-
Notifications
You must be signed in to change notification settings - Fork 0
/
webcam_obj_detect_pre_bbox.py
76 lines (67 loc) · 2.49 KB
/
webcam_obj_detect_pre_bbox.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
"""
Project: TorchVision 0.3 Object Detection Finetuning Tutorial
Author: Juan Carlos Miranda
Date: December 2021
Description:
Adapted from https://docs.opencv.org/4.x/dd/d43/tutorial_py_video_display.html
...
Use:
python -m unittest ./tests/test_object_detector
test_object_detector.TestStringMethods.test_object_detection_api
"""
import os
import time
import cv2
from detector.obj_detector_pre_bbox import ObjectDetectorPreTrainedBBOX
def main_loop_webcam():
main_path_project = os.path.abspath('.')
# -------------------------------------------
# Parameters for cameras
# -------------------------------------------
# frame = {ndarray: (240, 320, 3)} H=240 W=320,
# W = cap.set(cv2.CAP_PROP_FRAME_WIDTH, 320)
# H = cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 240)
cap = cv2.VideoCapture(0)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 320)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 240)
# -------------------------------------------
# Trained parameters for models
# -------------------------------------------
trained_model_folder = 'trained_model'
trained_model_path = os.path.join(main_path_project, trained_model_folder)
file_name_model = 'MODEL_SAVED.pth'
file_model_path = os.path.join(trained_model_path, file_name_model)
# -------------------------------------------
time_1 = time.time()
#obj_detector = ObjectDetectorFrame03(file_model_path)
obj_detector_bbox = ObjectDetectorPreTrainedBBOX()
time_2 = time.time()
time_total = time_2 - time_1
# -------------------------------------------
print('load ObjectDetectorFrame time_total-->', time_total)
a_threshold = 0.7
# -----------------------------
while True:
ret, frame = cap.read()
cv2.imshow('webcam feed', frame)
# ----------------------------
# make something with frame
# ----------------------------
analyzed_image = obj_detector_bbox.object_detection_in_frame(frame, a_threshold)
# ----------------------------
# ----------------------------
if analyzed_image is None:
cv2.imshow('webcam feed', frame)
else:
cv2.imshow('webcam feed', analyzed_image)
# ----------------------------
if cv2.waitKey(1) & 0xFF == ord(' '):
break
# ----------------------------
# close camera
# ----------------------------
cap.release()
cv2.destroyAllWindows()
# ----------------------------
if __name__ == "__main__":
main_loop_webcam()