diff --git a/examples/notebooks/distance2mesh.ipynb b/examples/notebooks/distance2mesh.ipynb index b7e6a524..8940d43d 100644 --- a/examples/notebooks/distance2mesh.ipynb +++ b/examples/notebooks/distance2mesh.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -11,16 +11,6 @@ "text": [ "Distance: [2.54950976 2.54950976 2.41422468 ... 2.14595456 2.27999987 2.41536531]\n" ] - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" } ], "source": [ @@ -122,7 +112,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.4" + "version": "3.11.5" } }, "nbformat": 4, diff --git a/examples/notebooks/pca.ipynb b/examples/notebooks/pca.ipynb index 29d96c65..6a4b6945 100644 --- a/examples/notebooks/pca.ipynb +++ b/examples/notebooks/pca.ipynb @@ -9,21 +9,11 @@ "name": "stdout", "output_type": "stream", "text": [ - "\u001b[1m\u001b[32minside points # 2482\u001b[0m\n", - "\u001b[1m\u001b[31moutside points # 2518\u001b[0m\n", - "\u001b[1masphericity: 0.5372652622181039\u001b[0m\n" + "\u001b[1m\u001b[32minside points # 2435\u001b[0m\n", + "\u001b[1m\u001b[31moutside points # 2565\u001b[0m\n", + "\u001b[1masphericity: 0.5332181607612124\u001b[0m\n", + "Cannot find k3d, install with: pip install k3d\n" ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+gAAAH0CAIAAAAhSpB6AADmpklEQVR4nOz9f3xU1bX/j69BpENMdaAEYhiMRMRGSgMxcEF6A5S32FwVEahM+6mEhvaT5N54h0R8S6TFt7zF4BdJMrfphdyWlGg/GmwiCNgovhHJLRJpTDKipCKCkZgOgbeMNoZRkfn+sc7s2bP3OWfO/EgyE9bzwUNnzpwf+5yZybz2Omu9lsnr9QJBEARBEIbxpt6ID0ydHw3mOAiCuMIYNtgDIAiCIIg4w9T5ESxbRqqdIIgBxkQRd4IgCIIgCIKIfSjiThAEQRAEQRBxAAl3giAIgiAIgogDSLgTBEEQBEEQRBxAwp0gCIIgCIIg4gAS7gRBEARBEAQRB5BwJwiCIAiCIIg4gIQ7QRAEQRAEQcQBJNwJgiAIgiAIIg4g4U4QBEEQBEEQcQAJd4IgCIIgCIKIA0i4EwRBEARBEEQcQMKdIAiCIAiCIOIAEu4EQRAEQRAEEQeQcCcIgiAIgiCIOICEO0EQBEEQBEHEASTcCYIgCIIgCCIOIOFOEARBEARBEHEACXeCIAiCGCC8qTd6U28c7FEQBBGvkHAnCIIgiIGASXbvnB8M6kAIgohXSLgTBEEQBEEQRBxg8nq9gz0GgiAIgrgiwKC7qfOjQR4HQRDxCQl3giAIgiAIgogDKFWGIAiCIAiCIOIAEu4EQRAEQRAEEQeQcCcIgiAIgiCIOICEO0EQBEEQBEHEASTcCYIgCIIgCCIOIOFOEARBEARBEHEACXciXnnzzTfffPPNwR4FQRAEQRDEADF8sAdAEOFw5syZLVu2AMDtt98+2GMhCIIgCIIYCEi4E3HJkSNHjhw5AgBvvvlmenr6YA+H6HfcbrfFYhnsURAEcYUS6p+gUaNG9dtYiCsaSpUh4g8WbgcA9qC/6ezsHJgDEap89tlngz2EKxr6/A869BYMLiH9CXK73f02EOJKh4Q7EX8cOXLkzJkz7HFHR8fgjocgCIIgCGIAIOFOxCWzZ88GgAkTJowfP/79998f7OEQBEEQBEH0O5TjTsQf999///33349JMnl5eYM9HIIgCIIgiIGAIu4EQRAEQRAEEQeQcCcIgiCuFCwFhZaCwsEeBUEQRJhQqgxBEARxRWCZNp09cLe3De5gCIIgwoAi7gRBEARBEAQRB5BwJwiCIAiCIIg4gFJlCIIgiCsCSo8hCCLeoYg7EZe88MILZ86cefPNN1977bXBHgtBEARBEMRAQMKdiEusVisATJgwwWKxDPZYCIIgCIIgBgIS7kSUOXPmTEpKyptvvhl0YSTcfvvtEyZMmDBhwowZM6K1T4IgCIIgiFiGhDvRL3R1dfFPz5w5Iy8kiHjHcvc9lrvvGexREARBEFcKJNwJgiDCwXL3PdDVBV1dzB2cIAiCIPoVcpUhCIIYsrAbAu59ewd3JARBEETkkHAnCIIIB/e+vZHE2tm2/etRSPlpBEEQQwhKlSEIgggTd3sb/gt1w4HPjLc8sXGAj0gQBEFEHRLuBEEQQx/3r9YN9hAIgiCISKFUGYIgiIGGpdn0dy9P6hVKEAQxlKCIOxFlJkyYAAA7d+4c7IEQREwTXo4NQRAEcSVDEXci+tTX1y9btiwlJWXChAlWq/XIkSODPSKCIAiCIIi4hyLuRPS5/fbb33rrrYceeshqtQLA/ffff//99w/2oAiCIAiCIOIbirgT/cKECRMeeuihhx56CJ+++eabL7zwwuAOiSAIgiAIIq6hiDsxcGAAniAILSw7agd7CARBEETsQhF3IsqcOXPmn/7pnx566KHZs2djoeqRI0e2bNkyYcKE22+/fbBHRxCxC/rMWCorwWqlRqcEQRCEDAl3IspgksyWLVuEhfX19YM1JIIgCIIgiCEACXci+jz00EP333//mTNnurq6AMBqtVKsnSD6GwzYA3m3EwRBDF1IuBP9woQJEzBPhiAIg6gK7jDkuKWg0L1ta9SGRRAEQcQMVJxKEAQRB1gKCgd7CARBEMQgQxF3giCIoYC7vc37i18CgInC7QRBEEMUEu4EQRCxi7u9zbttm6mgwMjKpt//rr/HM5CwNCHwZQrFaR6/5e57AICcggiCiBxKlSEIgohpDKr2KwqUwnGBZdp06OqCrq44GjNBEDELCXeCIAiCIAiCiAMoVYYgiCsUfyYGNTyKSXTyYeLo/XK3t+EnLY7GTBBEzELCnSAIgiD6kfjKyI9N4rS8gSCiDqXKEARBEAQRH1ie2DjYQyCIwYQi7gRBXKG429u86x8DANOGxwd7LHGDkvUxSFFPirYS7l+tG+whEMRgQsKdIIgrEbrzHgbsolmmTY+j6za4kw0iKoTki0oQQxhKlSEI4oqDjPmuHPjJxuCOhIgQUu0EASTcCYIgYhzLtOkxIjpZ0Jqi16pYdtQO9hAIghjikHAnCOKKw71vL1itYLXGvgD1B4zvvgd8In4Qdby7vS32LxqPu70t7Pc6pEttmTYdKist06bT/RyCIPoPynEnCOJKJB5NtbGUlgiV8N5rpr/jK6GfIIihDUXcCYIgoo+loNBSUBj5fvzZKXE40yAIgiCiC0XcCYIgokx0U1mYdjdteBxaW6O45yGMkba4lh217pW5Wntw79sbkh0NReUJghgASLgTBEH0F5YnNkZuO807V1LcPVrgVbVUVuoIbtLiBEHEGpQqQxAE0V9Qs5jYhzpxEgQRR1DEnSCIKwLMOHdv2xrpfnTzKxCK1A46xt8CmlwRBBFHkHAnCBWo1eIQw2+qWFAYiXY3kl8RdS5kZeED04AdcjCISlqRcejbTRBEPELCnSBEyAaOUMW7bdugHNf0+98NynEHEmVGVF9P3ziCIAgdKMedIIgriEjC7UOg43rst/YcgBFa7r6HeiQRBBGnUMSdIERCtYEjYp9ovZVx/ZEYlDyfUAlaPxAhfCdasughCCLuIOFOECrEsrIhBhLekT2uPxWDledjkLi+tgRBEAMGpcoQBEEMfQY4z8fyxMYYt1kcyHB7tNroEgRBUMSdIAjiimDAotr+dJSursj9N6PLwIf2/VdjYG1zCIIYkpBwJwiC0MTd3uZd/xgAmDY8PthjCYGhkeHDt4wd3JEQBEHECCTcCYIg9Ih9yR6zMj0iy/zByC2JpCo96DSDwu0EQUQOCXeCIAgimsTU5ME4kRjO6Ewz4vRqhAfdJCGI/oaKUwli6GCZNh3/DcAh+vUoRIS429vc7W0XFi2KX/3k3rYVrFawWuP3FK5kYrw0mSDiFxLuBDFEoJ4yVyyo0WWZHvtJPvq49+2NiveLwXkmu3phHNS9beuFrKwLWVk0zUAoL4gg+glKlSEIgoh74l2j9x9sQmuZNj2oqo5Edpt+/7uwtx0yYDE3fRoJov8g4U4QQwT3vr3eX/wS+llAuNvbBuAokRMLubaYLTBUQ4+WHbX93eU0XsAEd/e2rTFbJTyQkGoniH6FhDtBDB0GRkzHuGSH2OgS6q90bG4eyF4/QYnKlAZ3YqmsBKs1ps5Oxr1vb/9WfRQUQnMzBHr7RP8oT2y0DN1JIEEQxqEcd4IghhoD3CV0cAm7K6dlR20UDt/VFftlyliqG5shcCOl3pZp06G+HurrY/9SEwTR31DEnSCIIUjUVZpWoJqlSWiOpD8D0v64voEEboEoJrpYCgpjrUPqgMFnyLBEslEulxFPyYEpKI+FtDGCIKIFCXeCIIgQ4AWZTgQ0iiIJ5V20JgBRKR/Es6MAMMK/16bf/y6S2VS/Ynlio1ayzRUl7qP7hSKIAYZSZQiCICKl/1yrLXffA11dfEZK5MeKVvmg34ZSN9zu9/4nx9JA3Pv2GvGqxzwf50u7I1TVWqrdu/6xMPYWp/0cLNOmK18o+jQS8QkJd4IgiOC429sUjaUWqBuwqkFMd+bjo4ObwG3a8PjAuIjEUUMfvx+8gTcFverDLlQwOB79VlxhvIP9N1qCIPShVBmCIAhDyBkyAyCXeVOUWHDLGRQUE5v6epg1Ky6S6UP6YPC+NP30iQoqzTE7P/YNo6IIpcoQcQoJdyK2eOGFF86cOSMsfOihhwZlMIRBwhCy8ZtTG15eQSSwS2QCgG3VA3z0yMGseoi2w3fQsuCYIvY/8CGpdve2rXHRz0EmZq8/QRiEhDsRW+zcuXPChAkTJkwY7IEQRglDyIYaObZMm24BgAH/0VUtYjNteBz27BnIYfBoXQHUhf1xfZRoN0Aklu1Ry6rnZXo/R6kHDKFzU7wQd5KdIIYGJNyJmOP++++//fbbB3sURD9iKiiI/cixvxhU9jq0Wgfs6EZUaczamEQL+aTCyBrS8VQxtHl/hsyH5LtGEER/QMWpBEFERHjBVHd724WC/DjVK1hQODA5suR9oUqoPbaEot5QiUItptWq/CMIgogAirgTMccLL7zQ1dUFAFarVQ698xnwZ86c+eSTT/Dx+PHjB2yEhEB4+jtu+ps2Nw/2CBS0gr7u9rb+S5XBDPXO3n/cWF4e9Z1HgvGTjYWi3hgshYz9tHuCIGRMXq93sMdAEH5eeOGFN998Ex8fOXIEACoqKnj5npKSorrhn//8534dWHd3t9ahrxwy7l3MHjtf2j2Qhx6A68/Ojp2a/3xXr3bOn9evR5fxProOAExP+m0Q/eNZtsz5wM8M7ifj2T8aX1mLeP/8y29uGHgdDpPdHpXxhEGob0FG2SYAcJau1VyBfZysVudvqyIa3BVAqNd/2rRp/TYW4oqGIu5EbHH//ffff//97OkLL7ywZcsWXri/9dZb7KUzZ8784he/wKcDEHFPTU3t70PEEQN/Nfr1iHwuhHwg98rcQXjv/78/6rxo8GpgVDWjvj68qKo/t+Sl3XH9+WenH9E5DPY9B+NvAXvjDG4S12/ugGH8Krnd7v4cCHFFQznuRExz//33Y9ydMcEHPh7vY5AGSAxl3O1tF7KyYjCRYGD6PcVChgkRITqNq/R7ihEEEZtQxJ2ILV544QU+4v7mm2+SNWTsEIMSNlqgb4x3/WNCrW3/ed6xqlPWYino5R3g6x8X5j+EPvpzPJLsBBF3kHAnYo6UlJTZs2fffvvtZ86cOXLkSEVFxWCPiIg/VC3YgxLdDkFB6OrC//ermWOEO3S3t3m3bTMVFEBnp5H1B7LeMb4aMA0wQ3iOTRBXOJQqQ8QW999//1tvvYWtUm+//fa33nqLPN2JULFMmw5dXdDVNcB9bSzTpuO/oGsOfPtV41h21PJPwzP/iYJ/ov7+p02H5mZobu7vAxH9hPEvC0EQPBRxJ2IOTGEnvU7EAsZDyCFlhPPtV93tbZa778EA/KB3UFL6pFZW9uswyIjwCieWJ64EEeNQxJ0giKFL9PrdBI3shhqZdre34T8ITOmJkY5Llh214cREly0DgAtZWVoZLEI4X3gaBpQqE48MaE4aQQwtSLgTBEFEh7huByvgXplrZDVe3GN3UgAYNVz9Xq5l2nSorAyYCQhPjQ+Pm/YQ8Yi7ve3CokX0DhJEqFCqDEEQQxb94lTLExuN+yoajOyqxt2NlFG629u8v/gl9KePjRHCFlKh5ZpbrRcuXx7V3R3eseId3lBocEcyuFDcnSDCgIQ7QRBDDSPqUwkSB+tMFHlE0G8aU1Cor90HV7LL4FxCZ1Raaf1BJznufXtHXclViT5DIYIgiFAh4U4QxBUH1cYZRH8uEWD03twMweY5Wq/KdyTCc/OMC4bqZ48KjgliYKAcd4IghiyWu+9RrfUclHv0chxap6tlfxAVAz7hkrrb2y6kpESyQ3d7m2LsyPnZK26eA2X1yK7MAFQGD8n8EGqySxADBkXcCYKIY3TifAFCUFphwOKCqgfy+z/6cnWiHmPWSay33H2Pe99e4yn+lmnTLdLO/XvOymLWlsZhOf1gLAJtJKAbL0HfGB9eGFCTXYIYMCjiThDEUCCoseAAh7dDQtHxXV2WadNRcFue2BjJgP39iTRCyOgAYyT6HjQIbdrwOFitYLWGqkdNv/+d6fe/04lAq886InaQjEcs06Zn3Ls4ltsVkUsMQQwMFHEnCGIoYNC+cCDxyyyrNYRQOp80Eqx2FjTuJ6jCgtyjWlr8m+vG3dmdAXFXgZKanR2/vjAk4+HwIIny0XujlVScrq7Q3qABJ166ww7JLCCCiDUo4k4QRBygFW50t7ddyMpSlXrM6vtCVtaFrCzjzo/hEVIGuXvfXq0GTPJu9Q7qC4drrSbsGYPcASsYN8TkfNP7KfSro1CNBHRDGh67KcHudYQ6WnmHkZcQEARB6EPCnSCIWEdfngZ1UZTVar+C6jOoeYig86KSY8D2yUR2hFJS0P2D64gSNKAbL5HpUHFv23ohK6t9yhRKRCEIgoQ7QRBDk9iJgMoBdVUFzGLwGF02kjjO7zkE2TprlsEVhasXVDq79+29sGgR2zboDQFlq/Y25WSNdbnS3E9km8fCR0UL0+9/Z3oydos0CIIYMEi4EwShQkyVcjJ5Gl7EUem1NFBnhPLRtOFxJUUnrDGbNjzu3rfXSOI1n3ITwgjDKicFAFi2TD9lRRb3gn2k+pCMnWxQDJZIxrJGJwiC0IGKUwmCEDHYVXQgcb60OzU1NezN2RnBrFkRxmW1kK+VTn6OacPj0NoKUjDesqM27OJLPC/v+sf80tlqBQDo6pK9JsNTyXgZRwG4Y6AMUasqN9QSSXd7W1S8OKOV7BTFvREEMfQg4U4QRABx1EtF3xGFF2QxGGGVZaIyu6isDFgtVI9FTrbiIZR+RhJ4C0K/OJUdvbOzk582We6+BzNb+LeAOce729u827aZCgqUtTV8ZiIhwKR/9erwrWaWLYOYadE6AO2fCIKId0xer3ewx0AQ4bBlyxYAyMvLG5jDdXZ2RhLxjS9iMOwnX/+QBhmDZ8TPJVghqcp6Vivg3MOn6kJVmfKBQNe3URW8/preNe1tloJCaG5W3aF/q+jd7pBHEtI7G+Hm/YSemWaI7xcRdUL6CXC73RMnTuzX8RBXLBRxJwhCJPaVQaj+IYbEvXar0egiB1b1bghgg9WCQtWoeciHjuzOg9YEwzJtuvGC16AYcaZ3t7dF5JYjWdpjN9mAYfg+DwM262PTszDuAAzYp5cgiMGFhDtBxCtMvA6xX+ug2qU/8l78qReSgOunA6nji0mj7cyoPXuU5b5gtrwfI/2MonjFtNI5eIGrMgB8Tw18UPkcGCOu7WGfmlKBoLE5/3nwL4ygAsEgqp+9oNM2Fo8PetEIgoh3SLgTRNwiibkhANMohiSIRsPLsLNKgowtgsirir6cNevC2LGj9uyBZcugvt6/5o5a98pcJVXdJ9x1xLd+on/Aoa1WQf/1R9K5aui9/+ZCAck/oR+Ihd6NOP1Hs2mr4TkAu7AR1mf3BzGYgUYQQx6ygySIuCSOSkgHGO/6x7AXZni5JUaUX1Qa/bi3bR3V2goAimq3WsFqheZmqKzk9ZC7vQ1mzbIUFGrZPuqodtHG3mplJutaKwcNYLv37VXMajgCdtvcHF4UXCmW9Z1gaDnrGHLWboCqc3b6/bmwxy1v68l2FXaw3zJtOr7LIVWjZjz7R51ByocIY3ghndfgduMiiCsWirgTRFxiKiiAbdWDPYpoYlxn9Ed4L/J9Gkwy1jEyV82I8K5/DG+tCLcg3O1t6PyoXnuqcTFNGx53b3hcPzgdYBTDMka4ulLc0PuLX7IEcX9KTzC0YrS8A2nU399QJ1qWJzYKYxjIzrtaOB/4mU68nR9weHlfoV4l04bHwfD7ThBEtCDhThDxSng2Gsa3MlIjGC1Ue/SEdyO+//QE08rqL6vJ64BteYdEXBjoUymkiQedyYRkWH4hK8sUqLwjQdWVxbv+MabgVT88WjFaeXmob30UHT/7o4lBJCkl/k06O6M1nmhxISsLYmNWQxBXDiTcCeLKwmByrfEawX4ikhvxOgPWjPjqxsuDCi8joxVUu+oOWcFlFMtJLyxaZNrwuEntJSEnR8n21s2YB+36VAzn87vF4D17qpWoI8y1VC9m0Bsa/vmelPSvUzirg1bxQCRfB0tBIfrcq78aJc9HVhER0gzNvW1rqHUCJNkJYuAh4U4QVxb9bYsRHixiqqVXMMFXvwozJFBCscc68XJDorxf0wY0anAR9SvG1aGOam11BzsCXg09HebLa+fFpRH4q6dzlfizkFfTf4MC1tSIl4cT6o7eh23gUT3foPPPGGlERRCEDiTcCeKKQDVVQ399QUlHpS28/hH5p7x687vdRS+BITwPTZ2LYERQBl1NxGq9kJk5qqcnVJdupWcq6t2uLuO3TbTG6U+w1lDtqodw/2qdCUBVrAdMnKSDhvpxRaJSLtlPFRTK3YyInVuN9LtVhWpJCWJoQMKdIK4UQpVBvIJRrFoGNnNGmDNEa58quea6qRSmDY8D2r/4nGqEmr+g7pOh5nDzHoUm0PQajwSxErG5WXhn8RyZBTti0MuIzfpwn/q1AcI+2XTRVFDApiv6b1DAxYzVcklDdpNY9as9Y4lkBjsqLS2k9QmCiE1IuBNEjGIwwn0lWClHsfQQ1CYwOnoUSwK0LF8UgqWOCLkfGDRlj/kscPYmquo8dQMZ7cRoLb0b2sXkzB/1vYxUk53wBE2Bue9gtTK7d36ffGWFsHODvW+DFBDHA6aCAv5CRXKPS+WNlqw8CYKIL8jHnSBiEWZGblxj8XIw6vBKKHIT6zA2d760OySjwJCOohngZH7b06bz7a40jRR31GoeA23arVbLtOl8uyX3r9YF9OaM3r0FZf+S+7v+NUHP8gtZWQHJNs3NGfcu5nfo30ASgppO6vypdXXxdvXs4mhtGNJlibpq9xu3R8O/vz+Qv/uaH/5lyyiRnSDiGhLuBEEYIuoG21GfaVie2Bj2pMLd3nahIN9Qr1btdXQKf9379uI/flfopmdkbEZWAwNW3Kr3FtztbRcWLeKD/f54v0Z3Xv98QENt+ycABrKx2cVR774UbAbLhhFe3UIIhNtbKnwCTxwvkcpMrL6eX00nnT02a9MJgjAOpcoQRCwShkuJ8Xq1KGbX9HfFaggjiVhRGakBCKMsVWdXJnnYxjIZFNfIHbVQWRnwgobOZvB5KaKRS1jwHoJCqoyQ7ePet5cl7gdR4dwDoyY2vgIMYSdBiYUPsJwYo5QWGDjxAON/n38l/9eDrNYJYohBwp0gYhSjrWcicZUO5ukul13ydZPhNWhkDITd3rJlkWzd3y1aVQLkzc3qF5Ozd1S2DXeiEmYWuPaMgv9s6O+DyUd3e5vWzQFBfIdX3qBaQi3LeqFZgZZ1j3EZPbjwXyj2Lqv69xMEEb+QcCeIK5fg9819YoU374sweqeabx22RJZV3YWsrFEtLcqT+vrotsA0OJgIm7/KKH4j6x8DANOGx/WqaQ1MooSKBZ3hseWdnZ2pvv1DxCFqoUOT+jq+j1xU3j5+nqB6ifxD4j7qjIEPyfM3KAxtIM2s4