You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I'd like to inquire about the training results. I have combined datasets AISHELL3, aidata, and a Chinese dataset, totaling 600 hours of training. Although the three audio files are not 24000Hz, I have set cut_set = cut_set.resample(24000) in the line 184 in bin/tokenizer.py, so they should have been converted to 24000Hz.
I have followed the document's instructions, using the prefix-1 training method.
I'd like to inquire about the training results. I have combined datasets AISHELL3, aidata, and a Chinese dataset, totaling 600 hours of training. Although the three audio files are not 24000Hz, I have set cut_set = cut_set.resample(24000) in the line 184 in bin/tokenizer.py, so they should have been converted to 24000Hz.
I have followed the document's instructions, using the prefix-1 training method.
python3 bin/trainer.py --world-size 2 --max-duration 80 --filter-min-duration 0.5 --filter-max-duration 14 --train-stage 1
--num-buckets 6 --dtype "bfloat16" --save-every-n 10000 --valid-interval 20000
--model-name valle --share-embedding true --norm-first true --add-prenet false
--decoder-dim 1024 --nhead 16 --num-decoder-layers 12 --prefix-mode 1
--base-lr 0.05 --warmup-steps 200 --average-period 0
--num-epochs 20 --start-epoch 1 --start-batch 0 --accumulate-grad-steps 4
--exp-dir ${exp_dir}
Train NAR model
cp ${exp_dir}/best-valid-loss.pt ${exp_dir}/epoch-2.pt # --start-epoch 3=2+1
python3 bin/trainer.py --world-size 2 --max-duration 40 --filter-min-duration 0.5 --filter-max-duration 14 --train-stage 2
--num-buckets 6 --dtype "float32" --save-every-n 10000 --valid-interval 20000
--model-name valle --share-embedding true --norm-first true --add-prenet false
--decoder-dim 1024 --nhead 16 --num-decoder-layers 12 --prefix-mode 1
--base-lr 0.05 --warmup-steps 200 --average-period 0
--num-epochs 40 --start-epoch 3 --start-batch 0 --accumulate-grad-steps 4
--exp-dir ${exp_dir}
But when using the synthesized audio files and synthesizing with unseen data, the following situations occur:
Is there any way to improve these situations?"
The text was updated successfully, but these errors were encountered: