This repository has been archived by the owner on Nov 21, 2018. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 94
/
index.html
69 lines (58 loc) · 2.94 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
<!doctype html>
<html>
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="chrome=1">
<title>Mr.LDA: Scalable Topic Modeling Using Variational Inference in MapReduce</title>
<link rel="stylesheet" href="docs/stylesheets/styles.css">
<link rel="stylesheet" href="docs/stylesheets/pygment_trac.css">
<meta name="viewport" content="width=device-width, initial-scale=1, user-scalable=no">
<!--[if lt IE 9]>
<script src="//html5shiv.googlecode.com/svn/trunk/html5.js"></script>
<![endif]-->
</head>
<body>
<div class="wrapper">
<header>
<h1>Mr.LDA</h1>
<p>Scalable Topic Modeling Using Variational Inference in MapReduce</p>
<p class="view"><a href="https://github.com/lintool/Mr.LDA">View the Project on GitHub <small>lintool/Mr.LDA</small></a></p>
</header>
<section>
<h2>Introduction</h2>
<p>Mr.LDA is an open-source package for flexible, scalable, multilingual topic
modeling using variational inference in MapReduce.</p>
<p>Latent Dirichlet Allocation (LDA) and related topic modeling
technique are useful for exploring document collections. Because of
the increasing prevalence of large datasets, there is a need to
improve the scalability of inference for LDA. Unlike other techniques
that use Gibbs sampling, Mr.LDA uses variational inference, which
easily fits into a distributed environment. More importantly, this
variational implementation, unlike highly tuned and specialized
implementations based on Gibbs sampling, is easily extensible —
examples include informed priors to guide topic discovery and
extracting topics from a multilingual corpus.</p>
<p>More details are described in our paper:</p>
<p style="padding-left: 25px">
Ke Zhai, Jordan Boyd-Graber, Nima Asadi, and Mohamad Alkhouja. <a href="http://www2012.wwwconference.org/proceedings/proceedings/p879.pdf"><b>Mr. LDA: A Flexible Large Scale Topic Modeling Package using Variational Inference in MapReduce.</b></a> <i>Proceedings of the 21th International World Wide Web Conference (WWW 2012)</i>, 2012, pages 879-888, Lyon, France.
[<a href="http://umiacs.umd.edu/~jbg/docs/2012_www_slides.pdf">slides</a>]
</p>
<p>Mr.LDA was developed in the context of
our <a href="http://lintool.github.io/CCF-1018625/">NSF-funded project</a>
on Cross-Language Bayesian Models for Web-Scale Text Analysis Using
MapReduce (CCF-1018625).</p>
<h2>Getting Started</h2>
<p>For instructions on getting started, look at
the <a href="https://github.com/lintool/Mr.LDA">readme</a>.</p>
<h2>Acknowledgments</h2>
<p>This work has been supported by the US NSF under awards IIS-0916043
and CCF-1018625. Any opinions, findings, or conclusions are the
researchers and do not necessarily reflect those of the sponsors.</p>
</section>
<footer>
<p><small>Theme based on <a href="https://github.com/orderedlist">orderedlist</a></small></p>
</footer>
</div>
<script src="docs/js/scale.fix.js"></script>
</body>
</html>