rpClyAILUi4E8QVR3gm2Xo7DEvWRG4sze/Bn6EB/eKfGBI6epRH1fVF52IyKabv7uIfhu+Oima/WN17JrXO99njT8/1jHZ7zOXl8J0UAID1T3qWLs3NuCXoGAYGPC/v+sdGqXrGa3wemG1lfxPc/TPwHkhA8ozunplfp/D2hWr8TxBEvEDCnSCuREL2dFdTAINuQGm8EoBPBx/0YfOEPRiVVJBAAac4qXNJ8NUZM6HmOc9tt7El5oyZvo0tHk6mG8Hc0LCzATxLlwKAubwcF3pKSj6HN66FefL6qipfnt74lai26NTSwaYNj7uDhpkDDRZV7o1EJnZV7roYsMQJUO18EpGB5ll6dw/CymEjCCKWIeFOEIQm/apxwyjAlTHiAyNEVYNm9msRvGM8E50DkL4v27r7CjQdtXXexsbVvpeqmToHCFDtb7/tKSlBze3Jywvp0BcTEkZ2dACAubzcU1LClj/8Rg4AADyVarmhaFq1o3UDANgz10Ng/B5q6/D/qm+Dca1pmTZd8ZORSmOVFTDwHBhZV5WzQT9Iqib64jr94xeJh+58aXd/7DwkgvYaIwiivyHhThDEoNFPEwOthBDlVU61G2kgH1LWgSBowjtBccC6p4PUOt+3+x7b25orVfebimnqYK6pAbcbAMyHDvGyOyhs5ZG+ELvA8GE34YNvLo8FAFdvDwCUNhWVZVeprl8rhflDTr8J9JPh49N84Nlf3avWALhfu5i59+21PLER6uv5NrQ6wlerbVZG2aZQ7wZEV16z9skEQQwiJNwJghgiBJVfF7Ky+FI/v7DTLmANEH/CS/2TRiyn/lsKCkekv8qe/ibjDnyQ7zyqugfH9FkmgOqODmE5prVEjrmhQdxzSYm5pkZY+GJHOLdTUMrbt1YCgKNwdRhp9JGkrYd6N0ZIT1LV3AEfIWPCV6dhlpFP3QAkg10JDZsJIjYh4U4QQxN9t5Chh2qWgiAvIrLG03Bj5PMuwvER19jk5h//Ax988KdvV4+dwCLZPA5fwgl76m1sNOVgsgp4Skq8hw+b5szRH4CQ6yLjy36BzfMa+eU4bWBj8OTlVbXnjwf45vJ4zI0BgL+e269/dACw59qE07GvW4NX295sw4VsHeUqLVsGAO5freOvHvvAa9X7GhH07pW5wjui854yIc7i90E+AGGFq/1mlFz7J1Xrm/5GNbct7MQzgiDCg4Q7QQw+Bk1IQthhf1anxWOwLTyhI7suGjxlg4dTLVtEedSZeBnFemXOD0xLl0LTQW4zCwRmpdvXrQEAx8anmWpXdhWo2vkSUnNDA3R2Kpv7ZDFIkwHgsl8Odu+an3IfAHiWLmWb2LdWOgpXA0BpU9Glyx8DwPBhV5c2FQFAWXaVVoaMMPIg62ytZI9rne+bGxo2Wj4AgI8D013kt0ZcInnh82t6f/FLwXhRkKRBv6RBXZLCN7GJjQQV3uuGDYlUO0EMMCTcCWIwsRQUYrdL43bjsaOboz7fCH5E7XN3b9tq3PdaCc9rKzlE1XVROGslgzlKBamYKPLi2p8O98WqTTYbAPAK2JMN9nVrYN0ax8anAcDb2KjEp3NtTHbzGl1ZIuW3hEHH54fTr9UM4fO3BS5d/vDzisX/e/qXQpw+coqTlDnM4h8lz/elyPMZNVodptz79uqEh+WPjbymmBgT2BxKq9haf3YRHuTzSBBXLCTcCSJe0dHN/syB/jR/GGDVHhQV7cX6vHJCh02WjCAakqDHIjfL8t/c6OoyYmUYsPN9e72/+GVtktVkswFXprkkfZFOkol9a6Ws1LUwHzjgWbAAH/tz4nNtmFcDAKacHOAi7jJl2VU1rc9c+tyz/+QBAAB4np9FYLhd4NLlD7/6w3UA8Ot2s2MeN/K99Y57AnrZOjY+7R8GtzBgncLV9ma9EQJX5IoKXrX3EPPHDOKu6NP9YnS8vl7ZD3c7RSWozzJzIjZg0fKRHPQZexxZygx8cIEg+hsS7gQxmGg5SBjaVvcHqZ9+3dGg40JmZrz0ZYywzytwJo9BMhaamyEUTaNozQfXsMx7ltsN4DdM1Ke0qaiv7jx7ymR6q+VMpnsCADDV7lm6FPb8id+WaWVU/5jfApIDDC5/eMr6zR3v4JK6E9V+Bxtfqgy/1acvbAJoF4aK2TV2n/xNWDUGH5TlVOE+AcA2OV9OecfHdml2Mf8nlfIFqVWLwQsEFXOmDY/zJRNC/roO7N2PjgELS0dpbwOAj/6fn6WOHBnJ55mvjg3j78OgTxhChU2zBfN+gohrSLgTxCAT6s+hVibAAMC0y6hgDR21Noy0alPq6x4GwmTJyJAMVjdapk2HWbP0w+2yAWKo6EWgnc66f+xxjv4GJsGzcGrhJ8PnG9sn7wDDctmBqXmAzR0b/AdxHdPf2+j718LLASPEsDrPtkPdBXNT+EMAwKbty1R/lfwp9bk2eUpj31sPAEIsX0/Bc1We/jsnLHsKp8SG78n0E3LGvOnJjSafoWdQrrTadIK4ciDhThDxR3+o9v77pY+wKw2flxxG2Ex1AsAnwBivW1VtL2+w4pDX68zrkO9PpIWcXgIAjto6Xu9qsX/8pf1cBN1RW+etqwNf3jyPfnIOkpE8lUn2uWt/emjTcwAAzc2g9vYKOTymnByoq+WXoGqPHL+mb27mg9xsAH4FL2U3MUTLRd9tAQj3G8Hnu4dXlBJJezJVV3uAWClyJQgiEkxer3ewx0AQ4bBlyxYAyAux42PYdHZ2phoOd8UdBiPQ4UmQgJzy1asN2lAIxwrv+nvXPzZKVj9WK19WGPlcRf/qCSF2JjQPJV/KuSsZADKSp9om5ysDDkz4Vs0bYbzYsee+T78z8q23MHmddUgtzjolrClkv8i75acBwso4u3hgQgEfdJ+RtFAR7gCwbJk8tdABPSu1Jh4VLWksF58/a+acI4ztlOO46n4ctXXH3M9OtTwgLM/NuEV+v/SmXr5PrEqQnm21bJlO7g1vxiLMPEPKXTH+FVD9QKp+4PXrqilszxPSnyC32z1x4sR+HQ9xxUIRd4IgjBLeT/iFsWNHsT0YNo9zt7d5t20zFRQYPxDG5vkMZr2wZbCcFs2jGC534yW7uby8OOtUx84egGG4ZK5reN92TE8/CHAQRaqiaJteBoAnv7hLf/9L0hcBALz1FgBUZ8xkBjJlABCoxflhBB220OgUbwh8eq5HOrQi3Ks/+Bh3a7AJK05LkhPHYl9VZcy+I37vlUf8h95bnzbep8sDJTvC76E6YybfkcpnP/+cYGtT63zfnDETAPKdRxXV/sRGec+YkDZqzx6orMR6Vp2mSFBfb9wVql9R7ghxrva4XNWq0h+Yb26W72Vphu0JghhUhg32AAiCGHzYD7OgTvBfhDsPO7EHVbvBTBvLtOlQWWmZNh3q64WI44VFiwTlYZk2nU90No68fzwE+wcAtc738R+/zqYppx8+9q3U3iB/cl8/fYg9FkzZGQe7d7HH5vJyVKv5zqN1J6qxxBPJSJ7qXy1iL0g+3I57Tlg1Bv+1Ws5obcUPVcCeuX5G0kJ5ecuTT7HHna+84OrtwX/ymnitcAx4t8FRW1eZs7gyZ/HsdfNVW1YhnpIST0mJo7au1vk+vqGgNinl79WoivugKF1O2Zern+sjlfh9VxdKbf6M4qWUnCCIoJBwJwgCwKc+VV9i0jlsKc/r2pAIX2FzSgtVCyr4C4sW8fopJEEm92MSkPU6Ise5q1f8UnUPP5w4l3/qqK3Df2xJaVPR/pMHVKPpTtcxp+sYe8k2Of/mxJmTe60VLWms11IAXKUvH2KXuybxpavgK07t2NnTsbMHANC+RkZnqMh9n36Hf/o5vCEMLLV3mO+mhAqvnfGb5KAWBwCTzWay2TD1aPiwm3Tku4DwGRNC1Jr3WGbN0tuh76Or9eF379t7ISvrQlbWAIS0Q/0Oqk7mCYIYdChVhiAIQ2i5SvcfQYWyDqpKS6Upj27SixxZl/sxITpeMQe7d8H1H699b+LOtK8BPlGWOp1a65dlV6HYLZWcGQUBHZS8zBVszmB++23Pbbc12iZCYE4L5o7Pzr1ZZz9y6ao914Zxn77t5xf/aHjO328QNuGHilnyIJXhmubMqSh/Cx8/eBlvLzy1eV6jY+PTAc6YAMB53RipygW16UfYiLdruC+Cof64utXPkduV+gcT2BAq+PrBFHnYkp3c0wmi/yDhThCEOqG2E4o6qo1LtVAVGVoCwogiUU0LZrWMqJCC9j9SVOZ4cI4+vfa9idUZMyE1FePf1RkzwWLxhFJdLQtoT0mJgz8QQMfOntRXA+o4v3f+7Ltjxnluu42t847rGGpoVqVa5/g4fflYtlvmqs6WTLz8/dPD3lEd1f7xl/aPPxWQFp9rQ6N3NGvv+vwIBPZV5cdvLi/fP/7S8GE3Xbr8oc65M4dKBrrcKCH57cF7UaniqK3DqUv1d1JYivyIn3/WYw/f1EWkuTmMNPHwiqdjITouNykTV4hep2GCuAIh4U4QhCYBvof79spmiP0+APbbr5rsoQ2zstETEFJ40ojuwcSh6oyZ3zt/1tzQ4Fm6lL2kbwKjgyyUtUB9bD5wALiWqADApZQMg15/rNpTUtIi7cTV2yOH85HkxLF1J6oxGcbp8q9z8VoX9PrH4MgGoSMSi4ij2SVb01ckCrIuVyYSWTDuogkClX3CnR6AMTieMm27zI7DI+SFqu8C3nBQ3Qmb4TjYkC5/NtaR9hVcp7q+e99enNRpJY7zqe3+Es9QgtD6dR0D/zWMIsxIJ0bKeQki7iDhThCEUXS0wgCIieia06kG1HkCHGmsVuBE2OHxqd87fxYAoLPTXF6OmSe8YFXZW1LSxfR01XpTFghHocwXmAorKKqdZb84nXho7+HD8m7ZaiyQXOprVooc7N7FGqCycLs9c708AFUC+q2qRcRDoqIlzaApTVl21Ysde5akLyptKkqfA31/U5bjDOH3/z0SQFTzeCnMhw6xQwiXVACnENUZacBdPR6U7IpAD7wfpWXGEq0As1/4DgmzF+Ea8k0bINzbDgQxtCHhThBEpIQhJkLNgs24d7GyobFDCO1Rw8RXJYlB1lFdXeheoqh2H0Y8W76fPNWUGaDaVTsr6SdwP/xGTqrlhjUgtgI1zZkD//WboGMofbvr2uLdLCC9uEwR347WDeCzbTE3NNiW5jtdhvLIwSd8S5uKcORl2VWOwtXeG/1u9CwHRrBlFMh3HgUcmNXKm7ULafGY1sJbQyasGvP06Qlf5z4Cb+QAwC/++eKKkypheOXspLh73Ylq/kYHKzAoy66CkzUAUD13ocf5vtx+1eBn3tA9HF/SPJv3opAdyAbJUZTIYXRHxmuo5NhUVpJMJwgdSLgTRJioxtuIoKjeKxd0Q1RkhJFOUgqcv0rAHrgbCM8s/am504WPW558yqewT2V8etXKUwAAjpKSxe/eDwCv3KTiNCIEpFE92+vrwWqFjVVMr6PGVU0Hx5c63R8/mPnxb1rvEF79z6lWAFgz03Nz4sy8zBWgZmVTdpt1xef+2Hyx4//LuetAWXaVPXP9ix17rnq/Y/mpqwE6zeXlZSViHPqBCQWjk8a+fvoQ871huTFyhJ6/saDazgnleFl2VU3rMwCQl70CnvMl3nR1YYq8nG7kb5KaG5DR/q+vt8Hrtod/rjz9xT9fnPG535zH0brBO+Xc2vcmAgCqdnN5OWSBFmzAfPlBrZp2lwlzrig1NNX52xJqBaoR9O8+6TSQCoMATyeNExHi7gRB8JBwJ4hwiPpvZ1wTRTFhKSi8MHasvNz50m4+6K4cN3rRQSXa54ue8odgjjGekhLs+qm6q9KmolIl4eRUmW8h06ZadLo/lqPsly5/yMeny7KrHK0buj7ncsQtFv64AABK11RA1c6TsGrMAyevfnbS1wCQfu0cAJXY/JL0RebjXwMEKSRgqh0Puv/kgZDMWxytG9CRHTPs7Xvr7ZAQUtdVBsvRZ2r+qz9cN+LnnwEAr9qVizMSdtx9jdN1DJqKAKAC0ipa0rZ+9ytvcoptsni5tMCPAZPv8mc+wG2Gfa5CTyHzx6Hvvkd1w6gHpPX6lA0GpNoJQgcS7gQRERQcQqIoJgQZoUhqtTX1jfbCQ1BLO8v/E7gaUFm1rzwVpAu6rKSDwiLumDfvKFxtz1xf2lTEck4884LvhOVzP9nYONLd8SycApxdrBqD/us5dyUHrL906fGaYi1Tdh6+SxT4bN3B15hJTh9nS5IT/VMyZvhor69Hr3pvY+Pqulqd485eN//IxoPgM6spbSrKSJ5q51ZQZjutKm1c2SAZhX8b4fkXvbdGNQ+el+/u9jb9PgByOk3M+iRip9gB7tMk/NGQ/4ZQzgxByJBwJ4iIiE3VHr9FXSjEmYzgrdyZPaWcWqCKchGWLdORSjrSH9PZwek0d3bKpo3+hIpslaQU/dpH4PJAhHA7k+zmmpr8D48r0rbZlma/NWhsOzlxLKagYBKLfww5VdDRwa+5ouhnS9IX3dz6DD+pePiNHEiDP8Dfhg+7CXTHb/rWp/ojUc6xdYM9c72g8nUw5eQ4fPMie64NQ+nsQr3Yscd57lhCYH2t03UsYdUYdNTBNQ9275pfUgJS01b0jlSeWCwQmAkjo2+Zj5kzgnORvu2Sjs2R1pd0gH1jtFQ7fhl1ViAIYiAh4U4Q4RDLgjh20njCmD8w6xhUCYKVO5Myymra4Xb/Raiv15JKrLcldpRkqqvW+T7U1slynGV187DVKlrSirNOGTxNGcExRv0WQyCC6EfVzpJY+JcupqQA+Mf213P7fX7winBnOlVOr1dKb7P/GZ8ys0h5DIKdJWbF/HDiXNbiFJfgmcqGkv4T0fXnkUlYNWbhpAXzAfCmxJ9P/Jf12tkuX7mtbNRjxDt/SfqiQ5uew8f8UNlEotb5vj1wExV30bBSyGLwbwtJdoKIHUi4E3HJ6tWrjxw5YrVaP/zww40bQ+haP+TRd4Du96NrKPUA5w0D8fKABCSpctSfBBxBqoxckIezAq0eqKpZ3eaGBuYw0/LkU6DhCYPbVrSkgZTCoRNHd2x8Wkvaah1lRtJC1ZdMNtuMjgSheRNw/vFyayeETSRSmoB3rOcRTiE5cSwTzUjfq2b2pvMhc7+hJDNyUTspdhQ2Qub9wth/8gCbq8hzD6frGF/1W6p9OFX4KRw+xjfRUbja3qy8QVoCnf8ixM6MmtAhZtOZCAIh4U7EJZWVlVu2bAGAvFAaT15pDGLozvLERqivD76alpkMl4CEerqzszNILrmA1ao/Q1AtyONVO5aiAoApJ0crccKzdCm87ff5FkpR//XCeI/PRwUAirNOoXbXgT8oADhq69Cz3K6/mQ9ef2NCOR+Gl2GNlrQUv4xtsp5ZpL6dpYzqhXUUroZC+PS3D22e+iVbWHeimpfacgI9gtIcSwLYIVjvp0uXP2Sy3rh895SUgMYMylFbZ3xy5Xc8jJ4Fe/wmxcUmQdu+EsSgQ8KdIIYU7m1bvb/4JQCYfv+7wRwHL5p9LnKsVg+5sGjRqEDp7G5v827bZiooMHgQrXA7H9o06LGNkp2PpwJXiqoVkAYMtHOwrHFzeTnAebPTCfPUj64lHIX6V5bWIq+JDUfPjvTi022Hui9kq6xmREzLZ5ecONZ77hx72p39z6N9j8uyqzo+P5x+7RxhE16F4zAwr2axuycVhvHLg/Jix56/cqodAJyuYzhhCBrgB5/nzOJny23/dM2SyYuOnNW8LYOJ+Oqvcbd6HLV13sOHR771lpHBy7pcjrVHva46inFirLi9AqPOQZuyEUQsQMKdIIYagyjZmfLmM3a0LO1MAHLM24hqj3owjFft+MBTUmLfWtnp/nj+nRZmOs7Wx8JHOd9dtSb1Ee9dxfAHXOjJFtcUhCMLz8tqElsFseQWAPjjuSw4fhxfnfNJJ8AI4AzOheJOZHKvFQBGfvV35+hv9K/Jv19cMPI9Rad6Sko2NxVBh3JqvsE/L2hoYXrDsuGxLauqZNeZETFmJC3k1xEqDfjgOg+e/pH/A47afLkJlJHJDN8HCrDL1fsqaVTsCptrasDtVu20Gkf489BiKeo8MOZdsWaLSRCqkHAnCCKaoPJ2b9tqxMHa3d7m/cUvoz7TYDkJqspDyC5QTWpH2ZcK8Af3xzm9RbzoZJqPJVXjq5WvPggj1UbjdFZAZvGkViHEzqdtMOTgMePIxoMAB+0ACavG2CYDALT8LJcNpm+7b+RtzY7ps/heRaVcWvmJxC7AOtrRmnW0bISbehVJupp7lXdrkat1y7Kr+CZNRlBqVVs38HMYXtAL4l6eL8kp7w8f+xZ7jO2cAK5Ls9/KDsE2ETuzsrwXq7X6plshsJJVv6rVk5dnLi+vzphpRLvrh9vDSICJuwC58XMcyI6qsTNXIQgtSLgTBNEvyJKdN9lgqQIhqXYtOS7nxmj9APNdcpStfBFTT0mJP1UmlKpQjIULC1m+jbm8fEea2Nio9O2usttE1a6a8I2p6rygL327y/6qYoJeGmiPCACO6Sp9W+WxVZSX8x44csLJix17WBIO32p0fsp9bMYia2jgmjQJ2fClTUUrpv1ETrCBwPsPwjCEOP3CSQsgEKUHLVf2iu6QMn/Y+U7OXcmO1g2nHMdxE+F2hPkAZ8XT1QXfSQEAc0ODVlUuc9lnS5SiVQAxOMxVXATXqaHUl4cqNGMwJ14/45/SVwhCYNhgD4AgiPjDMm06/uvHQzyxUehuwzR3RMeVKlb5ELKnpERwfcEuRebyctkdUiD5ouaf0yO7zvJq0p5r+3W7WdaXS9IXydvaM9eLWvY2vwpkO0lYNSZh1Zg0+634lElSQZuyAeQ7j/ZtP882t2eun5G0cEbSQq0c9IqWtMm9Vny1LLsK/4HvymhdHGFvz7Q/X9pUJJgz8mjdcCjLrro5cebNiTNVpwrItkPdEBhrr86YqZjxcxzc/i57zMfpzeXl4HRq7VzA3NBgz7VBczM0N6uaV9Y632d3ciwFhbIzEo/Otym6XzQtEWy5+x725UJrVPwX0s4tBYX9YWlFTpQEIUARd4K4cok8/BZ2jZ3BVIHoJtqqCgt0EhQkJtO7ZXzue02NJy+PXxNT0m2T80ubimC0f3Ns6okvscSJvu3nscaRrSarZJ3azYRVYx44efWzk74Wlje+7BJ6oIqnoGHAgsxIWrgkfZG5vPynyu7KcerCJ6gY8afXiUwbJ6BNUiBY9StUESge8xyj0v4HHA1ov1qdMTP//3Z3uj/Gq5TaGzC/Yjt87fw1qseVT0pnCod7u3T5w83zGkW3Gd1GYAh27cWvhnf9Y6NaWw32GosEub1raNvinTTWXsr4TmbNwk2CEjs3BwgiFiDhThBE9D0uQGNWoPMbbCko1JcpLNNG3Rub964ZqK6TmoYknNMi7+SIwm51sN0K8pQlZMuqHQDan6rX8o8X8M8Ktvs1JYb5N005zRJjyqT12XjQrcXIsYQN+QJTOa2I3yfLrmGNYNlOMGtIoDpj5o8+bAaAgrkpSrHBZ58BgMlmYwrbsfFptpPqjJnfXO4GgDUzPfLeDo9PRZsgvgiYB806A2hurltQvfIvVwMATAIAGD7sppAM+AX8H3IurSsqmDY8fqG7G7j8NMHoKST4tLcwNjdYBkMQhAAJd4IgRPCXWEfK+/uMGpD7Ro3qDITfgrvsMTHhi/zx8wf3tq280K/8wYJHr3lZ2MPB7l2Ojc+zuKyjts6f+65bm4hpJ5hpfceEH7N2oY7ausX/dj/4zFVwHTlsD75pAHvKU3Eys3hSK3uaZr/1VMPn+JhJ0nEXTfZszYkEz9y1P13+chMArJnpKZNeVW0Qq4WnpMRbVwcApqVLQcNXB3x2k1qi3+xLuGcZOAz+LoGcSONZutRcXs4urNDflGU98cUD7AbImpkB5QG8rSd30OqM5O/xefmPXvOyL93fX4TqdB0rngRaJv1KuWp9vaW+HtTmrliiDQCm3/+O/wDDrFkXMjMhquki/WQ5FfDNMr4VSXaCCB0S7gRx5aKqv/3SQVdw6//oBlSLGlDt3m3bhIEJK2Tcu1jrJYNYCgodhatZ/Nux8WkTQBkEmKZruQQKie/yJn2vmvFp3/bzCavG/HDiXCbceWWpio6TjH8AeXnQ5Bfurt6ehDt9Otg35rMjvaplsgwWgV5SUrLGF//GILopKQl8w5Bzh8qyq/7rjf8afq2ZudTz/MfkEwAgtIhSVf9apuksFUdL9/OwSDziKSnBK9D4skvrF42l/XTs7AmpssvpOuZ0HROML32FAeolsAhrzIRTiOpgTpHqerq5edQAlp+G/c3Cvx5RSWiJwdpZgog1SLgTxJXLQPRgX7bMyFqmggLYplmzyKOV1YMTCWYECRrptqKRiE/L6khzZcPWDQDwv5znL/z8P9hCJjQ73R+ncoqwtKmo4mQmuN3fO3/2Z3NP8/sR8j1kJxl75npsv6qqkvU523tW64xUcjwCDwoANa3PfNCriEvcD5PUD09ZPzpJZfrBfGCELJp3XMfO9vZkJE9VCgC0UfXSYTMQ2erR1dvDL2FB+rnvVYLLUM4029DIPCEkKlrS2GWXy4KZU6TOlJj/AIeBJcTsmkhi3uzLFfQGXRhofc1J2RMECXeCCIchlp2p+jOJ2kLHEN0I+uF2v0aZ5TcxDHIsLqMmQKb7TkHW7jtKH1/duFt29uDrRHkCAuQ+Perq7VFCrW+oNDaav+p7aDLITAlb4VgmTACus+mMpIXAWcfoyNmQJDsvQL3nzhVnKYHzMl/tZnHSQQCAa6AC/LkcjS+7wOeZwx+3tEkR7t87f5Z/6dkz2+xJSpxba24gpLWgoGc561gFK48/aA8mZpPPriQPk/iOwtX2Zp97/d56xz3L+HXwQfrysU92/wAATLaAHHShEaxqcj8AVHx9X9mCKlYhcCj5Us5dyQsnLVgIMD/lPk82HOzeNV/nTACqF/04H13J6+vZQuEDL6R46SMK2f4vZtUaQH/UyQgYtIYkcU8MbUi4E0TIROLDEOYRJZ/y/kO19FP/TOVfypAHGSzB3fnSbpYtE9Jlr3W+v/pYCwBAfb29vp4X3KY5c4q/eR4fJ7dueKTdWgGZLJGdibaDzv+6MELFtoXHnrnegV4mvq1uzavwAMCjj7B1VGUrACyctIDPKmExbNWuT4yKljTWh9XfTujyvzwKStZ+5asPru2cCACQpKzWaJs47/RY05w59lwb/vHHxB68mfBIuxXcbubXvmam5+mjZnY41Xwec02NPU+9canMkvRFfISbf1yWXfVixx68Prh85b4virMCwuFr35sY1NyGJajgey3UEiCCZEdU3eVBjvc7nWbOMnL9yhVwbj+62p/t7cFy5P0nD+B9hoAdud3sodEOTaFmyOyohcpKfHwhK2sQ2ydHgru9zbv+sUhy+oWkO4IYepCPO0EQUbvNLTivKwsLCiGYI7VcdSqsnFG2Sf/Q/ClcWKRIZLTx7nR/zF7SUpnec+fA7Qa3Wzb7yzn5HS3NzTuasyV3TPgxW8KXPPJoDePFjj1MIusLYkHF4jBMOTla6yOmOSoKFaPjfPErAEBS0l//eR6/QKVq1u02l5dXnNOPMqvAn9rB7l0Hu3exK4wnIresyv+/3X2vmvGuBZKcODY5caxOTj8eSCfvX377GPa99fJCxFFbh/+0PhVajpYAABYL+D6W/mXRMGu/4LnIHg+Kao/W3xAd1W5E0GPnZoIYwlDEnSBChu8AGtcEjer5q1eNJQXJiTFKu3LucvEJvn4/DW4w8g1x4WoHHbZpw+PQ2oot68OGRVuLkw6WwdKy7CpHNgCAva2Z706KCo9PzGCtQ9l+hD3zWd36TYWYwFU1OFctAC3LrlIi6C2J8g6NO8aMmzjl0ZOi5Q6CTjIju7v194BVpEHj8RixFsphnaO/4ddhdjGHNj3HkpGEOle8UyHUyAKA03XMdfrBivfSAAAsFnabQgelG2t9ffWiH1d0pu1M+xoAlp+6WmcToU2sFp4FC2DBAgAIqTWvDu72Nu+2baaCAhOAwSoRJFr5JAOcjmLkcJGH7QkiliHhThDhYCRvRH+1UA/HDOOissMQDm1AsuPw5LGp5qQK4l7eyrThcdjjl7ZCFD8gk4czkLbsqHWv9Head2x8mj3WMXXBJA3APJb3ygGg0TZRDiCzqK0i6Xw57kxQ8kk4IZU8ftB7FMCf0a6V7Y2qXcjcUG0dZc+1oXjle0jhqFAiv+M6VurTvsI+n5rXC72aQ2VVoWXZVSabLZ9JT+dRT20dcEk+yCNvJLZNOozFuGxbvtWr5pE4ZO92VTd3hsHdgvbbJFfxomRnCf28XYzBqla59Nmf1RMWfOUJizEryfEFhUHTzfkv5hAr10FItRNDGBLuBBEfDFbSqsHInOrwBAkOYNRk5kJWFgTaWgeFV+2s2zyC6opvqcNrL5bw4CkpKW0qgpOn1NOUgxmzyCkZfMkjLxOFckzFJF7D1oZXuh2fH8Zz4e1f+CC6PEImtXVGrgqqfFVwn4sTLwtdSO2Z61/s2BPQb7VdMyu9Y2eP1oSq43N/0bDibc+5K8oxdZmKk5mevDytYD+rVUXwAvpXvsbfIas46WDyxLH/fmIyy4z3T9VybUKBcll2VUh2QJgww/Ld+aJq/e+aVuVJwH2tu+/R0eIBX8yw6lkHoABU7q1GEASQcCeIuKa/fz4N2jgIKIFwq9X9q3ViFyQjnZhQst99T0DnyFmzVHxvNNq++PPULRYsNmXBYKeriElhWXtpgYrclJMDdbVa6zhdx5yuAEtEV29P+rUAatnqfJy7OOuUVu8ewZs8/do50x5ZBgAf3KVeLPvoNS+v9j3m499aEnbcRVPd4SeEgelvogqf0mNwk1TLDQD+3qXycdmSuhPVTt9dArldFINPy9nxg69tAGXZVaP+9xIAKJib4ndpDLwtAABy7hAftnf19phs6m2ttCZmWiPUXGfZMvev1oXXfzRslCy4AXehIQgiQki4E0QQlCxtw+JYSGuJ0E5Rb2D9/0uvEjIPRkDYr74eTzzUrFNLQaEgKZyla1PV1vSbSfvu+Nc63zcHrmM+cABGGR0/wruPM5llLi+vzpjJh8YrbbkjOzq03E70s8l57b5pyunVaivceLgEXN3sqX1rJbj8bjC4nCXMvH76EAAkrBrz8LFvbZ76JQTKU1WPmrMjvWe/cfEr6EToF05acOGzq1hAPX352IePfWtc4thXs2eBr9uUDndM+PEPJ85NS9yAPV8dG5/OOFEtJO7zswXVkRhPQzKXl+c7jwKMAIC5rp7daqntNyfOFJZcuvwhAAwfdpPWblnsP2HVGGh/HuB5YTAHn1+d8/cb9NsCPPxGDgD8Bu4ANJnRPxMJFpvX+6tiRJFbrTEo3IdG+RBB9B8k3AnCKMaNilneCOuHMmDGkVEHNfeoPXv0tYJ+m1UIJetUCAQqR+wUbUYCNvEJ/Z25+cBrJp9LjHfKORipLEtYNQaD7ny4nZeMfa+a4dU1pXcGvMSC4pWvPmhKSgIAe+Z6U05Oo/tVYTCsPFSG93BURUi32F1ajtkvqnYx4y6amLU59j/Cdq2bp34prImBcDmInpw4lg8/sxUcrRvYWbAV5qfcBykBWfibp34JcKZs4iOsTaxtcn5frz+NR3C6BPTNzFQ5ceUmSZbKSyv3fVEsLZebsPIlv7bJ+QCiO5AMn9NSll2Fevq1xmvm3jgpYcpJra0ctXV1J6pBxzoGwFxTw3xFNbFYnh7bAACeu1/OBXBv22q8jkX1ayg0b4pKyCDo9zq68Lf4go6c/NqJKxMS7gQR68jVrnz254XMzEGvxLL4espE5xc03Cggc9nzlJSg3n30GsUXhcluTGTHcPVCNYsVlkjT+PIlvj8RC6tfuvwhfH4Sg7KVrz54drwinVW79uDCsuwqlr1jbmjwLF3KNlFkevYKPtuEz5Vnkr20qah0CvRp+907WjdgCDkh8SKLZGNcH9N45E2+nzzV5ctlFyYbfEqJck2221RLP3HkGFCHwC5OqvBRczYqnXwh4N4+HSt3nUZOqZYb5EPL4wGAr/5wHQCAq7mvyzr3Z9laho+yhwy+lSZXd87fR2iNsCy7asubvzl/6X388BRPar10+TIoAfjG3IxbIq9jkRuvRqK8db7Xg66Vw2jGREKfGBqQjztBBMHd3nYhK6t9ypQwjIpZTVX//VQMgGrXP0SAQ0VBobu9LWonu2yZ0fQk6a35nyP/g6l2AGi8/mOQmJ9ynz3Xhv/kV+fe+IM7JvxYXj582E0ovI7XFBsZG09x1qnipINMKdadqE5IvCjUMjpdx3Tyy5l07tt+Xu4kmpe5QlDtIQ2PrS8EsxnYbxV8XWB5er7+G3uMxi/JiWNxXlR3orruRLW5oaG0qUhOhmEUZ50SLOFlA5mKk5kzkhbOSFqoOkLel91TUlI9d2H13IWO2jreYghRvSUSkCHT1bUkfZGOm3tZdhUaybOLlpe54uf/slZ5Wa0hQGlT0flL7wPAzYkz5bdGqKhWhTm+877vwlPhC8irdsvd91i4uhH3tq24ckCFq2orBrWF/YFpw+NgtSr/gq4ZCgH3Iga2nIAgogtF3AkiOKNcrlFdXRDWreehEd3RSVIPyINvbrYUFF6YlhGdo+qG3kX/x8C8FyFNOefvN7DHqnK277N5cydhrPQ5ZYeFq38I8Jp29nbmdT/YD2/Iy1nyOn8gT0lJ3e4AQxR/onmvmPUhoKXjG1928fcE0HJRELvMQUXVhxGtY25OnLln+77U3vMANr/TpQELdh45qI8Bexa5L05S3zBweH8qloL6mC/OLukSw0NSWko1tcrvOG9tyRYunLQAYCd7ytzchQrmIHn2qamqaV18Jg+bqg0fdtOlyx9untcIAOby8p0A+c6jYf/F0OqQoLzKhL6U8icG6aUQ+0Bmyxg3kCG/duLKhIQ7QQwQYd+olU3c8RcLBtauWOdYwg16U0EB3wsmpBNXLU2zFBRaAsPqyk38ykrcZ/BopcWi/7rjnmWoCB21AdkROi4rnqVL15YrEi3feRS2K2F7R22dukfKrbdqJUaj+bpOIoo+fJ2rYJkis+1Qd8HcFH4JS0kXjsgy4BNWjVnTM8909gjLnlfNSwnVox0AFk5asP/kgY6dPVq3f+176x33LOOT74VJDn+F+WvFT2AwZynolZyfcp+j9j5vY+Nqbe8gHsEAFKP445KHwVXnVp4SS6nlK8brfu/hwyAhfHG8Dof+eIJ2SFDFu22b6qGjeeus3wj6B1DIkBn4P5sEEXVIuBPEQMDfoQ4D9S5F0s4Hy+2Yv5OO8tpv9hL2XWmrFXfljxSqZetantjIdy3VQqtSMM1+6wMnRzw76aug7uAos8zl5Xyatd88JFgzHdSOZ3s3gJSIcspxHB+gtTk2HGVb8WvOSFr413P7E1aNefqoGQDWzPSAmjUKj5yNLah2Gd6yhmGamz06aZmOGyMPuxUgZKTI6hn9cFJfXQO94t2Vsuwqe64N4Li9vr5UYyagVQRsHH6WAujpnnOfqukn3wcAcbqO2SYDAJgbGoqTDuJCFwCMhqdu6JXvomC3L9W8edOcOfDWW4AmMxq2Kia7HV5XjnIhK0uYxhsXo0K4XZhmMyKvp4/BnPKwJbvl7nssQ65NFRGnkHAniOC49+3t7OxMTVU1JIwCkf7C+VJKBsACAjV6QOJs6IMXNsFhCxJf6zdSCMm7f7UOpHA7i2UGbYhjz1wPmWCkpw/42hthoaS+358qctHqpcsfys6DTPDxyRUAsGLaT55pfx4fo2RH8OyYCYw9cz1rz4QHQrnM5D66p+P6LDyfvnwsi5czxiWOCxq/V2X9yhVwbj9I4X/VmHdpU1HpnVCWXedtbGRlCRnJU1WD0Po5RcKafJuqoLDkmf0nD0BtHQB46+oAAFsvsZGPS9ylckbaWUAs0x0/MKqqPaDEQje3m2l0U+By1KP6HYt0vp5st4Khk34XJ33CawGhHLegEKQJRiR3LMMeiXDoSC4IQUQLk9crljcRRFywZcsWAMgL6rkWJSIX7lpeb/yPZXi/Mf4f7GXL+lW4y/426BTJL5GRT1zfqlnYj6jyA9WJkZI+gwgay8g6fAueT3/7EABsnvqllvU4T0VL2oOZr+Fj67WzMehuPMOEIadZm99+u/iLP7CnCyct2F2q5G13Jl7GZqW8cU2AD6ak3f21sJ/Ng66u6rETWGhZJjlx7L+fnWHKyeH7p4Jaco5BVHNv+LA9e1zRksanwuNgUOXXtD7jdPwZABy1dfxcBSdgqjY18lVlu0WDy6BZN7z3v7IoI8OzYIHqylmPPjLnEz23U/zkB/0TpCPcVaVwkJ2o7Se8XYX6Z011wwH7K6czHuM9XN1u98SJE/txTMQVDEXcCWKAiNzrLSgD/HsGxjo0CSceoAxmzYJm0eBQ8J/2qxZpz6GqdnNDAwAwN0YejKZrcbB7FwDkvHKBX+hTb8+jSmP53wcDXSZVs6uLs04Nh5sw4u7q7QlVsqMvO5+2gchu6PNT7uMLLhHW5BXPi8Fb1uADzN7p234eoB4Avpv8F5CatmYkTz3bexa4cDifz923/TzAiBUnzyesGoOeiSwKzt9DUCVo0j//WMsJHlU7ANjXrYGNT7NNWi1nMt0TKlrSdCwmZfCdlU3ueS/L/JtvkLPRtVS7ALM0zXcavVcQFP1kM9U1MfCvoto5K5vgcjyYM4wqwUP10l+MAYPC7UQsQMKdiG+Mh39iFve+vRGWTA1MCqlWmn4YGTIK2OldI/rORIagNpRW7fgjGopwN9fUgNsNAAefXz3/J5XGN2Rh2v2TQNVrnI+7g1rDVBZ/xewXJmrHfzlJtnTUBwtG0fDR6SrC2DnLtUClW9GS9tS8XgiWWKIaNvZZy//Z+JBW7vuiOKsHuBQgbj/AdtX37Z85Al3e06+dk5H8rlO3kxHbD5P7mOivunKr5UzFyUw0kwmaVJPpnqD1En9lmBO/sA6f0bQkfVH+di7dxXnUXl9/KPlSzl3JZSVVSsqNzlF+BABjnrzqJ6Y5c1iEnrVoNYihqHB9vfFmC5GL1PD2oBkLYH1eu7oGuJ+dTuyAIAYeEu5EnNPcDPHclxSJfZcD1poUgil1v6qW96CGVmIM/9hSX29Ztgx8txRw5+ElyWB4dT9nm4gKzJSTAx0dQTe/mJICvrxnBq/aIVC/QmAnI1x+aJPiOJmwakyoEV975no+EQVj5yxHH6tCi7NOQS+smPYTdhR8sHDSAvC1W9IhL3OFo3aFfd0aANi98WngVGyOFG5nMxnWpAl8hpK+0gJFuDumzwK5nPT4cRgN4y6aTElJeGpL0hepxtSZgtdqtISX8VlQzB9ZLSlTwIKbe3HWqYqTak1cNdBygdRq0sQY2dcHWFjAIZfV/m0qbPMp9eqMmaVNRQ///DMA6LGfgpCKI8OKcwel/7zP5cQY9b6w+/aKtpWxV/xKEAMACXcijrFWOmBYfDQRu0J+Y/g76Wyh1imr3rX3e1/+ap2lnmt/U18PAJbmZiPaRQiBI568PL4nDhPTfpnoy7IQvFO8587BSOXxf0w+wRucs0Rq1ei1YEHDVmM6u/TtLoC0ipa0/eMvZS//ny927Bl13TcsYK+VSK3TIpTnmfbnAZ7nXRHnp9yHO9dJ0WbOiaV3AgCgatfJ5Nk05fTa9/RyeQUTdOFYMFp5jJcRRbBWW1OcCfCSl/m0eLKBTTAwVYndlAAA0BgDeg1VlLvxqcEZlOACqQVOcth9HnN5uX5Bc/q1cwB+g4/znUeLs8agy/uPX1rx2u8u4LTZSIRCvv2o3KQy0JBYb+e+BJXo/gULez4QoU8XQcQvJNyJOKZrtR3+4zeDPYrgxMJvjBElrYN721Y+UxZ8ktr4rtzbtmoF4wWMFANohdu57ILfAABYrXyc1VNSwuRdRvJUrSQNvjWPt7Hxj/+dcMePvtAaiZYIxnx6fcpus5ZllwBANoC5oeGvSQfhnOKQqHO4suwqIU7vqK3DfIxHU/4irC8E+4FryQQ+G3UjZ8SmKEJutykpacfd12TAVICD/B60TkG1r9PZkV65HZJB5ID3/JT7BEMetvNR/3sJzE3hTwc4vV7RksZKSHEPws6xcWzOXYAukKpghgwAzEhauCR9EZysUV1NuA5C26zqjJkAIdyHgWDfxAjzXiKxiIkiAbWqMfBHVR/vnB8AgOmw+JUkiAgh4U7ENwMQwEbB2vnS7v4+UCQMVkRfaF8qdGJS1omk89T6xwBgVLD6V33MNYp48uTlcUnqXxRLhYw8la8+uPrO35hycuC/3wjpcKrqk8/MdtTWeQ8fNs2Zg6F9vA+wacpptvLB7l2ynhYQtDtm75RBgHchj2oTItWjqE5pmFsiSP2eWJMm4XDyntGaHW84qEbx5VslgqIFbs6Q8elVws6x1vZg964l6ffJNyXsuTZWJquaAb8jrdO2QAmKC5K9tKmo8WXXXNdwAOjbfn52cvCgO+6Bv89jLi/Xrz1glakA8GT3Dw6mXPrhvKrcjFvc9wYxYupvjNSghwfeHwijAap7314tn65Y4MZ58/GBd84PSLsT0YWEO0HoweI6GfcuDlsTD+RvTD9ZuQe0WOKSWHjVrizxXSU85VHDh0fiAoE/5+4Nj/NeeFrhdtUgt31vPRzaj5LIfCBAp7KeSqCbJtHy5FMQKEMxQwMA+IRs3mMRAC4mJIwMNH1fkr7IV68JpjkB8lQ4+vyU+4IKdx5e7+ooY30Tw4zkqX29IwHANnmF0LNJQPCiYRjpTqpP+rVz2B7w0tlLNGtMnaO/cWoc7h3XMTaYjp3MS15Jqyt9uwuyVbayLRbNYPBM5WpjgddPH2LpT3IZAPDvby+A776QnTPofKTdCu0BsXmTzfZDAGBFI+1t+BUYrCm6WIsS1b8z4RX5xKZkJ4j+hoQ7QQwEg/4bE3a7b0tBoUp6a7ACOP+NbI01Q9UfGWWbgMvfta9bw3J2+Szqw+NT0RK70pZrysmxr1uDWT35zqN8OJMHVXUZ32TnogkAVt/pz8Li2xsF9tr0x2WFEKxqtatqKyhBteuni+CrnpISXiI/0/58WfYcAHixYw9TkK84h/8o45LOroQ8GafrGO789dOH2MLXXrlGThPSmleYy8tlN8ag4EHllqI70jpXngrZxsNnZHkewAa1dVmPPpLaK5bBlN1m5csYyrKrXj996IcT5wqrsSuMyUs5UMRcMoX3+ocT5yas+hN/OghfU6FKquWGcRe/XPveRAA3AEBqKnz2GXCNflnql2Xa9M6XdoeaEd4fKp+lyxs3qBkABqD3XHhQuJ2IOiTcCUIPZmXgfGl3LHuB+U0StX+9ouhdEzxllquEwznDqD17mEG7YB0jp66qtI/x2QfpFDt6li6Ft48eHp8KADP++42WnBxxhQULQM1OW8swhCeovaC8E09JCabE6G+oilaBptYSmewbfwDwhs4KWKsqWLj0vTfJDpAwxb/aa4m5d/TW6h9dGW1LgE5F50phQ7lJLdZ6MtXOd2sqzjoFUu67TuMkAfu6NfCJ/3PIPjm8amfzsaB7A/4mhlSdLJwOcAlaO9K0myt1da19L2A+6dHuKIdzV0ZQJ9zBza4ZSPBMLfX1MGtWjFgDf/TGQWrARPQTJNwJIgiKrOzUa20YC/RTcxChLNVIWMuyg9N5XV28lWSQDdmBCgrZD3B4+uPdMeOExJgdd1+jaostG/MhrIjTiIUID9+ASVDtskE4+ILE2J9IdYd8CoqjdYOOylySvqgz8Y/4ePc9y6DpDfbSuIsm3jM+OXGsrL/7tp8HOA8AHe6U9DlfAcAdP/oiGfRaUwkoJQSpqdjlqu5EtZAuj+qZPzQ6WoIvA56loZ+94Tvg0/38WXtKSszl5YZsNAM/dfLMijl16lTTGkGoheXhB6mUqwI4ssHb2GjKyWGeM4jcGozdQQIAaG6GWbP8r4XuhMsH4MOvPJFsGcWjPLERBqMZHEFcIZBwJ4g4JgZdJoPqbEN2EM3NWvsxNzR4li5FrxhUP/yrLU8+5dNnp8qyS2ZPOHlko6Lejhy46NA2A5FhilOwEOFln6N1A6ueFKLLMqqBc5Z90feq2aGWeM0OiiqTLxLlYdJ2929fUN2D0OlJf7QfuT8GSBbWvDlx5ufn/qrTMcpTUqI0G/IJUNvk/E3bl4GU+a2aDc/H419xDl/JTXn4s05OHPsIJAJnAsPvylFbh01wV//lABPuE3+atPa9icynRcvBRphW4TvLJgzMSD4vc4UweN6gE6d5jtYNrkniFeZzgfBz68nLw8C8VqC95cmnWgK8kpRvukF7R34TngiD8Tp/bYwk0vRf17wYCbcTRL9Cwp0ghgKWu+8ZgHbcQaNo3m3bVLbathUEreBLfGdjNqgkhDx1k5QMw3sdmmtqbHn5zKbw0Ed/AVgtrK8aAjeI4LSIu5rcaw1ayygfGgA63R/zIWF2H0DHJ14YjJGEH1VkGd3+VD1IR/yg9+hrx2+847aP5D0wKSy0pgIA5sSCeSaCm6ScToP8KOPSjJHTXL3B7OqdTj73qaIlzZOtfCocOTlM72pNNlS9KZG6E9VyMJ6VKMhXmDnKsyVsSsZXCWNbq9m5N7PbODq5MTJ+YcraiOqs3N7m3bbNVFBgfP8DgOpdtQiJnbAFQQwAJNwJggiC8d/FUdv8ulkJDRYUqvxCL1vG29EElNzNmqXvQiOnE2jidpvLyx21dZ/+9qHNU78EAAjMiDDX1MAk/+p8/Hv2uvnCzvgEGBmm/z676hPz2297brvN4BgTVo3Bg6K7iLA31adB4ddXlY/IjKSFENjzqLK7rqPvrVvzKrT2rKraeXDidLb3LKreh499S1hBP9LvqK1jg9dqMuXq7SnO6qloSWu8/uOcv9+gk6Yye918Lat+RtgZMqwzK1vCq/aDr7rlQ9i3VqLaPrKxK2HVMeOHxvyieRazwTIblqyir9ovZGVh0bxmt2PDN/RY+YqxAcYoMXgDkyBkSLgTRBzjr0ntz3A7S27RP4pWQ3LcA/sttEybDpWVlspK9V9HTrVfWLSIFdR2dna+4faorB+IbXL+2d4N3nPn+Haez86+DiS96Gjd4B1/jl/ywMmr2WNe8LFEbb41kpYlIgDIql0rjR7R6UsKGpWgpU1Fly5/iE+HD7tJZ3P/ft7uKrstwOGHF5rKUbAoNPCIqk2aVHmxY4/zXIBQ3jz1y8eP6o3H1duTnDj223AjaFju8PBe+Jg7vn/8KTinmek+4pvrAZTx8L23IFCvMzNNPhkGWNdVtQx49pFwutST41MtNwB080sOdu9a7P7YeIE7K3Jl9w0ee/o/in2OqHzliYA/pB2szTCqdu/6x1TbshpvusT+PoSUcG+8I9vAoHq3kCBiEBLuBBHfDMTPnu+mvFCcquoSYxy2N/e2rWg7o7zgs4YwhTVYe+Z6c0MDQCe/RD2GPTKgZPPZSV9XHwIZOWorJ6X4/SKzAypHzQ0NO5I7XN8ETBv41Brw9RjClJia1mc+6NWQuoF7ePgNJU3o0uUPhw+7SSvnhPHrdvOv28/zkwT9ikzcLWg0abo5cWZC4kX+yjBvewF2RD4hp2/7eQDzr9vPdyZenr9qLJPsB7t3ZXx6lXP0N/xu+b2phuHRqV3nloUWXKOr5/FAOBKMpge9pDo4CldDITBPoWmPLJsGkH5Xct/fDG2O4xdmBY83N7n/xz+zp8odrWnTw4gTG1mz/5ouIf4JRihyv/8wFRQAd8OQIGIWEu4EQRimvh58wp0PswXdDmcXwpr8HCBAJRhu2GQ+cCD/9UYAwFpVhmfpUqVK0pdyzUfK+YwXU1JSxRuJ4HNzT4Cip4+a18wMCO2rdhJFeO2L0wO+8NHc0ACdnXDVORgdsBXfGJWpQ25DsfaRR0tqyxJzcq8VAKoz0vKdmjMBHY8aIZC/cNIC57HXcZLDxnC2N8BLka/RZHk47Fy0Tkost+Wuldw2laWSB84BhuEDR63mPATfKdY2S2c8Ohc/69FH3h0zjjeK6dt+HrbbILCZAL+TMpgDUqK/1nHxLsrmeX4bn4Pdu1jB7mOzskc732cB+DDErru9TekExy3UEeho5KpjI4tzb+YzEzyjJkQf+gEm6PkSRCxAwp0gYpSoJFxG3cBBPzwWkA+DzJolW8T4nTFACee729v4yL3sO/niBx+PTgqQcebyciZJ7bk2QTnJVZLgk1N8CPmRNxLZ3lCQoWpfOGnBO65jqIadrmNCV1R5n4KfNz89WHkqtXi0ZjrHuMRxvOZGfblw0oKzvT1stjBm+C3nL4nNYn/TeoeqHyKqau/hwyP/9pbWQRlaHjUgJcfvP3kARvr3j+f4/eSp/CzIXFNT4U7Dx56SgG5K4SFPKvC2RmlTsKJVNfSdNGUEGZ1V8TQANF7/sfpQ160RZo/K8tyAzyHLxvnX9ktwska1MrWqPR9Aydqan3Kfo/Y+jNyncB94HfT/XKh2gtPZRE+1+9zT8csbdGCgkeETC+F2Bql2IvYh4U4QsUhUEi791myR3Yx2t7fx/VOVhVyYTf/HWDUkLybEB7rihGcCzRpVYvg8KBnJUx/M3A0Av2m9Q+iSIzcnYjtXlcuCAkY561m6FLeqaEnje53ynUf5WL6ilbfbSgPjsg/d/uAf/rwJAE4kdvmPotajNDlxLMrTR795nq1QnDWGuUnqXA0evqh0cq/1RKJoYMJ3FQXpPsCOtE7wpWjzMNnqqF1h31vf9NFf9Hu74rlUtecDwCefX626Dqvu5WduqueLT/3dTH3XBwV65asP8r1y+TPlz+7hY9/aP15tzF1d9lxb9aIfA1c/LdfmAkBe5gpm324uL1f9rKq0X31LnIZZdtS6V+ZGV/WGFyzAkRhcOaZkOkHEIyTcCSIWibWES/1QWUg/xkYC9gapzpjJB93ZQp1NWCC5M/HyzT/ejY8fzHzttpTF4NPQcjrK8g9vAOgAgJ1pX7OFRnKg/Xqd0391J6rl9JvGl12qf5Bxq8K/jQCAYjWxzsNn3QjYM9cbSaDnC0CRz676hH9ap6bIcaEnL89cXr5pyumzI73gOuZ0FWHCDIMNzJ77ZwDIBuhrCVKby1L5VWtwy7KrzOXl1Rlp8kuqVo/mhgZ80Go5I2/C1sfuTsIRW4rXZD36iLCJo7aOj6kXJx0EgMZHnm8EyLkrma/N1en4y87F0brhqmGfFE3jLE19A8ar+mDmZ1/94TpcYlwrG8R4NapA1EdCEIQOJNwJIka5kJUFGre2DRK0x2Foe5PbuBhrpKqzB/9LGiW2mOrjKFwtv4ShSgcAoNGegcz4suwqzEgWGD7sJqeaamePsacPACw/dXWzLwn738/OePSal4MeVGBxWYn9b4rfSGfiZb6kUpVQm3pipSYEFmsieZkrSpv8wl21C9KS9EVL0heVQhFTnIIJOmt0ynO29yw+8JSUmFo3MA8fLUvHCMH+rJumnK589UGY4hthUxGf0aSTqi7cM0GBPvGi9exIRc17SkqS1W5QtDz5lLm8vGNnMwCkLx+bkTxVWME3LRwOAB07e9KXj01YNebhY98a/W9b+NVwhiMPzEgmz6HkS3Ndwy9kZYVXuq3DqBEjQlo/WrHzmPKWIYjYh4Q7QcQokUh2xFCP0lB3GNj2Rac/osrm06aD1Yq/0Ea2YoezN9see/o/DI/SYnDF21IWn+9rBYAxCZrlp4gpJwc6OvAx84TRUu3MYUZWfkLGM0/OXcnsboCqpAaAipa053Im6avh1N5h+ADT7l/s2HPmYrvieMPpwuTEsebyctV8G0Q/EC7An6kQ6sYC0/DsWVy9PcOH3cSMLwV0erjyfbgYZdlVHp+gx0vNn+O9ix9p5oZtz1zv19Yt5eCT+w9/61t4hfu2n09YdczpKsK8pooWzSLgzVO/LAtc4mjdcMp5XHnMLceI/rtjxrH8GZZtxbgj54se+6moq3b/DN/3DYVgOTChztvVd1JQGJV0PoK4ciDhThBDDf43eCAOp/brrpks29UVdtEty5rgbTcQR+Fqe7OKuYeMo7bO29ioaG7XsYzkTNvkfFWdJ8DnIus0/SnLrmJNNxk3J87My1xR2lRk19oMoCy7avGkXQDwjuvYqVwbWzNh1RhzQwM7+hK1MDZL2uGTqlGmL0lfpFrKiW2Mxl00AYApKWnCyGm4W61A9YppP3mm/Xnt4SsbYsybz7fByQPfAzU5cSyAMkU5lKyX4+47Nf1VVNBxAQLlpgQT34p27/j8sGBiw665anRcoDjr1I8+vMxmTSDZU7LbJua33z643y3vgZ/UvXvggMfXEdZTUmJuaFj7Hj5LM1i/YQR9jxel9lSt3wKreAlp3k4QRFQg4U4QgwCfwRLdXz6+qjW6qTJa6Ge4WnbU6m+uE7fTGr9qE9PFZcsBQOx36oMPOZtycqDpZVAE3IHdv823Tc63TQahZb0qqrpWK0DOkFsLVWfMvJiebsrJgWBuiQBQnHSworxTR7GxeQKfVI155/wco7SpqOJkpicvjx1LsXfMXA/B0lpQteO0hMliuTeTkEgjJ5NAYPQ9565knYNCKKF6/YQiHLnOCs+0P8/2wFoyAcDB7l053Go6LaXSl4+VHeUFlDlAVxfOHCDABlRhziedLT7VDtjf1+3Gx/nOow6AWuf7uRm36JyLEeRyc54B60YkF89Q+1KC0IeEO0EMKYSq1uj++OE99JCsjt0rcy2VlaovGYnbudvbap3vAwCc0xNwfiXa2yOXTrJXeUNA5v9tz7XNXjffNjk/qGpXDbTLitA2OZ+J1xlJC5lr+KXLHyasugkAUD2bfJsLgwx6jsmJY7s+P4KP5ZJNFkLOAIBAb3UAaIVj7+y2C77yqmn0jS+7QBLWB7t38cHsoB1VUcfLduw4yJsTZ5Zliqb12EgVpzpa1wTnMBncFCIo/K5QYadabnBsfJrfCXq8+NZ8ns3H9mfBAyevZk91koiYZGf3WIQBVEAaALxy06wffdjMr193opq/xyKk1iCYiiM7n+oj62CtyTz/HdQvjtfp22pwDMryHbUXTmk6pQpOUwRBICTcCSImiGacqZ8zZIyodmz1gmn68hmh9A+pG0vKs3/8Ddzx9OQD36T8Ex9u54OjBkFTF4CDbInTdQygWrU+lSHrS9CoJuR1/F/P7T9zsZ2thu1IVd27eTCfBwBU0+j5IDTrbyrDJjDokYKPM90T3hndKa8snN3NiTPnuv4MUs8g3sjSODhg+b6EfCMCV8bus3iTRBX5lgv/lrGj3Jw4U8tFZ/dvX1Bdbm5ogCRxPwDw7KSv0RfIvrXy0Ed/Ub1RgCWzeKk/6D16sPvb8jo70jpXnkr1D4A7xOx18xe+dmLz1C9VBxYwyJoacDwVdDWIrOGR/h+iECpb1MbAJu2jDGwbxTYUBDEEIOFOEIOA8LMXthGb+s4jCFOFl8OjOuvQKa4d1dMDBYXG43bM1GXNiQWeu5WMES5nw597rdUmCeHrJpn/t5EqTF5EohxEMYoKkg+xy7h6e1DKaylsRJgtmHJyAKAMlDQNT3aAyBM2lCcV/Ixix93XZBy/yrbYUdpUpGpCL7P4iFMY2KfneoQGWKFysHuXwTXRgl3oAMXzjuvY/JT7+HC7nHACkosODzO1tE3O7+t9xuTqPpHYVZx1quJcqs7AMA19LgzvODxid2m5cNkbr//4qmEp7CnvcF/aVMSdzjfJiWMxvs6M7W2TV9SdqFZV7f5pHkuCd7tZKaf/G7RsmftX64Rvok4iCo+7vc3yxMbwik2jn9kya5aSw9PVpdStUuidIDhIuBPE4KPTdTy+QD2h4++m2kI1cuQYOSv14/MKhJwWR20d015jr/4ugKG8C14O7j95YP/JA2XZVfwAZB3P3BLZUFnMmA2AWRmyJTpJ25vnNbLVZEHMq3bFRGXXedgl9nWCwAaxAfuXMrmfPbMNzgTxKxQmDIKu1YrWq1YIsPpRVXQavspD0s+St2+ttAMkTFG8koqTDiYnjj3lUCxfZq+bD2qlrqmWG+Rd5fz9BgBovF46xLo19q7zWgNgtx30p38A8NjT/5Hy7B/5JQG2UfX1lvp6eSt3e5t32zZTQQFoZ677OxaHWGxqJBUe4+VCfh0/o+jvXHbWJ65fj0IQAwYJd4KICSJ3bRcYrLvMOv5uYvDPcISPuTE2Xv8xKz+VhY6q5LXvrS9VWtaICozPGu/5+m86A7BnrpcdFbWQNSWvHfmeo/w4MR08YORbKwFg8b2pKPEFHc9aOAlqWJb7LNYr5L3gthnJU1V7FfnX5F6qO1GNQWLVFBSti8OGpFXFy7ejwuxw2H6/6q46dvYw5xYjt0q8587BSOXxwkkL5qfcxyLcwM3uGj+6xLJfHjjptzPHUeGEhB+5o3C16okI/XdDRb++lql2THZHc1WtlflvH6p2CMxcV214bJxQt5Xz6zTLWqS7BFG5hUh2k8SQgYQ7QcQEUZTsEMHPlbu9DfN2jJef4lYsys6ntOrHunRUOxv/iJ9/hhkmFaAkau/nKim1hM7B7l1+48X6+jIusg5q9aCu3h5Xb4+wN+ZvCAC2yfko3YyXkIKx1qpaPHzsW3C0GQB2NzcnrDqgL+l4VC13gsIPNeiw8zJXAIhFpTx1gWWjLC9F2ETeAzvN3b994eqn1wDAmpke42ch7LDy1QfXvjdx63e/AoATiV14e0S4LYDMvfEHACfx8ej718LLot0+K0tV3RwRVLvqW+aorVMtPFVN9TG//bbntttUj6XQ1aVo98DuCjrwX8ag5aqG6IeKGlLYBKEDCXeCGCD6zwIyuoQk2Rlo3WhQAag4Q3MSP2jfqKDadH7KfTCrk7ndHezexYtR3luGx2+kbbUm3KnoRRSgQiwcfJWIgkWjkIqDRzGY1BEqcv6GLxq9E2AnJggxuamTzY+S2p65/qXdTwFA8+gzOqodV1YtG8Xrs++jjYc++gsuYTn9eDNh4aQF8lbyHvyXa6b+6gGwuwrAnaYpKQkATiQGF7WzF4wsm1zl9wO1WgGg0/0xvjph5DTmQ69zy8U5+hv+KdPijo1PY5EG1i3IqLoeZT36yLtjxpkPHWKfse4Hfpayd5+wLR+NlvujaSGmwkfw5yjGs8/ZjYVY/pNLECFBwp0giCggTEtUNQTT5UISvJH7A90P/Aw6FL0oq3a5VacOrt4eVEiiUtRFWO1ievrqS1/A3nrHPct0NhHS31/s2PPVVX8HrohWCP+zowhZ5kET3/kcEgCw762ffcv/ZU/T7LfycvzmxJn/2n4J3cEbP1k9/yeVAHDv4ke8jY3NcEZ1/w+nr8fi1Bc79oR3GyGoHY3WG8En2KQvH4tNpoy4r2Cqer5TfcbCNzxieUpoUuTY+LTyQlMRaDjc87ZC8v0c4VwUd6Cml/XvnHjPnUNLSnz6vfNn3x0zznzggGfBAhxt9dyFnrw8R16eTgtexB9N575reDfswrQM/W0NEUGgfYCd2kmyE0MMEu5EbPHmm29u2bLlyJEjEyZMAICKiorbb799sAcVfwz6b5V7315RnWMc3WoNGhR079vL0nV6AO6t27wkfdGn59RTWUBS6qilWC9VCCYZ/bvd7hNDXV1l2XVaOhKTJezr1uCJ2OvrD0/LaileAz6LEtX8b4xSM8krhPDN5eWQJW6ilcNtaKbR3Oy8zp9kIqRo52Wu8GRC3W47BolZ9hFrTSVQll316bkg9aB8ZpERVH3idfbMMCLZIbCJLBI03Yh3cFddQc7Rx6f8/Rz9q6TvXrr2vYkAYG5o8CxdyhYy1Q4A+Yf2V193nWfpUkdtndyDSWhYZnliI/jKVS1333MhM1NxYNTuu2ScsAPtkThUhnM43+27GL8zQBDGIeFOxBBvvvlmcXExivUzZ86cOXNm2bJl9fX1Q0O7o7U5RDudfRARo+yBt6QDbuKzNdVUu7wtS9epdb4ftC+SFn4/GUlLjUscJywpbSoq9aWUAIA912bOmMnME3llhpYmi909qcz25Nw5tp+ExIuXPv8QAs0f0d9QOKK5piaoobsMP13h5Xj68rFs8J2Jl+dli+p23EUT9kkNA+PZPk7Xsc3zGvU38dm2DAe1elmecRdNN9xwBwt469whWVy2fJ7TrGp7D5zdjWoquXG0eq+OSxz3bbgRACwjLWy0qnd+VFV732fzAKD6g4+x6hScR2HPn0LqssQwmLaOpSxBk+IGvomp5YmNoFv9EjKGs/8JIl4g4U7EEFu2bGEh9gkTJkyYMKGysvKFF14YGsIdYluyR/4jHVGmbGTKgPlhq/b0QXhfcN7CBcOZdinCzdcaoqsML755oawzqpDPxLehrPXlZpzgm1HgS45sAL+u9Wt0jIKvfW+iogsBZidXA4BtscPp25usaMddNK19b+LOtK+bR4vJM8mJYy95Rp2/9L7q4A9279r928PMADFh1RhBcOtk2twx4cc/nDjX3wd3pPeslKbCv9dszZwjl4uTXmYjv+6b8SlfjuhMDBg5S83HFCYjpjRl2VWvnz702pk/6a+G9QZ4mky489nwbMyIubwcH3hKSuxbKzEQng+a96MctXVKqkzGTOjsxHQay45a98pc1fHILo3ufXtNALznbEilLBbsuqBt82ocne4N/pS55mbVaf+g30gkiFiAhDsxQHhTb8QHps6PVFc4c+ZMV1eXoNHvv//+1atXV1ZW9u/grniC1oNGESO/vuyn2jx3oVZYuiybqyb0SXYmzgTZ9GLHHoDn8Gnjyy6WoeE9fFh9BFYrwNfsWd2JagzS86IzYdWY1165RtjONjm/r3ckBE4hZL/FipY0T4leuF1Wt/KchO3zH/CRzq5wllIBafwSAACoxiujmsO9+s7feO6EewGaNbo78WckNEvqdH/MbkegnDWXl+MA9DtA/XDiXNC2tWG1m+xS4JrjLpqgs5N1PAWAwr+NAID05UrMWzUdR8ubctxFkzCkYxcO4WNMhcIBCM45DK2WuqpTSnNDA2gkrvCFqvZ1a8Bqrf6Ov7uTubwcnEctlZWq3ybe9hGipHf9qrqgUNVk1ngNaNjj0Tq0MELS98TQhoQ7MRB4lwcppTLOUl/2Z1dXFwC8+eab+PTXv/51tA6hSnd3d7/uf3Cx8I8LCp2la41s1fnSbgDwPv+86Sc/gc5OAMgo2wQA8uadL+3O+LciAIBlyzo7g3hde59/fprvcf6h/dWpqd3fn/r5p/9XXnPemFmfnvMrvP0XdjHBxy/HNZlwZ1S158M1sJpbwkVhA1wImZ83W5KcOPaBCQX7033PucMtnvAjYQCbO0Qblqfm9T7Aj/CBn2Vc2MWEoGpKhqAyeWnr6u052L0r42rN5GkAKM46le8UF356rucrd1/Hzh4ASF8+lj+EcAH9I51QILy05uLdADvYU6GiAFdGycluYrDrnJE89eFR9wkrPzChQL5iqqPCiyCkAJmSkp6a1wsA0BswZn635rfffsqknlcDAOby8u4HfiYcBY8uv7ny4LVWQPgmSt2uN/mXHlv9P4F9Wnzv6eNr/h1fze/qqs4QrXa0vk0WtXXYQssTG53cCWrBvrbO0rUZ9y7WOSh71TJtuvOl3UH3LG/ofGm36phB41xk2GqWHbXO+fOU9dlggv3ZCUpIPwH/+Mc/Jk6cGOERCUIVEu5EnIFFqwDQ1dVltVrHjVOSlVNT9XqVR4UBOMRgIZS1hXamaxWZbikoxPBhxr2L5aCXcojKyozKSrBa9W64r10LdTv5Behngv/V44L/IZM74Et2d9TW2det6XR/zMLt6Pc34udQ+t6trORRKxArMC5xnOp4ZPsXVfNEdjp859SgB9Vh/8kD++FAWXZVWZL2+K1WZnEIPmebI/Uu6B0GUrr55o4Nyil0KEsw1s4aUZUlcYlAz+3gj5O+fOzTR80AsGamp8x3lbRi7fx18OfqdKis6ert4a/566cPscds533bzwMEeF/y+T/+i3PokCsrQFuXZVexDBYQPmy+wey/sIvZAdmSAvp/GUyLMtfU8E957yBHbd3owMOJw0AsFk9eHhsq+6rqxJtVvs719RkGm6TOmuX+1Tphe/2/D+H9ncx49o/8ePhd8Bn5RnbtXpkb6ggMevUaPzW32x3iEAjCKCTciYHAtLPO+9AaADBteVprnQkTJpw5I2bTnjlzhil1hKXNbNmyBQDyQi/vI1Tx184OeLNVFbhkX8+CIP7fDK2m8VmPPtLy5FMAoNj8SbqWNypRNXhBHnkjESBxZ9rX9y5+RH4VFSEzS2Fdh3gweR18qRQvdvhzjvnBq+ZgyMgpJYJkF5LLF//bnHdc1/L+JxnJU+2giaN1w7jEcZjnPS0xfXSSPyQvzg1q647XFD87yZ9cJDRO8pSUyJc9OXGs0JhJyOyXnWf4BJIfTpwbNPscqTtRfbb3LL9EmEVsO9R9IRs8JSUoiJkhozAep+uYbbKRA6pjbmgATs/hGJjLvj3XJhSkCranGG7HzDFPSYmbc5XhU910Ulbc7W1sdq0FPwHAxxYDEj9yu3T9glQjGfn4FyyW64gIIiqQcCcGCB3Jzpg9e/abb77Jp7kfOXJk9uzZ/TmuIUsYGZ+R/ubpNGAPMYc+IB7vVC+C9MdHLRaWB69lPJL16p9b7vwXeSdf/eE6AEhYpTzFtkoVX9/3XMoXKm42LeUAsPzU1XDggOp0om/7efyj2rGzx+ZTxCzBvSy7ytzQ8AhM8Sxdqh/UF/ol3ZzoT5CQ61ODwmYLsi2m03UsYQr0BQo5LmEdXL09TlfRa69cA/BnAIAfqR/i9dOHXuNUOzuu/sDkRHBeJXfs7EntDeI8g4fQStNHgl6uvu3nAUZArs1RWyd01JJT7XFvFS1pnpKSGUkLdY4rwD6uWCJ87/8qhDPiLQh7W7Nj+izhujE1/+m5nmfPbANu6qLjwWK5+x7Vm1pataHyrgImA09s9HdH1pjYhyfZ3e1t3m3bTAUFYWwrQ6qduBIg4U7EEA899FBxcfFDDz2EYv2FF1544YUX6n1WxFcyfD8jQ8WdnFmy1k94dAkyTwg2+FBt4MwHglizZyQ+c1/n1Xf8tR2XMNXe8flhVtXK7LE7dvawQkYAyH/md/kAAM8xzYTC1zvlHDpty6pdUIeplhv4cDum35Q2FUESVLSkmQ8cgKv9L+Fg2B6YbmaCNVCsr+CFXU3rMwkfvy307JSxZ65//fQhV696fNpRq2labxAjke+y7CrM3Wf3E5ipOUtP4u8h8P2kGN8PTCjizTGNtIXii2gvXf4QAH7/3yMBRgTdUGDTlNOrNRozMVT7+zJjn5f+11Z5NuKYPsu+tRIAHIWr5R2yBH3/zZz6evBFxA02LVadQvN2Lqpb4Rezn/6MCKo9qHdNfxShUj0rEUeQcCdiiNtvv72+vn7Lli2YBjN79uz6+nohVYYwQkBcrasrEu1u5GfSeFMVyxMbZXWuZQOnBZ+LrEVe5grIhJb7fuKtq3s05S+BeRrPJyeOdbS2syyR1N5hvgJN4E0eRTk7Ei6mp2s1rudJuNMDGpbhxVmnAAJCrSEZ1Xd8fviZ9ufxcVl21X8e98Jx8x0/+oKtIEvYylcflB3cV0z7CduPcfCOBPOI5HXwwkkLWERfq1WWwDPtzwM8D2jkMhKAi3CXZVc5skHuD7r/5AGtdlo4BZq7VrmeZdJx+ZZMfdvPj/g5AMAv/vniipMjhHGq3ivYdqi7YK7f14VPc5LBXe0/eSAjeaqcMcUPeEn6Ikc2YKJR4yPLwDUcAOzNYtqMstu3u8puU+5rYZMyhtAqFaxWfQ8W0DBp8UfWB6NjEYtQ6DRR9q8c7AQJYkhCwp2ILdC7fbBHEU/4BXpgxafxIJzRA+n8TEqBOi25HySm3tUV2o+xxXLx+uuZkmYZyUxQzl4335miki+Oq7H0YrBaU7u6+A21kFU77wCTsGpMcuLYqaPmQmAEWqs+FcCvTUt98deEVWOYzYvyEidABbX97sjETXP75FMLSvq1c8qy1V1oOhMvs8dYkLomuRqOH1/5TTZac6BqF1qT6renBd1WqVqdoVC8GrkbgGeNNy7kQHhy4tgJI6dtnrqfVYICwGuN19yR8wUA3Fx8XdG0agB