-
Notifications
You must be signed in to change notification settings - Fork 8
/
predict_enriched_decision_tree.py
332 lines (309 loc) · 13.6 KB
/
predict_enriched_decision_tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
#Author : Lewis Mervin [email protected]
#Supervisor : Dr. A. Bender
#All rights reserved 2016
#Protein Target Prediction Tool trained on SARs from PubChem (Mined 21/06/16) and ChEMBL21
#Molecular Descriptors : 2048bit Morgan Binary Fingerprints (Rdkit) - ECFP4
#Dependencies : rdkit, sklearn, numpy
#libraries
from rdkit import Chem
from rdkit.Chem import AllChem
from sklearn import tree
from sklearn.externals.six import StringIO
import cPickle
import zipfile
import glob
import os
import sys
import math
import numpy as np
import scipy.stats as stats
from multiprocessing import Pool
import multiprocessing
import operator
import pydot
from sklearn.cluster import KMeans
multiprocessing.freeze_support()
def introMessage():
print '=============================================================================================='
print ' Author: Lewis Mervin\n Email: [email protected]\n Supervisor: Dr. A. Bender'
print ' Address: Centre For Molecular Informatics, Dept. Chemistry, Lensfield Road, Cambridge CB2 1EW'
print '==============================================================================================\n'
return
#calculate 2048bit morgan fingerprints, radius 2
def calcFingerprints(smiles):
m1 = Chem.MolFromSmiles(smiles)
fp = AllChem.GetMorganFingerprintAsBitVect(m1,2, nBits=2048)
binary = fp.ToBitString()
return list(binary)
#calculate fingerprints for chunked array of smiles
def arrayFP(inp):
outfp = []
for i in inp:
try:
outfp.append(calcFingerprints(i))
except:
print 'SMILES Parse Error: ' + i
return outfp
#import user query
def importQuery(in_file):
query = open(in_file).read().splitlines()
#discard IDs, if present
if len(query[0].split()) > 1:
query = [line.split()[0] for line in query]
matrix = np.empty((len(query), 2048), dtype=np.uint8)
smiles_per_core = int(math.ceil(len(query) / N_cores)+1)
chunked_smiles = [query[x:x+smiles_per_core] for x in xrange(0, len(query), smiles_per_core)]
pool = Pool(processes=N_cores) # set up resources
jobs = pool.imap(arrayFP, chunked_smiles)
current_end = 0
for i, result in enumerate(jobs):
matrix[current_end:current_end+len(result), :] = result
current_end += len(result)
pool.close()
pool.join()
return matrix[:current_end]
#get info for uniprots
def getUniprotInfo():
if os.name == 'nt': sep = '\\'
else: sep = '/'
model_info = [l.split('\t') for l in open(os.path.dirname(os.path.abspath(__file__)) + sep + 'classes_in_model.txt').read().splitlines()]
return_dict = {l[0] : l[0:8] for l in model_info}
return return_dict
#get info for diseases
def getDisgenetInfo():
if os.name == 'nt': sep = '\\'
else: sep = '/'
return_dict1 = dict()
return_dict2 = dict()
disease_file = [l.split('\t') for l in open(os.path.dirname(os.path.abspath(__file__)) + sep + 'DisGeNET_diseases.txt').read().splitlines()]
for l in disease_file:
try:
return_dict1[l[0]].append(l[1])
except KeyError:
return_dict1[l[0]] = [l[1]]
try:
return_dict2[(l[1],l[0])] = float(l[2])
except ValueError: pass
return return_dict1, return_dict2
#get info for biosystems pathways
def getPathwayInfo():
if os.name == 'nt': sep = '\\'
else: sep = '/'
return_dict1 = dict()
return_dict2 = dict()
pathway_info = [l.split('\t') for l in open(os.path.dirname(os.path.abspath(__file__)) + sep + 'biosystems.txt').read().splitlines()]
