forked from THUDM/CogVideo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cogvideo_pipeline.py
793 lines (693 loc) · 42.4 KB
/
cogvideo_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
# -*- encoding: utf-8 -*-
'''
@File : cogvideo_pipeline.py
@Time : 2022/07/15 11:24:56
@Author : Wenyi Hong
@Version : 1.0
@Contact : [email protected]
'''
# here put the import lib
import os
import sys
import torch
import argparse
import time
from torchvision.utils import save_image
import stat
from icetk import icetk as tokenizer
import logging, sys
import torch.distributed as dist
tokenizer.add_special_tokens(['<start_of_image>', '<start_of_english>', '<start_of_chinese>'])
from SwissArmyTransformer import get_args
from SwissArmyTransformer.data_utils import BinaryDataset, make_loaders
from SwissArmyTransformer.generation.sampling_strategies import BaseStrategy
from SwissArmyTransformer.generation.utils import timed_name, save_multiple_images, generate_continually
from SwissArmyTransformer.resources import auto_create
from models.cogvideo_cache_model import CogVideoCacheModel
from coglm_strategy import CoglmStrategy
def get_masks_and_position_ids_stage1(data, textlen, framelen):
# Extract batch size and sequence length.
tokens = data
seq_length = len(data[0])
# Attention mask (lower triangular).
attention_mask = torch.ones((1, textlen+framelen, textlen+framelen), device=data.device)
attention_mask[:, :textlen, textlen:] = 0
attention_mask[:, textlen:, textlen:].tril_()
attention_mask.unsqueeze_(1)
# Unaligned version
position_ids = torch.zeros(seq_length, dtype=torch.long,
device=data.device)
torch.arange(textlen, out=position_ids[:textlen],
dtype=torch.long, device=data.device)
torch.arange(512, 512+seq_length-textlen, out=position_ids[textlen:],
dtype=torch.long, device=data.device)
position_ids = position_ids.unsqueeze(0)
return tokens, attention_mask, position_ids
def get_masks_and_position_ids_stage2(data, textlen, framelen):
# Extract batch size and sequence length.
tokens = data
seq_length = len(data[0])
# Attention mask (lower triangular).
attention_mask = torch.ones((1, textlen+framelen, textlen+framelen), device=data.device)
attention_mask[:, :textlen, textlen:] = 0
attention_mask[:, textlen:, textlen:].tril_()
attention_mask.unsqueeze_(1)
# Unaligned version
position_ids = torch.zeros(seq_length, dtype=torch.long,
device=data.device)
torch.arange(textlen, out=position_ids[:textlen],
dtype=torch.long, device=data.device)
frame_num = (seq_length-textlen)//framelen
assert frame_num == 5
torch.arange(512, 512+framelen, out=position_ids[textlen:textlen+framelen],
dtype=torch.long, device=data.device)
torch.arange(512+framelen*2, 512+framelen*3, out=position_ids[textlen+framelen:textlen+framelen*2],
dtype=torch.long, device=data.device)
torch.arange(512+framelen*(frame_num-1), 512+framelen*frame_num, out=position_ids[textlen+framelen*2:textlen+framelen*3],
dtype=torch.long, device=data.device)
torch.arange(512+framelen*1, 512+framelen*2, out=position_ids[textlen+framelen*3:textlen+framelen*4],
dtype=torch.long, device=data.device)
torch.arange(512+framelen*3, 512+framelen*4, out=position_ids[textlen+framelen*4:textlen+framelen*5],
dtype=torch.long, device=data.device)
position_ids = position_ids.unsqueeze(0)
return tokens, attention_mask, position_ids
def my_update_mems(hiddens, mems_buffers, mems_indexs, limited_spatial_channel_mem, text_len, frame_len):
if hiddens is None:
return None, mems_indexs
mem_num = len(hiddens)
ret_mem = []
with torch.no_grad():
for id in range(mem_num):
if hiddens[id][0] is None:
ret_mem.append(None)
else:
if id == 0 and limited_spatial_channel_mem and mems_indexs[id]+hiddens[0][0].shape[1] >= text_len+frame_len:
if mems_indexs[id] == 0:
for layer, hidden in enumerate(hiddens[id]):
mems_buffers[id][layer, :, :text_len] = hidden.expand(mems_buffers[id].shape[1], -1, -1)[:, :text_len]
new_mem_len_part2 = (mems_indexs[id]+hiddens[0][0].shape[1]-text_len)%frame_len
if new_mem_len_part2 > 0:
for layer, hidden in enumerate(hiddens[id]):
mems_buffers[id][layer, :, text_len:text_len+new_mem_len_part2] = hidden.expand(mems_buffers[id].shape[1], -1, -1)[:, -new_mem_len_part2:]
mems_indexs[id] = text_len+new_mem_len_part2
else:
for layer, hidden in enumerate(hiddens[id]):
mems_buffers[id][layer, :, mems_indexs[id]:mems_indexs[id]+hidden.shape[1]] = hidden.expand(mems_buffers[id].shape[1], -1, -1)
mems_indexs[id] += hidden.shape[1]
ret_mem.append(mems_buffers[id][:, :, :mems_indexs[id]])
return ret_mem, mems_indexs
def my_save_multiple_images(imgs, path, subdir, debug=True):
# imgs: list of tensor images
if debug:
imgs = torch.cat(imgs, dim=0)
print("\nSave to: ", path, flush=True)
save_image(imgs, path, normalize=True)
else:
print("\nSave to: ", path, flush=True)
single_frame_path = os.path.join(path, subdir)
os.makedirs(single_frame_path, exist_ok=True)
for i in range(len(imgs)):
save_image(imgs[i], os.path.join(single_frame_path, f'{str(i).rjust(4,"0")}.jpg'), normalize=True)
os.chmod(os.path.join(single_frame_path,f'{str(i).rjust(4,"0")}.jpg'), stat.S_IRWXO+stat.S_IRWXG+stat.S_IRWXU)
save_image(torch.cat(imgs, dim=0), os.path.join(single_frame_path,f'frame_concat.jpg'), normalize=True)
os.chmod(os.path.join(single_frame_path,f'frame_concat.jpg'), stat.S_IRWXO+stat.S_IRWXG+stat.S_IRWXU)
def calc_next_tokens_frame_begin_id(text_len, frame_len, total_len):
# The fisrt token's position id of the frame that the next token belongs to;
if total_len < text_len:
return None
return (total_len-text_len)//frame_len * frame_len + text_len
def my_filling_sequence(
model,
args,
seq,
batch_size,
get_masks_and_position_ids,
text_len,
frame_len,
strategy=BaseStrategy(),
strategy2=BaseStrategy(),
mems=None,
log_text_attention_weights=0, # default to 0: no artificial change
mode_stage1=True,
enforce_no_swin=False,
guider_seq=None,
guider_text_len=0,
guidance_alpha=1,
limited_spatial_channel_mem=False, # 空间通道的存储限制在本帧内
**kw_args
):
'''
seq: [2, 3, 5, ..., -1(to be generated), -1, ...]
mems: [num_layers, batch_size, len_mems(index), mem_hidden_size]
cache, should be first mems.shape[1] parts of context_tokens.
mems are the first-level citizens here, but we don't assume what is memorized.
input mems are used when multi-phase generation.
'''
if guider_seq is not None:
logging.debug("Using Guidance In Inference")
if limited_spatial_channel_mem:
logging.debug("Limit spatial-channel's mem to current frame")
assert len(seq.shape) == 2
# building the initial tokens, attention_mask, and position_ids
actual_context_length = 0
while seq[-1][actual_context_length] >= 0: # the last seq has least given tokens
actual_context_length += 1 # [0, context_length-1] are given
assert actual_context_length > 0
current_frame_num = (actual_context_length-text_len) // frame_len
assert current_frame_num >= 0
context_length = text_len + current_frame_num * frame_len
tokens, attention_mask, position_ids = get_masks_and_position_ids(seq, text_len, frame_len)
tokens = tokens[..., :context_length]
input_tokens = tokens.clone()
if guider_seq is not None:
guider_index_delta = text_len - guider_text_len
guider_tokens, guider_attention_mask, guider_position_ids = get_masks_and_position_ids(guider_seq, guider_text_len, frame_len)
guider_tokens = guider_tokens[..., :context_length-guider_index_delta]
guider_input_tokens = guider_tokens.clone()
for fid in range(current_frame_num):
input_tokens[:, text_len+400*fid] = tokenizer['<start_of_image>']
if guider_seq is not None:
guider_input_tokens[:, guider_text_len+400*fid] = tokenizer['<start_of_image>']
attention_mask = attention_mask.type_as(next(model.parameters())) # if fp16
# initialize generation
counter = context_length - 1 # Last fixed index is ``counter''
index = 0 # Next forward starting index, also the length of cache.
mems_buffers_on_GPU = False
mems_indexs = [0, 0]
mems_len = [(400+74) if limited_spatial_channel_mem else 5*400+74, 5*400+74]
mems_buffers = [torch.zeros(args.num_layers, batch_size, mem_len, args.hidden_size*2, dtype=next(model.parameters()).dtype)
for mem_len in mems_len]
if guider_seq is not None:
guider_attention_mask = guider_attention_mask.type_as(next(model.parameters())) # if fp16
guider_mems_buffers = [torch.zeros(args.num_layers, batch_size, mem_len, args.hidden_size*2, dtype=next(model.parameters()).dtype)
for mem_len in mems_len]
guider_mems_indexs = [0, 0]
guider_mems = None
torch.cuda.empty_cache()
# step-by-step generation
while counter < len(seq[0]) - 1:
