-
Notifications
You must be signed in to change notification settings - Fork 661
/
answers.py
214 lines (168 loc) · 5.46 KB
/
answers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
'''
# tag::exercise2[]
==== Exercise 2
Solve these problems in __F__~57~ (assume all pass:[+'s] here are pass:[+<sub><em>f</em></sub>] and –'s here are pass:[–<sub><em>f</em></sub>]):
* 44 + 33
* 9 – 29
* 17 + 42 + 49
* 52 – 30 – 38
# end::exercise2[]
# tag::answer2[]
>>> prime = 57
>>> print((44+33)%prime)
20
>>> print((9-29)%prime)
37
>>> print((17+42+49)%prime)
51
>>> print((52-30-38)%prime)
41
# end::answer2[]
# tag::exercise4[]
==== Exercise 4
Solve the following equations in __F__~97~ (again, assume ⋅ and exponentiation are field pass:[<span class="keep-together">versions</span>]):
* 95 ⋅ 45 ⋅ 31
* 17 ⋅ 13 ⋅ 19 ⋅ 44
* 12^7^ ⋅ 77^49^
# end::exercise4[]
# tag::answer4[]
>>> prime = 97
>>> print(95*45*31 % prime)
23
>>> print(17*13*19*44 % prime)
68
>>> print(12**7*77**49 % prime)
63
# end::answer4[]
# tag::exercise5[]
==== Exercise 5
For _k_ = 1, 3, 7, 13, 18, what is this set in __F__~19~?
++++
<ul class="simplelist">
<li>{<em>k</em> ⋅ 0, <em>k</em> ⋅ 1, <em>k</em> ⋅ 2, <em>k</em> ⋅ 3, ... <em>k</em> ⋅ 18}</li>
</ul>
++++
Do you notice anything about these sets?
# end::exercise5[]
# tag::answer5[]
>>> prime = 19
>>> for k in (1,3,7,13,18):
... print([k*i % prime for i in range(prime)])
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]
[0, 3, 6, 9, 12, 15, 18, 2, 5, 8, 11, 14, 17, 1, 4, 7, 10, 13, 16]
[0, 7, 14, 2, 9, 16, 4, 11, 18, 6, 13, 1, 8, 15, 3, 10, 17, 5, 12]
[0, 13, 7, 1, 14, 8, 2, 15, 9, 3, 16, 10, 4, 17, 11, 5, 18, 12, 6]
[0, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
>>> for k in (1,3,7,13,18):
... print(sorted([k*i % prime for i in range(prime)]))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]
# end::answer5[]
# tag::exercise7[]
==== Exercise 7
For _p_ = 7, 11, 17, 31, what is this set in __F~p~__?
++++
<ul class="simplelist">
<li>{1<sup>(<em>p</em> – 1)</sup>, 2<sup>(<em>p</em> – 1)</sup>, 3<sup>(<em>p</em> – 1)</sup>, 4<sup>(<em>p</em> – 1)</sup>, ... (<em>p</em> – 1)<sup>(<em>p</em> – 1)</sup>}</li>
</ul>
++++
# end::exercise7[]
# tag::answer7[]
>>> for prime in (7, 11, 17, 31):
... print([pow(i, prime-1, prime) for i in range(1, prime)])
[1, 1, 1, 1, 1, 1]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1]
# end::answer7[]
# tag::exercise8[]
==== Exercise 8
Solve the following equations in __F__~31~:
* 3 / 24
* 17^–3^
* 4^–4^ ⋅ 11
# end::exercise8[]
# tag::answer8[]
>>> prime = 31
>>> print(3*pow(24, prime-2, prime) % prime)
4
>>> print(pow(17, prime-4, prime))
29
>>> print(pow(4, prime-5, prime)*11 % prime)
13
# end::answer8[]
'''
from unittest import TestCase
from ecc import FieldElement
'''
# tag::exercise1[]
==== Exercise 1
Write the corresponding method `__ne__`, which checks if two `FieldElement` objects are _not equal_ to each other.
# end::exercise1[]
'''
# tag::answer1[]
def __ne__(self, other):
# this should be the inverse of the == operator
return not (self == other)
# end::answer1[]
'''
# tag::exercise3[]
==== Exercise 3
Write the corresponding `__sub__` method that defines the subtraction of two pass:[<span class="keep-together"><code>FieldElement</code></span>] objects.
# end::exercise3[]
'''
# tag::answer3[]
def __sub__(self, other):
if self.prime != other.prime:
raise TypeError('Cannot subtract two numbers in different Fields')
# self.num and other.num are the actual values
# self.prime is what we need to mod against
num = (self.num - other.num) % self.prime
# we return an element of the same class
return self.__class__(num, self.prime)
# end::answer3[]
'''
# tag::exercise6[]
==== Exercise 6
Write the corresponding `__mul__` method that defines the multiplication of two finite field elements.
# end::exercise6[]
'''
# tag::answer6[]
def __mul__(self, other):
if self.prime != other.prime:
raise TypeError('Cannot multiply two numbers in different Fields')
# self.num and other.num are the actual values
# self.prime is what we need to mod against
num = (self.num * other.num) % self.prime
# we return an element of the same class
return self.__class__(num, self.prime)
# end::answer6[]
'''
# tag::exercise9[]
==== Exercise 9
Write the corresponding `__truediv__` method that defines the division of two field elements.
Note that in Python 3, division is separated into `__truediv__` and `__floordiv__`. The first does normal division and the second does integer division.
# end::exercise9[]
'''
# tag::answer9[]
def __truediv__(self, other):
if self.prime != other.prime:
raise TypeError('Cannot divide two numbers in different Fields')
# use Fermat's little theorem:
# self.num**(p-1) % p == 1
# this means:
# 1/n == pow(n, p-2, p)
# we return an element of the same class
num = self.num * pow(other.num, self.prime - 2, self.prime) % self.prime
return self.__class__(num, self.prime)
# end::answer9[]
class ChapterTest(TestCase):
def test_apply(self):
FieldElement.__ne__ = __ne__
FieldElement.__sub__ = __sub__
FieldElement.__mul__ = __mul__
FieldElement.__truediv__ = __truediv__