for l in pathway_info:
try:
return_dict1[l[0]].append(l[1])
except KeyError:
return_dict1[l[0]] = [l[1]]
return_dict2[l[1]] = l[2:]
return return_dict1, return_dict2
#get pre-calculated bg hits from PubChem
def getBGhits(threshold):
if os.name == 'nt': sep = '\\'
else: sep = '/'
bg_column = int((threshold*100)+1)
bg_file = [l.split('\t') for l in open(os.path.dirname(os.path.abspath(__file__)) + sep + 'bg_predictions.txt').read().splitlines()]
bg_file.pop(0)
bg_predictions = {l[0] : int(l[bg_column]) for l in bg_file}
return bg_predictions
#calculate prediction ratio for two sets of predictions
def calcPredictionRatio(preds1,preds2):
preds1_percentage = float(preds1)/float(len(querymatrix1))
preds2_percentage = float(preds2)/float(2000000)
if preds1 == 0 and preds2 == 0: return None
if preds1 == 0: return 999.0, round(preds1_percentage,3), round(preds2_percentage,3)
if preds2 == 0: return 0.0, round(preds1_percentage,3), round(preds2_percentage,3)
return round(preds2_percentage/preds1_percentage,3), round(preds1_percentage,3), round(preds2_percentage,3)
#unzip a pkl model
def open_Model(mod):
if os.name == 'nt': sep = '\\'
else: sep = '/'
with zipfile.ZipFile(os.path.dirname(os.path.abspath(__file__)) + sep + 'models' + sep + mod + '.pkl.zip', 'r') as zfile:
with zfile.open(mod + '.pkl', 'r') as fid:
clf = cPickle.load(fid)
return clf
#prediction worker to predict targets and calculate Fisher's test in parallel
def doTargetPrediction(pickled_model_name):
if os.name == 'nt': sep = '\\'
else: sep = '/'
mod = pickled_model_name.split(sep)[-1].split('.')[0]
clf = open_Model(mod)
probs1 = map(int, clf.predict_proba(querymatrix1)[:,1] > threshold)
preds1 = sum(probs1)
preds2 = bg_preds[mod]
oddsratio, pvalue = stats.fisher_exact([[preds2,2000000-preds2],[preds1,len(querymatrix1)-preds1]])
try:
ratio, preds1_percentage, preds2_percentage = calcPredictionRatio(preds1,preds2)
return ratio, mod, preds1, preds1_percentage, preds2, preds2_percentage, oddsratio, pvalue, probs1
except TypeError: return None
#prediction runner
def performTargetPrediction(models):
prediction_results = []
decision_tree_matrix = []
decision_tree_node_label = []
pool = Pool(processes=N_cores, initializer=initPool, initargs=(querymatrix1,threshold,bg_preds)) # set up resources
jobs = pool.imap_unordered(doTargetPrediction, models)
for i, result in enumerate(jobs):
percent = (float(i)/float(len(models)))*100 + 1
sys.stdout.write(' Performing Classification on Query Molecules: %3d%%\r' % percent)
sys.stdout.flush()
if result is not None:
prediction_results.append(result[:8])
updateHits(disease_links,disease_hits,result[1],result[2],result[4])
updateHits(pathway_links,pathway_hits,result[1],result[2],result[4])
decision_tree_matrix.append(result[8])
decision_tree_node_label.append(model_info[result[1]][2])
pool.close()
pool.join()
decision_tree_matrix = np.array(decision_tree_matrix,dtype=np.uint8).transpose()
return prediction_results, decision_tree_matrix, decision_tree_node_label
#update counts for each pathway/disease that is hit by predictions
def updateHits(links,hits,uniprot,hit1,hit2):
try:
for idx in links[uniprot]:
#try checks if pw or dnet
try:
if disease_score[(idx,uniprot)] < dgn_threshold: continue
except KeyError: pass
try:
hits[idx] = hits[idx] + np.array([hit1,hit2])
except KeyError:
hits[idx] = np.array([hit1,hit2])
except KeyError: return
return