# we have generated counter+1 tokens
# Now, we want to generate seq[counter + 1],
# token[:, index: counter+1] needs forwarding.
if index == 0:
group_size = 2 if (input_tokens.shape[0] == batch_size and not mode_stage1) else batch_size
logits_all = None
for batch_idx in range(0, input_tokens.shape[0], group_size):
logits, *output_per_layers = model(
input_tokens[batch_idx:batch_idx+group_size, index:],
position_ids[..., index: counter+1],
attention_mask, # TODO memlen
mems=mems,
text_len=text_len,
frame_len=frame_len,
counter=counter,
log_text_attention_weights=log_text_attention_weights,
enforce_no_swin=enforce_no_swin,
**kw_args
)
logits_all = torch.cat((logits_all, logits), dim=0) if logits_all is not None else logits
mem_kv01 = [[o['mem_kv'][0] for o in output_per_layers], [o['mem_kv'][1] for o in output_per_layers]]
next_tokens_frame_begin_id = calc_next_tokens_frame_begin_id(text_len, frame_len, mem_kv01[0][0].shape[1])
for id, mem_kv in enumerate(mem_kv01):
for layer, mem_kv_perlayer in enumerate(mem_kv):
if limited_spatial_channel_mem and id == 0:
mems_buffers[id][layer, batch_idx:batch_idx+group_size, :text_len] = mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1)[:, :text_len]
mems_buffers[id][layer, batch_idx:batch_idx+group_size, text_len:text_len+mem_kv_perlayer.shape[1]-next_tokens_frame_begin_id] =\
mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1)[:, next_tokens_frame_begin_id:]
else:
mems_buffers[id][layer, batch_idx:batch_idx+group_size, :mem_kv_perlayer.shape[1]] = mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1)
mems_indexs[0], mems_indexs[1] = mem_kv01[0][0].shape[1], mem_kv01[1][0].shape[1]
if limited_spatial_channel_mem:
mems_indexs[0] -= (next_tokens_frame_begin_id - text_len)
mems = [mems_buffers[id][:, :, :mems_indexs[id]] for id in range(2)]
logits = logits_all
# Guider
if guider_seq is not None:
guider_logits_all = None
for batch_idx in range(0, guider_input_tokens.shape[0], group_size):
guider_logits, *guider_output_per_layers = model(
guider_input_tokens[batch_idx:batch_idx+group_size, max(index-guider_index_delta, 0):],
guider_position_ids[..., max(index-guider_index_delta, 0): counter+1-guider_index_delta],
guider_attention_mask,
mems=guider_mems,
text_len=guider_text_len,
frame_len=frame_len,
counter=counter-guider_index_delta,
log_text_attention_weights=log_text_attention_weights,
enforce_no_swin=enforce_no_swin,
**kw_args
)
guider_logits_all = torch.cat((guider_logits_all, guider_logits), dim=0) if guider_logits_all is not None else guider_logits
guider_mem_kv01 = [[o['mem_kv'][0] for o in guider_output_per_layers], [o['mem_kv'][1] for o in guider_output_per_layers]]
for id, guider_mem_kv in enumerate(guider_mem_kv01):
for layer, guider_mem_kv_perlayer in enumerate(guider_mem_kv):
if limited_spatial_channel_mem and id == 0:
guider_mems_buffers[id][layer, batch_idx:batch_idx+group_size, :guider_text_len] = guider_mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1)[:, :guider_text_len]
guider_next_tokens_frame_begin_id = calc_next_tokens_frame_begin_id(guider_text_len, frame_len, guider_mem_kv_perlayer.shape[1])
guider_mems_buffers[id][layer, batch_idx:batch_idx+group_size, guider_text_len:guider_text_len+guider_mem_kv_perlayer.shape[1]-guider_next_tokens_frame_begin_id] =\
guider_mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1)[:, guider_next_tokens_frame_begin_id:]
else:
guider_mems_buffers[id][layer, batch_idx:batch_idx+group_size, :guider_mem_kv_perlayer.shape[1]] = guider_mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1)
guider_mems_indexs[0], guider_mems_indexs[1] = guider_mem_kv01[0][0].shape[1], guider_mem_kv01[1][0].shape[1]
if limited_spatial_channel_mem:
guider_mems_indexs[0] -= (guider_next_tokens_frame_begin_id-guider_text_len)
guider_mems = [guider_mems_buffers[id][:, :, :guider_mems_indexs[id]] for id in range(2)]
guider_logits = guider_logits_all
else:
if not mems_buffers_on_GPU:
if not mode_stage1:
torch.cuda.empty_cache()
for idx, mem in enumerate(mems):
mems[idx] = mem.to(next(model.parameters()).device)
if guider_seq is not None:
for idx, mem in enumerate(guider_mems):
guider_mems[idx] = mem.to(next(model.parameters()).device)
else:
torch.cuda.empty_cache()
for idx, mem_buffer in enumerate(mems_buffers):
mems_buffers[idx] = mem_buffer.to(next(model.parameters()).device)
mems = [mems_buffers[id][:, :, :mems_indexs[id]] for id in range(2)]
if guider_seq is not None:
for idx, guider_mem_buffer in enumerate(guider_mems_buffers):
