-
Notifications
You must be signed in to change notification settings - Fork 55
/
rapd_primers.py
390 lines (358 loc) · 17.2 KB
/
rapd_primers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
"""
Generate potential primers for RAPD/RFLP from reference genomic sequence
Copyright 2009 Maurice Ling <[email protected]> on behalf of
Maurice Ling, Chin-How Lee, Jack Si-Hao Oon, Kun-Cheng Lee.
@see: Lee, CH, Lee, KC, Oon, JSH, Ling, MHT. 2010. Bactome, I:
Python in DNA Fingerprinting. In: Peer-Reviewed Articles from
PyCon Asia-Pacific 2010. The Python Papers 5(3): 6.
Licence: GNU General Public License version 3
Bactome package is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
import anydbm
from Bio import SeqIO
from Bio.Seq import Seq
from Bio.Alphabet import generic_dna
import math
from marshaldbm import marshaldbm
def fasta_seq(fasta='ATCC8739.fasta'):
"""
Open fasta format file and returns the sequence.
"""
f = SeqIO.parse(open(fasta, 'rU'), 'fasta').next()
return f.seq
def generate_fragments(seq, tablefile, fragment_size=15):
"""
Slice an entire sequence into fragments of equal lengths
Parameters:
seq = sequence to be sliced (output from fasta_seq function)
tablefile = name of file to store the sliced sequence
fragment_size = length of each sequence to be sliced into. This will
be the maximum primer/probe length.
Default value is 15 bases.
"""
genome_fragment = anydbm.open(tablefile, 'c')
last_start= len(seq) - fragment_size
count = 0
for start in range(0, last_start, fragment_size):
genome_fragment[str(count)] = seq[start:15+start].data
count = count + 1
if (count % 1000) == 0:
print str(count) + ' fragments inserted into ' + tablefile
print str(count) + ' fragments inserted into ' + tablefile
genome_fragment.close()
def LCS(seq, test):
"""
Finds the longest common substring between the 2 inputs (seq and test).
Adapted from http://en.wikibooks.org/wiki/Algorithm_Implementation/
Strings/Longest_common_substring
"""
m = len(seq)
n = len(test)
L = [[0] * (n+1) for i in xrange(m+1)]
LCS = set()
longest = 0
for i in xrange(m):
for j in xrange(n):
if seq[i] == test[j]:
v = L[i][j] + 1
L[i+1][j+1] = v
if v > longest:
longest = v
LCS = set()
if v == longest:
LCS.add(seq[i-v+1:i+1])
return LCS
def generate_all_LCS(fragfile, LCSfile,
min_primer=7, max_interval=198, min_interval=6):
"""
Generates primers where forward primer sequence = reverse primer sequence
given the size of amplicon and minimum length of primers.
Parameters:
fragfile = file of sliced sequence (tablefile parameter of
generate_fragments function)
LCSfile = name of file to store least common substrings' (primers) data
min_primer = smallest acceptable length for primers
max_interval = number of maximum fragment intervals between 2 primers.
This value is determines the maximum length of amplicon generated
and is determined by the length of each sliced fragment.
Default value is 198 as 3000bp amplicon is the maximum normal
Taq polymerase can amplify. 198 intervals of 15 bases per
fragment + 2 flanking fragment of maximum of 15 bases (primer
length) gives a total of 200 fragments of 15 bases = 3000 bases.
min_interval = number of minimum fragment intervals between 2 primers.
This value is determines the maximum length of amplicon generated
and is determined by the length of each sliced fragment.
Default value is 6 as 120bp amplicon is the minimum length visible
on 1.5% agarose gel that is also suitable for 3000 bp. 6 intervals
of 15 bases per fragment + 2 flanking fragment of maximum of 15
bases (primer length) gives a total of 8 fragments of 15 bases =
120 bases.
