-
Notifications
You must be signed in to change notification settings - Fork 1
/
compute_voronoi_atom.cpp
540 lines (471 loc) · 17.5 KB
/
compute_voronoi_atom.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, [email protected]
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Daniel Schwen
------------------------------------------------------------------------- */
#include "mpi.h"
#include "math.h"
#include "string.h"
#include "stdlib.h"
#include "compute_voronoi_atom.h"
#include "atom.h"
#include "group.h"
#include "update.h"
#include "modify.h"
#include "domain.h"
#include "memory.h"
#include "error.h"
#include "comm.h"
#include "variable.h"
#include "input.h"
#include "force.h"
#include <vector>
using namespace LAMMPS_NS;
using namespace voro;
/* ---------------------------------------------------------------------- */
ComputeVoronoi::ComputeVoronoi(LAMMPS *lmp, int narg, char **arg) :
Compute(lmp, narg, arg)
{
int sgroup;
size_peratom_cols = 2;
peratom_flag = 1;
comm_forward = 1;
surface = VOROSURF_NONE;
maxedge = 0;
fthresh = ethresh = 0.0;
radstr = NULL;
onlyGroup = false;
occupation = false;
con_mono = NULL;
con_poly = NULL;
tags = NULL;
occvec = sendocc = lroot = lnext = NULL;
int iarg = 3;
while ( iarg<narg ) {
if (strcmp(arg[iarg], "occupation") == 0) {
occupation = true;
iarg++;
}
else if (strcmp(arg[iarg], "only_group") == 0) {
onlyGroup = true;
iarg++;
}
else if (strcmp(arg[iarg], "radius") == 0) {
if (iarg + 2 > narg || strstr(arg[iarg+1],"v_") != arg[iarg+1] )
error->all(FLERR,"Illegal compute voronoi/atom command");
int n = strlen(&arg[iarg+1][2]) + 1;
radstr = new char[n];
strcpy(radstr,&arg[iarg+1][2]);
iarg += 2;
}
else if (strcmp(arg[iarg], "surface") == 0) {
if (iarg + 2 > narg) error->all(FLERR,"Illegal compute voronoi/atom command");
// group all is a special case where we just skip group testing
if(strcmp(arg[iarg+1], "all") == 0) {
surface = VOROSURF_ALL;
} else {
sgroup = group->find(arg[iarg+1]);
if (sgroup == -1) error->all(FLERR,"Could not find compute/voronoi surface group ID");
sgroupbit = group->bitmask[sgroup];
surface = VOROSURF_GROUP;
}
size_peratom_cols = 3;
iarg += 2;
} else if (strcmp(arg[iarg], "edge_histo") == 0) {
if (iarg + 2 > narg) error->all(FLERR,"Illegal compute voronoi/atom command");
maxedge = force->inumeric(FLERR,arg[iarg+1]);
iarg += 2;
} else if (strcmp(arg[iarg], "face_threshold") == 0) {
if (iarg + 2 > narg) error->all(FLERR,"Illegal compute voronoi/atom command");
fthresh = force->numeric(FLERR,arg[iarg+1]);
iarg += 2;
} else if (strcmp(arg[iarg], "edge_threshold") == 0) {
if (iarg + 2 > narg) error->all(FLERR,"Illegal compute voronoi/atom command");
ethresh = force->numeric(FLERR,arg[iarg+1]);
iarg += 2;
}
else error->all(FLERR,"Illegal compute voronoi/atom command");
}
if (occupation && ( surface!=VOROSURF_NONE || maxedge>0 ) )
error->all(FLERR,"Illegal compute voronoi/atom command (occupation and (surface or edges))");
nmax = rmax = 0;
edge = rfield = sendvector = NULL;
voro = NULL;
if ( maxedge > 0 ) {
vector_flag = 1;
size_vector = maxedge+1;
memory->create(edge,maxedge+1,"voronoi/atom:edge");
memory->create(sendvector,maxedge+1,"voronoi/atom:sendvector");
vector = edge;
}
}
/* ---------------------------------------------------------------------- */
ComputeVoronoi::~ComputeVoronoi()
{
memory->destroy(edge);
memory->destroy(rfield);
memory->destroy(sendvector);
memory->destroy(voro);
delete[] radstr;
// voro++ container classes
delete con_mono;
delete con_poly;
// occupation analysis stuff
memory->destroy(lroot);
memory->destroy(lnext);
memory->destroy(occvec);
#ifdef NOTINPLACE
memory->destroy(sendocc);
#endif
memory->destroy(tags);
}
/* ---------------------------------------------------------------------- */
