forked from abhshkdz/neural-vqa
-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluate.lua
124 lines (96 loc) · 3.84 KB
/
evaluate.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
require 'torch'
require 'nn'
require 'nngraph'
local utils = require 'utils.misc'
local DataLoader = require 'utils.DataLoader'
local LSTM = require 'lstm'
cmd = torch.CmdLine()
cmd:text('Options')
-- model params
cmd:option('-rnn_size', 512, 'size of LSTM internal state')
cmd:option('-num_layers', 2, 'Number of layers in LSTM')
cmd:option('-embedding_size', 512, 'size of word embeddings')
-- optimization
cmd:option('-batch_size', 64, 'batch size')
-- bookkeeping
cmd:option('-checkpoint_file', 'checkpoints/vqa_epoch23.26_0.4610.t7', 'Checkpoint file to use for predictions')
cmd:option('-data_dir', 'data', 'data directory')
cmd:option('-seed', 981723, 'Torch manual random number generator seed')
cmd:option('-train_fc7_file', 'data/train_fc7.t7', 'Path to fc7 features of training set')
cmd:option('-train_fc7_image_id_file', 'data/train_fc7_image_id.t7', 'Path to fc7 image ids of training set')
cmd:option('-val_fc7_file', 'data/val_fc7.t7', 'Path to fc7 features of validation set')
cmd:option('-val_fc7_image_id_file', 'data/val_fc7_image_id.t7', 'Path to fc7 image ids of validation set')
-- gpu/cpu
cmd:option('-gpuid', -1, '0-indexed id of GPU to use. -1 = CPU')
opt = cmd:parse(arg or {})
torch.manualSeed(opt.seed)
if opt.gpuid >= 0 then
local ok, cunn = pcall(require, 'cunn')
local ok2, cutorch = pcall(require, 'cutorch')
if not ok then print('package cunn not found!') end
if not ok2 then print('package cutorch not found!') end
if ok and ok2 then
print('using CUDA on GPU ' .. opt.gpuid .. '...')
cutorch.setDevice(opt.gpuid + 1) -- torch is 1-indexed
cutorch.manualSeed(opt.seed)
else
print('If cutorch and cunn are installed, your CUDA toolkit may be improperly configured.')
print('Check your CUDA toolkit installation, rebuild cutorch and cunn, and try again.')
print('Falling back to CPU mode')
opt.gpuid = -1
end
end
loader = DataLoader.create(opt.data_dir, opt.batch_size, opt)
print('loading checkpoint from ' .. opt.checkpoint_file)
checkpoint = torch.load(opt.checkpoint_file)
lstm_clones = {}
lstm_clones = utils.clone_many_times(checkpoint.protos.lstm, loader.q_max_length + 1)
checkpoint.protos.ltw:evaluate()
checkpoint.protos.lti:evaluate()
q_vocab_size = checkpoint.vocab_size
a_iv = {}
for i,v in pairs(loader.a_vocab_mapping) do
a_iv[v] = i
end
q_iv = {}
for i,v in pairs(loader.q_vocab_mapping) do
q_iv[v] = i
end
if q_vocab_size ~= loader.q_vocab_size then
print('Vocab size of checkpoint and data are different.')
end
init_state = {}
for L = 1, opt.num_layers do
local h_init = torch.zeros(opt.batch_size, opt.rnn_size)
if opt.gpuid >=0 then h_init = h_init:cuda() end
table.insert(init_state, h_init:clone())
table.insert(init_state, h_init:clone())
end
local init_state_global = utils.clone_list(init_state)
count = 0
for i = 1, loader.batch_data.val.nbatches do
q_batch, a_batch, i_batch = loader:next_batch('val')
-- 1st index of `nn.LookupTable` is for zeros
q_batch = q_batch + 1
qf = checkpoint.protos.ltw:forward(q_batch)
imf = checkpoint.protos.lti:forward(i_batch)
if opt.gpuid >= 0 then
imf = imf:cuda()
end
rnn_state = {[0] = init_state_global}
for t = 1, loader.q_max_length do
lst = lstm_clones[t]:forward{qf:select(2,t), unpack(rnn_state[t-1])}
rnn_state[t] = {}
for i = 1, #init_state do table.insert(rnn_state[t], lst[i]) end
end
lst = lstm_clones[loader.q_max_length + 1]:forward{imf, unpack(rnn_state[loader.q_max_length])}
prediction = checkpoint.protos.sm:forward(lst[#lst])
_, idx = prediction:max(2)
for j = 1, opt.batch_size do
if idx[j][1] == a_batch[j] then
count = count + 1
end
end
print(count .. '/' .. i * opt.batch_size)
end
print(count / (loader.batch_data.val.nbatches * opt.batch_size))