-
Notifications
You must be signed in to change notification settings - Fork 34
/
train.py
474 lines (386 loc) · 17.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
"""General-purpose training script for image-to-image translation.
It first creates model, dataset, and visualizer given the option.
It then does standard network training. During the training, it also visualize/save the images, print/save the loss plot, and save models.
The script supports continue/resume training. Use '--train_continue' to resume your previous training.
"""
import argparse
import json
import os
import signal
import time
import warnings
import copy
import sys
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import bitsandbytes as bnb
from data import (
create_dataloader,
create_dataset,
create_dataset_temporal,
create_iterable_dataloader,
list_test_sets,
)
from models import create_model
from util.parser import get_opt
from util.visualizer import Visualizer
from util.lion_pytorch import Lion
from util.script import get_override_options_names
import datetime
def setup(rank, world_size, port):
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = port
# initialize the process group
dist.init_process_group(
"nccl",
rank=rank,
world_size=world_size,
timeout=datetime.timedelta(seconds=5400),
) # modified timeout from default 10 or 30 mins (?) to 1.5h
def optim(opt, params, lr, betas, weight_decay, eps):
print("Using ", opt.train_optim, " as optimizer")
if opt.train_optim == "adam":
return torch.optim.Adam(params, lr, betas, weight_decay=weight_decay, eps=eps)
elif opt.train_optim == "radam":
return torch.optim.RAdam(params, lr, betas, weight_decay=weight_decay, eps=eps)
elif opt.train_optim == "adamw":
if weight_decay == 0.0:
weight_decay = 0.01 # default value
return torch.optim.AdamW(params, lr, betas, weight_decay=weight_decay, eps=eps)
elif opt.train_optim == "lion":
return Lion(params, lr, betas, weight_decay)
elif opt.train_optim == "adam8bit":
return bnb.optim.Adam8bit(params, lr, betas, weight_decay=weight_decay, eps=eps)
def signal_handler(sig, frame):
dist.destroy_process_group()
def train_gpu(rank, world_size, opt, trainset, trainset_temporal):
if not opt.warning_mode:
warnings.simplefilter("ignore")
if opt.use_cuda:
torch.cuda.set_device(opt.gpu_ids[rank])
signal.signal(signal.SIGINT, signal_handler) # to really kill the process
signal.signal(signal.SIGTERM, signal_handler)
if len(opt.gpu_ids) > 1:
setup(rank, world_size, opt.ddp_port)
dataloader = create_dataloader(
opt, rank, trainset, batch_size=opt.train_batch_size
) # create a dataset given opt.dataset_mode and other options
use_temporal = ("temporal" in opt.D_netDs) or opt.train_temporal_criterion
if use_temporal:
dataloader_temporal = create_iterable_dataloader(
opt, rank, trainset_temporal, batch_size=opt.train_batch_size
)
trainset_size = len(trainset) # get the number of images in the trainset.
if rank == 0:
if opt.train_compute_metrics_test:
temp_opt = copy.deepcopy(opt)
temp_opt.gpu_ids = temp_opt.gpu_ids[:1]
##TODO: dataset numbering for multi-test
all_test_sets = list_test_sets(temp_opt)
all_dataloaders_test = []
for test_set in all_test_sets:
testset = create_dataset(temp_opt, phase="test", name=test_set)
opt.num_test_images = len(testset)
print("The number of testing images = %d" % len(testset))
dataloader_test = create_dataloader(
temp_opt, rank, testset, batch_size=opt.test_batch_size
) # create a dataset given opt.dataset_mode and other options
all_dataloaders_test.append(dataloader_test)
if use_temporal:
testset_temporal = create_dataset_temporal(temp_opt, phase="test")
dataloader_test_temporal = create_iterable_dataloader(
temp_opt, rank, testset_temporal, batch_size=opt.test_batch_size
)
else:
dataloader_test_temporal = None
else:
opt.num_test_images = 0
all_dataloaders_test = []
dataloader_test_temporal = None
else:
opt.num_test_images = 0
rank_0 = rank == 0
opt.total_iters = 0 # the total number of training iterations
if opt.output_display_env == "":
opt.output_display_env = opt.name
visualizer = Visualizer(
opt
) # create a visualizer that display/save images and plots
if opt.train_continue:
opt.train_epoch_count = visualizer.load_data()
opt.total_iters = opt.train_epoch_count * trainset_size
opt.optim = optim # set optimizer
