-
Notifications
You must be signed in to change notification settings - Fork 661
/
answers.py
236 lines (207 loc) · 6.9 KB
/
answers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
'''
# tag::exercise1[]
==== Exercise 1
Evaluate whether these points are on the curve __y__^2^ = __x__^3^ + 7 over __F__~223~:
++++
<ul class="simplelist">
<li>(192,105), (17,56), (200,119), (1,193), (42,99)</li>
</ul>
++++
# end::exercise1[]
# tag::answer1[]
>>> from ecc import FieldElement
>>> prime = 223
>>> a = FieldElement(0, prime)
>>> b = FieldElement(7, prime)
>>> def on_curve(x,y):
... return y**2 == x**3 + a*x + b
>>> print(on_curve(FieldElement(192, prime), FieldElement(105, prime)))
True
>>> print(on_curve(FieldElement(17, prime), FieldElement(56, prime)))
True
>>> print(on_curve(FieldElement(200, prime), FieldElement(119, prime)))
False
>>> print(on_curve(FieldElement(1, prime), FieldElement(193, prime)))
True
>>> print(on_curve(FieldElement(42, prime), FieldElement(99, prime)))
False
# end::answer1[]
# tag::exercise2[]
==== Exercise 2
For the curve __y__^2^ = __x__^3^ + 7 over __F__~223~, find:
* (170,142) + (60,139)
* (47,71) + (17,56)
* (143,98) + (76,66)
# end::exercise2[]
# tag::answer2[]
>>> from ecc import FieldElement, Point
>>> prime = 223
>>> a = FieldElement(0, prime)
>>> b = FieldElement(7, prime)
>>> p1 = Point(FieldElement(170, prime), FieldElement(142, prime), a, b)
>>> p2 = Point(FieldElement(60, prime), FieldElement(139, prime), a, b)
>>> print(p1+p2)
Point(220,181)_0_7 FieldElement(223)
>>> p1 = Point(FieldElement(47, prime), FieldElement(71, prime), a, b)
>>> p2 = Point(FieldElement(17, prime), FieldElement(56, prime), a, b)
>>> print(p1+p2)
Point(215,68)_0_7 FieldElement(223)
>>> p1 = Point(FieldElement(143, prime), FieldElement(98, prime), a, b)
>>> p2 = Point(FieldElement(76, prime), FieldElement(66, prime), a, b)
>>> print(p1+p2)
Point(47,71)_0_7 FieldElement(223)
# end::answer2[]
# tag::exercise4[]
==== Exercise 4
For the curve __y__^2^ = __x__^3^ + 7 over __F__~223~, find:
* 2 ⋅ (192,105)
* 2 ⋅ (143,98)
* 2 ⋅ (47,71)
* 4 ⋅ (47,71)
* 8 ⋅ (47,71)
* 21 ⋅ (47,71)
# end::exercise4[]
# tag::answer4[]
>>> from ecc import FieldElement, Point
>>> prime = 223
>>> a = FieldElement(0, prime)
>>> b = FieldElement(7, prime)
>>> x1 = FieldElement(num=192, prime=prime)
>>> y1 = FieldElement(num=105, prime=prime)
>>> p = Point(x1,y1,a,b)
>>> print(p+p)
Point(49,71)_0_7 FieldElement(223)
>>> x1 = FieldElement(num=143, prime=prime)
>>> y1 = FieldElement(num=98, prime=prime)
>>> p = Point(x1,y1,a,b)
>>> print(p+p)
Point(64,168)_0_7 FieldElement(223)
>>> x1 = FieldElement(num=47, prime=prime)
>>> y1 = FieldElement(num=71, prime=prime)
>>> p = Point(x1,y1,a,b)
>>> print(p+p)
Point(36,111)_0_7 FieldElement(223)
>>> print(p+p+p+p)
Point(194,51)_0_7 FieldElement(223)
>>> print(p+p+p+p+p+p+p+p)
Point(116,55)_0_7 FieldElement(223)
>>> print(p+p+p+p+p+p+p+p+p+p+p+p+p+p+p+p+p+p+p+p+p)
Point(infinity)
# end::answer4[]
# tag::exercise5[]
==== Exercise 5
For the curve __y__^2^ = __x__^3^ + 7 over __F__~223~, find the order of the group generated by (15,86).