guider_mems_buffers[idx] = guider_mem_buffer.to(next(model.parameters()).device)
guider_mems = [guider_mems_buffers[id][:, :, :guider_mems_indexs[id]] for id in range(2)]
mems_buffers_on_GPU = True
logits, *output_per_layers = model(
input_tokens[:, index:],
position_ids[..., index: counter+1],
attention_mask, # TODO memlen
mems=mems,
text_len=text_len,
frame_len=frame_len,
counter=counter,
log_text_attention_weights=log_text_attention_weights,
enforce_no_swin=enforce_no_swin,
limited_spatial_channel_mem=limited_spatial_channel_mem,
**kw_args
)
mem_kv0, mem_kv1 = [o['mem_kv'][0] for o in output_per_layers], [o['mem_kv'][1] for o in output_per_layers]
if guider_seq is not None:
guider_logits, *guider_output_per_layers = model(
guider_input_tokens[:, max(index-guider_index_delta, 0):],
guider_position_ids[..., max(index-guider_index_delta, 0): counter+1-guider_index_delta],
guider_attention_mask,
mems=guider_mems,
text_len=guider_text_len,
frame_len=frame_len,
counter=counter-guider_index_delta,
log_text_attention_weights=0,
enforce_no_swin=enforce_no_swin,
limited_spatial_channel_mem=limited_spatial_channel_mem,
**kw_args
)
guider_mem_kv0, guider_mem_kv1 = [o['mem_kv'][0] for o in guider_output_per_layers], [o['mem_kv'][1] for o in guider_output_per_layers]
if not mems_buffers_on_GPU:
torch.cuda.empty_cache()
for idx, mem_buffer in enumerate(mems_buffers):
mems_buffers[idx] = mem_buffer.to(next(model.parameters()).device)
if guider_seq is not None:
for idx, guider_mem_buffer in enumerate(guider_mems_buffers):
guider_mems_buffers[idx] = guider_mem_buffer.to(next(model.parameters()).device)
mems_buffers_on_GPU = True
mems, mems_indexs = my_update_mems([mem_kv0, mem_kv1], mems_buffers, mems_indexs, limited_spatial_channel_mem, text_len, frame_len)
if guider_seq is not None:
guider_mems, guider_mems_indexs = my_update_mems([guider_mem_kv0, guider_mem_kv1], guider_mems_buffers, guider_mems_indexs, limited_spatial_channel_mem, guider_text_len, frame_len)
counter += 1
index = counter
logits = logits[:, -1].expand(batch_size, -1) # [batch size, vocab size]
tokens = tokens.expand(batch_size, -1)
if guider_seq is not None:
guider_logits = guider_logits[:, -1].expand(batch_size, -1)
guider_tokens = guider_tokens.expand(batch_size, -1)
if seq[-1][counter].item() < 0:
# sampling
guided_logits = guider_logits+(logits-guider_logits)*guidance_alpha if guider_seq is not None else logits
if mode_stage1 and counter < text_len + 400:
tokens, mems = strategy.forward(guided_logits, tokens, mems)
else:
tokens, mems = strategy2.forward(guided_logits, tokens, mems)
if guider_seq is not None:
guider_tokens = torch.cat((guider_tokens, tokens[:, -1:]), dim=1)
if seq[0][counter].item() >= 0:
for si in range(seq.shape[0]):
if seq[si][counter].item() >= 0:
tokens[si, -1] = seq[si, counter]
if guider_seq is not None:
guider_tokens[si, -1] = guider_seq[si, counter-guider_index_delta]
else:
tokens = torch.cat((tokens, seq[:, counter:counter+1].clone().expand(tokens.shape[0], 1).to(device=tokens.device, dtype=tokens.dtype)), dim=1)
if guider_seq is not None:
guider_tokens = torch.cat((guider_tokens,
guider_seq[:, counter-guider_index_delta:counter+1-guider_index_delta]
.clone().expand(guider_tokens.shape[0], 1).to(device=guider_tokens.device, dtype=guider_tokens.dtype)), dim=1)
input_tokens = tokens.clone()
if guider_seq is not None:
guider_input_tokens = guider_tokens.clone()
if (index-text_len-1)//400 < (input_tokens.shape[-1]-text_len-1)//400:
boi_idx = ((index-text_len-1)//400 +1)*400+text_len
while boi_idx < input_tokens.shape[-1]:
input_tokens[:, boi_idx] = tokenizer['<start_of_image>']
if guider_seq is not None:
guider_input_tokens[:, boi_idx-guider_index_delta] = tokenizer['<start_of_image>']
boi_idx += 400
if strategy.is_done:
break
return strategy.finalize(tokens, mems)
class InferenceModel_Sequential(CogVideoCacheModel):
def __init__(self, args, transformer=None, parallel_output=True):
super().__init__(args, transformer=transformer, parallel_output=parallel_output, window_size=-1, cogvideo_stage=1)
# TODO: check it
def final_forward(self, logits, **kwargs):
logits_parallel = logits
logits_parallel = torch.nn.functional.linear(logits_parallel.float(), self.transformer.word_embeddings.weight[:20000].float())
return logits_parallel
class InferenceModel_Interpolate(CogVideoCacheModel):
def __init__(self, args, transformer=None, parallel_output=True):
super().__init__(args, transformer=transformer, parallel_output=parallel_output, window_size=10, cogvideo_stage=2)
