-
Notifications
You must be signed in to change notification settings - Fork 154
/
train_model_summarization.py
223 lines (195 loc) · 8.12 KB
/
train_model_summarization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import torch
from torch.utils.data import Dataset, DataLoader
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from transformers import AdamW, get_scheduler
from tqdm.auto import tqdm
from rouge import Rouge
import random
import numpy as np
import os
import json
def seed_everything(seed=1029):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f'Using {device} device')
seed_everything(5)
max_dataset_size = 200000
max_input_length = 512
max_target_length = 32
batch_size = 32
learning_rate = 1e-5
epoch_num = 3
beam_size = 4
no_repeat_ngram_size = 2
class LCSTS(Dataset):
def __init__(self, data_file):
self.data = self.load_data(data_file)
def load_data(self, data_file):
Data = {}
with open(data_file, 'rt', encoding='utf-8') as f:
for idx, line in enumerate(f):
if idx >= max_dataset_size:
break
items = line.strip().split('!=!')
assert len(items) == 2
Data[idx] = {
'title': items[0],
'content': items[1]
}
return Data
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return self.data[idx]
train_data = LCSTS('data/lcsts_tsv/data1.tsv')
valid_data = LCSTS('data/lcsts_tsv/data2.tsv')
test_data = LCSTS('data/lcsts_tsv/data3.tsv')
model_checkpoint = "csebuetnlp/mT5_multilingual_XLSum"
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
model = model.to(device)
def collote_fn(batch_samples):
batch_inputs, batch_targets = [], []
for sample in batch_samples:
batch_inputs.append(sample['content'])
batch_targets.append(sample['title'])
batch_data = tokenizer(
batch_inputs,
padding=True,
max_length=max_input_length,
truncation=True,
return_tensors="pt"
)
with tokenizer.as_target_tokenizer():
labels = tokenizer(
batch_targets,
padding=True,
max_length=max_target_length,
truncation=True,
return_tensors="pt"
)["input_ids"]
batch_data['decoder_input_ids'] = model.prepare_decoder_input_ids_from_labels(labels)
end_token_index = torch.where(labels == tokenizer.eos_token_id)[1]
for idx, end_idx in enumerate(end_token_index):
labels[idx][end_idx+1:] = -100
batch_data['labels'] = labels
return batch_data
train_dataloader = DataLoader(train_data, batch_size=batch_size, shuffle=True, collate_fn=collote_fn)
valid_dataloader = DataLoader(valid_data, batch_size=batch_size, shuffle=False, collate_fn=collote_fn)
test_dataloader = DataLoader(test_data, batch_size=batch_size, shuffle=False, collate_fn=collote_fn)
def train_loop(dataloader, model, optimizer, lr_scheduler, epoch, total_loss):
progress_bar = tqdm(range(len(dataloader)))
progress_bar.set_description(f'loss: {0:>7f}')
finish_batch_num = (epoch-1) * len(dataloader)
model.train()
for batch, batch_data in enumerate(dataloader, start=1):
batch_data = batch_data.to(device)
outputs = model(**batch_data)
loss = outputs.loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
lr_scheduler.step()
total_loss += loss.item()
progress_bar.set_description(f'loss: {total_loss/(finish_batch_num + batch):>7f}')
progress_bar.update(1)
return total_loss
rouge = Rouge()
def test_loop(dataloader, model):
preds, labels = [], []
model.eval()
for batch_data in tqdm(dataloader):
batch_data = batch_data.to(device)
with torch.no_grad():
generated_tokens = model.generate(
batch_data["input_ids"],
attention_mask=batch_data["attention_mask"],
max_length=max_target_length,
num_beams=beam_size,
no_repeat_ngram_size=no_repeat_ngram_size,
).cpu().numpy()
if isinstance(generated_tokens, tuple):
generated_tokens = generated_tokens[0]
label_tokens = batch_data["labels"].cpu().numpy()
decoded_preds = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
label_tokens = np.where(label_tokens != -100, label_tokens, tokenizer.pad_token_id)
decoded_labels = tokenizer.batch_decode(label_tokens, skip_special_tokens=True)
preds += [' '.join(pred.strip()) for pred in decoded_preds]
labels += [' '.join(label.strip()) for label in decoded_labels]
scores = rouge.get_scores(hyps=preds, refs=labels, avg=True)
result = {key: value['f'] * 100 for key, value in scores.items()}
result['avg'] = np.mean(list(result.values()))
print(f"Rouge1: {result['rouge-1']:>0.2f} Rouge2: {result['rouge-2']:>0.2f} RougeL: {result['rouge-l']:>0.2f}\n")
return result
optimizer = AdamW(model.parameters(), lr=learning_rate)
lr_scheduler = get_scheduler(
"linear",
optimizer=optimizer,
num_warmup_steps=0,
num_training_steps=epoch_num*len(train_dataloader),
)
total_loss = 0.
best_avg_rouge = 0.
for t in range(epoch_num):
print(f"Epoch {t+1}/{epoch_num}\n-------------------------------")
total_loss = train_loop(train_dataloader, model, optimizer, lr_scheduler, t+1, total_loss)
valid_rouge = test_loop(valid_dataloader, model)
rouge_avg = valid_rouge['avg']
if rouge_avg > best_avg_rouge:
best_avg_rouge = rouge_avg
print('saving new weights...\n')
torch.save(model.state_dict(), f'epoch_{t+1}_valid_rouge_{rouge_avg:0.4f}_model_weights.bin')
print("Done!")
# model.load_state_dict(torch.load('epoch_1_valid_rouge_6.6667_model_weights.bin'))
# model.eval()
# with torch.no_grad():
# print('evaluating on test set...')
# sources, preds, labels = [], [], []
# for batch_data in tqdm(test_dataloader):
# batch_data = batch_data.to(device)
# generated_tokens = model.generate(
# batch_data["input_ids"],
# attention_mask=batch_data["attention_mask"],
# max_length=max_target_length,
# num_beams=beam_size,
# no_repeat_ngram_size=no_repeat_ngram_size,
# ).cpu().numpy()
# if isinstance(generated_tokens, tuple):
# generated_tokens = generated_tokens[0]
# label_tokens = batch_data["labels"].cpu().numpy()
# decoded_sources = tokenizer.batch_decode(
# batch_data["input_ids"].cpu().numpy(),
# skip_special_tokens=True,
# use_source_tokenizer=True
# )
# decoded_preds = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
# label_tokens = np.where(label_tokens != -100, label_tokens, tokenizer.pad_token_id)
# decoded_labels = tokenizer.batch_decode(label_tokens, skip_special_tokens=True)
# sources += [source.strip() for source in decoded_sources]
# preds += [pred.strip() for pred in decoded_preds]
# labels += [label.strip() for label in decoded_labels]
# scores = rouge.get_scores(
# hyps=[' '.join(pred) for pred in preds],
# refs=[' '.join(label) for label in labels],
# avg=True
# )
# rouges = {key: value['f'] * 100 for key, value in scores.items()}
# rouges['avg'] = np.mean(list(rouges.values()))
# print(f"Test Rouge1: {rouges['rouge-1']:>0.2f} Rouge2: {rouges['rouge-2']:>0.2f} RougeL: {rouges['rouge-l']:>0.2f}\n")
# results = []
# print('saving predicted results...')
# for source, pred, label in zip(sources, preds, labels):
# results.append({
# "document": source,
# "prediction": pred,
# "summarization": label
# })
# with open('test_data_pred.json', 'wt', encoding='utf-8') as f:
# for exapmle_result in results:
# f.write(json.dumps(exapmle_result, ensure_ascii=False) + '\n')