void ComputeVoronoi::init()
{
}
/* ----------------------------------------------------------------------
gather compute vector data from other nodes
------------------------------------------------------------------------- */
void ComputeVoronoi::compute_peratom()
{
invoked_peratom = update->ntimestep;
// grow per atom array if necessary
int nlocal = atom->nlocal;
if (nlocal > nmax) {
memory->destroy(voro);
nmax = atom->nmax;
memory->create(voro,nmax,size_peratom_cols,"voronoi/atom:voro");
array_atom = voro;
}
// decide between occupation or per-frame tesselation modes
if (occupation) {
// build cells only once
int i, nall = nlocal + atom->nghost;
if (con_mono==NULL && con_poly==NULL) {
// generate the voronoi cell network for the initial structure
buildCells();
// save tags of atoms (i.e. of each voronoi cell)
memory->create(tags,nall,"voronoi/atom:tags");
for (i=0; i<nall; i++) tags[i] = atom->tag[i];
// linked list structure for cell occupation count on the atoms
oldnall= nall;
memory->create(lroot,nall,"voronoi/atom:lroot"); // point to first atom index in cell (or -1 for empty cell)
lnext = NULL;
lmax = 0;
// build the occupation buffer
oldnatoms = atom->natoms;
memory->create(occvec,oldnatoms,"voronoi/atom:occvec");
#ifdef NOTINPLACE
memory->create(sendocc,oldnatoms,"voronoi/atom:sendocc");
#endif
}
// get the occupation of each original voronoi cell
checkOccupation();
} else {
// build cells for each output
buildCells();
loopCells();
}
}
void ComputeVoronoi::buildCells()
{
int i;
const double e = 0.01;
int nlocal = atom->nlocal;
int dim = domain->dimension;
// in the onlyGroup mode we are not setting values for all atoms later in the voro loop
// initialize everything to zero here
if (onlyGroup) {
if (surface == VOROSURF_NONE)
for (i = 0; i < nlocal; i++) voro[i][0] = voro[i][1] = 0.0;
else
for (i = 0; i < nlocal; i++) voro[i][0] = voro[i][1] = voro[i][2] = 0.0;
}
double *sublo = domain->sublo, *sublo_lamda = domain->sublo_lamda, *boxlo = domain->boxlo;
double *subhi = domain->subhi, *subhi_lamda = domain->subhi_lamda;
double *cut = comm->cutghost;
double sublo_bound[3], subhi_bound[3], cut_bound[3];
double **x = atom->x;
// setup bounds for voro++ domain for orthogonal and triclinic simulation boxes
if( domain->triclinic ) {
// triclinic box: embed parallelepiped into orthogonal voro++ domain
// cutghost is in lamda coordinates for triclinic boxes, use subxx_lamda
double *h = domain->h;
sublo_bound[0] = h[0]*sublo_lamda[0] + h[5]*sublo_lamda[1] + h[4]*sublo_lamda[2] + boxlo[0];
sublo_bound[1] = h[1]*sublo_lamda[1] + h[3]*sublo_lamda[2] + boxlo[1];
sublo_bound[2] = h[2]*sublo_lamda[2] + boxlo[2];
subhi_bound[0] = h[0]*subhi_lamda[0] + h[5]*subhi_lamda[1] + h[4]*subhi_lamda[2] + boxlo[0];
subhi_bound[1] = h[1]*subhi_lamda[1] + h[3]*subhi_lamda[2] + boxlo[1];
subhi_bound[2] = h[2]*subhi_lamda[2] + boxlo[2];
cut_bound[0] = h[0]*cut[0] + h[5]*cut[1] + h[4]*cut[2];
cut_bound[1] = h[1]*cut[1] + h[3]*cut[2];
cut_bound[2] = h[2]*cut[2];
} else {
// orthogonal box
for( i=0; i<3; ++i ) {
sublo_bound[i] = sublo[i];
subhi_bound[i] = subhi[i];
cut_bound[i] = cut[i];
}
}
// n = # of voro++ spatial hash cells (with approximately cubic cells)
int nall = nlocal + atom->nghost;
double n[3], V;
for( i=0; i<3; ++i ) n[i] = subhi_bound[i] - sublo_bound[i];
V = n[0]*n[1]*n[2];
for( i=0; i<3; ++i ) {
n[i] = round( n[i]*pow( double(nall)/(V*8.0), 0.333333 ) );
n[i] = n[i]==0 ? 1 : n[i];
}
// clear edge statistics
for (i = 0; i < maxedge; ++i) edge[i]=0;
// initialize voro++ container
// preallocates 8 atoms per cell
// voro++ allocates more memory if needed
int *mask = atom->mask;
if (radstr) {
// check and fetch atom style variable data
int radvar = input->variable->find(radstr);