model = create_model(opt, rank) # create a model given opt.model and other options
if hasattr(model, "data_dependent_initialize"):
data = next(iter(dataloader))
model.data_dependent_initialize(data)
model.setup(opt) # regular setup: load and print networks; create schedulers
model.use_temporal = use_temporal
if opt.use_cuda:
if len(opt.gpu_ids) > 1:
model.parallelize(rank)
else:
model.single_gpu()
if rank_0:
visualizer.print_networks(nets=model.get_nets(), verbose=opt.output_verbose)
# model.print_flop()
if rank_0 and opt.output_display_networks:
data = next(iter(dataloader))
for path in model.save_networks_img(data):
visualizer.display_img(path + ".png")
if rank_0:
# Get the command line arguments
command_line_arguments = sys.argv
# Join the arguments into a single string
command_line = " ".join(command_line_arguments)
# Save the command line to a file
sv_path = os.path.join(opt.checkpoints_dir, opt.name, "command_line.txt")
with open(sv_path, "w") as file:
file.write(command_line)
print(f"Command line was saved at {sv_path}")
if rank_0:
##TODO: realactB_test at init
for dataloader_test in all_dataloaders_test:
model.init_metrics(dataloader_test, dataloader_test.dataset.name)
for epoch in range(
opt.train_epoch_count, opt.train_n_epochs + opt.train_n_epochs_decay + 1
): # outer loop for different epochs; we save the model by <epoch_count>, <epoch_count>+<save_latest_freq>
epoch_start_time = time.time() # timer for entire epoch
iter_data_time = time.time() # timer for data loading per iteration
epoch_iter = 0 # the number of training iterations in current epoch, reset to 0 every epoch
if rank_0:
visualizer.reset() # reset the visualizer: make sure it saves the results to HTML at least once every epoch
if use_temporal:
dataloaders = zip(dataloader, dataloader_temporal)
else:
dataloaders = zip(dataloader)
for i, data_list in enumerate(
dataloaders
): # inner loop (minibatch) within one epoch
data = data_list[0]
iter_start_time = time.time() # timer for computation per iteration
t_data_mini_batch = iter_start_time - iter_data_time
if use_temporal:
temporal_data = data_list[1]
model.set_input_temporal(temporal_data)
model.set_input(data) # unpack data from dataloader and apply preprocessing
model.optimize_parameters() # calculate loss functions, get gradients, update network weights
t_comp = (time.time() - iter_start_time) / opt.train_batch_size
batch_size = model.get_current_batch_size() * len(opt.gpu_ids)
opt.total_iters += batch_size
epoch_iter += batch_size
if (
opt.total_iters % opt.output_print_freq < batch_size
): # print training losses and save logging information to the disk
losses = model.get_current_losses()
float_losses = {}
for name, value in losses.items():
if len(opt.gpu_ids) > 1:
torch.distributed.all_reduce(
value, op=torch.distributed.ReduceOp.SUM
) # loss value is summed accross gpus
float_losses[name] = float(value / len(opt.gpu_ids))
losses = float_losses
if rank_0:
visualizer.print_current_losses(
epoch,
opt.total_iters,
epoch_iter,
losses,
t_comp,
t_data_mini_batch,
)
if opt.output_display_id > 0:
visualizer.plot_current_losses(
epoch, float(epoch_iter) / trainset_size, losses
)
if rank_0:
if (
opt.total_iters % opt.output_display_freq < batch_size
): # display images on visdom and save images to a HTML file
save_result = opt.total_iters % opt.output_update_html_freq == 0
model.compute_visuals(opt.train_batch_size)
if not "none" in opt.output_display_type:
visualizer.display_current_results(
model.get_current_visuals(opt.train_batch_size),
epoch,
save_result,
params=model.get_display_param(),
first=(opt.total_iters == batch_size),
phase="train",
image_bits=opt.data_image_bits,
vwin_id=1,
)
if (
opt.total_iters % opt.train_save_latest_freq < batch_size
): # cache our latest model every <save_latest_freq> iterations
print(
"saving the latest model (epoch %d, opt.total_iters %d)"
% (epoch, opt.total_iters)
)
model.save_networks("latest")
model.export_networks("latest")
if opt.train_save_by_iter:
save_suffix = "iter_%d" % opt.total_iters
model.save_networks(save_suffix)
model.export_networks(save_suffix)
if opt.total_iters % opt.train_metrics_every < batch_size and (
opt.train_compute_metrics_test
):
with torch.no_grad():
if opt.train_compute_metrics_test:
ts = 2
for dataloader_test in all_dataloaders_test:
if use_temporal:
dataloaders_test = zip(
dataloader_test, dataloader_test_temporal
)
else:
dataloaders_test = zip(dataloader_test)
model.compute_metrics_test(
dataloaders_test,
epoch,
opt.total_iters,
opt.train_metrics_save_images,
dataloader_test.dataset.name,
)
visualizer.display_current_results(
model.get_current_visuals(
opt.num_test_images,
phase="test",
test_name=dataloader_test.dataset.name,
),
epoch,
False,
params=model.get_display_param(),
first=(opt.total_iters == batch_size),
phase="test",
image_bits=opt.data_image_bits,
vwin_id=ts,
test_name=dataloader_test.dataset.name,
)
ts += 1
if opt.output_display_id > 0:
metrics = model.get_current_metrics(all_test_sets)
visualizer.plot_current_metrics(
epoch, float(epoch_iter) / trainset_size, metrics
)
if (
opt.total_iters % opt.train_D_accuracy_every < batch_size
and opt.train_compute_D_accuracy
):
model.compute_D_accuracy()
if opt.output_display_id > 0:
accuracies = model.get_current_D_accuracies()
visualizer.plot_current_D_accuracies(
epoch, float(epoch_iter) / trainset_size, accuracies
)
if (
opt.total_iters % opt.output_display_freq < batch_size
and opt.dataaug_APA
):
if opt.output_display_id > 0:
p = model.get_current_APA_prob()
visualizer.plot_current_APA_prob(
epoch, float(epoch_iter) / trainset_size, p
)
if (
opt.total_iters % opt.train_mask_miou_every < batch_size
and opt.train_mask_compute_miou
):
model.compute_miou()
if opt.output_display_id > 0:
miou = model.get_current_miou()
visualizer.plot_current_miou(
epoch, float(epoch_iter) / trainset_size, miou
)
iter_data_time = time.time()
if (
epoch % opt.train_save_epoch_freq == 0
): # cache our model every <save_epoch_freq> epochs
if rank_0:
print(
"saving the model at the end of epoch %d, iters %d"
% (epoch, opt.total_iters)
)
model.save_networks("latest")
model.save_networks(epoch)
model.export_networks("latest")
model.export_networks(epoch)
if rank_0:
print(
"End of epoch %d / %d \t Time Taken: %d sec"
% (
epoch,
opt.train_n_epochs + opt.train_n_epochs_decay,
time.time() - epoch_start_time,
)
)
model.update_learning_rate() # update learning rates at the end of every epoch.
###Let's compute final FID
if rank_0 and opt.train_compute_metrics_test:
with torch.no_grad():
for dataloader_test in all_dataloaders_test:
if use_temporal:
dataloaders_test = zip(dataloader_test, dataloader_test_temporal)
else:
dataloaders_test = zip(dataloader_test)
model.compute_metrics_test(
dataloaders_test,
opt.train_epoch_count - 1,
opt.total_iters,
save_images=opt.train_metrics_save_images,
test_name=dataloader_test.dataset.name,
)
cur_metrics = model.get_current_metrics(all_test_sets)
path_json = os.path.join(opt.checkpoints_dir, opt.name, "eval_results.json")
if os.path.exists(path_json):
with open(path_json, "r") as loadfile:
data = json.load(loadfile)
with open(path_json, "w+") as outfile:
data = {}
for key, value in cur_metrics.items():
data[
"%s_%s_img_%s"
% (key, opt.data_max_dataset_size, opt.train_epoch_count)
] = float(value)
json.dump(data, outfile)
if rank_0:
print("End of training")
def launch_training(opt):
signal.signal(signal.SIGINT, signal_handler) # to really kill the process
opt.jg_dir = os.path.join("/".join(__file__.split("/")[:-1]))
world_size = len(opt.gpu_ids)
if not opt.warning_mode:
warnings.simplefilter("ignore")
trainset = create_dataset(opt, phase="train")
print("The number of training images = %d" % len(trainset))
use_temporal = ("temporal" in opt.D_netDs) or opt.train_temporal_criterion
if use_temporal:
trainset_temporal = create_dataset_temporal(opt, phase="train")
else:
trainset_temporal = None
if opt.with_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
opt.use_cuda = torch.cuda.is_available() and opt.gpu_ids and opt.gpu_ids[0] >= 0
if opt.use_cuda:
mp.spawn(
train_gpu,
args=(world_size, opt, trainset, trainset_temporal),
nprocs=world_size,
join=True,
)
else:
train_gpu(0, world_size, opt, trainset, trainset_temporal)
def compute_test_metrics(model, dataloader):
return metrics
if __name__ == "__main__":
main_parser = argparse.ArgumentParser(add_help=False)
main_parser.add_argument(
"--config_json", type=str, default="", help="path to json config"
)
main_opt, remaining_args = main_parser.parse_known_args()
opt = get_opt(main_opt, remaining_args)
launch_training(opt)