"""
genome_fragment = anydbm.open(fragfile, 'c')
num_of_frag = len(genome_fragment)
num_analyzed = 0
result = {}
fragment_size = len(genome_fragment['0'])
for size in range(max_interval, min_interval, -1):
com_seq = anydbm.open(LCSfile, 'c')
print 'Analysing for ' + str(fragment_size * size) + 'bp amplicons'
num_com = 0
for frag in range(0, num_of_frag - size):
p1 = genome_fragment[str(frag)]
p2 = genome_fragment[str(frag+size)]
p2 = Seq(p2, generic_dna).reverse_complement().data
try: common_seq = LCS(p1, p2).pop()
except : common_seq = ''
num_analyzed = num_analyzed + 1
if len(common_seq) > min_primer:
com_seq['|'.join([str(frag), str(frag+size),
str(size)])] = common_seq
num_com = num_com + 1
if (num_analyzed % 10000) == 0:
print str(num_analyzed) + ' pairs analyzed'
print ' ' + str(num_com) + ' LCS more than ' + \
str(min_primer) + 'bp for ' + \
str(15 * size) + 'bp amplicons'
com_seq.close()
result[size] = str(num_com)
print str(num_analyzed) + ' pairs analyzed'
print ' ' + str(num_com) + ' LCS more than ' + str(min_primer) + \
'bp for ' + str(15 * size) + 'bp amplicons'
genome_fragment.close()
return result
def get_LCS_by_amplicon(LCSfile, amplicon_size):
"""
Extract all the primers and amplicon positions from the LCSfile given the
amplicon length.
Parameters:
LCSfile = file of least common substrings' (primers) data
amplicon_size = size of amplified product in terms of number of
fragments intervening 2 primers. For example, if the fragment
size is 15 and the amplicon size is 60, we are then looking
for primers (forward primer sequence = reverse primer
sequence) that gives amplicons of 900 bp (60*15) excluding
the flanking primers.
Returns:
(List of primers,
List of amplicons' data)
where
1. each data element in "List of amplicons' data" is in the format of
'<start fragment position>|<end fragment position>|<amplicon size>'
<start fragment position> and <end fragment position> multiplied
by the fragment size will give the corresponding position on the
fasta sequence. For example, '89572|89632|60' represents the
amplicon from 1343580 bp (889572*15) to 1344480 bp (89632*15) of
the fasta sequence, corresponding to an amplicon size of 900bp
(60*15).
2. the number of primers = number of primers's data. This means that in
primers = get_LCS_by_amplicon('primer.table', 60)
primers[0][10] sequence will amplify primers[1][10]
"""
com_seq = anydbm.open(LCSfile, 'c')
keys = com_seq.keys()
return ([com_seq[x]
for x in keys
if x.split('|')[2] == str(amplicon_size)],
[x
for x in keys
if x.split('|')[2] == str(amplicon_size)])
def LCS_uniqueness(LCSfile, amplicon_size):
"""
Extract all the primers and amplicon positions from the LCSfile given the
amplicon length and groups the primers into 2 groups: those that only
yield one amplicon and those that yield more than one amplicons.
Parameters:
LCSfile = file of least common substrings' (primers) data
amplicon_size = size of amplified product in terms of number of
fragments intervening 2 primers. For example, if the fragment
size is 15 and the amplicon size is 60, we are then looking
for primers (forward primer sequence = reverse primer
sequence) that gives amplicons of 900 bp (60*15) excluding
the flanking primers.
Returns:
(List of unique primers,
List of non-unique primers)
where 'List of unique primers' are primers amplifying only one
amplicon, and 'List of non-unique primers' is a tuple of 'number
of amplicons' and primer sequence.
"""
LCS = get_LCS_by_amplicon(LCSfile, amplicon_size)[0]
unique_LCS = [x
for x in LCS
if LCS.count(x) == 1]
non_unique_LCS = list(set([(LCS.count(x), x)
for x in LCS
if LCS.count(x) > 1]))
return (unique_LCS, non_unique_LCS)
def LCS_tabulate(LCSfile, max_interval=198, min_interval=6,
fragment_size=15, p='yes'):
"""
Provides a tabulation of the given LCSfile, grouped by amplicon size.
Parameters:
LCSfile = file of least common substrings' (primers) data
max_interval = number of maximum fragment intervals between 2 primers.
This value is determines the maximum length of amplicon generated
and is determined by the length of each sliced fragment.
