Addressing reproducibility in the neurosciences and neuroimaging: Statistical, computational and sociological aspects
This series of journal club readings will give students a solid background in the reproducibility and replication issues in the neurosciences and brain imaging, and introduce solutions that can be implemented for reproducible and replicable science. The statistical, methodological, computational and sociological aspects of the topic will be reviewed through these articles, as well as the implementation of solutions. After this course, students should be able to identify reproducibility issues in neuroscience literature and apply the principles of reproducible, reusable, and efficient research in their work.
-
Begley and Ellis, 2012: raise standards
-
Baggerly and Coombes, 2009: Forensic analysis
- Installing a unix system (VM)
- What is shell ?
- SWC BASH intro
-
Academy of Medical Science: Reproducibility and Reliability of Biomedical Research, 2015
-
Nosek 2015: the reproducibility project
- Any remaining bash questions
- introduction to git (concepts)
- Repository, commit, branches / tags, remotes, working tree
- SWC Git intro
-
Smaldino et al., 2016: The natural selection of bad science
-
Allison 2016, a tragedy of errors
- Any remaining git questions
- github markdown
- Forking; Pull requesting
- Issues / code review
- Mozilla open leadership Introduction to GitHub
-
Wilkinson Mark D, 2016: The FAIR principles
-
Bosman et al., 2017: The scholarly common principles
- More on git and github : some specific exercises
- intro to python
-
Ioannidis 2005: Why most research results are false
-
Button et al., 2013: Power failure
- statsmodel
- Scipy lecture notes for statistics in python
-
Poldrack, 2017, Scanning the horizon (fMRI)
-
Dumas-Mallet, 2017: Three biomedical examples
-
Rosenthal, 1979: The file drawer effect
-
Simonsohn Simmons 2011, Simonsohn 2014: "P-hacking" and "P-curve"
-
Benjamin et al., 2017: Redefining p-value
-
Lakens et al., 2017: Justify your alpha
Ideas:
- Anisha's p-hacking app
- P-hacking shiny app
-
Eklund et al, 2016: (fMRI) Cluster failure
-
Varoquaux 2018: Cross-validation failure
- What is a container ?
- Introduction to docker
- Docker for scientists
-
Glatard et al., 2015: OS dependencies
-
Bowring A et al, 2018: Same data, different results
-
Carp J. 2012: pipeline flexibility
-
Boekel et al, 2013: A pure replication study
-
Waskom et al: an entirely reproducible article
- Choosing an article to "reproduce"
-
Nichols et al., The cobidas report
-
Gorgolevski et al.: The Brain Imaging Data Structure standard
Baggerly, Keith A., and Kevin R. Coombes. 2009. “Deriving Chemosensitivity from Cell Lines: Forensic Bioinformatics and Reproducible Research in High-Throughput Biology.” The Annals of Applied Statistics 3 (4): 1309–34. https://doi.org/10.1214/09-AOAS291.
Begley, C. Glenn, and Lee M. Ellis. 2012. “Drug Development: Raise Standards for Preclinical Cancer Research.” Nature 483 (7391): 531–533.
“Reproducibility and Reliability of Biomedical Research : Improving Research Practice.” 2015. The Academy of Medical Sciences. https://acmedsci.ac.uk/viewFile/56314e40aac61.pdf.
Open Science Collaboration. 2015. “Estimating the Reproducibility of Psychological Science.” Science 349 (6251): aac4716–aac4716. https://doi.org/10.1126/science.aac4716.
Smaldino, Paul E., and Richard McElreath. 2016. “The Natural Selection of Bad Science.” Royal Society Open Science 3 (9): 160384. https://doi.org/10.1098/rsos.160384.
Allison, David B., Andrew W. Brown, Brandon J. George, and Kathryn A. Kaiser. 2016. “Reproducibility: A Tragedy of Errors.” Nature News 530 (7588): 27. https://doi.org/10.1038/530027a.
Wilkinson Mark D., Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle Appleton, Myles Axton, Arie Baak, Niklas Blomberg, et al. 2016. “The FAIR Guiding Principles for Scientific Data Management and Stewardship.” Scientific Data 3 (March): 160018. https://doi.org/10.1038/sdata.2016.18.
Bosman, Jeroen, Ian Bruno, Chris Chapman, Bastian Greshake Tzovaras, Nate Jacobs, Bianca Kramer, Maryann Martone, Fiona Murphy, Daniel Paul O’Donnell, and Michael Bar-Sinai. 2017. “The Scholarly Commons-Principles and Practices to Guide Research Communication.”
Ioannidis, John P. A. 2005. “Why Most Published Research Findings Are False.” PLoS Medicine 2 (8): e124. https://doi.org/10.1371/journal.pmed.0020124.
Button, Katherine S., John P. A. Ioannidis, Claire Mokrysz, Brian A. Nosek, Jonathan Flint, Emma S. J. Robinson, and Marcus R. Munafò. 2013. “Power Failure: Why Small Sample Size Undermines the Reliability of Neuroscience.” Nature Reviews Neuroscience 14 (5): 365–76. https://doi.org/10.1038/nrn3475.