# TODO: check it
def final_forward(self, logits, **kwargs):
logits_parallel = logits
logits_parallel = torch.nn.functional.linear(logits_parallel.float(), self.transformer.word_embeddings.weight[:20000].float())
return logits_parallel
def main(args):
assert int(args.stage_1) + int(args.stage_2) + int(args.both_stages) == 1
rank_id = args.device % args.parallel_size
generate_frame_num = args.generate_frame_num
if args.stage_1 or args.both_stages:
model_stage1, args = InferenceModel_Sequential.from_pretrained(args, 'cogvideo-stage1')
model_stage1.eval()
if args.both_stages:
model_stage1 = model_stage1.cpu()
if args.stage_2 or args.both_stages:
model_stage2, args = InferenceModel_Interpolate.from_pretrained(args, 'cogvideo-stage2')
model_stage2.eval()
if args.both_stages:
model_stage2 = model_stage2.cpu()
invalid_slices = [slice(tokenizer.num_image_tokens, None)]
strategy_cogview2 = CoglmStrategy(invalid_slices,
temperature=1.0, top_k=16)
strategy_cogvideo = CoglmStrategy(invalid_slices,
temperature=args.temperature, top_k=args.top_k,
temperature2=args.coglm_temperature2)
if not args.stage_1:
from sr_pipeline import DirectSuperResolution
dsr_path = auto_create('cogview2-dsr', path=None) # path=os.getenv('SAT_HOME', '~/.sat_models')
dsr = DirectSuperResolution(args, dsr_path,
max_bz=12, onCUDA=False)
def process_stage2(model, seq_text, duration, video_raw_text=None, video_guidance_text="视频", parent_given_tokens=None, conddir=None, outputdir=None, gpu_rank=0, gpu_parallel_size=1):
stage2_starttime = time.time()
use_guidance = args.use_guidance_stage2
if args.both_stages:
move_start_time = time.time()
logging.debug("moving stage-2 model to cuda")
model = model.cuda()
logging.debug("moving in stage-2 model takes time: {:.2f}".format(time.time()-move_start_time))
try:
if parent_given_tokens is None:
assert conddir is not None
parent_given_tokens = torch.load(os.path.join(conddir, 'frame_tokens.pt'), map_location='cpu')
sample_num_allgpu = parent_given_tokens.shape[0]
sample_num = sample_num_allgpu // gpu_parallel_size
assert sample_num * gpu_parallel_size == sample_num_allgpu
parent_given_tokens = parent_given_tokens[gpu_rank*sample_num:(gpu_rank+1)*sample_num]
except:
logging.critical("No frame_tokens found in interpolation, skip")
return False
# CogVideo Stage2 Generation
while duration >= 0.5: # TODO: You can change the boundary to change the frame rate
parent_given_tokens_num = parent_given_tokens.shape[1]
generate_batchsize_persample = (parent_given_tokens_num-1)//2
generate_batchsize_total = generate_batchsize_persample * sample_num
total_frames = generate_frame_num
frame_len = 400
enc_text = tokenizer.encode(seq_text)
enc_duration = tokenizer.encode(str(float(duration))+"秒")
seq = enc_duration + [tokenizer['<n>']] + enc_text + [tokenizer['<start_of_image>']] + [-1]*400*generate_frame_num
text_len = len(seq) - frame_len*generate_frame_num - 1
logging.info("[Stage2: Generating Frames, Frame Rate {:d}]\nraw text: {:s}".format(int(4/duration), tokenizer.decode(enc_text)))
# generation
seq = torch.cuda.LongTensor(seq, device=args.device).unsqueeze(0).repeat(generate_batchsize_total, 1)
for sample_i in range(sample_num):
for i in range(generate_batchsize_persample):
seq[sample_i*generate_batchsize_persample+i][text_len+1:text_len+1+400] = parent_given_tokens[sample_i][2*i]
seq[sample_i*generate_batchsize_persample+i][text_len+1+400:text_len+1+800] = parent_given_tokens[sample_i][2*i+1]
seq[sample_i*generate_batchsize_persample+i][text_len+1+800:text_len+1+1200] = parent_given_tokens[sample_i][2*i+2]
if use_guidance:
guider_seq = enc_duration + [tokenizer['<n>']] + tokenizer.encode(video_guidance_text) + [tokenizer['<start_of_image>']] + [-1]*400*generate_frame_num
guider_text_len = len(guider_seq) - frame_len*generate_frame_num - 1
guider_seq = torch.cuda.LongTensor(guider_seq, device=args.device).unsqueeze(0).repeat(generate_batchsize_total, 1)
for sample_i in range(sample_num):
for i in range(generate_batchsize_persample):
guider_seq[sample_i*generate_batchsize_persample+i][text_len+1:text_len+1+400] = parent_given_tokens[sample_i][2*i]
guider_seq[sample_i*generate_batchsize_persample+i][text_len+1+400:text_len+1+800] = parent_given_tokens[sample_i][2*i+1]
guider_seq[sample_i*generate_batchsize_persample+i][text_len+1+800:text_len+1+1200] = parent_given_tokens[sample_i][2*i+2]
video_log_text_attention_weights = 0
else:
guider_seq=None
guider_text_len=0
video_log_text_attention_weights = 1.4