#worker for the processHits to calculate the prediction ratio, Chi-square test in parallel
def doHitProcess(inp):
idx, hits, n_f1_hits, n_f2_hits = inp
if hits[0] == 0 and hits[1] == 0: return
if hits[0] == 0: return idx, 999.0, 0, 0, hits[1], float(hits[1])/float(n_f2_hits), 'NA', 'NA'
if hits[1] == 0: return idx, 0.0, hits[0], float(hits[0])/float(n_f1_hits), 0, 0, 'NA', 'NA'
h1_p = float(hits[0])/float(n_f1_hits)
h2_p = float(hits[1])/float(n_f2_hits)
chi, pvalue, _, _ = stats.chi2_contingency([[hits[1],n_f2_hits-hits[1]],[hits[0],n_f1_hits-hits[0]]])
return idx, round(h2_p/h1_p,3), hits[0], h1_p, hits[1], h2_p, chi, pvalue
#calculate the enrichment ratio between predictions
def processHits(inp_dict):
out_dict = dict()
total_hits = np.array(inp_dict.values()).sum(axis=0)
if total_hits.shape is (): return out_dict, 0, 0
n_f1_hits = total_hits[0]
n_f2_hits = total_hits[1]
tasks = [[idx,hits,n_f1_hits,n_f2_hits] for idx, hits in inp_dict.iteritems()]
pool = Pool(processes=N_cores) # set up resources
jobs = pool.imap_unordered(doHitProcess, tasks)
for i, result in enumerate(jobs):
percent = (float(i)/float(len(tasks)))*100 + 1
sys.stdout.write(" Calculating Fisher's test: %3d%%\r" % percent)
sys.stdout.flush()
if result is None: continue
out_dict[result[0]] = result[1:]
return out_dict, n_f1_hits, n_f2_hits
#train decision tree on predictions and output graph for jpg
def createTree(matrix,label):
kmeans = KMeans(n_clusters=moa_clusters, random_state=0).fit(matrix)
vector = map(int,kmeans.labels_)
pc_10 = int(len(querymatrix1)*0.01)
clf = tree.DecisionTreeClassifier(min_samples_split=min_sampsplit,min_samples_leaf=min_leafsplit,max_depth=max_d)
clf.fit(matrix,vector)
dot_data = StringIO()
tree.export_graphviz(clf, out_file=dot_data,
feature_names=label,
class_names=map(str,list(set(sorted(kmeans.labels_)))),
filled=True, rounded=True,
special_characters=True,
proportion=False,
impurity=True)
out_tree = dot_data.getvalue()
out_tree = out_tree.replace('True','Inactive').replace('False','Active').replace(' ≤ 0.5', '').replace('class', 'Predicted MoA')
graph = pydot.graph_from_dot_data(str(out_tree))
try:
graph.write_jpg(output_name_tree)
except AttributeError:
graph = pydot.graph_from_dot_data(str(out_tree))[0]
graph.write_jpg(output_name_tree)
return
#initializer for the pool
def initPool(querymatrix1_, threshold_, bg_preds_):
global querymatrix1, threshold, bg_preds
querymatrix1 = querymatrix1_
threshold = threshold_
bg_preds = bg_preds_
#main
#set up environment
if __name__ == '__main__':
if os.name == 'nt': sep = '\\'
else: sep = '/'
input_name1, N_cores = sys.argv[1], int(sys.argv[2])
introMessage()
print ' Using ' + str(N_cores) + ' Cores'
try:
threshold = float(sys.argv[3])
except ValueError:
print 'ERROR: Enter a valid float (2DP) for threshold'
quit()
try:
dgn_threshold = float(sys.argv[4])
except IndexError:
dgn_threshold = 0
min_sampsplit = int(sys.argv[5])
min_leafsplit = int(sys.argv[6])
max_d = int(sys.argv[7])
moa_clusters = int(sys.argv[8])
try:
desired_organism = sys.argv[9]
except IndexError:
desired_organism = None
model_info = getUniprotInfo()
models = [modelfile for modelfile in glob.glob(os.path.dirname(os.path.abspath(__file__)) + sep + 'models' + sep + '*.zip')]
bg_preds = getBGhits(threshold)
disease_links, disease_score = getDisgenetInfo()
pathway_links, pathway_info = getPathwayInfo()
if desired_organism is not None:
models = [mod for mod in models if model_info[mod.split(sep)[-1].split('.')[0]][4] == desired_organism]
print ' Predicting for organism : ' + desired_organism
output_name = input_name1 + '_out_enriched_targets_' + str(threshold) + '_' + desired_organism[:3] +'.txt'
output_name_tree = input_name1 + '_MoA_decision_tree_' + str(threshold) + '_' + desired_organism[:3] + '.jpg'
output_name2 = input_name1 + '_out_enriched_diseases_' + str(threshold) + '_' + str(dgn_threshold) + '_' + desired_organism[:3] + '.txt'
output_name3 = input_name1 + '_out_enriched_pathways_' + str(threshold) + '_' + desired_organism[:3] + '.txt'
else:
output_name = input_name1 + '_out_enriched_targets_' + str(threshold) + '.txt'
output_name_tree = input_name1 + '_MoA_decision_tree_' + str(threshold) + '.jpg'
output_name2 = input_name1 + '_out_enriched_diseases_' + str(threshold) + '_' + str(dgn_threshold) + '.txt'
output_name3 = input_name1 + '_out_enriched_pathways_' + str(threshold) + '.txt'
print ' Total Number of Classes : ' + str(len(models))
print ' Using TPR threshold of : ' + str(threshold)
print ' Using DisGeNET score threshold of : ' + str(dgn_threshold)
print ' Using max sample split, max leaves and max depth of : ' + ', '.join(map(str,[min_sampsplit,min_leafsplit,max_d]))
print ' Number of MoA clusters set to : ' + str(moa_clusters)
#perform target predictions and write to file
querymatrix1 = importQuery(input_name1)
disease_hits, pathway_hits = dict(), dict()
print ' Total Number of Molecules in ' +input_name1+ ' : ' + str(len(querymatrix1))
prediction_results, decision_tree_matrix, decision_tree_node_label = performTargetPrediction(models)
out_file = open(output_name, 'w')
out_file.write('Uniprot\tPref_Name\tGene ID\tTarget_Class\tOrganism\tPDB_ID\tDisGeNET_Diseases_0.06\t'+input_name1+'_Hits\t'+input_name1+'_Precent_Hits\tPubChem_Hits\tPubChem_Precent_Hits\tOdds_Ratio\tFishers_Test_pvalue\tPrediction_Ratio\n')
for row in sorted(prediction_results):
out_file.write('\t'.join(map(str,model_info[row[1]])) + '\t' + '\t'.join(map(str, row[2:])) + '\t' + str(row[0]) + '\n')
print '\n Wrote Results to: ' + output_name
out_file.close()
#perform decision tree function and write to file
createTree(decision_tree_matrix,decision_tree_node_label)
print 'Wrote Results to: ' + output_name_tree
#write disease results to file
processed_diseases, inp1_total, inp2_total = processHits(disease_hits)
out_file = open(output_name2, 'w')
out_file.write('Disease_Name\t'+input_name1+'_Hits\t'+input_name1+'_Precent_Hits\tPubChem_Hits\tPubChem_Precent_Hits\tchi2_test_statistic\tchi2_pvalue\tPrediction_Ratio\n')
for disease, ratio in sorted(processed_diseases.items(), key=operator.itemgetter(1)):
out_file.write(disease + '\t' + '\t'.join(map(str,ratio[1:])) + '\t' + str(ratio[0]) + '\n')
print '\n Wrote Results to: ' + output_name2
out_file.close()
#write pathway results to file
processed_pathways, inp1_total, inp2_total = processHits(pathway_hits)
out_file = open(output_name3, 'w')
out_file.write('Pathway_ID\tPathway_Name\tSource\tClass\t'+input_name1+'_Hits\t'+input_name1+'_Precent_Hits\tPubChem_Hits\tPubChem_Precent_Hits\tchi2_test_statistic\tchi2_pvalue\tPrediction_Ratio\n')
for pathway, ratio in sorted(processed_pathways.items(), key=operator.itemgetter(1)):
out_file.write(pathway + '\t' + '\t'.join(map(str,pathway_info[pathway])) + '\t' + '\t'.join(map(str,ratio[1:])) + '\t' + str(ratio[0]) + '\n')
print '\n Wrote Results to: ' + output_name3
out_file.close()