Poldrack, Russell A., Chris I. Baker, Joke Durnez, Krzysztof J. Gorgolewski, Paul M. Matthews, Marcus R. Munafò, Thomas E. Nichols, Jean-Baptiste Poline, Edward Vul, and Tal Yarkoni. 2017. “Scanning the Horizon: Towards Transparent and Reproducible Neuroimaging Research.” Nature Reviews Neuroscience 18 (2): 115–26. https://doi.org/10.1038/nrn.2016.167.
Dumas-Mallet, Estelle, Katherine S. Button, Thomas Boraud, Francois Gonon, and Marcus R. Munafò. 2017. “Low Statistical Power in Biomedical Science: A Review of Three Human Research Domains.” Royal Society Open Science 4 (2): 160254. https://doi.org/10.1098/rsos.160254.
Rosenthal, Robert. 1979. “The File Drawer Problem and Tolerance for Null Results.” Psychological Bulletin 86 (3): 638.
Simmons, J. P., L. D. Nelson, and U. Simonsohn. 2011. “False-Positive Psychology: Undisclosed Flexibility in Data Collection and Analysis Allows Presenting Anything as Significant.” Psychological Science 22 (11): 1359–66. https://doi.org/10.1177/0956797611417632.
Simonsohn, Uri, Leif D. Nelson, and Joseph P. Simmons. 2014. “P-Curve: A Key to the File-Drawer.” Journal of Experimental Psychology: General 143 (2): 534–47. https://doi.org/10.1037/a0033242.
Benjamin, Daniel J., James O. Berger, Magnus Johannesson, Brian A. Nosek, E.-J. Wagenmakers, Richard Berk, Kenneth A. Bollen, et al. 2018. “Redefine Statistical Significance.” Nature Human Behaviour 2 (1): 6–10. https://doi.org/10.1038/s41562-017-0189-z.
Lakens, Daniel, Federico G. Adolfi, Casper Albers, Farid Anvari, Matthew A. J. Apps, Shlomo Engelson Argamon, Marcel A. L. M. van Assen, et al. 2017. “Justify Your Alpha.” PsyArXiv, September. https://doi.org/10.17605/OSF.IO/9S3Y6.
Eklund, Anders, Thomas E. Nichols, and Hans Knutsson. 2016. “Cluster Failure: Why FMRI Inferences for Spatial Extent Have Inflated False-Positive Rates.” Proceedings of the National Academy of Sciences 113 (28): 7900–7905. https://doi.org/10.1073/pnas.1602413113.
Varoquaux, Gaël. 2017. “Cross-Validation Failure: Small Sample Sizes Lead to Large Error Bars.” ArXiv:1706.07581 [q-Bio, Stat], June. http://arxiv.org/abs/1706.07581.
Glatard, Tristan, Lindsay B. Lewis, Rafael Ferreira da Silva, Reza Adalat, Natacha Beck, Claude Lepage, Pierre Rioux, et al. 2015. “Reproducibility of Neuroimaging Analyses across Operating Systems.” Frontiers in Neuroinformatics 9 (April). https://doi.org/10.3389/fninf.2015.00012.
Bowring, Alexander, Camille Maumet, and Thomas Nichols. 2018. Exploring the Impact of Analysis Software on Task fMRI Results 285585.
Carp, Joshua. 2012. “On the Plurality of (Methodological) Worlds: Estimating the Analytic Flexibility of FMRI Experiments.” Frontiers in Neuroscience 6. https://doi.org/10.3389/fnins.2012.00149.
Boekel, Wouter, Eric-Jan Wagenmakers, Luam Belay, Josine Verhagen, Scott Brown, and Birte U. Forstmann. 2013. “A Purely Confirmatory Replication Study of Structural Brain-Behavior Correlations.” Journal of Neuroscience 12 (12): 4745–4765.
Waskom, M. L., D. Kumaran, A. M. Gordon, J. Rissman, and A. D. Wagner. 2014. “Frontoparietal Representations of Task Context Support the Flexible Control of Goal-Directed Cognition.” Journal of Neuroscience 34 (32): 10743–55. https://doi.org/10.1523/JNEUROSCI.5282-13.2014.
Nichols, Thomas E., Samir Das, Simon B. Eickhoff, Alan C. Evans, Tristan Glatard, Michael Hanke, Nikolaus Kriegeskorte, et al. 2017. “Best Practices in Data Analysis and Sharing in Neuroimaging Using MRI.” Comments and Opinion. Nature Neuroscience. February 23, 2017. https://doi.org/10.1038/nn.4500.
Gorgolewski, Krzysztof J., Tibor Auer, Vince D. Calhoun, R. Cameron Craddock, Samir Das, Eugene P. Duff, Guillaume Flandin, et al. 2016. “The Brain Imaging Data Structure, a Format for Organizing and Describing Outputs of Neuroimaging Experiments.” Scientific Data 3 (June): 160044. https://doi.org/10.1038/sdata.2016.44.