forked from EpistasisLab/tpot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
63 lines (54 loc) · 2.15 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from setuptools import setup, find_packages
def calculate_version():
initpy = open('tpot/_version.py').read().split('\n')
version = list(filter(lambda x: '__version__' in x, initpy))[0].split('\'')[1]
return version
package_version = calculate_version()
setup(
name='TPOT',
version=package_version,
author='Randal S. Olson',
author_email='[email protected]',
packages=find_packages(),
url='https://github.com/EpistasisLab/tpot',
license='GNU/LGPLv3',
entry_points={'console_scripts': ['tpot=tpot:main', ]},
description=('Tree-based Pipeline Optimization Tool'),
long_description='''
A Python tool that automatically creates and optimizes machine learning pipelines using genetic programming.
Contact
=============
If you have any questions or comments about TPOT, please feel free to contact me via:
E-mail: [email protected]
or Twitter: https://twitter.com/randal_olson
This project is hosted at https://github.com/EpistasisLab/tpot
''',
zip_safe=True,
install_requires=['numpy>=1.12.1',
'scipy>=0.19.0',
'scikit-learn>=0.18.1',
'deap>=1.0',
'update_checker>=0.16',
'tqdm>=4.11.2',
'stopit>=1.1.1',
'pandas>=0.20.2'],
extras_require={
'xgboost': ['xgboost==0.6a2'],
'skrebate': ['skrebate>=0.3.4'],
'mdr': ['scikit-mdr>=0.4.4']
},
classifiers=[
'Intended Audience :: Science/Research',
'License :: OSI Approved :: GNU Lesser General Public License v3 (LGPLv3)',
'Programming Language :: Python :: 2',
'Programming Language :: Python :: 2.7',
'Programming Language :: Python :: 3',
'Programming Language :: Python :: 3.4',
'Programming Language :: Python :: 3.5',
'Programming Language :: Python :: 3.6',
'Topic :: Scientific/Engineering :: Artificial Intelligence'
],
keywords=['pipeline optimization', 'hyperparameter optimization', 'data science', 'machine learning', 'genetic programming', 'evolutionary computation'],
)