forked from ROCm/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
MaxUnpoolKernel.cpp
272 lines (230 loc) · 8.7 KB
/
MaxUnpoolKernel.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/native/cpu/MaxUnpoolKernel.h>
#include <ATen/core/Tensor.h>
#include <ATen/Dispatch.h>
#include <ATen/Parallel.h>
#include <ATen/native/cpu/utils.h>
#include <c10/util/irange.h>
#include <c10/util/Optional.h>
namespace at { namespace native {
namespace {
template <typename scalar_t, bool is_3d = false>
void cpu_max_unpool(
Tensor& output_,
const Tensor& input,
const Tensor& indices) {
auto output = output_.contiguous();
auto input_data = input.data_ptr<scalar_t>();
auto indices_data = indices.data_ptr<int64_t>();
auto output_data = output.data_ptr<scalar_t>();
// NB: input tensor dimensions:
// MaxUnpool2d:
// dim = 3: CHW
// dim = 4: NCHW
// MaxUnpool3d:
// dim = 4: CDHW
// dim = 5: NCDHW
int64_t numel = input.numel();
int64_t ndim = input.ndimension();
// treat batch size and channels as one dimension
// and the feature map as another dimension
int64_t channels, output_depth, output_height, output_width;
if (is_3d) {
TORCH_CHECK(ndim == 4 || ndim == 5, "MaxUnpool3d: expect input to be 4d or 5d tensor.");
channels = ndim == 4 ? input.size(0) : input.size(0) * input.size(1);
output_depth = output.size(-3);
output_height = output.size(-2);
output_width = output.size(-1);
} else {
TORCH_CHECK(ndim == 3 || ndim == 4, "MaxUnpool2d: expect input to be 3d or 4d tensor.");
channels = ndim == 3 ? input.size(0) : input.size(0) * input.size(1);
output_depth = 1;
output_height = output.size(-2);
output_width = output.size(-1);
}
int64_t input_image_size = numel / channels;
int64_t output_image_size = output.numel() / channels;
c10::optional<int64_t> optional_error_index;
// parallel on dim N, C, D, H, W: [channels, input_image_size]
at::parallel_for(0, numel, 0, [&](int64_t begin, int64_t end) {
int64_t c = 0;
int64_t ip = 0;
data_index_init(begin, c, channels, ip, input_image_size);
for (const auto i : c10::irange(begin, end)) {
scalar_t* output_ptr = output_data + c * output_image_size;
int64_t maxp = indices_data[i];
if (maxp < 0 || maxp >= output_image_size) {
optional_error_index = maxp;
std::atomic_thread_fence(std::memory_order_release);
} else {
output_ptr[maxp] = input_data[i];
}
// move on to next input index
data_index_step(c, channels, ip, input_image_size);
}
});
if (optional_error_index) {
if (is_3d) {
AT_ERROR("Found an invalid max index: ", optional_error_index.value(),
" (output volumes are of size ", output_depth,
"x", output_height, "x", output_width);
} else {
AT_ERROR("Found an invalid max index: ", optional_error_index.value(),
" (output volumes are of size ", output_height,
"x", output_width);
}
}
if (!output_.is_contiguous()) {
output_.copy_(output);
}
}
template <typename scalar_t>
void cpu_max_unpool_channels_last(
Tensor& output_,
const Tensor& input,
const Tensor& indices) {
TORCH_CHECK(input.ndimension() == 4,
"max_unpool2d with channels last format supports tensors with 4 dims");
auto memory_format = at::MemoryFormat::ChannelsLast;
auto output = output_.contiguous(memory_format);
auto input_data = input.data_ptr<scalar_t>();
auto indices_data = indices.data_ptr<int64_t>();
auto output_data = output.data_ptr<scalar_t>();
int64_t nbatch = input.size(0);
int64_t channels = input.size(1);
int64_t input_height = input.size(2);
int64_t input_width = input.size(3);
int64_t output_height = output.size(2);
int64_t output_width = output.size(3);
int64_t input_image_size = input_height * input_width;
int64_t output_image_size = output_height * output_width;
c10::optional<int64_t> optional_error_index;
// parallel on dim N, H, W
at::parallel_for(0, nbatch * input_image_size, 0, [&](int64_t begin, int64_t end) {
int64_t n = 0;
int64_t ip = 0;
data_index_init(begin, n, nbatch, ip, input_image_size);
for (const auto i : c10::irange(begin, end)) {
scalar_t* input_ptr = input_data + i * channels;
int64_t* indices_ptr = indices_data + i * channels;
scalar_t* output_ptr = output_data + n * output_image_size * channels;
