This repository has been archived by the owner on Feb 20, 2018. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 11
/
per_color_constitutive_analysis.m
53 lines (47 loc) · 2.33 KB
/
per_color_constitutive_analysis.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
% Copyright (C) 2010-2017, Raytheon BBN Technologies and contributors listed
% in the AUTHORS file in TASBE analytics package distribution's top directory.
%
% This file is part of the TASBE analytics package, and is distributed
% under the terms of the GNU General Public License, with a linking
% exception, as described in the file LICENSE in the TASBE analytics
% package distribution's top directory.
function [results sampleresults] = per_color_constitutive_analysis(colorModel,batch_description,colors,AP)
% The 'results' here is not a standard ExperimentResults, but a similar scratch structure
warning('TASBE:UpdateNeeded','Need to update per_color_constitutive_analysis to use new samplestatistics');
% first do all the processing
rawresults = cell(size(colors));
for i=1:numel(colors),
fprintf(['Processing for color ' colors{i} '...\n']);
AP = setChannelLabels(AP,{'constitutive',channel_named(colorModel,colors{i})});
rawresults{i} = process_constitutive_batch( colorModel, batch_description, AP);
end
n_conditions = size(batch_description,1);
bincenters = get_bin_centers(getBins(AP));
results = cell(n_conditions,1); sampleresults = results;
for i=1:n_conditions,
replicatecounts = numel(rawresults{1}{i,2});
samplebincounts = cell(replicatecounts,1);
samplemeans = zeros(replicatecounts,numel(colors)); samplestds = samplemeans;
results{i}.condition = batch_description{i,1};
results{i}.bincenters = bincenters;
for j=1:numel(colors),
ER = rawresults{j}{i,1};
SR = rawresults{j}{i,2};
rawbincounts = getBinCounts(ER);
results{i}.bincounts(:,j) = rawbincounts;
results{i}.means(j) = geomean(bincenters',rawbincounts);
results{i}.stds(j) = geostd(bincenters',rawbincounts);
% per-sample histograms
for k=1:replicatecounts,
samplebincounts{k}(:,j) = SR{k}.BinCounts;
samplemeans(k,j) = geomean(bincenters',SR{k}.BinCounts);
samplestds(k,j) = geostd(bincenters',SR{k}.BinCounts);
end
results{i}.stdofmeans(j) = geostd(samplemeans(:,j));
results{i}.stdofstds(j) = mean(samplestds(:,j));
end
for k=1:replicatecounts,
sampleresults{i}{k} = SampleResults([], [], [], samplebincounts{k}, samplemeans(k,:), samplestds(k,:), ...
[], [], [], [], [], [], [], [], [], [], [], []);
end
end