mbz = args.max_inference_batch_size
assert generate_batchsize_total < mbz or generate_batchsize_total % mbz == 0
output_list = []
start_time = time.time()
for tim in range(max(generate_batchsize_total // mbz, 1)):
input_seq = seq[:min(generate_batchsize_total, mbz)].clone() if tim == 0 else seq[mbz*tim:mbz*(tim+1)].clone()
guider_seq2 = (guider_seq[:min(generate_batchsize_total, mbz)].clone() if tim == 0 else guider_seq[mbz*tim:mbz*(tim+1)].clone()) if guider_seq is not None else None
output_list.append(
my_filling_sequence(model, args, input_seq,
batch_size=min(generate_batchsize_total, mbz),
get_masks_and_position_ids=get_masks_and_position_ids_stage2,
text_len=text_len, frame_len=frame_len,
strategy=strategy_cogview2,
strategy2=strategy_cogvideo,
log_text_attention_weights=video_log_text_attention_weights,
mode_stage1=False,
guider_seq=guider_seq2,
guider_text_len=guider_text_len,
guidance_alpha=args.guidance_alpha,
limited_spatial_channel_mem=True,
)[0]
)
logging.info("Duration {:.2f}, Taken time {:.2f}\n".format(duration, time.time() - start_time))
output_tokens = torch.cat(output_list, dim=0)
output_tokens = output_tokens[:, text_len+1:text_len+1+(total_frames)*400].reshape(sample_num, -1, 400*total_frames)
output_tokens_merge = torch.cat((output_tokens[:, :, :1*400],
output_tokens[:, :, 400*3:4*400],
output_tokens[:, :, 400*1:2*400],
output_tokens[:, :, 400*4:(total_frames)*400]), dim=2).reshape(sample_num, -1, 400)
output_tokens_merge = torch.cat((output_tokens_merge, output_tokens[:, -1:, 400*2:3*400]), dim=1)
duration /= 2
parent_given_tokens = output_tokens_merge
if args.both_stages:
move_start_time = time.time()
logging.debug("moving stage 2 model to cpu")
model = model.cpu()
torch.cuda.empty_cache()
logging.debug("moving out model2 takes time: {:.2f}".format(time.time()-move_start_time))
logging.info("CogVideo Stage2 completed. Taken time {:.2f}\n".format(time.time() - stage2_starttime))
# decoding
# imgs = [torch.nn.functional.interpolate(tokenizer.decode(image_ids=seq.tolist()), size=(480, 480)) for seq in output_tokens_merge]
# os.makedirs(output_dir_full_path, exist_ok=True)
# my_save_multiple_images(imgs, output_dir_full_path,subdir="frames", debug=False)
# torch.save(output_tokens_merge.cpu(), os.path.join(output_dir_full_path, 'frame_token.pt'))
# os.system(f"gifmaker -i '{output_dir_full_path}'/frames/0*.jpg -o '{output_dir_full_path}/{str(float(duration))}_concat.gif' -d 0.2")
# direct super-resolution by CogView2
logging.info("[Direct super-resolution]")
dsr_starttime = time.time()
enc_text = tokenizer.encode(seq_text)
frame_num_per_sample = parent_given_tokens.shape[1]
parent_given_tokens_2d = parent_given_tokens.reshape(-1, 400)
text_seq = torch.cuda.LongTensor(enc_text, device=args.device).unsqueeze(0).repeat(parent_given_tokens_2d.shape[0], 1)
sred_tokens = dsr(text_seq, parent_given_tokens_2d)
decoded_sr_videos = []
for sample_i in range(sample_num):
decoded_sr_imgs = []
for frame_i in range(frame_num_per_sample):
decoded_sr_img = tokenizer.decode(image_ids=sred_tokens[frame_i+sample_i*frame_num_per_sample][-3600:])
decoded_sr_imgs.append(torch.nn.functional.interpolate(decoded_sr_img, size=(480, 480)))
decoded_sr_videos.append(decoded_sr_imgs)
for sample_i in range(sample_num):
my_save_multiple_images(decoded_sr_videos[sample_i], outputdir,subdir=f"frames/{sample_i+sample_num*gpu_rank}", debug=False)
os.system(f"gifmaker -i '{outputdir}'/frames/'{sample_i+sample_num*gpu_rank}'/0*.jpg -o '{outputdir}/{sample_i+sample_num*gpu_rank}.gif' -d 0.125")
logging.info("Direct super-resolution completed. Taken time {:.2f}\n".format(time.time() - dsr_starttime))
return True
def process_stage1(model, seq_text, duration, video_raw_text=None, video_guidance_text="视频", image_text_suffix="", outputdir=None, batch_size=1):
process_start_time = time.time()
use_guide = args.use_guidance_stage1
if args.both_stages:
move_start_time = time.time()
logging.debug("moving stage 1 model to cuda")
model = model.cuda()
logging.debug("moving in model1 takes time: {:.2f}".format(time.time()-move_start_time))
if video_raw_text is None:
video_raw_text = seq_text
mbz = args.stage1_max_inference_batch_size if args.stage1_max_inference_batch_size > 0 else args.max_inference_batch_size
assert batch_size < mbz or batch_size % mbz == 0
frame_len = 400
# generate the first frame:
enc_text = tokenizer.encode(seq_text+image_text_suffix)
seq_1st = enc_text + [tokenizer['<start_of_image>']] + [-1]*400 # IV!! # test local!!! # test randboi!!!
