-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
select-cells-in-grid-with-maximum-score.py
83 lines (79 loc) · 2.96 KB
/
select-cells-in-grid-with-maximum-score.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# Time: O(n^2 * max(n, r)), r = max(x for row in grid for x in row)
# Space: O(n * max(n, r))
# hungarian algorithm, weighted bipartite matching
class Solution(object):
def maxScore(self, grid):
"""
:type grid: List[List[int]]
:rtype: int
"""
# Template translated from:
# https://github.com/kth-competitive-programming/kactl/blob/main/content/graph/WeightedMatching.h
def hungarian(a): # Time: O(n^2 * m), Space: O(n + m)
if not a:
return 0, []
n, m = len(a)+1, len(a[0])+1
u, v, p, ans = [0]*n, [0]*m, [0]*m, [0]*(n-1)
for i in xrange(1, n):
p[0] = i
j0 = 0 # add "dummy" worker 0
dist, pre = [float("inf")]*m, [-1]*m
done = [False]*(m+1)
while True: # dijkstra
done[j0] = True
i0, j1, delta = p[j0], None, float("inf")
for j in xrange(1, m):
if done[j]:
continue
cur = a[i0-1][j-1]-u[i0]-v[j]
if cur < dist[j]:
dist[j], pre[j] = cur, j0
if dist[j] < delta:
delta, j1 = dist[j], j
for j in xrange(m):
if done[j]:
u[p[j]] += delta
v[j] -= delta
else:
dist[j] -= delta
j0 = j1
if not p[j0]:
break
while j0: # update alternating path
j1 = pre[j0]
p[j0], j0 = p[j1], j1
for j in xrange(1, m):
if p[j]:
ans[p[j]-1] = j-1
return -v[0], ans # min cost
mx = max(x for row in grid for x in row)
adj = [[0]*max(mx, len(grid)) for _ in xrange(len(grid))]
for i, row in enumerate(grid):
for x in row:
adj[i][x-1] = -x
return -hungarian(adj)[0]
# Time: O(r + (n * m) * 2^n), r = max(x for row in grid for x in row)
# Space: O(r + n * m + 2^n)
# dp, bitmasks
class Solution2(object):
def maxScore(self, grid):
"""
:type grid: List[List[int]]
:rtype: int
"""
mx = max(x for row in grid for x in row)
lookup = [set() for _ in xrange(mx)]
for i, row in enumerate(grid):
for x in row:
lookup[x-1].add(i)
dp = [float("-inf")]*(1<<len(grid))
dp[0] = 0
for x in xrange(len(lookup)):
if not lookup[x]:
continue
for mask in reversed(xrange(len(dp))):
for i in lookup[x]:
if mask&(1<<i):
continue
dp[mask|(1<<i)] = max(dp[mask|(1<<i)], dp[mask]+(x+1))
return max(dp)