forked from ultralytics/yolov3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
hubconf.py
105 lines (79 loc) · 3.46 KB
/
hubconf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
"""File for accessing YOLOv3 via PyTorch Hub https://pytorch.org/hub/
Usage:
import torch
model = torch.hub.load('ultralytics/yolov3', 'yolov3', pretrained=True, channels=3, classes=80)
"""
from pathlib import Path
import torch
from models.yolo import Model
from utils.general import set_logging
from utils.google_utils import attempt_download
dependencies = ['torch', 'yaml']
set_logging()
def create(name, pretrained, channels, classes):
"""Creates a specified YOLOv3 model
Arguments:
name (str): name of model, i.e. 'yolov3_spp'
pretrained (bool): load pretrained weights into the model
channels (int): number of input channels
classes (int): number of model classes
Returns:
pytorch model
"""
config = Path(__file__).parent / 'models' / f'{name}.yaml' # model.yaml path
try:
model = Model(config, channels, classes)
if pretrained:
fname = f'{name}.pt' # checkpoint filename
attempt_download(fname) # download if not found locally
ckpt = torch.load(fname, map_location=torch.device('cpu')) # load
state_dict = ckpt['model'].float().state_dict() # to FP32
state_dict = {k: v for k, v in state_dict.items() if model.state_dict()[k].shape == v.shape} # filter
model.load_state_dict(state_dict, strict=False) # load
if len(ckpt['model'].names) == classes:
model.names = ckpt['model'].names # set class names attribute
# model = model.autoshape() # for PIL/cv2/np inputs and NMS
return model
except Exception as e:
help_url = 'https://github.com/ultralytics/yolov5/issues/36'
s = 'Cache maybe be out of date, try force_reload=True. See %s for help.' % help_url
raise Exception(s) from e
def yolov3(pretrained=False, channels=3, classes=80):
"""YOLOv3 model from https://github.com/ultralytics/yolov3
Arguments:
pretrained (bool): load pretrained weights into the model, default=False
channels (int): number of input channels, default=3
classes (int): number of model classes, default=80
Returns:
pytorch model
"""
return create('yolov3', pretrained, channels, classes)
def yolov3_spp(pretrained=False, channels=3, classes=80):
"""YOLOv3-SPP model from https://github.com/ultralytics/yolov3
Arguments:
pretrained (bool): load pretrained weights into the model, default=False
channels (int): number of input channels, default=3
classes (int): number of model classes, default=80
Returns:
pytorch model
"""
return create('yolov3-spp', pretrained, channels, classes)
def yolov3_tiny(pretrained=False, channels=3, classes=80):
"""YOLOv3-tiny model from https://github.com/ultralytics/yolov3
Arguments:
pretrained (bool): load pretrained weights into the model, default=False
channels (int): number of input channels, default=3
classes (int): number of model classes, default=80
Returns:
pytorch model
"""
return create('yolov3-tiny', pretrained, channels, classes)
if __name__ == '__main__':
model = create(name='yolov3', pretrained=True, channels=3, classes=80) # example
model = model.autoshape() # for PIL/cv2/np inputs and NMS
# Verify inference
from PIL import Image
imgs = [Image.open(x) for x in Path('data/images').glob('*.jpg')]
results = model(imgs)
results.show()
results.print()