// can't do scatter on avx2 (only available on avx512)
for (const auto c : c10::irange(channels)) {
int64_t maxp = indices_ptr[c];
if (maxp < 0 || maxp >= output_image_size) {
optional_error_index = maxp;
std::atomic_thread_fence(std::memory_order_release);
} else {
output_ptr[maxp * channels + c] = input_ptr[c];
}
}
// move on to next input index
data_index_step(n, nbatch, ip, input_image_size);
}
});
if (optional_error_index) {
AT_ERROR("Found an invalid max index: ", optional_error_index.value(),
" (output volumes are of size ", output_height,
"x", output_width, ")");
}
if (!output_.is_contiguous(memory_format)) {
output_.copy_(output);
}
}
template <typename scalar_t, bool is_3d = false>
void cpu_max_unpool_backward(
Tensor& grad_input_,
const Tensor& grad_output,
const Tensor& indices) {
auto grad_input = grad_input_.contiguous();
auto grad_output_data = grad_output.data_ptr<scalar_t>();
auto indices_data = indices.data_ptr<int64_t>();
auto grad_input_data = grad_input.data_ptr<scalar_t>();
int64_t numel = grad_input.numel();
int64_t ndim = grad_output.ndimension();
// treat batch size and channels as one dimension
// and the feature map as another dimension
int64_t channels, output_depth, output_height, output_width;
if (is_3d) {
TORCH_CHECK(ndim == 4 || ndim == 5, "MaxUnpool3d_backward: expect grad_output to be 4d or 5d tensor.");
channels = ndim == 4 ? grad_output.size(0) : grad_output.size(0) * grad_output.size(1);
output_depth = grad_output.size(-3);
output_height = grad_output.size(-2);
output_width = grad_output.size(-1);
} else {
TORCH_CHECK(ndim == 3 || ndim == 4, "MaxUnpool2d_backward: expect grad_output to be 3d or 4d tensor.");
channels = ndim == 3 ? grad_output.size(0) : grad_output.size(0) * grad_output.size(1);
output_depth = 1;
output_height = grad_output.size(-2);
output_width = grad_output.size(-1);
}
int64_t input_image_size = numel / channels;
int64_t output_image_size = grad_output.numel() / channels;
c10::optional<int64_t> optional_error_index;
// parallel on dim N, C, D, H, W
at::parallel_for(0, numel, 0, [&](int64_t begin, int64_t end) {
int64_t c = 0;
int64_t ip = 0;
data_index_init(begin, c, channels, ip, input_image_size);
for (const auto i : c10::irange(begin, end)) {
scalar_t* grad_output_ptr = grad_output_data + c * output_image_size;
int64_t maxp = indices_data[i];
if (maxp < 0 || maxp >= output_image_size) {
optional_error_index = maxp;
std::atomic_thread_fence(std::memory_order_release);
} else {
grad_input_data[i] = grad_output_ptr[maxp];
}
// move on to next input index
data_index_step(c, channels, ip, input_image_size);
}
});
if (optional_error_index) {
if (is_3d) {
AT_ERROR("invalid max index ", optional_error_index.value(),
", odepth= ", output_depth,
", owidth= ", output_width,
", oheight= ", output_height);
} else {
AT_ERROR("invalid max index ", optional_error_index.value(),
", owidth= ", output_width,
", oheight= ", output_height);
}
}
if (!grad_input_.is_contiguous()) {
grad_input_.copy_(grad_input);
}
}
void max_unpool2d_kernel_impl(
Tensor& output,
const Tensor& input,
const Tensor& indices) {
switch(input.suggest_memory_format()) {
case at::MemoryFormat::Contiguous: {
AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "max_unpool2d", [&] {
cpu_max_unpool<scalar_t, /*is_3d*/false>(output, input, indices);
});
break;
}
case at::MemoryFormat::ChannelsLast: {
AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "max_unpool2d_channels_last", [&] {
cpu_max_unpool_channels_last<scalar_t>(output, input, indices);
});
break;
}
default:
TORCH_CHECK(false, "Unsupported memory format. Supports only ChannelsLast, Contiguous");
}
}
void max_unpool3d_kernel_impl(
Tensor& output,
const Tensor& input,
const Tensor& indices) {
AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "max_unpool3d", [&] {
cpu_max_unpool<scalar_t, /*is_3d*/true>(output, input, indices);
});
}
} // anonymous namespace
REGISTER_DISPATCH(max_unpool2d_kernel, &max_unpool2d_kernel_impl);
REGISTER_DISPATCH(max_unpool3d_kernel, &max_unpool3d_kernel_impl);
}} // at::native