logging.info("[Generating First Frame with CogView2]Raw text: {:s}".format(tokenizer.decode(enc_text)))
text_len_1st = len(seq_1st) - frame_len*1 - 1
seq_1st = torch.cuda.LongTensor(seq_1st, device=args.device).unsqueeze(0)
output_list_1st = []
for tim in range(max(batch_size // mbz, 1)):
start_time = time.time()
output_list_1st.append(
my_filling_sequence(model, args,seq_1st.clone(),
batch_size=min(batch_size, mbz),
get_masks_and_position_ids=get_masks_and_position_ids_stage1,
text_len=text_len_1st,
frame_len=frame_len,
strategy=strategy_cogview2,
strategy2=strategy_cogvideo,
log_text_attention_weights=1.4,
enforce_no_swin=True,
mode_stage1=True,
)[0]
)
logging.info("[First Frame]Taken time {:.2f}\n".format(time.time() - start_time))
output_tokens_1st = torch.cat(output_list_1st, dim=0)
given_tokens = output_tokens_1st[:, text_len_1st+1:text_len_1st+401].unsqueeze(1) # given_tokens.shape: [bs, frame_num, 400]
# generate subsequent frames:
total_frames = generate_frame_num
enc_duration = tokenizer.encode(str(float(duration))+"秒")
if use_guide:
video_raw_text = video_raw_text + " 视频"
enc_text_video = tokenizer.encode(video_raw_text)
seq = enc_duration + [tokenizer['<n>']] + enc_text_video + [tokenizer['<start_of_image>']] + [-1]*400*generate_frame_num
guider_seq = enc_duration + [tokenizer['<n>']] + tokenizer.encode(video_guidance_text) + [tokenizer['<start_of_image>']] + [-1]*400*generate_frame_num
logging.info("[Stage1: Generating Subsequent Frames, Frame Rate {:.1f}]\nraw text: {:s}".format(4/duration, tokenizer.decode(enc_text_video)))
text_len = len(seq) - frame_len*generate_frame_num - 1
guider_text_len = len(guider_seq) - frame_len*generate_frame_num - 1
seq = torch.cuda.LongTensor(seq, device=args.device).unsqueeze(0).repeat(batch_size, 1)
guider_seq = torch.cuda.LongTensor(guider_seq, device=args.device).unsqueeze(0).repeat(batch_size, 1)
for given_frame_id in range(given_tokens.shape[1]):
seq[:, text_len+1+given_frame_id*400: text_len+1+(given_frame_id+1)*400] = given_tokens[:, given_frame_id]
guider_seq[:, guider_text_len+1+given_frame_id*400:guider_text_len+1+(given_frame_id+1)*400] = given_tokens[:, given_frame_id]
output_list = []
if use_guide:
video_log_text_attention_weights = 0
else:
guider_seq = None
video_log_text_attention_weights = 1.4
for tim in range(max(batch_size // mbz, 1)):
start_time = time.time()
input_seq = seq[:min(batch_size, mbz)].clone() if tim == 0 else seq[mbz*tim:mbz*(tim+1)].clone()
guider_seq2 = (guider_seq[:min(batch_size, mbz)].clone() if tim == 0 else guider_seq[mbz*tim:mbz*(tim+1)].clone()) if guider_seq is not None else None
output_list.append(
my_filling_sequence(model, args,input_seq,
batch_size=min(batch_size, mbz),
get_masks_and_position_ids=get_masks_and_position_ids_stage1,
text_len=text_len, frame_len=frame_len,
strategy=strategy_cogview2,
strategy2=strategy_cogvideo,
log_text_attention_weights=video_log_text_attention_weights,
guider_seq=guider_seq2,
guider_text_len=guider_text_len,
guidance_alpha=args.guidance_alpha,
limited_spatial_channel_mem=True,
mode_stage1=True,
)[0]
)
output_tokens = torch.cat(output_list, dim=0)[:, 1+text_len:]
if args.both_stages:
move_start_time = time.time()
logging.debug("moving stage 1 model to cpu")
model = model.cpu()
torch.cuda.empty_cache()
logging.debug("moving in model1 takes time: {:.2f}".format(time.time()-move_start_time))
# decoding
imgs, sred_imgs, txts = [], [], []
for seq in output_tokens:
decoded_imgs = [torch.nn.functional.interpolate(tokenizer.decode(image_ids=seq.tolist()[i*400: (i+1)*400]), size=(480, 480)) for i in range(total_frames)]
imgs.append(decoded_imgs) # only the last image (target)
assert len(imgs) == batch_size
save_tokens = output_tokens[:, :+total_frames*400].reshape(-1, total_frames, 400).cpu()
if outputdir is not None:
for clip_i in range(len(imgs)):
