-
Notifications
You must be signed in to change notification settings - Fork 7
/
feature_extractor.m~
84 lines (80 loc) · 2.82 KB
/
feature_extractor.m~
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
% experiment 1 and 3 are guilty. Rest are not.
experiments = [1, 2, 3, 4, 5];
% stims[probe, target, irrelevant]
stims = [1, 2, 3];
% channels to get rid off: (50, 51, 65, 67)
channels_skip = [50, 51, 65, 66, 67];
% skipping 5 channels
numChannels = 67-5;
% add the mean feature per channel
featuresPerChannel = 276+1;
featureVectorSize = numChannels*featuresPerChannel;
% decided on the numImages based on the count which I ran the program once
numImages = 742;
count = 0;
lie_count=0;
featureMatrix = zeros(numImages, featureVectorSize);
combinedMeanMatrix = zeros(numImages, );
additionalSeeFeature = zeros(numImages,1);
ys = zeros(numImages,1);
ch
for exp=1:numel(experiments)
for stim=1:numel(stims)
% whether guilty
y = 0;
if (exp == 1 || exp ==3) && stim==1
y=1;
end
% feature indicating whether the subject saw the item in the image
% before
did_see = 0;
if stim==2
did_see = 1;
end
% number of images shown for particular stimulus in a given
% experiment
num_trials = 30;
if stim==3
num_trials = 90;
end
for trial=1:num_trials
add_0 = '';
if trial<10
add_0 = '0';
end
file_location = strcat('/afs/ir.stanford.edu/users/b/a/bakis/Desktop/EEG/Stim_',num2str(stim));
if exp ==1
file_name = strcat('/data_Stim_',num2str(stim),'_trial0', add_0, num2str(trial),'.mat');
else
file_name = strcat('/data_Stim_',num2str(stim),'_trial0', add_0, num2str(trial),'_0',num2str(exp),'.mat');
end
file_path = strcat(file_location,file_name);
% Check whether the file exists
if exist(file_path, 'file') == 2
count = count+1;
file = load(file_path);
imageDataMatrix = file.F;
% get rid of channels 50, 51, 65, 66, 67
% 63 channels
newImageDataMatrix = imageDataMatrix([1:49,52:64],:);
% calculate mean value of all channels
meansMatrix = mean(newImageDataMatrix, 2);
% combine the channel values with means (each row has 276
% values from each channel and 277th is the mean of the
% first 276)
imgEEGMatrix = horzcat(newImageDataMatrix,meansMatrix);
eegFeatureVector = reshape(imgEEGMatrix,1,[]);
featureMatrix(count,:) = eegFeatureVector;
additionalSeeFeature(count) = did_see;
% add Y
ys(count) = y;
if y ==1
lie_count = lie_count+1;
end
end
end
end
end
X = horzcat(featureMatrix,additionalSeeFeature);
y = ys;
save('feature_extractor.mat','X','y')