if (radvar < 0)
error->all(FLERR,"Variable name for voronoi radius does not exist");
if (!input->variable->atomstyle(radvar))
error->all(FLERR,"Variable for voronoi radius is not atom style");
// prepare destination buffer for variable evaluation
if (nlocal > rmax) {
memory->destroy(rfield);
rmax = atom->nmax;
memory->create(rfield,rmax,"voronoi/atom:rfield");
}
// compute atom style radius variable
input->variable->compute_atom(radvar,0,rfield,1,0);
// communicate values to ghost atoms of neighboring nodes
comm->forward_comm_compute(this);
// polydisperse voro++ container
delete con_poly;
con_poly = new container_poly(sublo_bound[0]-cut_bound[0]-e,subhi_bound[0]+cut_bound[0]+e,
sublo_bound[1]-cut_bound[1]-e,subhi_bound[1]+cut_bound[1]+e,
sublo_bound[2]-(dim==3 ? cut_bound[2]-e : 0.0),subhi_bound[2]+(dim==3 ? cut_bound[2]+e : 0.0),
int(n[0]),int(n[1]),int(n[2]),false,false,false,8);
// pass coordinates for local and ghost atoms to voro++
for (i = 0; i < nall; i++) {
if( !onlyGroup || (mask[i] & groupbit) )
con_poly->put(i,x[i][0],x[i][1],x[i][2],rfield[i]);
}
} else {
// monodisperse voro++ container
delete con_mono;
con_mono = new container(sublo_bound[0]-cut_bound[0]-e,subhi_bound[0]+cut_bound[0]+e,
sublo_bound[1]-cut_bound[1]-e,subhi_bound[1]+cut_bound[1]+e,
sublo_bound[2]-(dim==3 ? cut_bound[2]-e : 0.0),subhi_bound[2]+(dim==3 ? cut_bound[2]+e : 0.0),
int(n[0]),int(n[1]),int(n[2]),false,false,false,8);
// pass coordinates for local and ghost atoms to voro++
for (i = 0; i < nall; i++)
if( !onlyGroup || (mask[i] & groupbit) )
con_mono->put(i,x[i][0],x[i][1],x[i][2]);
}
}
void ComputeVoronoi::checkOccupation()
{
// clear occupation vector
memset(occvec, 0, oldnatoms*sizeof(*occvec));
int i, j, k,
nlocal = atom->nlocal,
nall = atom->nghost + nlocal;
double rx, ry, rz,
**x = atom->x;
// prepare destination buffer for variable evaluation
if (nall > lmax) {
memory->destroy(lnext);
lmax = atom->nmax;
memory->create(lnext,lmax,"voronoi/atom:lnext");
}
// clear lroot
for (i=0; i<oldnall; ++i) lroot[i] = -1;
// clear lnext
for (i=0; i<nall; ++i) lnext[i] = -1;
// loop over all local atoms and find out in which of the local first frame voronoi cells the are in
// (need to loop over ghosts, too, to get correct occupation numbers for the second column)
for (i=0; i<nall; ++i) {
// again: find_voronoi_cell() should be in the common base class. Why it is not, I don't know. Ask the voro++ author.
if (( radstr && con_poly->find_voronoi_cell(x[i][0], x[i][1], x[i][2], rx, ry, rz, k)) ||
( !radstr && con_mono->find_voronoi_cell(x[i][0], x[i][1], x[i][2], rx, ry, rz, k) )) {
// increase occupation count of this particular cell
// only for local atoms, as we do an MPI reduce sum later
if (i<nlocal) occvec[tags[k]-1]++;
// add this atom to the linked list of cell j
if (lroot[k]<0)
lroot[k]=i;
else {
j = lroot[k];
while (lnext[j]>=0) j=lnext[j];
lnext[j] = i;
}
}
}
// MPI sum occupation
#ifdef NOTINPLACE
memcpy(sendocc, occvec, oldnatoms*sizeof(*occvec));
MPI_Allreduce(sendocc, occvec, oldnatoms, MPI_INT, MPI_SUM, world);
#else
MPI_Allreduce(MPI_IN_PLACE, occvec, oldnatoms, MPI_INT, MPI_SUM, world);
#endif
// determine the total number of atoms in this atom's currently occupied cell
int c;
for (i=0; i<oldnall; i++) { // loop over lroot (old voronoi cells)
// count
c = 0;
j = lroot[i];
while (j>=0) {
c++;
j = lnext[j];
}
// set
j = lroot[i];
while (j>=0) {
voro[j][1] = c;
j = lnext[j];
}
}
// cherry pick currently owned atoms
for (i=0; i<nlocal; i++) {
// set the new atom count in the atom's first frame voronoi cell
voro[i][0] = occvec[atom->tag[i]-1];
}
}
void ComputeVoronoi::loopCells()
{
// invoke voro++ and fetch results for owned atoms in group
voronoicell_neighbor c;
int i;
if (radstr) {
c_loop_all cl(*con_poly);
if (cl.start()) do if (con_poly->compute_cell(c,cl)) {
i = cl.pid();
processCell(c,i);
} while (cl.inc());
} else {
c_loop_all cl(*con_mono);
if (cl.start()) do if (con_mono->compute_cell(c,cl)) {
i = cl.pid();
processCell(c,i);
} while (cl.inc());
}
}
/* ----------------------------------------------------------------------
memory usage of local atom-based array
------------------------------------------------------------------------- */
void ComputeVoronoi::processCell(voronoicell_neighbor &c, int i)
{
int j,k, *mask = atom->mask;
std::vector<int> neigh, norder, vlist;
std::vector<double> narea, vcell;
bool have_narea = false;
// zero out surface area if surface computation was requested
if (surface != VOROSURF_NONE && !onlyGroup) voro[i][2] = 0.0;
if (i < atom->nlocal && (mask[i] & groupbit)) {
// cell volume
voro[i][0] = c.volume();
// number of cell faces
c.neighbors(neigh);
int neighs = neigh.size();
if (fthresh > 0) {
// count only faces above area threshold
c.face_areas(narea);
have_narea = true;
voro[i][1] = 0.0;
for (j=0; j<narea.size(); ++j)
if (narea[j] > fthresh) voro[i][1] += 1.0;
} else {
// unthresholded face count
voro[i][1] = neighs;
}
// cell surface area
if (surface == VOROSURF_ALL) {
voro[i][2] = c.surface_area();
} else if (surface == VOROSURF_GROUP) {
if (!have_narea) c.face_areas(narea);
voro[i][2] = 0.0;
// each entry in neigh should correspond to an entry in narea
if (neighs != narea.size())
error->all(FLERR,"Voro++ error: narea and neigh have a different size");
// loop over all faces (neighbors) and check if they are in the surface group
for (j=0; j<neighs; ++j)
if (neigh[j] >= 0 && mask[neigh[j]] & sgroupbit)
voro[i][2] += narea[j];
}
// histogram of number of face edges
if (maxedge>0) {
if (ethresh > 0) {
// count only edges above length threshold
c.vertices(vcell);
c.face_vertices(vlist); // for each face: vertex count followed list of vertex indices (n_1,v1_1,v2_1,v3_1,..,vn_1,n_2,v2_1,...)
double dx, dy, dz, r2, t2 = ethresh*ethresh;
for( j=0; j<vlist.size(); j+=vlist[j]+1 ) {
int a, b, nedge = 0;
// vlist[j] contains number of vertex indices for the current face
for( k=0; k<vlist[j]; ++k ) {
a = vlist[j+1+k]; // first vertex in edge
b = vlist[j+1+(k+1)%vlist[j]]; // second vertex in edge (possible wrap around to first vertex in list)
dx = vcell[a*3] - vcell[b*3];
dy = vcell[a*3+1] - vcell[b*3+1];
dz = vcell[a*3+2] - vcell[b*3+2];
r2 = dx*dx+dy*dy+dz*dz;
if (r2 > t2) nedge++;
}
// counted edges above threshold, now put into the correct bin
if (nedge>0) {
if (nedge<=maxedge)
edge[nedge-1]++;
else
edge[maxedge]++;
}
}
} else {
// unthresholded edge counts
c.face_orders(norder);
for (j=0; j<voro[i][1]; ++j)
if (norder[j]>0) {
if (norder[j]<=maxedge)
edge[norder[j]-1]++;
else
edge[maxedge]++;
}
}
}
} else if (i < atom->nlocal) voro[i][0] = voro[i][1] = 0.0;
}
double ComputeVoronoi::memory_usage()
{
double bytes = size_peratom_cols * nmax * sizeof(double);
return bytes;
}
void ComputeVoronoi::compute_vector()
{
invoked_vector = update->ntimestep;
if( invoked_peratom < invoked_vector ) compute_peratom();
for( int i=0; i<size_vector; ++i ) sendvector[i] = edge[i];
MPI_Allreduce(sendvector,edge,size_vector,MPI_DOUBLE,MPI_SUM,world);
}
/* ---------------------------------------------------------------------- */
int ComputeVoronoi::pack_forward_comm(int n, int *list, double *buf,
int pbc_flag, int *pbc)
{
int i,m=0;
for (i = 0; i < n; ++i) buf[m++] = rfield[list[i]];
return m;
}
/* ---------------------------------------------------------------------- */
void ComputeVoronoi::unpack_forward_comm(int n, int first, double *buf)
{
int i,last,m=0;
last = first + n;
for (i = first; i < last; ++i) rfield[i] = buf[m++];
}