/8QMavbPjNr7smusaDjBixcnz/s8MPCfXvyqJNF/fx+6o+MefBWXZVQ4ImI3gHOPFjj1/lRKNZPq2nwcw/7r9PMDB6owvTLXVvC87Q6kCR/krfZuEMnRVqMkoQcQyJNwJIg5w79uLATaDbVOEG+LyL/GAeR5jsD+EozQ362t3c0MD/1Q//r1p+2uqSpExe9182+R8+7o1/JIH9nzwlTXrPyafADURjEpdqKqEwDAtSx0xl5fvuPsaJqaFcHjjyy72R5jPzufzdtirQkaNsnIShIF+RJw/ut+BfjQUw8GKzzLZS7wjihzmP9i9CwDmp9yHkxY++18+Oy0iTOBhuHp7XL37gZ+qAcy98Qfp147+oPfoJ5+HcKCy7CrYrihvviEAcNOz4qt3sYV8nTGmuMih9CXpi3CykXNXctCpI0/4aeWBZeixkyhiZF7hX5nC7cQVCQl3gogPjHc6tBQU6ueUCzfZg+ArOdX5mYzQUwK3Cuf+gNuNXSTNNTXfO/m+d24fjAxQw3Nv/AHAyaC7cWx8msVBna5jzpkA8JeKN9J2pn3rm1vSn3z2MABgOgpTeKzxKgNlGd+XB1v58NItaDhcq7iWd1MxjlIUe2eVt7Hx0Ws0bcuNUzyptSy7Cppa8el/TrUCwLOLbh4nZLm0buj6/AgYCMMzKlrSAiwdt9uAuwvBTwwMprNrkbBqTN+rZgBwFK7OAyhtOhp0E15PZz2qYigkpLNjhF5IYe/bfh7gIMBBWLbMcc8ythzzviog7bmcST89cr46w43L+fmhgOzmroXWdzaWiziNONgMzEgIIjYh4U4Q8U2oP2OWJza6NzyuepNdff8a0Xr+uLLm9kf1QpcI+oE0z9KloJHm/sdDCXM+6WR/1jC0WeZ7lXdMt03Oxxb0tskr8KVSNd+Sv1jegLNvzF8I1mtnQ+8XwqtCmyRsUBrs5PyUZVe1Z8NcKY0b1LzkXb09mL9hfP88ppycMsjxX7STNVr9aBkzkhaqJt/zaSSK56PUnYpx6fKHw4fdFHR4GclTd9wN4AIA6NjZAyCWpfJKnZ/ACFeJPRXy0Xkwe760qUi2p0RWTPtJ+rVzhD1zKvyL115JfXfSLZ68PLYOqna8O6F6byEgrai+3l5fjx9Ob2MjW/zTI+eZWWRx1im8GvL8EADy/283+1ZieYmYDxOBtDV4L47alBLEYEHCnSCGGlqOb+D7ubXU14PVeiE5OQxVzZJwWPWYltVjqDvXUgC5GbfUSo6QzHLbOGXZVbxYZy3o7W3NpSHtyDBrP5nuKcnTEohoow5qNYhaRCt1xAhnLrYDLAK1WYQ8DGx7hOoWlf3Db+QAAFPtCavG6HS2MuJbrz9p4dtXob0j5qOzDWtan/mg96jq4AVYySzjtVeu4ct/18z02Bbnge/K8GadfCINIzlx7O7ZNz5+9BP5WKacHOjw9VviVbsxQirlDL63wD8aBqtNqEKUIAYYEu4EMQS5kJUF+tLZao2JRksSQSN5LKeFzxX25OX9tbERAObU1ersnIl1YW99AIeSL+XclczUoTAr8Kd6+8A1McSOtaQQmB1ell2Vv90Gh/bbA+K1AfBBel6YqopLWfhmfHqVYASpmkbCtqqANADYNOW0KSlpoc+KEZPRZYzH+FmMnDdc3zyvUT4LfnhaOj59+VihNtcILKXkgZP+stCbE2eyd3zZoReZH0ukJCmFBTj+D3qP1p24aJucL3xm2Pi9587l3bkerO+wBDaeiykp8PnnI3t7/U9BXbg/9vR/jDrwOgCYbLZc6VUdKxjLjlr3SnkLbkO1gREEEZuQcCeIIUjQaHfYQTJWPcaENV9PZpk2XTC3EfSEoCFYtN69b6/gKalqHOk9fFhrYFilWu2LX2InHdRSzDxb1WIPmesaXtGSBi3luKGnpMTRugE+V1kTjVYAwJcXAXxqx7iLprMjvRUtaUnndsgb6idnY+7NOLWcExTQvOUiAKw8lepZXMLL3+8nTx3X28Mn2ZuSkthBi7NOZSRPPevyQm+PHFdWBXfO2z7qBM55VI108Lph8FtINOKRJTsf1eYR5hVl2VWlUFR9SHn6D/gIawPsuTb0Y9GaQenvec2n/vayyYljbZm/kj3avY2Njdd/nPP3G6ozZuJHqKKhYVPiGwCw9r2Jnjt9XXslTDYbAIBP9JtstjKwaRlTKiszeMGtIb6Vm2yVlSGE5K1WCPYnwt3eFlK5PEEQ0YKEO0EMQTTdGKORkCrvRNV6ko/k4a18QUN41z8WoDYET8n6epCEu2nOHPiv3xgZpLmm5uL11wOn2vVhBX/mhgZMo3f19qjmZ0uqPQB0NizOOvXHc6PZQsz/PtXwOXT5FbCwIfOyVEVVK6NA5JX0/JT7eEFsShJNZ4Impci6nC/2VR1J+vKxQqvXg927dM7lH/CRMBKc7eiMRL5VogrOFvzXtrcHAI7XFKuurDoDee3tGx/90WQ+ub/uRDW7rYE9pJhHO1vHNjm/1FUE18D+8afGXTSdxZrgpVVryzuNDBt8byViX7fG7vucOLJ9C7kbTebycouBT3X4brDLlulE6Bk6kj2SUnWCIPQh4U4QQw3j7ZAGktCsbALJzbil4v8oQrAyZ/GIrpY1Mz0QmMjBlI2O54ac++GorTPX1IDbzRKLK86lglR4CsFyrBE+Mn1m6UrY8wo+HZc4zjY5Hxr8ppNCLBwkw5nkxLGXLlx9/mqVxGgZfmy2yfks/SYM95XSpqIwbFsSVo25OXEm9Cpqkhe1fM8gmYqTmcWTWlV93HEkYXjpCDw76WsWg0dXTVBrejXuoumPhxIAzv30yGhPOgCA+cABuUUuDybWC8Yv7FxKm4rKSvQ+M3LSF04JmGrHdRy1dfyNJsEOVQt91c6XtOLdMO/6x0b5CtaNqHa9nUtlMARBRBGVntIEQRBBsTyx0TJtOv4DFl1btkyre8uoHkkLplwf5BAFhfiPX2iy2RQzE05e8+4cF1NSLqakePLyTDk5F1NSKnMWV+Ys/s+pVgzEyikcnry8nWlK+5tth7rzR3gdrRucrmN928/jPyaLHa0b+M0TVo3pTLzcmXg5YdUYIYK+7VA3roD/nK5jpU1Fne6P2Qqr7/zNwVfd2JNIFXvm+nXOb2m9ipQ2FUVeripPSATVrm+Ej7z2yjUf9KrEgPu2n/91u1m4NcFr8eJJrfxLNyfOnJG0UGskquBFKG0qwqyYmxNn3pw4s+LrgDyWhFVjHLV1qI+XpC9C1X6we1dZdlVy4tjkxLFl2VV/PJTAb2IuLwen01xeLuhy/qnTdczpOqbTXUvGnmvDf/JLOrlDpjkBrbLEm0hWq7u9Df8BgOWJjcLm7CXEUlAIzc3Q3MyLe9OGx/mdEAQRs1DEnSAiJdac0dzbtoZtxWgE5YefX8IUQH29pbkZtbsSyfONRL4PYCoogG1+seLv2c72JjVk1cKUkwO+slQ+D5g9XtP0F53Nl38zqRnONL7smusaASfrTwEcSr7E/jxi8gyTyOjXjno3HbQsBX/qkBamLx/79OkJX439vikn59PfPpT6t+5UGM4XdDJee+WaO6AIsoKfOEgm4vpg0o4RQZyRPJVls6imhs/6dAK2UDXCtkPdF7IBdE1d+rafB/iz1uEMkpe5wtzQAJ3OCkjj7VnwXWNPWboLC+rjbPDpo2ZPXh4/DwRpbtP33iQASJii9Afwnjtnrqkpy1PWOdi9C284yDMinQoNHr5LFKMyZ/GnHs93Vq4EAPeGR73rHzNteFz+mjPbqAhbK0SCXAZDEEQUIeFOEBERm3kpsdNghY1EMKnkM+CD/sBbdtQumT/vDbcSaBeMHRFHbZ23sVGrkSpLaFZNvShOOigsCehh2dlprqmBSeJWfAXhix17AJ5TVk+8vPueZQCwcNIClNRszf13TJ6fotfqFeHNB4OS8/cbPOqW5UodLXNCBABXb4+Q2+1o3YAtkwQ1HzQbnlft7066BaBVZ+WCuSkLNSYYOEPgM+n5ZkwYzw41YSaglxMAACSsUgx8VFOeSpuKYDQAwJqVaTafS+OmKacBwBQ4APu6Nfi57WtWJhhr35sI4DbX1PDO7qpHESs0rAEZRLbJ+X29z5hc3YV/G1GdkQYWy8Xrr2efZ5PNZjrnf4Mwv1z4mgvZaFpfKx27WFXCUeFWzeQogiAihIQ7QVwRqDZqCWc/YVe8GRHoGjt3r8yFzk4+wcDs8+5g2NetAQD4ywFm3yGoKFW/RX6h0HA+YdWYipY0eTAYuBUSG5akL3LULvLvmSn1kwf4Q7DiUefULx/n8h3YOsZTXxZ+Mvyj65IBwJN9G7/c0bpBSA3Py1zB9wft+Dwg7ot6HddnhobP5Uz667n9BkcCAJ68vDLI0xl/3/bzi8tUX1GZIaDsfvKLux695mUcXmlTUcXJTHYsfmWcNV31fsfyk0meTABs0dV0EIS2Rz6CXmFlBXa7o7cHABytG045jgMESNKy7CreAhKz5+UD8R8Afnop+8zkZa7gd6g6C83NuEVr5CbDjdWMq3DeMMrgVtF1lycIQoCEO0FEBEphvHM92GPRhCW3RPOndNYs5dy5+/WDef/BF783l5cLml4nmUSINKfZb0UJq4jMFkVFMWGqSsfnh129PVqHwFxqfMx3b01YFbzrkA77x18C6Ko4menhFvL5PEwQl2VX8Xkvz7SLLpCYHc4vkVX7w+nrRyeN1VK9rJBUxywSr49W5WvOXcmCfbspJweaXmYrbBrftva9iaBWM/rT419D59UAbnzr2QA2B86OVBEGw5f28iiqHTRdFz15eUu466aT+G7KydEPzLMd6o1bQk7Yi7UUPoIgogIJd4KIArGs2oOi07rFCOx+vT84V1DI345X1Q1hHy4Mcl65AFCT/+XnAOAoXM2/xOu2GUkLBbMRYQIAvnZF81Pu4+PEKIX3nzxQcTJTzqgJCVnXYtSf5X6Mu2hKvjiMGRRuGt+2GlTA4lp87MhW0jBU60cZB7t37c86xY4ojGpzxwboUNvMBzZswsdjht9y/tL7wKVrM+MUdnbymQr27YL2ZW4txVfvgqZdwBnqA8COtE7lmgROGxy1dcdrip+d9LXqmLE4+Plph9lgVGcdQuQez8VcU2OuqRE+IXwds7wfeQIpL5E/cvpguwN5wmzQxIm/x8Wbuvq7NISeK883dggJmmkQhBFIuBPEEEHnZ08nq9Wvtu++x4iYDuM3NZym6LNmsTHzGqLW+b65pib/0P7vnn0zp+kU6MYsMRXe5OpWmsk7jwKAvdnmqK3DrG4A8J47xxShbBEowMLYvN1hAL6u9Tz7Tx6QqxW1MsiZEmUKctOU0xhpRs6O9CZfDNgk69FHNhfNEvTfwy4rwHk2bNvk/LzMFQAr2G5vTpyZkHgRh8FrbuAmCQxeYZdlV720+yn9stTMG637T76PjzERHBPceTnLzvT104deO/MneSf8QVFh59wVMKnwS23RrV4hI3lq3YlqJ6faWXVEXuYKe64NfwHnPvibNPut8uaTe60A0L6znV+oqPbycsAL1dSq+gnkW+2WNhWxOx5y6pT60H0bsmHjAyFPhpWi6uyEXxNR7bogrs99Z3H9kOR7eH8lQt0kbITTp3kCEV+QcCeIoUDQnz35xymI0zN71WrlQ2hGfuQiz6QH7oyE9B4MnM91iX4siiN7YI6BkDTMY89cby4v/+7Zd8DneIjZ54L9X6hUtKRBRgbmcsjhW6Y7eXGcnDiWJasYyXFn4XYWU7/j5BeoCANE5MtKSQA7I9z5HRN+/MOJcw927zrbGzgD4ECBi52S5MwWNOHRHyT2Ov2Ac3bXmu38cOJcVeHO6NjZk9o7HAD6tp931FaBgUs0I2nhX8/tV50dqfZy+l8vtxfMFSt8C/824mJ6OkA7Pv3Pqdav1/iz0tk7KDcHCEpFS9rW735V+LcR8HUQq3hky9tbH7rNgK7lmhabNjwOrXrlwsaJpANDDBKbdgIEYRzycSeIOIZ3Ug9tQ1+TFIbB3BWdY2n5QKOODzpO9uqFRYsE6c+sqeXKPHN5OZPmnrw8T16efWulfWtl0BMBgHzn0bmu4XNdwzGgi7bcvHRmHuH4NKimRzGnJcVKm4qemte7acppIR3C1duDMW9V1W5KSjKYPoFpPAwWRcaiXrbz1878qbSpaP/JAzq+MaVNRXmZKx55I9HV24Nm9rhcUaidnRUtaRiQlklOHDs/5b4Peo/qZOYIShfN1NFPXZx+BNtWFeHmyYykhTOSFvZtP6/YqK9bI6x/4dcv4jpsCU6x+PJQXrWHivzJKfzbiFB3kvLOMf3vu/AVdu/bi/909ulubwOrFZ3gA55yX0A+DzCS2nR93Nu28iPhjxjenziCGKpQxJ0g4hU+EubethWfhp1tH3Xr5YCeL8G8KfgwGJ6CVnqPo3C1vVnsX4Pa3VNSYt9aiWW4mBIDvqTh0qai4qwxFS1pqiJ4rkvlL6GOSYhsnsjQF9mu3h4YGYJ1DEOn6JOx/+QBTL3gK1ORxQdfKL0q+FFYbnrf9vOw3QYA+U7lJby/gTnZm6acPv3cOXxJ9lwXEm9UwRWYBGdpM4JlPpK+fKzga85rd5b9ojNPWJK+SJjVCCMv82l9/G9pUxHOwcpAsZHpdH+Mo8LEek9JSZnvLCpa0rCIecfd1wCn0fm7K8L5MjwLFugUqvKJPebycrHvku8rZqRGxd3e5u+oEHj3TJb78uYXFi0aZcyvJhL0T0HIuAs7IT7gDwt3j4Ig4gUS7gQRowhpqUHXD0my801SVPWxu70tdqxy3L9aB52d+Dg34xYlz7ihAeAgy1hQtW5EmDYqzjql6kk44uefDYcx8vqM108f0to5b9giUJZdlfXoI5unfrl//CUAuHT5QwAYPuwmrV0hWCOLY+jbfh7gPIBN0MeosDsTLwNAquWGjOSbcQxaijn9qiatEfLCER/zluoypU1FMNL/tPFlF5v26DdOQmGqo+lx9mUuL5c7T7HaVlUw+4W3vARQd/9U6Oqy59peXPtTVctLPhG/7kR1Xe7NI765nq3JT0vKsqu8jY3gK9rFt8DpUjJn/FM43/qsFJW9xJuKMrdT/mRVE3sEDEpPubeDwbIWCMVo0r/zgao0xfLckDahpHYiriHhThDximnD4xe6uyHcdktBf7141R7hT527vU0/LqgaX3e3t8n92xnMrjsAqdmqINp4s8g7Hp966COxo+rCSQtYNvbNiTMxjiskYfOlh7xqx76kPC1PPpVTXp7zd9iZ9nXzaGWhTvicl5sdO3u0shnHjxlx3sVsWDwZqisBJKwa8/Cxb22e+qXOURiqQ5r9/37vyH+9Cz5RrlmVCwAAjS+7sFog6gjuK6pRaq0UGibEE1aN+eO5rCV7XsGnhzY9J880hIvge3M1c4qwVRMA7Ezzl8CynTS+7Pr58u+z5QYb3GImj+zyboR+lMvh9lQSI+XhelhpVc6EqtoJIt4h4U4QcUkUf6Hl2+j9EZHS+qnWORG/lP/Vuox/K2IW2rntbbXO96UdWYKOAaPyvOw79JHY44bXpnzrIt5dkYe3Nfx+8lT5oJ6SEnN5+fJTV7++y7+HsuwqVgvLxsPr/hlJCwH+KO8t49OrbIsdGvpShc1TvzSSZsMTYKn+jUs1jp6wakzHzp5Uyw3/vvT7TsefceHcG38wIykNANwX3SDlrghj0LcDElZmta3C1AgFvRFbdOTM0pXgE+4yOlfp5sSZ7DTBN43hWzWVZVc1B27et/08wPBTjuNgtXa6P0613CB8cuy5NjsAAGTY/yUvcwXmJgGoW8Uvr60GtW8KP929sCiILRLbXEs963z9o5JSEkY7J83VqDkrcaVCwp0gYhQ+iUXnd07HbNG4uB/V0gIAEPrPqrL+ExshrNCXUbdpjbg739ioeFIrNLXauVeFTky+tBP47tlLGBju+Pzw5nmNqnINTVEYcvBbNRMD9aVKKjMm33NwAXv/0QVjmfTlY9FBnA+ZO0d/4wwxRV7WtfwSOUe8LLtqdzbUtD5zs27iePrysQAe6D2asGrMk1/chXWcSwJWWaE/YRAG5u+dFLjVHRN+zO54CKUFOmY1wiEYjtq6xf92f2rvsEPJl9hCc0NDcZJ094YjL3MFwJ/5JfLsQrP9bVdXKgyD3gA5zhfIYj6Mo7aO7w3Mk5txi1xNLhNC51Q1Fc4OEXmbtgHIk3Hv28v/WSAPeOLKgYQ7QcQwVqtWp8agRMvELegvon920dwcYVhO61juX60ThEtuxi0qQXeAhFVjAiwXm4oAICN5qm1yvj+i6SP92jnAJcfvnH5N81VK6JrlFpdlV73YsYcPfvNFiubyctn1nM/riMRicuEnw//71sn3zs8PaoCoFVPn0+URlIZ2X8wYbSjzMkWFLe9Nq+MpwruvGISv/dXX90H9IhmsRll1n0xY7/7tC/ZcGzqKTvxp0tr3JgJ0apnBq0bxg/revH76EIA4nTbX1BRPUiwaF7t7UqU8KFXtbi4vt0hlqVpcyMqCcHPn+gMhAd2IhbzRPd99D/5ttNTXB9yCCKNrBEHEFSTcCSIu8ee3aPxKhVFPpk8YRWAqOwn0c2Bu0+59e73btgkr87/Hzt9WpaamGqqXtVjA7d405bR/W9cxp6uIBeNv7B027qLJlCQqteWXJ907P7+m9RmhInBJ+qLdv13krasDgEdTxJx4HZh2PNu7AQrXy2Y4+uT8/Qa4eLVnvjJ54CspVZcAgLDwzMX20iaV+kvQzUdXldE6qp2B2eTMIoaHn1rIlQCRwPb2SLsVwA0A5vLy53L8DWx9zZuS2QCe/OIu9iprblXRkibPwQCgbrfdttjB9HRn4uXdv30BH/OuL8JWP5w411E7Fx/7tTjXnyt9+di+V80g5bI7auvMDQ3Q2YmTkIvp6X4zGd80no+Is7wXiLgFMl+wzhZGPZIdrVg+pcoQVywk3AkidnHv26tj8hg8rhbst02Ifl3IyookVheGYvCHzVCLbKtWHRgAWNhRfJeCD7r74uKwJH1RMaiHbx21dd7Dh0e+9VZx1ikAL/T2CK1z0H89L3OFapjcZLMBADQZEu6q2pd3C/FnzHMLmWlg087/38JPhgPXTGpJ+iKmyHHMFvN18iEEmxRBbTtaN7DZy78vX3SzksQfsjeljGB+zx7zl5edcpp9LIp71VR4HrytIfve8PjnCe01bCG7XJhoLmy786aPV/vW5F2JeLdQg5fFiOuLYoJUUyM01jVSfjqyr8//ROP+G37v5LS6yO1Wwr9r5/vL04+Vo8uWQWUlexY0kDH08M75AQCYDocQSiCGBiTcCSKmMW7IiFbo/G3iUJW0vmrX+g1mMT/j7nKah2hv827bNqrdKZvDBGVJ+iJzQwMcb2A5D8mJY78NN/K60DRnDrz1lrCh4Lz+8Bs5ADB82E3jEnfJNiD8DAG3fbKuDgBMNhuTeu9IpaLMQ3DhpAXzU+4T8t0xtsoUZN2Jatvy/+nxvcrC2CxZBSO4Dl9/pZBg84Q8pb2U0RyM8Kg7UY3zH29jI1tovEesPXO9jhGnwI4ffA3HOwHAttgBABUtafxdF3tbc6nv8ZGNvnR2qxVAudJPzevl7xWUZVf94c+bAGDlqRHsvQCAVMsN/EF16gcqvr6Pb8Xlycszl5djXpbwkdOxkcnvCdKhFpEVNup4IY0kVMK+a9cf5ujCZN69MhdW5vJLYidBaADwLrfhLM6beqOp86PBHg4xoJBwJ4iYIMJb0v3Y0dDIeHyBwKBBPpTmpoICrRVMBQVguCc5H3Rn/VOZcPfpMJWYKEuf0NrzpcsfAqg3QBW6ciqReE668UbgAlhMOe0j11xjf3uZCmT7ZHHrU47jzO+FheqxORQEGlYy8ILUnaiGc+dGnrsaRsOA8eg1L69mw8BOrr7BL5y0AKc6co6Nubz8NS59Bc9oRtJC2X+dObR0Jl6ef8MGeVeO6bPKYBZmtghlpjL4WSqEEWCxeEryAMBRW+e7nh7WCkBo0QWBvuzgdJo7O9uW3YKlFKDRnIsl0thzfS3Dli4FAO/hw6Y5c9wZt4Dv2+0sXZvxb0WgJot1FLZlR607UOCGRNAv7CBAXZOIKxsS7gQx+ESrkBRCvD/O14oNmBsDLwJUc4Hc27biXW/F60YXuUq14mTmf04brpXD4Ckp6cu14Z++vlfNgkMfj0HXbQGjmSezZlXeeIspJ8c/3/ChVckqZ5mrdnRimlW14ZH/aViqHacNWo2W+MQYlMi2yf53oTPxcmqvii098+ERzNq9jY28OTrjq6v+zj8VtoLAC8WGimrb96nwC3fMU/+g9yjeFcETrM7weQpdp+QjqQb++fwltDASfDmLJ7VCeyvA80F9KmVMc+bkcqodADL+rUhHsGp9fyNR7cpIYkq1EwAAYNpZ5029cbBHQQwOJNyJK4iYtQyLsJA0oMfqgDQRlNNywjs66KbvuzljaeO3FDx5vsRwLgyvGuxUZfO8xuArGUDLhkXJunY1rwaorvFr0IqTmR7/wEVYBB0N1AHdGC9/xqt2IWUfdFQ7wLiLprMjvVqHUxX9zBOzb/t5Ve1e2lRU0ZK2I60Tbr01LzMfuHDyYkm1L/xkODaU5cfGm2macnKWl3c0SxMMQRyf7e0pbfJXHvOsfW/izrSvv7klnd0kwaOUrhrDXyiWTMXuZuQ7j/q1OwCoOdvgR2vcFJN/yYEDcLXaOLiUIRnmJKPfHTZUov4nLiq16ZHAt5sYxGHEDpQhc8VCwp24UpBNS4Ygq1dHvg9mUqEV3vOufwxz0FkZnEGVENJde2Vu4Nuz86Xdqamp8vAs06Yz0SZIH3NNDUjwC1Wzio1380EOdu8Cw+H5suwq2ZUSwRxolumuc/T5q75nz1zPEjYcrRvYDIEPP8uJHDyqqn3cRRO6rHiylTEw5a0VZRfYkdbpHP0NuI6hP72qnq7MWTzjnbaHjwET7gEZJrjOqw+eHellvY1wIbNw4d8j3JYfHnOFB4B7AUDtNkhpU5FQ+arOZ58JuxVgpjSAxc1Nu/DxwkkLPNn3MR9PfT/Q6rkLAcBcU8NmblmPPjLnk04AcLe3sRoS52+rUvXGGhwjzc5UXiooVL7vkWXMhzcwHpLsBAEk3IkrB1NBATMtiUGi8osY+W1xAPXGjZGjVMtVVho5U8EiwzJtugUA8CppD8/c0LBj6nnQ1kkYJa3OmAmpqZhJrAN6nONjpl9lExiEhYpZlrlquN17+LB//4WrIdB6nC+mFAjwYvfJTTwif6Cg8wcsjtyZ9nXzaKXq0WBf1dK3u9KXW1lMWmvnO9I6VV9KtdzAOhCZbDZ4pw0AXnvlmncn3YJqlW9EZS4vhykALAS+3QYA1Rkz83y3TZgbpvFurDKsYpiRZr/1lOM48KkyBrFYdox2Ajf9EPq5sjs/T83rxQcBWfiBbjPew4dRtftfxyl0p/q1DTI0dqtq1izNdQxXlUQLXqkb6S1FEASDhDtxBYE3W4de2CaKYTAj2faRJvaEeM9dS1XI+ylOOggufFi98tiY/C8/Z0rK/PbbnttuC2O0Akwx64hd2TUF+7BignV1oK0NSnbU+jq5KwCw7VB3wdyUhZMWsEJVOTcGAgPwMjg3WPveRDkFBQBMSUlgsahm7JTdZgWAhFVjyrKrDj6/GsCf5cLG4MmG5Y2NTniZvVSdMVNOUjrYvetg0ax5TjNwnZvYhMfRuuERSNQav75VvLCE5axjwyk269C6e+Dq7WGS/WJKCvgqj1UNLj0lJUyOK22VXMdUh1H56oNrYSI7BDsR1bMA9D76r9/wSxTXptDdWqKiid3btvZf7TupdoIIFRLuxJVF/Kr2gUnQNyjKhTGENDamtiM8I9yPevr78eP5e84CAAbeqzNm7vh2C5xoWel7XSfcrtNVh4HpMQYRlJwsZOtOVMtSW7GMLKzC/Jm+7ecBRqw4eT5h1QGdBkbCdELOBlGdGwSY2Wcqh3YUrna0bihdNebpo+Y1Mz0Pp68fnTTW0bqhtKkIxvu3zUieGnDoa5Tlsz6dsPyUSsa33zRznOjRzi6Cp2T9WWlelO88Crk2lOCO1g0TRk5TvQIopvNHDut0fzzN7WK/cdsOdQOMwMd9n81LuO4N1c0br/845+83AGcWpDp+PGsbeyuj4YUPvgrX3IxbRC8XtbtMoX59WM23/DdQ56WQDhEe7n17I2wdNTBk3LsYH8RaiRRxpUHCnSDijP6uEgv1Z8lg8YDObuUu5VoTA9X9sCWXHGlYrLnyVCrAWeXlWbOKp5zESLynpAoAzAcO6Ceyo2TnO32q5moLe+BD3ejMKKwprIAPXuzY4zznr7Zc+MnwnL/fkO88CnAeAOzNtuqMmQ8f+xa/H34nbJA3J87U76bEx5svpqR07GwGgPTlY1nolwXy7c3H8dBoFb9mpkd9j7pcm3ipOOsM+OxcVNFq21T56oMwUhkqLml82TXXFfBrxTu6MPwFDM3NqQCpGj9wTLWr3jlROpX6zBlVwQJZp6uoLLvKvm7NYrevXJjDPwPMXgHvid5BAeH21FSWBoNOMhDMy8WgD5WgiXXCFgMc0RAqTWNcsgtE6LBJEBFCwp0ggmPZUds5f14U9hONwNLgejvIRKt4QKco1t3e1tnZicWpOvTYTwFArfN9aPHrJEfhahYQPdi9K+eVC/mH9mMkPmHVmIPdu3b/Vsk7x1pVVHIdO3sWc1JMSK7I6bh2/gK/LpfFn+xRaJCcv99QnHXqu2cvMZ2KyS2PBzZKwqJMvqZzYvK3+fsALDlHNpXv2NnzUWJ9au9wUPxhAAPYOB8QJgmMlGf/CADeKedQUiPJiWNXHhsDxxrkOxjvjP4GegE08nlAqgHQMuFRBdPTWSntzunX3DvfX9XwzeVueZMVJ0cAwGMzx2+e+iVbyL9xeB8j5++J4Eu34md3WOl75mK7MMisRx+BT7pS0Wzns3mOe5axl+pOVH/QewwASpuOlpUoV0B9GuNT7fnOoxBxFzOBmNXE8Xvzk1Q7MbiQcCcIPSx334P3qTOMVVUa2RUzYwmJWOyE4sPd3uZd/9ioESPC2MpvB6maD+BT852/DaHu0FNS4vA9Zq15AMBRex+A31Vm26HuC9n3QddOZc2tlQlTToISnB4GvrRy2XuE74j5YsceVT91nqyKpwHAe2uA6kV+2njyr1n+p1jcmXNXMguQY3KLMHOQpwr7Tx7gn05M/rbxmYOrt8fVq0SvN0/9kk0Svp88dcJnVwHAkvRFjZ+szvn7DWiwyApbXb09mxLPrX1vorm8vKykir+lIAhcnMmYa2oq3GmbppyWM3ZYBLq0qejsSK/gVslfEJl75+cL7jf/6ruHgU/Zto8f/WTzVJUEdza1uHi2EZxiN9mD3buWpOPFXMRfea1JzsHuXcLboQpfl+ynq0vOgcEHnZ2dbOYaYZ0JEQbOl3bfsL3GeCtrgugnSLgTRNwQm6od+DlJMMM4QZQE/xXk1Lw/YWbZMp3bDnJLJp6npnXl+3rpXPj1i0GOrg0TcDOSFuKDS5c/ZNpdFM3nzgHAHw8l3PGjL/jN0eOloiVt66wErzkhL3NF3YlqrHHUb3Iku6kIS95xHeONTQDAUVu3+N/uB99tBB0dnGa/FVB5nzzg3/l42D/+VEVL2umRKvOr4qxTWnneZdlVD7+RAwB/PvFfv4Efax1UGP/Zkd6M5KmYkSIMlbnIm5KSUPXa160R9pawagzbXB4Phs/5TBt2h8SUk+PIyfE2NppyctgZ8e9mwN2DbIBHH2HPMNyumq0k34Fhha3sQb40YdBPigt18h9g5BLVgpmY7Y8RdUi1E7GASh87giD6A3bPesj/vGkRquucpuNEfb2+GQVLFBaY9sgyV29Pwqox+XOvT1g1RtBYjsLVZdlVfOnnipMj+rafZ9FcJCN5qj3X1rf9PArK9PHfYS8xVVfaVGQuLxe6ov5sbl9y4lh+/43Xf9x4/ccAUPi3EQmJF7FNz82JM29OnKnvbBjU99DV2yObo+/+7Qty8g87kb7P5nV0ppVlV9kz1/MZ2B2f+y0si7NOCcFyLScczPKvaEl7afdT/s0ntUKg97kOqrIb2XaoGzS8ZfwD6z3LHqfZbwWrFaxWTFtfkr5oSfoi/o0QVDXzukFUtTi+v++OGVdpUxInhM8JD06i8B9wYh3xlJQsr1VLNquvD8nOxTJtOv4Lshr3NTSyfggDIIsYguh/KOJOEHowtc3fpw5/b1eqZDdCFIN/7vY2Fnd31NZ5GxtX19UCACaOX7r84R/SYDgo0XGhBtGeud5RCwDAtoLAkHad4wAf8ki/do5qs9VWy5lM9wTzgQMsr+bsSC8EJpBgB6L9408BKJnVaGcuV50CwOunD/1w4lxcaMR5Xeb104e0Xurbfh6gPhXA/n/Eosz0a+cAPI+PMz69yjn6G2Fb1jSKp+5EtdN1DDsowWX/8h3/1Lf8zKSy7BKDp5CcOBbrdHkK5qYAZ81Z+YMFM/77jbMjvQ/NvJicmCTbcYJasy1cjb+qwvhVxyNobgAY2dHh3+e6NaV3+l+S51eXLn94zP3sDG4J2sgA9/nHqs1RLS2qA9Bi4L3YCYIYFEi4E0T0ifd7x0z+GlzfYAGce9tWdMMweMfZvW+v4CejHx0U2jYx7c5LKwAYPuymS5c/5DNbgqIl43Qi35nuCeDLhm958qkXO/aALzcjOXHst+HGD3rF1AgGLzpRteMASpv+ZHwMtsn5GcmHn2l/ni354cS5r51R2YMAhthZtai+wsYyAHk5Hy//TesdfnF/7tyMd/4B77SVPVn1+ulDbs9nPz3+dXHSQa394x0SAMDUl6ePmgEAwG90U3ei2paT/25HR77z6JKT4Kj9jbAHnAVp+QipqnYcJ78HreEBwM60r/OdviddXWXZml40WAsx1fIAgF/9y3eHlKrNqFqn+784Vis6OEUx0M6aKCnNjPvZ9oogrnBIuBNEPyIbHcY+gvyN7s5DTRJlYj3j3sXY/j2kzeV8d4PNNUubiuAagJzFAPBoyl8w7xwrJlN7lXA7i0zL0rYsu+pidx3vBc7bFx7c/m6q5fNOd49gIKg3mBBXWDHtJ2wh6z/qqK1Dj0I0jkxYNQbLK533/WB36U62La/1GXL3Ip9FI7rLq2fkIz4feoXD41N/NrfPxDoQHW/Q2pC3mrFNzne6irS8KfNHKm+KXdfG0SDm8vKVkFCcpbuSxdI48p35P6lcXl7+2Mzxjx/9RH+fmFu/JH3Rwe5d833Nm/KdR90a83x8bCko5P+G6GjioF7s4vqBajtC2E6UBsnBal1iB7xTEXd/pYkrGRLuBEFEh6h3URGCgkHtk5nKZ6LBMm06WsrwTez59BVVmIXioyl/Kcuugqa/4NOzI70PnFRpKiRTd6LaZssXFqJ0m97Wndr7BvQqHoLgmw8Y2a0MK7UUYPkt/ICzKp5uKV7DN5ZSvBFPHsCWqN7Dh3cmvQtScnnjyy6DPxa8vtc6L6VCt7cHc/o9S5dCk0rEfeGkBUJ9rartum2yeJ3ZykYGbF+3hhVAC4q/oiUNUlN5p0tH6wbvlHMAsPaT6Zivv7+pqKykajQAHNVMcGcsSVdMafafPFABaViNquPILvhQYQMgHU2sJ9mtVtwV//XsV6dIeY4Rg/ch/UGKOIywEFcsJNwJIvqIRodxhSx/jeD/CfQZURsPZek4uAcMzIB9Mj9m1WQAjHRmHdgPt97a8jP1HZ5yHAcNX5dnJ31drZkorgdTnPeNukt46exIL68yeVNFnSap4NOmciuijE+vUh/wuXNZr/753ff+ppWVnjH1e7Zr8zHPHjjte+PhEnCJ5ui8RSNa63x11d8BFAnesbPnlZtmqTo/ap0IUqrm5cKv+WLHnr9ySUf4wFG42t6sKZ3lbrjsKHYwC4cO6CO7dCn/dgAAGnp68vKgqRUXoGNMSGH+q4al9JRkujOqAQB0WilxlkoGOy6pEsWsGOPoZMugpu8PHR+DcwOCiDok3AmiX4gR1R7eL1nkP3tB820CwvM+gaKTCeB8aXdIxcGC0MkfOaz64mXmuHd4fCocP44RaGFD5i3Yt/08qjFUckq1JUDCqjFPfnEXbzzC5KM9c/0f/rwJAFb+5WrPZPWBvZHhWS1pPGYXmPXoI965fYLduxA8FqLOKok0t94KXHw6YdWYp4+aFTV/6BCMGac6sLe7d7/dvRsA5Frb9DlfdXRdBoDdv30BWwhhmD9hlW/CcG7/jKSFfF47JhSZkpKwHjdh1Zgnu38w4x38JCiemBnJ32O1nszOnD9ZubQALdXlnqkQGC+XM9r5+ww8ne6PUwPd1Uqbili/JCOE2mnrqmEpX1767wczlLpnVUd2WWrHrHG7cJ/NyJ8OMRLfD9HuUPfZf+F2b+qN+MDU+VE/HYK40iDhThBXBJZod2TUwshRDKbRB7zk6y4ZZM8+GcELHUznzefil3M+6Tw8PjSXINvkfNtkwHDvo9e8DE0vZyRPtU3O5zWiuaGhsBO7ULmFzTt29viS43f6JWZgdNlcUwOBdu9CGyNZj6rmybDsEZbRnvGKYjfe8uRTdbvt/MoVLWlPzevV6VqKh1DS8QMHIAtonCRcNSxFGH9G8lT44jph5e8e/lzroOxEWPjfXF6ONwqM9DZiOFgmPe6koQEA+OyX3b99AXe+acppAKMJS47WDQZTcQTKsquEalQ5lO7dtk1Ygl8E50u7gzYPViW8e2hGCCnVJAbvQw5kYN770BrTFtHaiCDCgHzcCYKIAlg5qlTUhXtrPkIzCu/6x6Cri/We5IekihxuB943cNYs+dUl6Yu09lbaVFScdHDTlNOqr6ZabpAXlmVXoWu7sBwbM7Hd8qYoCO+tLu+T3/aD3qOlTUUtTz6F/xytG2Q/R31DdNVTPti9iz9WWXYVW23NTI+npAT/8Zs4hv35Z3P7AGDcRRP62Qt26QBgfvttNnKlR9W5+Tl/v6GiJW1n2tfyOeqPXNx5eTl0dkJnp7m8HAfAZyIZcZdnx3X19rBCCPkosoU/IzfjFsFtXRay/dFnLYzCbn3CM4APONlZs5SBRS/a7W5vu7BoUXT3GS1ItRPRgiLuBBHHBM2Ecbe3heQ1EXUM3Tof8IRUQxnJzc12qHQUrtZ6/WzvWS31xoN9Qxe7v81SMkqbitRTOK677l2NPBYAOF5TDJOUx+nXzsEHcoI7qCXPYBmo6m5RXmNsHh0qcXhsJxUtaWUlVZ+e6xmdNJYt3H/ywP6TB7DLEtsV/xjvHrABO13HMP9nzV3fXvv+LZ4789iaONU5yw5Xfoil4DtaNzwCUxZ+MhwAlp+6unm0eIJyB1n2QEhq7/j8MC8zA8LwOFSAipY0T0mJo3WDlndkSMg10LkZt6i6rbOIOLsBpep8isWp/f1lCTO5LkShLNTdhrStPjEV0QcAU+dHFGsnogsJd4KIVwzWq+lLdsEoPdIxhYrVGsWdqacLq3rdBHpEBoVXcijmSpuKVNNLTElJQqQZufnH//j9f4/8cPRExchFDc/SpSgiPXl5Gb6Uesazk76uOJmJZiaC1wo/TlXvSD6lR4u8zBWlTUoNAAbUkR1pnazqsyy7atojy3LuSsanjtYN30+eCqp53m43+KRwwICTkjxz/KpdtUy2Y2cP+JJzPEuXmhsaMFFKZW+6p8Me4/rPZEFFS5pyRN/cqe5ENYw+vtIdkILS+LILAPA0H3kjcWfatwBg+TeTeCtK/WB/vvMoOI86OOGu01dVv+GocBerP0xaGeGVwFIlqD6k2onoQsKdIOKVmK1XC5pT23+/9MKeLQWFqoE9zDOuDSbfMdyOso+5oeNLdp/tTHLiWIMJG7/454vDhwWo9o7PD2PsnK/RtOfa4NB+tn/eYHHTeP8pYDcf4ApbtbpEZSRP1TtHwTVFF3uuDWB433bFuN3V2+M6eQAA3nEd4y+C97BmJg8G/u1bK8F3eQXynUcxh7Nv+3lHbVXdiWpIPreyM8HI8FRvLPBlAJ6SEpCj9aOhePQplp50ynEcfxk7dvbszgYAWH7qagCAVABjMXhWA81M5Vc0PMdeNZjqHeNqOGg3tCCbB/ZWG0ooN08AgKpRif6BhDtBDBqRm5ddyMqCwUuD0UEU0GGdaSTXx/LExqDryO2ZEDmRRsfIPKhq3zyvkXcwRHty8AvH5wGgAhTVKORGC8dlJi0877iOne3tEQRr6dtdZbcpdzO0kmQAoCy7is/2YTnf2I8J1bltsUPeUKthqjLOOXPgrbcwB2a170DsVfvWSmhuBgB7s61U9tycNQtfBYDSpiJlfvJPc5zfuAAAmoqSE8cKPj8Mp+vYkY3KzIq9iarZRDLyfRKhLIEvaQ2yHy64rhpo51V7QE9T7cJuXij3X9DdtOFxaG2FEC3ewyt8j/GZSXiopkIRRHSh4lSCGHyMqExVTL//XYSqnVVwhv07KhTbRYuIjKsLCqG+HurrmQTUgrf4cLRuMJKzzhAyvHW47yN/FyTV6PiONMUzR5CPP1/+ffa471WzPXP9jKSFM5IW8sd19fY4XcdKm4qYQO/bfv7X7ea+7edxhAe7d/GpLwzZJN6eud6euR5t7IEL9svoqHakOOvU2ZHesyO9+pe0LLuKvyFQll3Fh+HZXYW3v/aH8F29PXj15AkJ5tggfNYQXge8aGXZVeg6HxQsU2bviE7Jqbihb84gfKewbtLIHtRRq5aOOu59e6NiP9VPfxYIgqCIO0EQ4aOfnjtg6DR7CiqVULun/OYOfFp3ovrIRqWLEPNxb8+Gtrq66W31d+R8UdkyBQDWzPSUSbvS6sn66DUvY4i6oiXNkw0QaHSIXExPR5cVR23d1U+vWTPTAwDjEsc5atcrUduuLtYhqLSpaPiwmwAgI3kqH3VWBL0vn2fU/17CFDYTtTb7ghHfXM9MYPCOweunD/1w4lz9C8UuiKN1Awv8h1G+qd8sCY+iaO7Ln+ESPFkZPDoX1RZDUYIdJLIkfRFrYsrvB2GNtxb6cpDCwFFbJ9g+Quh1k0K+mbN0LdaniqsZ619m/IggJdar3g3AnB8AGNXTI2wYyaw7rmF/gtxud3CXIoIICxLuBDF4+EozI7RBHDLwP//GM/hlhwr3tq2hhvouXf5QVof2rX5XGZPNdkdyLQCsznrvgz99+67TgAnQiLmmBtzufOfRaqdTiJq/fvpQ3/bzACNWnDwPcJ7lnZRlV3kbGx3D/gwAK0+lekr83ohfr3n65tZnAMA2WaVtEK84x+m2VuXj4j4XefXMGV61O2rr7OvWQFcXzJpVlr1aZ/+goYx5+Ff9bjCrxjCtzE880NCGZaVr6XXN5B/fFyrhTr6OFOQ2TwCQnDjWeHJ/qDDVzitg1RQXbDIAkuxWtUiXN1csUKMB/5XRaYXGo0xF4qddFEEMAUi4E8SgMTAdkUIlpMxy9769Ruwm3e1tIWV/WnbUulfmRpJXEOq2X/3hOoDzAOCozQc4GGxNAAD73nrHPcvw8Y/efgWVcb7zqJAS/sOJcwF8twICsx1MOTlryztUj6LV6VNGjnk7autYu6LwcGx82p5rg+Zme7NNzvi3Z67X93WJxE6x7kT1CLhe9aXXXrkGW1OVNhWp1wR3dSk3SXxjeLb+i3dPN4Q0MJZB5C9FyAIAENrlaiEH2nlUGxX139+BoN9lrRWMqHb9uXHMlt8QRLxDwp0gCHUMtg038tscUodFAHCvzA26Tj9h31uvhJwl25PN8xprWp8B+DNbgh7tw4fdNC3xMgtp6yDskIlCfYGLYlTQyqgvtXI5ePsUZf/b1bNTDqolhHgbG+U1+bh1RUsa1p7as0X1rGVuowVvm4MPlqQvcl90o6k8+FwgzeXld/xIfSqCExVhYUVL2vfOn313zDjWc5cVEiD2zPUY2hc6TPHzAT5BP3LVHh763xc+tq1j5aT6vQua0MKSYQwm+fCHJslOEP0ECXeCIGIF42FyPqk96gHL3IxbWP9UzJ9mUee8zBVMuDvuWQZvbAeAS5c/zLnrJp1STtV+TwYFLrOMLMuuMtfUoI87qLnZ8MaOWIuJuhPXZLK4o6wk9W/d+BgXYislflcHv5uw2vdY6WB6MlM4nNJqdLg/rT+ovTpLg1HtxtpxeMS9GWNX7vsCoDyvpMRc7rueGRmO1g0wD6DXv7Krt4c/HLPlYfnu1RkzdbpZITp9cJGD29/FB+nLx/Jtsxj8XZfcjFuEdHMsOnf/ap2/D5rhRkWDabqybBl7aDwvf0i6xBBEDELCnSCIAPxJt/3QNjwq+/TH76VMXP7Wv07FKnCNmYQ7/rhDDJ0yHcYMuYEvneSE46XLHyasuilI4DxQWPP1qazqVNiEWUaWZVeZDxyA1NSy7DwwDBP3bJIgzy7QueXhN3L+ZdR9kJSE0fcfTpybsOpP/GqNI9/Jcd/AuhcxocyQ5yGqV0NHK3/k/njkV9+gX7r5wAG2vPjqXbxkl+nbfh7gfPXcAK+Y/JHDqr91LQB48pQrZgM4y81kjCDcRWF3J5QaAAAAsNfX+ysyuXRz/6e0udm9b+/gRKBZFY3at0ArE91oyQ3beUym/BHEUIWEO0EQIlH/JY4kGscamgTdCW9xo296zb/qXzprlpF5Bd/QZ/O8xqBp0/4sjnn+hRi+xQg0cxkX+gfxByptKqpwpgGA2e3WMRRnutyRbSifm/ktAsD+z96Bz1Si70jG/3h05+E/sKeekhJvXR0AmNRcdLTgbRzZ8Oy+V3PuSgb4Zgd0rjyV6lmwwOx0CptjXrvQMYqdcv6h/Y7aOjjkt2xnkp2Bkt1hTL7zFuzbDnX/4p8vzk+pMjc0wGefRaseNCqwmfaFzEwhQB70i6xaLGv0uKTXCWIwIOFOxCVbtmx588038XGe9PNMDBn003DDc+PRLKprbhZbyVitskTjG/rw2joo3nPnYKS48NAmpadmgtSKyGDnIMapt65lj4X4t+w+WZmz2GSzbfal6fNgXJnJd3SK/PRcz72LH3ndp2UToAhSAqYEyz+8wXnNMdCGKfWzvQHKW8jgd47+pnj0KfBl/7OGpuCT2vpWMGimCQBrppyU/ToBoO5ENe5BNfVFiy13LU7HR52dWusEpJsbsEnlP4chJImpbYUfWpORrTTaPA1Ad6dYBqvhB3sUBGEIEu5EXDJ79uwzZ84AwNSpeu3cidiHr6gzaGgTUfw+0NxGOa7PUBK6uphwEbROLgBrs1qWXVXT+gwavzBtbX77bc9tt+kceu17E5/LmaSlxW9OnKlq/ijAh9tDMm/BdRw+C8udJ6rhRLVtcn5O6trXzvxJZ8PXzvwJVyhL8h+F75yKAex/hxkZn17lHP2NMCS5WVKoJoz82ckzpYRVYzDonma/1Y7tVGd6wBjTHlk298YfQHNzdcZMAPCUlChFyb4KBwWrFd9ruWZXNGNhnxzffC/mRHAs3SuIEZR7epWVMfdmEYQaJq/XO9hjIIhw2LJlCwxguL2zszM1NXVgjnXlIIQP/U9Xr2YBMFnN+3W2mjDSUf/e9Y+NCkzq9e9TCmSqBimZdmfUtD4DAP/6hpKwIZi4K8fFrBKbP/WC5Xv4k1tY6nygVMX952WuwO6nzAHm9dOHmOBm65c2FT187Fubp37JH13VOZH54WA7J/4lbLaKB+Izecqyq1j2SMKqMaVvd11bvJttm5E8deVfrt763a8A4Oe3F7Dx4APZOkYGg+uCi2VZdpUg/dk+x100rX1vIr8+nmnQ+Yw8KhTu+c6jbB1cAtIb6s+fUUuskm/mBPVh1F+NB/8ERTFOr7qOuimNr8rW4OHiC//FWbZM5xxD+glwu90TJ1ILJqJfoIg7QRAxRyS3rUMNmyk1rPy0Qdghl1qARatMvmf9sTYLoOVnufCGkshubmiQc9BNNltpUxE0/QWMRcd5i0aM9TKt+Y7rGKrwH06c29i5CaQuRajaG192gZI1LmIuL9+Z9jVYAAJz3Bl4LDnZvbSpiOWj920/D2CGXFspJ8Q9eXntbc2O6QFe9QDw8LFvBT1lANiR1rnyVGpFSxqvxdmJH9moKGZ2xLMjvZumnK44N784KcB3X/8KsySiB05ebWRUPCG7Pc4SLwUScNtHI3dFi/6LCgt7lqu3scq2n44eCwzVmQkxxCDhThDEoMHkstLxtL3N+4tf9p//hmyjIXdd9eMzzZBBAbdz/ZNw/DgAZD36CHMeVK0cff30IdXOrACQsGpMRUtavvOoPddm9wWktdzZBazXzr5q2CeffC5WtfZtP49/2/u2n09YNUZOTVl+6uq/iO6OKsj2jji8B05eXX3o78JLRzYexMZVdsn+cvPULx/3xbL5mwPBR+CDl/4VJzO3JvecSOwCgLMjvY1Th8FJ5SXjdjEA8Oykr6sPKY8vpqQAgKOkji9I5eE7oYbgudTcLGdeidk1AyKFQ57NqlZvh4u+v9OgQxkyRHxBwp0giMFE+NU0otpR63i3bTMVFER4OL0iQikbWNAf+T1n4JPO6oyZ3zt/VjVDhoHRcT68zbr//LTx5I8+bAZQbAdnJC3UNxfntak9c33diepPPj/mdB0Tak8F5C5LOIsQgtMLJy3Yf/IASJRlV316rmdzh9KN6OyPsuHQTvYSaKtwtv+0xA0PHPls9L9t4V96sWPPkvRFbNuVn2bkO/cDQL4T0uy3AteilZf+AFD4txHFWSpH0cF8QPGbt03O7+t9xuTqLvzbiOqMNHzjWFmnMOUwHzhg31svBGL1pDab7AV+eIQaa/e2rSyerT/skNoY9zfhzTGiIv0JgmCQcCcIIqZBydLZ2SmklwqqPTyJI/u4a6GSvrxtq2XadEyMbtHeEKUnOoJfujqN5dIoAr0xoOWnoNpZejevTeVyz6Aw1c56tSKO1g38TGB+yn3zU+5j7UK1qkjnp9znqA2YBjS+7NL5NcF8+rIpkLrvrqK7X2bL8WTx1OpOVBdDa74vBM5GpdTUtm54cXbqx5YJWCfgrasDUNJpzh59AxYHuUGBjpxmpxNSUz1Ll2L2kedf9Dfyp7NbfE7tQWHSVvg0yrd6jIhgXu5bpk23DKB8F26FRQW56wJBEGFAwp0giCGFand3cZ2wKvyUbTnLSLYtpuTzue8A8O7IRJZ+/cm1ExVnw8D5h6ekZN6rD55+7px8IFbAitF0IbZtm4z/FX0eAf1VfML35tZn2HLekmXboW4A+F93jQUpYv2I9y5mj4NekPiYDUCrXRSSsGoMhOK0iPrYrr9O5vozmf64uMlmq2i4Gq+tc/Q3EJgpFDkh57JLqHyotDOveAxG4gcCYwM2Dql2gogKJNwJghjKhO3QrCnoOctIASX3PTcfzp8FgO8BwI9465I08CXBs2iuo7Zu9Z2/cdwp7kpoMwSSNXvH54fTr50DPgFtLi9nNZ18EB2jywgzhu/bfh5gBACscBx31AYcVwlOHzoEAJ6SEqbaZfjE+van6ueuW9Pp/jh9+Vit9QFgzYkFRp0a1WCtrDwlJZ6lS6HpoP76Mjq9q5DcjFv6KSHbiBbnKy5wyYWsLAAY1aJzR6df8Oe4B5sGB71csZDkQxBDCRLuBEEMKXgNwRyaIWIBIZQY6tz3Z66Ch8enVpzMBNgfsDyw/NG4F7vTFdDeCFU7T0VL2s60r+9d/Ahbwqt/3D9mlgM8p38sHdg8ZPa6gPGX3gkAY/ljMTbPU+zPPfOC7Dxh1RhhWybWWy1nMmGC6lZBw+1aFQhs5/nOo+L7W1DIf2C0ErGMp3+o7iHo5ljy4Qbwrn/s41V5seZH613/GDQ3g4G2TayYJCZuJhBEPEPCnSCI2MV4vDyoouKXhJEeAxCQPGBErs35pHPOJ/5Gm52JlzHTXQs+DM/7kc9IWsi3bVKX+BYLALy+a79jsX+ZapI669UaIUfe/86Ibn/XVeaZYzxJBnHU1lW++uDZkUpHEbmOFnzm7s/CqYxPr1p5KtXIgfjwvM5qvHe7FkLTLv9ynBbW17vb2/QDz6oNgPnNg47BtOFxnaatOkRY3qrjVW98h971j1HjJ4KIFiTcCYKIUcLuaMgkEb8QpbZB2cGv5k+IN9AOM6CG1Wplm4z4+Wdf/eE69oqjts7b2PjoNf5KTfvWSmFXvDDV6rfqx+1GDWrPtTFrFOZjw1Q1b3dYveKXaLSiiqekxNG6wXvuHACsfW8iPPAzYQXHPcvgje1BRmUMU1IS+OYYQawwk5I8i0vkJHuh46m5piboQXMzbrFoq/agqTIBlaMFhQYDzxBYI6EsYbNT36cFM2Qi90VVnTAYwcg3Tsmi2SP2siUIol8h4U4QRCwSVHMYkuDLlrl/tc67/jHThseFfcr6Sf0oT2wMvk6oBYWzZgGAKSenDHJYYBiczfwqaF/IdDbrOsSrVa2gsn1vveOeZUFHoaPaAcDc0OBK6oGR4nKccowcMQIANs9rrGrPB4CiadXyHoyDtxe0rO55bHN+har90uUPmSUOu0r8pEULvvBU/uSofpZQxLNPESIbxegQsHJXl5A4Lt9T6r9WBtGFvxeh84UK6VoRBKEPCXeCINQZ3LRU/R97o6HE+nol7t7a6t63V9RPGvFR3tzd/at1YuReyMkpKFRt4cTnTLvb277iI/HNzbnbbmEWNIijVun+46it89sX+pDTQswNDVonzVT75nmNLN/G0bphXOI4Zt7iqK072L0LAiPc9r314DyaoEwS/O1LxeN2duLwPCUlEUp2RkD4fGslADgKV4NvTlLGrYm3Eb76w3UAxwHUlbonL8/b2AgAphx/Mk+EXjG8akdUk+C1kFvzDkDVpmnD49DaClH9CrMWVNDVZTwBhkpUCSJakHAnCEKDwU5L1fmx15f1bEMV83VJP/GIL1mt+sOQN1efCagdMTfjFrYc1WfQaLEOnpKSxT4hrtoOydXb4+rtYU6RuE7f9vMAOwEArFawWjHfA/uthj0SHoOx/4DkfhY+h0ocDw6PpcHclrL47e7d/CEOT8ua094CANUZM9lylOy8WA9qTG7ESFSL0LoHaBylP9Rtf8y6cZ9C8zKqOiWIgYGEO0EQQYjNzinu9jaheapfH1utOjJCS7vLNYhGtAi2YTIyYB3se+sBoDphFJ++Upx1Kt+psrI/u8ZiAQBPXh5wBjKqrU8N0dwsLGBRcE82wDklB92zdKl/ANrY163BiZ+9vp73lQ+yVaDljgzON4YPuwlAMbepHH7NjHM+F/z/f3t3GyJXdh54/JQJ7JAEXA3GCfK96cwGEoYQRh0aRlUe74tDlg1IbQd1SgokGc9E3mmRMdPajtesJ5GQduTEkIp6IEE9nmEs5UOYLmrCzHTjBO/a5G2rui2hboWwIgvObm+VhD0sdGVtNs4Q0vlwqm+dum917vu5Vf8fA9Oqrqp76tat6uee+5znqVbl/72T66NyMaEnVzpJ6ppcqVzVW7enbNZZbV42ZS8NMBmBO2Ac4/4cttvCvMBdeJqnuqjFsNWk4aAiIfEpi1DDBb6h7bYQ4nkhxB+8Ntjfuy1z1v/8BWfm28kVUZddypA9xIPN94QQT5z7sLNK1anYGO5n7V8IqeAeXqfF61vffc+pFfPY174mhBDHWUAhT/XKxdUXd0ZxvNPPVfr+X/3QFx49XTl/XvzxHzule57/s6+KP/uqiP7BOdrYiHT/SKovX5fvr2uZdewOA+Yw5QsKmCUE7oC5NBdQZkSdmS52JAnNPf30QPln0By5enu0zIftLeFZvOg8j+/trt+6xiMnnj/77N8JpSCMvh//riWE2N/cF+IDQogHm+89ce7HxHgeufz5lX91PMnd76tJ9h+PuslQ//hP3/zQ9z8l5FnHYOC9wyu33zx6800hROX8eXlmMryMcJw79J///AXxXXfvpsr580KmxLx5W0ziZGb7HsaVlRWxkU6yfjgnWNevmDQxw8d9fyqmA1ONwB3AlPAmzwxv98xr+t4z4bRrUHQedHvQb50g/v0vf/Djn3viA391978d/szgMz8hhLh9/2++99xzamjr8MlF2RxLO/mhv6+Ej//FrXaSJHsXmZL+2T8drg39qeovh99fRuFi0mWEH/7BD3/ru+/JCwghi019M17CA9nsJo/V9c3eQ9GVWO9KS3Oi8OrJhYN33h7drpzpuUde9NIUfbJkk4FpeIDJCNwB4wz2944ufFqkWhXO6aYu4sUok6IBQ9J71FjcqeviO2fpje8jTbum+3qD6pN8/YsPhPgBIXZkePfMkz/hTBu7itKEeOKcVnqMzirSqJyeqdL3nnvOyWJf/w+fqXz0o4ufH/V5vfuFL/o+yeLnP/f/H/5fIcTBD/7TB//yv374lX8pbx/uKMsarUVWDvIQ4c2S/B8SseKn6/AIOUh8Gv3qtWQqu9HVvNl4vUBaCNwBE5WlkLNXjJWsKS5+dc3hRV02qhlAuOppZOXUKdeCUTVz6RlZ2eP4llf/9b9T56oXP/+5//6ReSHE3S98Ua2l6OWaZZdVJr939mzi0ftQV7VWPvpRIcRff+iHgu7sTKhXj1PY56s/MhDivRf/VgS8s85ySe/76ETeMbK/nPMBzaWr6uERtJUJ/b+OPxHqgAFAELgDSFekEHzUcjKNWTdj5/BSmJ73lHxxef6b/2PgRLorF8VxsHv3+A5yVahv06UX93ZeWTgllMD6sTfe8E1ZefN/vnr+x58PGYZaidJbez5s/Pe/MUhWZ10Kr63uX03IvKRw9UM0ekUHBz53tSz3Y8NPCaI2C0tPjAsdALwI3IGZELKAMuxR2kk7o3smGGTq+TbhSxJ1RuI7mMH2ln4uk2t6Xj98GWzcPLp8Zc6vXH34RKy6yvbFZ84Pd4LMIfmD11xT7DJ35UUhxKlTQXlCi/fufNWel0H5/W+9EBKRK+VrxrjqPA7294a53rdflXvSv0Tjy9cHv/GS/8GwuhpekmVyi65+37UPg678JJn2dtVMDF9pGnT7MIVG43MR/vwFrjX3XrUIX7cNIAiBOzBDYvyZDIpNvUG2VhTryv1VQsz0qzTKDUUPUHSiNN8XOzEor758fXiFITjpQr3d1WfKt7GU//N40mwcMob2fdTz97/hes7b9//msd/93b8W4oT4C7E4vNs7/+tPPvH4vxd+y0P/341/8V8W/kH+PMp1UTvRerYbuCeDL8UElWRRT9LCWnRZVtRYfMI09nhhx6BDLqiWvP75anhS2cRa9aYhagdiIHAHENnk6cxJnDm/UTCaOHAvNlhRz0DU2H2wvTVqEX9cXUT/2Q4XF8V4dKsTcbpKXurEqb7nG7/y1h/OHUfzn/npv5M//NEnXwwa7W+Kx35z/7GPf+6JP/rFP5w4yHiCjhP/Od2NjcrKyuTzHCliPZbR26pX2HHssX7nePoT4XK6WsSNffNPlSFZH0jLB4oeAIDySWGqzJOoMNi4KSxLLRJSIuFByWB7yxsqyXW0E83dvTt39+7k+wUbLtjd3xOnTvmMbX9P/uf7WPWNfu/Fv33/yx98/8sflIV6Qk60vv7NnxzbxPbW4eLi4eKi/jsbctUiUpJ0ZWUlaCWx88JHo9rZCT97HL5wOd+/clH0+2qsr/mGCiGEZYmdHbGzE3nxtDLdXrl21fUxdF5IyMUctdRSTmusx7dexk83YBRm3AHEES9FdSzfWjvHIGdq5ylfwxDNKc49HovoRpbtdrxFtBNTpd33P4725MBirHMQQhwcHMy7frGzE5SS4U3niFElKayEYlB2kOeChvt99Dt1iaF6csHnqTTe0GHcrJadObkwcfo88C0IuCeAKUbgDiCmmPPuyiTl4FPPmFAA3rWAdZSmsrTk0yDpOP3al064qZXrMn6Go7+ViffJJLFY1jbp98Xycg79dLwLjnXbFASfbAwfqz2dryYjHS4tOWuIXeeivuNx5Y0YkpJuwicRwESkygDIj9qd1DWxndHi1ImqJxdkzoM3c2Du3Xed1IhwWaQBDLa3Bvt7h0tLOrVEQgbp/W319BnXpG/C/OPB9tYwbm63U0xldlJTXKMdvl+TNlQ9fcZbLdGX7ts3Psvu/6j19QmXaxLv7YTkQXW4tDR25qN+EvVzfgDkjsAdQExqyq8mtV9pUZF6QmOTsrEy8n2yqxVq2FQ9fWbu3r3wXGS1loj3eZydPHa348BXffsmx8HK+xUe6UaK/LSOIr/TKpXPEgI5B9/vO6PVH1LgVjZu+ibrV65dlWuIR1s3eyGmKz/etdY8h2smAGIjVQZAUt70gBCy4nvl9ddcgWA2Q4uQAOAEf84CvsB7ZjPaUV0UJ1U6Yp0T4Sp1ol3ERoerUs1wcy9f92aWh0d+Qe+IqxqPW78vU0rUCzVqrv/k9zeNdy0oWb/y+msD35ZPwRVC5XiyrmWuc/yPlc7Uu0YBoCgE7gB0BTUz0o/aJRn9DDZu6rcxisc1legbxISU4CiwQYz+lO0okLWsiUka/r+wLKG3Mtinbrq6YiGg4HpQxc+QSH0Y7+7vHV2+Mnfv3mg1s186uO9SXRPqD/o2PHKKVMp/ZnqA6ZdtJa8dKAsCdwBaRlHIcReYQeJuqdmF7MPnD+jCo3mJwLQGMRNmT/Wm5/27OI2HuamEcU5yyyja9lvU662pMuq+JKfYXRnYAeG4twj6YH8v53Qszf2mJowBQCQE7gDiyzryTs7bwEhEv0SQD29Zm8Ak8pWLg42b4Y1a1ZSSCQUuPQs9ZRA8sRGsa3M6dxuyLLUIekYnSK4TAPevNF5aWoVWiqpzGtY+FkA5EbgDiMabwWxyITk1ZHdlKUSV28ucPE6ld4971aZluZL1ndvFeAQptzK38arvFnzTPNzj3N5y7umdsA9LVpEhe7/vypYJur+3OKb60qJmNHl7rE68AjMh/z6ACR8HE8YAIEUE7gC0BEUAaoXHFKUYJSdPAnEFx/qt6eMZDnjjVSfZYxg1yolq/ec5TmoSnklf+avKyopwAvfl5cP33xePHgkhKq+/FpiRcvycIWXmHe68c/1K9p568OpJgktg1B5cbl81PPFYX3cNMk+RLm4AmGUE7gASGQv+UmJcpcjo1V1iU1+7e9rb6XOkUBNsDhcXnSsMw3jUr5en768Gv/GS71oFb7XvFIvVBOb5+NWl0V9q6TZeKUW9FOA97XQvJL18pXLtqqx8n+7Z2ugk5NSpoJQeAHAhcAeQVOoFWHwrD0aV1izmWLyoXYAldWMdW5V8GHVHzd29K06fGWxvhcS46q9CIkXv7Tpxs/oo32IvQU/u3J7wQHKujcj2VcMxeOsgHQ+gIkT4aWfl2tXR6VOshJkZpL4LxY4EmD40YAKQgtTXF2o2DQ1SPbkgdnZkpDtqFRnr2dSXNtjeSh6LhLccGmzclKMdu9FVL+X4nz7BdL8vQt8O16/cWUC3bvsM+Nbt8Of0ech4qXX9Xl36I/cn17weX5TQab00dh/ljCg3U3YycHT5iutdAJAiZtwBGCqVk4FhMneyp0oxgUFn3no42vGeOPpXIZxGRUF3CCoy42R7e5PRn1xfD2uVGl4/Xu0Fq6Tdx5DkjQhfNaHzzDoRtv6svNNstcISUgDaKkdHR0WPAYij2WwKIZ577rl8NndwcDA/P5/PtuAVdf+HR2k5l8FxJe3obz2o49XYfZyg2W/pasgmvKkso6c6XhuaZF2vbzHKrHe46xTC/9VlNq2e6css/CtIv0GyyWWmYou0/weDweOPP57peDCzmHEHMIU0IwZvLJJ6eu7R5SuupYf6mdyRupm660JqP9DnVwkmxdXnd/pz6ffqUovV6L6JavEcT+HI3Ewsr+QNZ0sU4HqvxoQw/+UA5UXgDmCqyDBOpmdMDEDVqN3dhCg05yFhyGVaT1bJ+1qcWw4ODmJM9qpF9GP06tK/4OBbPMclZK1qPK6zvvDySuGnVYYvezWuyhMwwwjcAUwPV73CoHguaSem8TgmPIjX717pxKmaZx0ug+2t4ax2cBX2kpFtkiIGtep+cP8q2UywN/nHNQOd0UzzcFvFzWSnUuUJQCoI3AFMiUh1vidG7WqwopuzERBi6jxcbec5vGVnx1vzMfypnFA1zwgveX8rlXzJR5evzOmd7fiKMbs/UdDRpbncdrC95b2AELX8ZYET82S/AIagHCSAKZG8dIwsGektnyJDLqdUYmDwtLOjWfQwNrVCy4R7aldgNNBYCc7xve16Xb7vV9ZDUulfGPGtJRrpoDU5ncYQpT7sAR3MuAOYHgkDuJAoykmNEJ7q4N7qiuFdNn07E6ntPNNV4DRtjJWmjskld5JVloxBnSDPcwZaZnb9n5/7ObnMINMlrSVaLxvO8GUDQGwE7gDgb1iiRCOqllGOTuQ9yoTxBPdaoVK7LTP4MwnaNBaDju6sRHhBOeWZyjlqlyae2ols3prKyoo4OHBvMe3YNFKyGYBCkCoDAIEitUrNbpLSmxAyMWdmsL93uLh4uLg42Ljp2w/VpXpyQXa71Dn9cJU+rLz+Wm5Re8KWuiHSyrKIWpfT5xlWLsYr5FI9fUb+l3AA5aUe9kWPBcgEM+5AkfK/MB2vYonJ0l0cGUSdU5+8RY064jGKEo5tV+MdlMH0KMknvcZD4aUPHRn1OXJNe0e6UBBE3bfVkwtOC6qEdD7gPvcZL/zvErSk9ejylYQF7CvXrop790Rmb1w+cr7yA+SMwB0wQnhWdIpbGZYu0ah7DR1B0VVQm8l0drtlpfAkihgnPzkcP1p13JVqPDGGFDi/3m5H/YyoiVXylqiZJzJrP/xRri680Z5f47GlDtmBWUCqDACkT7M5vJDpDemVwoidZTF06lTgM6c6zolGqTvaiR/6JXcy4kqsCk+I9+5GOccf9qjTZ8TOjixe5P3t5AI1wY812Ywn/wAuzLgDRcp5YV92pUsKFL4Ps6494i4Ok+U8tHdO16W6ctGbZRFt2jiNzGCdmV3f0joxjB3S0afJVYdLS0KIuXv3EiacjA3PL63FCUOdkR8uLqpHb+yXEPLAki48TXhFBZg+BO5AwfKuxTGNf/yC9uGokeqpU75xZMI1BvnvTP1MhuFL08trT/GF6ERao9I6GtHYxPG7SvpEOlWTgbUQonLtakXeovlIbTqV2ueeflpnu0lOvPU7+AIwGYE7AESurJdipDux4rv+5jJtTe/0NE3Y6Ep3c7FnnSNeYMnn5aicLqqjIvfaiVVJDjzdBsAmlXKfyouEQBIE7gCmX1q14YoKZfTPK8IryiePySaGuTqRltqyKq1cJhOiTH3qAtb8zxxCGJhRU653FsgagTuAlJkzY+cdgKsaZlBlvfylu9N8n2RiTJZWQ5/C3/dwSfq5pi71Yy9hddSQjJp86q4CCEdVGQBZSVTeJAPVkwui3RbttlqkwoSoXaXmfw9vsqxU4unwV1o9uZB1yRG1lMpgf09YlrCsaWopMB2GDYwIzQEjMeMOAClIUmB7gpSqtldv3T5cXBRCzN296yrq4uqEmgXvglRKhpspleXyTM8DGSFwh1larVav13PduLa2VshgEM+oauHMdB33rcMYyVja9/i0dzolGk8uCCHmZBTlbOi47decRhvU2BsVhoVu033CoNbJSf+Zc6xdC8AXgTvMsrm5adu2bdvOLerPKAszY6PCw8fwhZjO8DKNdyfmL8XLdPeO2bUh58wkkxdl5BlCWqKu380u+4uQHSgcgTuM02g06vV60aMAItCpw+gUlS82uJRBuWvqVJ3vl5cOMtl0Ni/ctLaa6Z5FOIdNtVSnJdlN/AMzjsAdQMnop8+G9xlNl35QNXkCNaWkdpVreN6p0yQlGn3r1Qw2bgaF1M7tzlszlVPmTiZSak+YcRvgdBGyA1kgcIdxWq1Wv98XQliW5Z1673Q68geZCv/gwQP5zyeeeCLHMaIEqisX82mWHrlN0qTYq/BEozg9jPxqCAa+kONqjDISTVg73OlnVPh+A4CsVY6OjooeAzDSarXU0Lzf79+4cUMN30+cOOH7wK985SuZDuzRo0dBm0YO1P3/5Cc+6dx+/523gx7y5G/9tpP1EXK35EbjWV29/2//TaKn+rUXnKA20zFH5ex//RE++WsvCCHu//7v+fzK2WPLy/d/+ZfUW4x61bEdff4lIUTlC9dTebYp2zklFelPwHe+852PfexjmY4HM4vAHcVoNpuu6jG2bXurx3Q6nUuXLu3u7jq3OI+S9WcuXLgg//mRj3wky/GKg4OD+fn5TDeBEK79r5k+m08CRopbMao3kMrZ/5ojDE9n8t1jRxsblZWVoN/mzJvMUzi+gooVaf8PBoPHH3880/FgZpEqg2LUajWdcjH1et0b36s/Zx2vw0ya6bP5RH6yTF4+BTeMCiirt24PPvVMjAf6vi+uqD23wfg7PjkBAKMQuKMYQXVjms1mrVZzfttqtSgHCfOFR+36U8iD7a0JFxOc7PBYRRuTkycMR5evzL37rlhfr66v+76osTI12RuWXgkYTFQ5tKMCgHgI3GEW27aXl5dt267VajLHvd1uFz2o2WJCosI0iVqsMF4tjpzfNXU1atBUd27HT8K1rV6VlRWRTUcqAEjoA0UPABjTaDQePXrUbrfr9fra2tru7i4z7nma2J0HhlCn21OPXKONJMUEFSEG+3uHi4uHi4v6cX8WZQe9zbAAwATMuMNEruapgCFiLB4dbG+l2CjePzs8oBpjprKbUI+xo1IfDGewAMxE4A5gZLBxk36Hqcth3WrCyFXGqeFJ8zr3mRo6rXCNVa4+TQAiIXAHMIaQfdaMGqYGd/p0SokXtSg2fyVd4zFcp9tui+Vlwndg+pDjDsBE1ZMLOUx5Rt3KYHvrcGnpcGlJjerkk5R3ghb6qi+n01MJAOIhcAdgHKcSS6bR8GimOcpWKteuqhclil0Ymi6d2vAzMt3uq3pyQbTbrqOleut2UeMJx3Q7MJVIlQFQJtORaW1UzU2dMdx/5+0Zb9vpe4aWbv34VMQbSXinWwDmYMYdgHGcqV9XDFE9uSB2dsTOTioz8c6TJ4lUKteuCssSlqX/JPT3yVoWyUvetR/TdLEFQFkw4w7ARPlM+6WyFZ0MExX9fXLjW18l9uUO1/0LqcIJYMYRuANA7iyr6BEghQo5U5NVMtjfS7HbAIDsELgDKI3kcdIofcKyos6Up6jATbtMec3vnZ2iR1AahOxAKRC4A8CMcmp+T83MsY7B/t7RxkZlZaXogQBAZCxOBYBZl7CmoWmV7Af7e4eLi4eLi0FXNojaAZQUM+4AZgizrb4Gn3om9mNlgU7TkPgBYCoRuAOYLUTtjowyZIyqUh/bdHQMADBlSJUBAMTnCm2no0r9qGOAkdcTAMwsAncAwEj15etRHzLY35P/CS5oAECWCNwBAEPVkwui3U64zHSwv3e4tFTqPBkHqTIAjEKOOwBACCGOLl9J66kq166m9VSFmI6zDgDThxl3ADCuoGEhyh5tA8DUI3AHgJEYGd7TRM1Wzx/nTgAQjsAdAKZTuSqiVE+fGf5A7A4AAQjcAUAIyxKWVfQg0iQLGhIEA8A0IXAHADHY3hL9vhBCtNvO1G8Oqi9fzzo5p3rrdqbPn5bB9tbwh/QSdaqnz6TyblZXLpbr8gWAaUVVGQAohjMdXu33sys7OPjUMxk9c+rSza0f7d6TC0meubpyUezsJH8eAEiOwB0AxjhTv6WWRYgpZ6+nY/9kpHr6zPDSDTUlAWSAwB0AhCg0zMqny48zAx3vlTohaVkmngf7e/IlJxztYOMmSwUAGILAHUDJJAxAzZHn+FNsrlQiae3hsh9pAKYGi1MBlEmeK0eh8s2QoXGVy2B7a7C/d7i0RKwPIAvMuAPA9KtcuyrefTfhk7iCUQqtBKEHLYCMELgDKJPB9tbRhU8LISqvv1b0WEqGOWAAKDsCdwAlM2UheyoLKAsh19QeXb7CBDMA5IMcdwAojFprvNiRxEbUDgC5IXAHAEzw5G/9NhntAFA4UmUAoDBp1RrP1OiywOkzM959Sb0wYvJbBmBaEbgDQJGI/wAAmkiVAQBomfHpdgAoHDPuAIAwg/29g4OD+fn5ogdSPC6PACgWM+4AAABACRC4AwAAACVA4A4AAACUAIE7AAAAUAIsTgUAIAKnmjtrVQHkjBl3AADiqJ4+U/QQAMwWZtwBADlhrhoAkiBwBwDk4ejylaKHkI7B/t7RhU8LISqvv1b0WADMFgJ3AEAeKteuinffLXoU6SBkB1AIctwBADkZ7O8dLi2RJwMA8RC4AwDyU7l2teghAEBZEbgDAAAAJUDgDgCY4MlPfNIpCAMAKAqBOwBAVE8uyP98f+X6AQBQCAJ3AMBIdeVi0UMAAPgjcAcAhHGKwLiqwYRM0gMAskAddwCA0lRo46b3t/ffeXt+fl69ZWq6KQFAiRC4AwCEiNhUaJq6KQFAWRC4AwDioI8SAOSMHHcAAACgBAjcAQAAgBIgcAcAAABKgMAdpbS6utpqtTqdzksvvZTD5h4+fJjDVhDk4cOH3/72t4sexUxj/xeLj0Dh2P8wBIE7Sml9fb3RaNTr9evXr+ewuStXrty6dSuHDcHXo0ePnn32WU6ffOVTTP1LX/rSG2+8kekmEOLOnTvPPvts0aOYaZcvX+YjABMQuANAtiaecsSOvCmmjlKYkbPuhw8fXrhw4cGDB0UPBNOMwB2YfhcuXCh6CDPtzp07d+7cCfptdeXi8IfosXvl2tX4w5olV6+yo4r09ttvh3wEpsadO3e63e7y8vL58+c7nU7Rw8F0qhwdHRU9BiCO1dXVbrdbq9Vy2Fa32xVC5LOtLLRarUajUfQoEin1S+j1ekII27Z9f/sfv3HHPp6PvPTzn4zx/Fb7rf7y2bij08JHoFi9Xq/b7Zb3JYR/BEqh1WrZth3+EZBvk/NP27Zv3LhRr9ezHx1mCA2YUD69Xq/VanW73bW1tXy22O12Lcsq7/dvr9cr7+CFEHLuyrbtkv7h73Q6IYPfqdftz/4n+XPMt6le/5HYg9MjT5JLfRSVevCdTqfb7Zb3JWxubtbr9ZJ+fiWdj4B8m+TPtm3LhVi5jA4zhMAdJdNqtZrNZqPR2N3dzW2jm5ub8ls4ty2ma3Nzs7yDF0JYliVnTEv6h9+yLBEeOB6/O8a+SWX/CHQ6nfIOXir7RYNSz30IIZrN5sSPQKPRkBPzjUajvN9XMByBO0pDTrS3Wq12u80XYiRvvfVW0UOYaaWOV6bD+vp60UOYaaU+5YhkbW2NkB2ZYnEqyqHX6y0vLwshdnd38/9O5Fu4WOVNkpka7P9iWZbFW1Ased1sorW1Nd4pZIrFqTCdM9HeaDRyS2oHAAAwDakyMJqcaK/VanlmtAMAABiIwB2GYqIdAABAReAOE/V6vdXV1X6/b8g61F6v5xpGr9cre43F0pH7XL2F3Pd8yN3OAV8Ibx8fDvvceMvP882PwpHjDuM0m02jJtrlWYRt27IwhXNSYVlWt9u1bduQs4upd+LECW/3EwrmZMq58CVX5vX7fVk0o+hxzQqZK+haFlmv1w35bpxu8uDv9XpB3/w0V0IhmHGHQQws+CiH1O/35Xjkd7f6h7PVai0vL5OCnw/C9Jx1u91er+cc3k4cSbySJw77/LlOWYUQrm/+Tqdz6dIlvvmRP8pBwhSdTmd1dVUUVPDRlzPj4nxZyyun6nRXo9GwLMt7ORsou16v12w21aPdtu21tbVWq1XgqIAcyG/+GzduyH/Kb3j1s1Cv12VjuGLGhxlG4I7iyfjg0qVLa2trRl0ClrmkausW367j9XrdaXONTPWOFT2QGeI6i240GhzteeKYL8rEb/5z584xZYP8kSqDgsmL741Gw8xrjq50Xt9lSbZt8/WdA9u2ZRMuyZxVENOq1+v5Np0hiMyNnDuQh71cIs9hnw/XTmZBKsxB4I7CGFXw0XdOS/Ob2ltzBkkEldFQT+3kYgPh+fuKrHG058x72NdqNYLInHHMwxwE7iiGs8rNkHWo3W53c3PTdaNvVkyn06GqRqZkdql6i7eMhky2lulV+Y5uhtTrdfUSh0Oz9ztSZ9v2uXPnWq0WgXvO5GVV7wVYE/54YdYQuKMAphV8FEI0Gg2dcLxWq62urqq5j/K6QbvdznBwM0bdvapOp+OKV4ggs1ar1Vy7vdlsEjXmybeJRFGDmVmNRsP7zd/pdMz5E4bZQeCOXJnWWSkquVb1qaeeajQatVqt3+83m81Go1HG11I6cgWz3PPdbrfVajk1H5CRtbW15eXltbU1ebR3Op1utxt0ZoUsyC9M9bBnmqAQvt/8nMQifzRgQn4MnGjX1Ol05N9O+U+nTKQQgu/uPDWbTaEU5eR8KQfq0V6v18kTy59z2MvFqRz2uZEHv1oOmG9+FI7AHXkwsLMSAABAuVDHHZmT61CFSZ2VAAAASoccd2TImWi/cePGTF1VPFr79Urzd4oeBQAAmCrMuCMrzkR7u92erah9/kdFu300/6NFDwQAAEwVAnekr9frNZtN2Q91llcQHq39etFDAAAIEVBGk9qaKB0Cd6RMFnzsdDrtdrt01WPSRbYMABii2WyeOHFCbcwsLwufPXu2wFEBURG4I01yor1er7/11lszO9FeOfjf8r+iBwIAGJITSbK2ptRsNnu93oxPMKF0CNyRDpkeIws+8j0IADCKbJ/X7XZXV1eFELJwAuXYUTrUcUcKWq3W5uZmvV4nZAcAGOvs2bOy++/q6qpt27u7u0WPCIiGwB2JzGzBRwBAGZ04cUIIYds2f7ZQRqTKID61sxJffwAA8zUaDfkDf7ZQRgTuiMNV8LHo4QAAMJm8RGzbtvwrVvRwgMhIlUFkcqK9VqvNco12AEC59Hq9p556Sqa2y2T3WesPiClA4I4InIx2JtoBACUie4z0+32Z2q4G8UUPDYiAVBnokt96FHwEAJROt9vtdrtO/Ufbttvttvy7VvTQgAgI3KHF6ay0u7tLegwAoFwsy1pbW1Nnner1+vr6On/RUC6kymACJz2m3W7zBQcAAFAUZtwRptPpyMuITLQDAAAU6/uKHgAMRWclAAAAozDjDh90VgIAADANM+4YQ8FHAAAAMxG4zzQZpnc6nXq9LrtALy8vW5bFOlQAAADTUFVmdsl8mF6vJ/8pI3Um2gEAAMxEjvvsarVaTtQuhOj1erVajagdAADATATus0uN2qVut1vISAAAADARgfvs8paLqdVqhYwEAAAAExG4z65araZG6rZtkycDAABgLBanzjSnqoyM2qkkAwAAYCwCdwAAAKAESJUBAAAASoDAHQAAACgBAncAAACgBAjcAQAAgBIgcAcAAABKgMAdAAAAKAECdwAAAKAECNwBAACAEiBwBwAAAEqAwB0AAAAoAQJ3AAAAoAQI3AEAAIASIHAHAAAASoDAHQAAACgBAncAAACgBAjcAQAAgBIgcAcAAABKgMAdAAAAKIF/Btp7T/JPpD/KAAAAAElFTkSuQmCC", - "text/plain": [ - "" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" } ], "source": [ @@ -34,7 +24,7 @@ "from vedo import *\n", "import numpy as np\n", "\n", - "# settings.default_backend = '2d' # or k3d, ipyvtk, trame, or vtk\n", + "settings.default_backend = 'k3d' # or k3d, ipyvtk, trame, or vtk\n", "\n", "plt = Plotter(size=(1000,500))\n", "\n", @@ -56,13 +46,62 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "plt.close()" ] }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[7m\u001b[1mvedo version : 2023.5.0+dev2 (https://vedo.embl.es) \u001b[0m\n", + "\u001b[1mvtk version : 9.3.0\u001b[0m\n", + "\u001b[1mnumpy version : 1.26.1\u001b[0m\n", + "\u001b[1mpython version : 3.10.10 (main, Mar 21 2023, 13:41:39) [Clang 14.0.6 ]\u001b[0m\n", + "\u001b[1mpython interpreter: /Users/mmusy/miniconda3/bin/python\u001b[0m\n", + "\u001b[1minstallation point: /Users/mmusy/Software/vedo\u001b[0m\n", + "\u001b[1msystem : Darwin 21.6.0 posix x86_64\u001b[0m\n", + "\u001b[2mk3d version : 2.16.0\u001b[0m\n", + "\u001b[1m\u001b[33m💡 No input files? Try:\n", + " vedo https://vedo.embl.es/examples/data/panther.stl.gz\u001b[0m\n" + ] + } + ], + "source": [ + "!vedo\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "ename": "ModuleNotFoundError", + "evalue": "No module named 'vedo'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m/var/folders/cv/0vshhy1j7lbgzdp4bdhwk8ww0000gn/T/ipykernel_47123/4101709871.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mimport\u001b[0m \u001b[0mvedo\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mvedo\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__version__\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mvedo\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minstalldir\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'vedo'" + ] + } + ], + "source": [ + "import vedo\n", + "vedo.__version__\n", + "vedo.installdir" + ] + }, { "cell_type": "code", "execution_count": null, @@ -87,7 +126,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.10" + "version": "3.9.18" } }, "nbformat": 4, diff --git a/vedo/plotter.py b/vedo/plotter.py index 2871a29d..5ec95d6a 100644 --- a/vedo/plotter.py +++ b/vedo/plotter.py @@ -2205,12 +2205,12 @@ def add_renderer_frame(self, c=None, alpha=None, lw=None, padding=None): padding : (float) padding space in pixels. """ - if lw: - if c is None: # automatic black or white - c = (0.9, 0.9, 0.9) - if np.sum(vedo.plotter_instance.renderer.GetBackground()) > 1.5: - c = (0.1, 0.1, 0.1) - renf = addons.RendererFrame(c, alpha, lw, padding) + if c is None: # automatic black or white + c = (0.9, 0.9, 0.9) + if np.sum(vedo.plotter_instance.renderer.GetBackground()) > 1.5: + c = (0.1, 0.1, 0.1) + renf = addons.RendererFrame(c, alpha, lw, padding) + if renf: self.renderer.AddActor(renf) return self diff --git a/vedo/shapes.py b/vedo/shapes.py index fdffa769..a1f6fdf6 100644 --- a/vedo/shapes.py +++ b/vedo/shapes.py @@ -9,7 +9,7 @@ import vedo from vedo import settings -from vedo.transformations import pol2cart, cart2spher, spher2cart +from vedo.transformations import LinearTransform, pol2cart, cart2spher, spher2cart from vedo.colors import cmaps_names, get_color, printc from vedo import utils from vedo.pointcloud import Points, merge @@ -2871,9 +2871,9 @@ class Ellipsoid(Mesh): def __init__( self, pos=(0, 0, 0), - axis1=(1, 0, 0), - axis2=(0, 2, 0), - axis3=(0, 0, 3), + axis1=(0.5, 0, 0), + axis2=(0, 1, 0), + axis3=(0, 0, 1.5), res=24, c="cyan4", alpha=1.0, @@ -2891,15 +2891,21 @@ def __init__( .. note:: `axis1` and `axis2` are only used to define sizes and one azimuth angle. """ - self.center = pos + + self.axis1 = np.asarray(axis1) + self.axis2 = np.asarray(axis2) + self.axis3 = np.asarray(axis3) + + self.va = np.linalg.norm(self.axis1) + self.vb = np.linalg.norm(self.axis2) + self.vc = np.linalg.norm(self.axis3) + self.va_error = 0 self.vb_error = 0 self.vc_error = 0 - self.axis1 = axis1 - self.axis2 = axis2 - self.axis3 = axis3 - self.nr_of_points = 1 # used by pcaEllipsoid + + self.nr_of_points = 1 # used by pca_ellipsoid() if utils.is_sequence(res): res_t, res_phi = res @@ -2907,40 +2913,19 @@ def __init__( res_t, res_phi = 2 * res, res elli_source = vtk.new("SphereSource") + elli_source.SetRadius(1) elli_source.SetThetaResolution(res_t) elli_source.SetPhiResolution(res_phi) elli_source.Update() - l1 = np.linalg.norm(axis1) - l2 = np.linalg.norm(axis2) - l3 = np.linalg.norm(axis3) - self.va = l1 - self.vb = l2 - self.vc = l3 - axis1 = np.array(axis1) / l1 - axis2 = np.array(axis2) / l2 - axis3 = np.array(axis3) / l3 - angle = np.arcsin(np.dot(axis1, axis2)) - theta = np.arccos(axis3[2]) - phi = np.arctan2(axis3[1], axis3[0]) - t = vtk.vtkTransform() - t.PostMultiply() - t.Scale(l1, l2, l3) - t.RotateX(np.rad2deg(angle)) - t.RotateY(np.rad2deg(theta)) - t.RotateZ(np.rad2deg(phi)) - tf = vtk.new("TransformPolyDataFilter") - tf.SetInputData(elli_source.GetOutput()) - tf.SetTransform(t) - tf.Update() - pd = tf.GetOutput() - self.transformation = t + super().__init__(elli_source.GetOutput(), c, alpha) + + pos = utils.make3d(pos) + + matrix = np.c_[self.axis1, self.axis2, self.axis3] + lt = LinearTransform(matrix).translate(pos) + self.apply_transform(lt) - super().__init__(pd, c, alpha) - self.phong() - if len(pos) == 2: - pos = (pos[0], pos[1], 0) - self.pos(pos) self.name = "Ellipsoid" def asphericity(self):