From d5f940f3d02b1637f5964148948f6f7765d3efcd Mon Sep 17 00:00:00 2001 From: marcomusy Date: Fri, 24 Nov 2023 14:16:43 +0100 Subject: [PATCH] fix volume.apply_transform() --- vedo/transformations.py | 5 +++ vedo/version.py | 2 +- vedo/volume.py | 78 ++++++++++++----------------------------- 3 files changed, 29 insertions(+), 56 deletions(-) diff --git a/vedo/transformations.py b/vedo/transformations.py index 5a48ac44..4782dcfc 100644 --- a/vedo/transformations.py +++ b/vedo/transformations.py @@ -162,6 +162,11 @@ def __str__(self): def __repr__(self): return self.__str__() + + def print(self): + """Print transformation.""" + print(self.__str__()) + return self def move(self, obj): """ diff --git a/vedo/version.py b/vedo/version.py index 1cba1672..5c586851 100644 --- a/vedo/version.py +++ b/vedo/version.py @@ -1 +1 @@ -_version = '2023.5.0+dev4' +_version = '2023.5.0+dev5' diff --git a/vedo/volume.py b/vedo/volume.py index ccef3ef7..1aa89a93 100644 --- a/vedo/volume.py +++ b/vedo/volume.py @@ -455,7 +455,7 @@ def slice_plane(self, origin=(0, 0, 0), normal=(1, 1, 1), autocrop=False): msh.pipeline = utils.OperationNode("slice_plane", parents=[self], c="#4cc9f0:#e9c46a") return msh - def warp(self, source, target, sigma=1, mode="3d", fit=False): + def warp(self, source, target, sigma=1, mode="3d", fit=True): """ Warp volume scalars within a Volume by specifying source and target sets of points. @@ -478,77 +478,45 @@ def warp(self, source, target, sigma=1, mode="3d", fit=False): NLT.target_points = target NLT.sigma = sigma NLT.mode = mode - NLT.invert() self.apply_transform(NLT, fit=fit) self.pipeline = utils.OperationNode("warp", parents=[self], c="#4cc9f0") return self - def apply_transform(self, T, fit=False): + def apply_transform(self, T, fit=True, interpolation="linear"): """ Apply a transform to the scalars in the volume. Arguments: - T : (vtkTransform, matrix) + T : (LinearTransform, NonLinearTransform) The transformation to be applied fit : (bool) - fit/adapt the old bounding box to the warped geometry + fit/adapt the old bounding box to the modified geometry + interpolation : (str) + one of the following: "linear", "nearest", "cubic" + """ - if isinstance(T, transformations.NonLinearTransform): - T = T.T - - if isinstance(T, vtk.vtkMatrix4x4): - tr = vtk.vtkTransform() - tr.SetMatrix(T) - T = tr - - elif utils.is_sequence(T): - M = vtk.vtkMatrix4x4() - n = len(T[0]) - for i in range(n): - for j in range(n): - M.SetElement(i, j, T[i][j]) - tr = vtk.vtkTransform() - tr.SetMatrix(M) - T = tr - + TI = T.compute_inverse() reslice = vtk.new("ImageReslice") reslice.SetInputData(self.dataset) - reslice.SetResliceTransform(T) - self.transform = T + reslice.SetResliceTransform(TI.T) reslice.SetOutputDimensionality(3) - reslice.SetInterpolationModeToLinear() - - spacing = self.dataset.GetSpacing() - origin = self.dataset.GetOrigin() - - if fit: - bb = self.box() - if isinstance(T, vtk.vtkThinPlateSplineTransform): - TI = vtk.vtkThinPlateSplineTransform() - TI.DeepCopy(T) - TI.Inverse() - else: - TI = vtk.vtkTransform() - TI.DeepCopy(T) - bb.apply_transform(TI) - bounds = bb.bounds() - bounds = ( - bounds[0] / spacing[0], - bounds[1] / spacing[0], - bounds[2] / spacing[1], - bounds[3] / spacing[1], - bounds[4] / spacing[2], - bounds[5] / spacing[2], - ) - bounds = np.round(bounds).astype(int) - reslice.SetOutputExtent(bounds) - reslice.SetOutputSpacing(spacing[0], spacing[1], spacing[2]) - reslice.SetOutputOrigin(origin[0], origin[1], origin[2]) - + if "linear" in interpolation.lower(): + reslice.SetInterpolationModeToLinear() + elif "nearest" in interpolation.lower(): + reslice.SetInterpolationModeToNearestNeighbor() + elif "cubic" in interpolation.lower(): + reslice.SetInterpolationModeToCubic() + else: + vedo.logger.error( + f"in apply_transform: unknown interpolation mode {interpolation}") + raise ValueError() + reslice.SetAutoCropOutput(fit) reslice.Update() self._update(reslice.GetOutput()) - self.pipeline = utils.OperationNode("apply_transform", parents=[self], c="#4cc9f0") + self.transform = T + self.pipeline = utils.OperationNode( + "apply_transform", parents=[self], c="#4cc9f0") return self def imagedata(self):