# os.makedirs(output_dir_full_paths[clip_i], exist_ok=True)
my_save_multiple_images(imgs[clip_i], outputdir, subdir=f"frames/{clip_i}", debug=False)
os.system(f"gifmaker -i '{outputdir}'/frames/'{clip_i}'/0*.jpg -o '{outputdir}/{clip_i}.gif' -d 0.25")
torch.save(save_tokens, os.path.join(outputdir, 'frame_tokens.pt'))
logging.info("CogVideo Stage1 completed. Taken time {:.2f}\n".format(time.time() - process_start_time))
return save_tokens
# ======================================================================================================
if args.stage_1 or args.both_stages:
if args.input_source != "interactive":
with open(args.input_source, 'r') as fin:
promptlist = fin.readlines()
promptlist = [p.strip() for p in promptlist]
else:
promptlist = None
now_qi = -1
while True:
now_qi += 1
if promptlist is not None: # with input-source
if args.multi_gpu:
if now_qi % dist.get_world_size() != dist.get_rank():
continue
rk = dist.get_rank()
else:
rk = 0
raw_text = promptlist[now_qi]
raw_text = raw_text.strip()
print(f'Working on Line No. {now_qi} on {rk}... [{raw_text}]')
else: # interactive
raw_text = input("\nPlease Input Query (stop to exit) >>> ")
raw_text = raw_text.strip()
if not raw_text:
print('Query should not be empty!')
continue
if raw_text == "stop":
return
try:
path = os.path.join(args.output_path, f"{now_qi}_{raw_text}")
parent_given_tokens = process_stage1(model_stage1, raw_text, duration=4.0, video_raw_text=raw_text, video_guidance_text="视频",
image_text_suffix=" 高清摄影",
outputdir=path if args.stage_1 else None, batch_size=args.batch_size)
if args.both_stages:
process_stage2(model_stage2, raw_text, duration=2.0, video_raw_text=raw_text+" 视频",
video_guidance_text="视频", parent_given_tokens=parent_given_tokens,
outputdir=path,
gpu_rank=0, gpu_parallel_size=1) # TODO: 修改
except (ValueError, FileNotFoundError) as e:
print(e)
continue
elif args.stage_2:
sample_dirs = os.listdir(args.output_path)
for sample in sample_dirs:
raw_text = sample.split('_')[-1]
path = os.path.join(args.output_path, sample, 'Interp')
parent_given_tokens = torch.load(os.path.join(args.output_path, sample, "frame_tokens.pt"))
process_stage2(raw_text, duration=2.0, video_raw_text=raw_text+" 视频",
video_guidance_text="视频", parent_given_tokens=parent_given_tokens,
outputdir=path,
gpu_rank=0, gpu_parallel_size=1) # TODO: 修改
else:
assert False
if __name__ == "__main__":
logging.basicConfig(stream=sys.stderr, level=logging.DEBUG)
py_parser = argparse.ArgumentParser(add_help=False)
py_parser.add_argument('--generate-frame-num', type=int, default=5)
py_parser.add_argument('--coglm-temperature2', type=float, default=0.89)
# py_parser.add_argument("--interp-duration", type=float, default=-1) # -1是顺序生成,0是超分,0.5/1/2是插帧
# py_parser.add_argument("--total-duration", type=float, default=4.0) # 整个的时间
py_parser.add_argument('--use-guidance-stage1', action='store_true')
py_parser.add_argument('--use-guidance-stage2', action='store_true')
py_parser.add_argument('--guidance-alpha', type=float, default=3.0)
py_parser.add_argument('--stage-1', action='store_true') # stage 1: sequential generation
py_parser.add_argument('--stage-2', action='store_true') # stage 2: interp + dsr
py_parser.add_argument('--both-stages', action='store_true') # stage 1&2: sequential generation; interp + dsr
py_parser.add_argument('--parallel-size', type=int, default=1)
py_parser.add_argument('--stage1-max-inference-batch-size', type=int, default=-1) # -1: use max-inference-batch-size
py_parser.add_argument('--multi-gpu', action='store_true')
CogVideoCacheModel.add_model_specific_args(py_parser)
known, args_list = py_parser.parse_known_args()
args = get_args(args_list)
args = argparse.Namespace(**vars(args), **vars(known))
args.layout = [int(x) for x in args.layout.split(',')]
args.do_train = False
torch.cuda.set_device(args.device)
with torch.no_grad():
main(args)