# end::exercise5[]
# tag::answer5[]
>>> prime = 223
>>> a = FieldElement(0, prime)
>>> b = FieldElement(7, prime)
>>> x = FieldElement(15, prime)
>>> y = FieldElement(86, prime)
>>> p = Point(x, y, a, b)
>>> inf = Point(None, None, a, b)
>>> product = p
>>> count = 1
>>> while product != inf:
... product += p
... count += 1
>>> print(count)
7
# end::answer5[]
# tag::exercise6[]
==== Exercise 6
Verify whether these signatures are valid:
```
P = (0x887387e452b8eacc4acfde10d9aaf7f6d9a0f975aabb10d006e4da568744d06c,
0x61de6d95231cd89026e286df3b6ae4a894a3378e393e93a0f45b666329a0ae34)
# signature 1
z = 0xec208baa0fc1c19f708a9ca96fdeff3ac3f230bb4a7ba4aede4942ad003c0f60
r = 0xac8d1c87e51d0d441be8b3dd5b05c8795b48875dffe00b7ffcfac23010d3a395
s = 0x68342ceff8935ededd102dd876ffd6ba72d6a427a3edb13d26eb0781cb423c4
# signature 2
z = 0x7c076ff316692a3d7eb3c3bb0f8b1488cf72e1afcd929e29307032997a838a3d
r = 0xeff69ef2b1bd93a66ed5219add4fb51e11a840f404876325a1e8ffe0529a2c
s = 0xc7207fee197d27c618aea621406f6bf5ef6fca38681d82b2f06fddbdce6feab6
```
# end::exercise6[]
# tag::answer6[]
>>> from ecc import S256Point, N, G
>>> point = S256Point(
... 0x887387e452b8eacc4acfde10d9aaf7f6d9a0f975aabb10d006e4da568744d06c,
... 0x61de6d95231cd89026e286df3b6ae4a894a3378e393e93a0f45b666329a0ae34)
>>> z = 0xec208baa0fc1c19f708a9ca96fdeff3ac3f230bb4a7ba4aede4942ad003c0f60
>>> r = 0xac8d1c87e51d0d441be8b3dd5b05c8795b48875dffe00b7ffcfac23010d3a395
>>> s = 0x68342ceff8935ededd102dd876ffd6ba72d6a427a3edb13d26eb0781cb423c4
>>> u = z * pow(s, N-2, N) % N
>>> v = r * pow(s, N-2, N) % N
>>> print((u*G + v*point).x.num == r)
True
>>> z = 0x7c076ff316692a3d7eb3c3bb0f8b1488cf72e1afcd929e29307032997a838a3d
>>> r = 0xeff69ef2b1bd93a66ed5219add4fb51e11a840f404876325a1e8ffe0529a2c
>>> s = 0xc7207fee197d27c618aea621406f6bf5ef6fca38681d82b2f06fddbdce6feab6
>>> u = z * pow(s, N-2, N) % N
>>> v = r * pow(s, N-2, N) % N
>>> print((u*G + v*point).x.num == r)
True
# end::answer6[]
# tag::exercise7[]
==== Exercise 7
Sign the following message with the secret:
```
e = 12345
z = int.from_bytes(hash256('Programming Bitcoin!'), 'big')
```
# end::exercise7[]
# tag::answer7[]
>>> from ecc import S256Point, G, N
>>> from helper import hash256
>>> e = 12345
>>> z = int.from_bytes(hash256(b'Programming Bitcoin!'), 'big')
>>> k = 1234567890
>>> r = (k*G).x.num
>>> k_inv = pow(k, N-2, N)
>>> s = (z+r*e) * k_inv % N
>>> print(e*G)
S256Point(f01d6b9018ab421dd410404cb869072065522bf85734008f105cf385a023a80f, \
0eba29d0f0c5408ed681984dc525982abefccd9f7ff01dd26da4999cf3f6a295)
>>> print(hex(z))
0x969f6056aa26f7d2795fd013fe88868d09c9f6aed96965016e1936ae47060d48
>>> print(hex(r))
0x2b698a0f0a4041b77e63488ad48c23e8e8838dd1fb7520408b121697b782ef22
>>> print(hex(s))
0x1dbc63bfef4416705e602a7b564161167076d8b20990a0f26f316cff2cb0bc1a
# end::answer7[]
'''
from unittest import TestCase
from ecc import FieldElement, Point, ECCTest
class ChapterTest(TestCase):
def test_apply(self):
'''
# tag::exercise3[]
==== Exercise 3
Extend `ECCTest` to test for the additions from the previous exercise. Call this `test_add`.
# end::exercise3[]
'''
# tag::answer3[]
def test_add(self):
prime = 223
a = FieldElement(0, prime)
b = FieldElement(7, prime)
additions = (
(192, 105, 17, 56, 170, 142),
(47, 71, 117, 141, 60, 139),
(143, 98, 76, 66, 47, 71),
)
for x1_raw, y1_raw, x2_raw, y2_raw, x3_raw, y3_raw in additions:
x1 = FieldElement(x1_raw, prime)
y1 = FieldElement(y1_raw, prime)
p1 = Point(x1, y1, a, b)
x2 = FieldElement(x2_raw, prime)
y2 = FieldElement(y2_raw, prime)
p2 = Point(x2, y2, a, b)
x3 = FieldElement(x3_raw, prime)
y3 = FieldElement(y3_raw, prime)
p3 = Point(x3, y3, a, b)
self.assertEqual(p1 + p2, p3)
# end::answer3[]
ECCTest.test_add = test_add