_rule_str = " ".join(hashcat_rule + word["pre_rule"] or [':'])
if self.verbose: print "[+] %s => %s => %s" % (word["suggestion"], hashcat_rule_str, password)
rules_queue.put(hashcat_rule_str)
def password_worker(self,i, passwords_queue, rules_queue, words_queue):
if self.debug: print "[*] Password analysis worker [%d] started." % i
try:
while True:
password = passwords_queue.get()
# Interrupted by a Death Pill
if password == None: break
self.analyze_password(password, rules_queue, words_queue)
except (KeyboardInterrupt, SystemExit):
if self.debug: print "[*] Password analysis worker [%d] terminated." % i
if self.debug: print "[*] Password analysis worker [%d] stopped." % i
def rule_worker(self, rules_queue, output_rules_filename):
""" Worker to store generated rules. """
print "[*] Saving rules to %s" % output_rules_filename
f = open(output_rules_filename, 'w')
if self.debug: print "[*] Rule worker started."
try:
while True:
rule = rules_queue.get()
# Interrupted by a Death Pill
if rule == None: break
f.write("%s\n" % rule)
f.flush()
except (KeyboardInterrupt, SystemExit):
if self.debug: print "[*] Rule worker terminated."
f.close()
if self.debug: print "[*] Rule worker stopped."
def word_worker(self, words_queue, output_words_filename):
""" Worker to store generated rules. """
print "[*] Saving words to %s" % output_words_filename
f = open(output_words_filename, 'w')
if self.debug: print "[*] Word worker started."
try:
while True:
word = words_queue.get()
# Interrupted by a Death Pill
if word == None: break
f.write("%s\n" % word)
f.flush()
except (KeyboardInterrupt, SystemExit):
if self.debug: print "[*] Word worker terminated."
f.close()
if self.debug: print "[*] Word worker stopped."
# Analyze passwords file
def analyze_passwords_file(self,passwords_file):
""" Analyze provided passwords file. """
print "[*] Analyzing passwords file: %s:" % passwords_file
print "[*] Press Ctrl-C to end execution and generate statistical analysis."
# Setup queues
passwords_queue = multiprocessing.Queue(self.threads)
rules_queue = multiprocessing.Queue()
words_queue = multiprocessing.Queue()
# Start workers
for i in range(self.threads):
multiprocessing.Process(target=self.password_worker, args=(i, passwords_queue, rules_queue, words_queue)).start()
multiprocessing.Process(target=self.rule_worker, args=(rules_queue, "%s.rule" % self.basename)).start()
multiprocessing.Process(target=self.word_worker, args=(words_queue, "%s.word" % self.basename)).start()
# Continue with the main thread
f = open(passwords_file,'r')
password_count = 0
analysis_start = time.time()
segment_start = analysis_start
try:
for password in f:
password = password.rstrip('\r\n')
if len(password) > 0:
# Provide analysis time feedback to the user
if not self.quiet and password_count != 0 and password_count % 5000 == 0:
segment_time = time.time() - segment_start
print "[*] Processed %d passwords in %.2f seconds at the rate of %.2f p/sec" % \
(password_count, segment_start - analysis_start, 5000/segment_time )
segment_start = time.time()
password_count += 1
# Perform preliminary checks and add password to the queue
if self.check_reversible_password(password):
passwords_queue.put(password)
except (KeyboardInterrupt, SystemExit):
print "\n[!] Rulegen was interrupted."
else:
# Signal workers to stop.
for i in range(self.threads):
passwords_queue.put(None)
# Wait for all of the queued passwords to finish.
while not passwords_queue.empty():
time.sleep(1)
# Signal writers to stop.
rules_queue.put(None)
words_queue.put(None)
f.close()
analysis_time = time.time() - analysis_start
print "[*] Finished processing %d passwords in %.2f seconds at the rate of %.2f p/sec" % (password_count, analysis_time, float(password_count)/analysis_time )
print "[*] Generating statistics for [%s] rules and words." % self.basename
print "[-] Skipped %d all numeric passwords (%0.2f%%)" % \
(self.numeric_stats_total, float(self.numeric_stats_total)*100.0/float(password_count))
print "[-] Skipped %d passwords with less than 25%% alpha characters (%0.2f%%)" % \
(self.special_stats_total, float(self.special_stats_total)*100.0/float(password_count))
print "[-] Skipped %d passwords with non ascii characters (%0.2f%%)" % \
(self.foreign_stats_total, float(self.foreign_stats_total)*100.0/float(password_count))
# TODO: Counter breaks on large files. uniq -c | sort -rn is still the most
# optimal way.
rules_file = open("%s.rule" % self.basename,'r')
rules_sorted_file = open("%s-sorted.rule" % self.basename, 'w')
rules_counter = Counter(rules_file)
rule_counter_total = sum(rules_counter.values())
print "\n[*] Top 10 rules"
rules_i = 0
for (rule, count) in rules_counter.most_common():
rules_sorted_file.write(rule)
if rules_i < 10: print "[+] %s - %d (%0.2f%%)" % (rule.rstrip('\r\n'), count, count*100/rule_counter_total)
rules_i += 1
rules_file.close()
rules_sorted_file.close()
words_file = open("%s.word" % self.basename,'r')
words_sorted_file = open("%s-sorted.word" % self.basename,'w')
words_counter = Counter(words_file)
word_counter_total = sum(rules_counter.values())
print "\n[*] Top 10 words"
words_i = 0
for (word, count) in words_counter.most_common():
words_sorted_file.write(word)
if words_i < 10: print "[+] %s - %d (%0.2f%%)" % (word.rstrip('\r\n'), count, count*100/word_counter_total)
words_i += 1
words_file.close()
words_sorted_file.close()
############################################################################
def verify_hashcat_rules(self,word, rules, password):
f = open("%s/test.rule" % HASHCAT_PATH,'w')
f.write(" ".join(rules))
f.close()
f = open("%s/test.word" % HASHCAT_PATH,'w')
f.write(word)
f.close()
p = subprocess.Popen(["%s/hashcat-cli64.bin" % HASHCAT_PATH,"-r","%s/test.rule" % HASHCAT_PATH,"--stdout","%s/test.word" % HASHCAT_PATH], stdout=subprocess.PIPE)
out, err = p.communicate()
out = out.strip()
if out == password:
hashcat_rules_str = " ".join(rules or [':'])
if self.verbose: print "[+] %s => %s => %s" % (word, hashcat_rules_str, password)
else:
print "[!] Hashcat Verification FAILED: %s => %s => %s (%s)" % (word," ".join(rules or [':']),password,out)