Default value is 198 as 3000bp amplicon is the maximum normal
Taq polymerase can amplify. 198 intervals of 15 bases per
fragment + 2 flanking fragment of maximum of 15 bases (primer
length) gives a total of 200 fragments of 15 bases = 3000 bases.
min_interval = number of minimum fragment intervals between 2 primers.
This value is determines the maximum length of amplicon generated
and is determined by the length of each sliced fragment.
Default value is 6 as 120bp amplicon is the minimum length visible
on 1.5% agarose gel that is also suitable for 3000 bp. 6 intervals
of 15 bases per fragment + 2 flanking fragment of maximum of 15
bases (primer length) gives a total of 8 fragments of 15 bases =
120 bases.
fragment_size = length of each sequence to be sliced into. This will
be the maximum primer/probe length.
Default value is 15 bases.
p = flag to determine if the tabulation data is to be printed.
Default = yes
"""
result = {}
for amplicon_size in range(max_interval, min_interval, -1):
(unique_LCS, non_unique_LCS) = LCS_uniqueness(LCSfile, amplicon_size)
if p == 'yes':
print 'Longest Common Substring (primer) for amplicon size of ' + \
str(amplicon_size*fragment_size)
print 'Unique Primers (only one amplicon). N = ' + \
str(len(unique_LCS))
print ' '.join(unique_LCS)
print
print 'Non-Unique Primers (more than one amplicon)'
print '\t'.join(['# amplicons', 'Primer sequence'])
for lcs in non_unique_LCS:
print '\t\t'.join([str(lcs[0]), lcs[1]])
print
print
result[str(amplicon_size)] = (unique_LCS, non_unique_LCS)
return result
def inverse_LCS(LCSfile, inverseLCSfile, max_interval=198, min_interval=6,
fragment_size=15):
"""
Generates the index file of LCSfile.
Format of LCSfile: <start fragment position>|
<end fragment position>|
<amplicon size> = <primer sequence>
Format of inverseLCSfile: <primer sequence> =
[<start fragment position>|
<end fragment position>|
<amplicon size>, ...]
Parameters:
LCSfile = file of least common substrings' (primers) data
inverseLCSfile = name of file to store the index of LCSfile
max_interval = number of maximum fragment intervals between 2 primers.
This value is determines the maximum length of amplicon generated
and is determined by the length of each sliced fragment.
Default value is 198 as 3000bp amplicon is the maximum normal
Taq polymerase can amplify. 198 intervals of 15 bases per
fragment + 2 flanking fragment of maximum of 15 bases (primer
length) gives a total of 200 fragments of 15 bases = 3000 bases.
min_interval = number of minimum fragment intervals between 2 primers.
This value is determines the maximum length of amplicon generated
and is determined by the length of each sliced fragment.
Default value is 6 as 120bp amplicon is the minimum length visible
on 1.5% agarose gel that is also suitable for 3000 bp. 6 intervals
of 15 bases per fragment + 2 flanking fragment of maximum of 15
bases (primer length) gives a total of 8 fragments of 15 bases =
120 bases.
fragment_size = length of each sequence to be sliced into. This will
be the maximum primer/probe length.
Default value is 15 bases.
"""
inverseLCSfile = marshaldbm(inverseLCSfile, 'c')
count = 0
for amplicon_size in range(max_interval, min_interval, -1):
seq, pos = get_LCS_by_amplicon(LCSfile, amplicon_size)
print 'Processing for amplicon size of ' + \
str(amplicon_size*fragment_size)
for index in range(len(seq)):
count = count + 1
try:
temp = inverseLCSfile[seq[index]]
inverseLCSfile[seq[index]] = temp + [pos[index]]
except KeyError:
inverseLCSfile[seq[index]] = [pos[index]]
if (count % 1000) == 0:
print str(count) + ' LCS processed'
print str(count) + ' LCS processed'
inverseLCSfile.close()
def look_for_primers(inverseLCSfile, num_of_amplicons, min_tm, p='yes'):
"""
Scans the LCSfile index for primer(s) that amplifies a given number of
amplicons. The primer must not end with adenosine and thymidine, and
must meet minimum annealing temperature.
Parameters:
inverseLCSfile = name of LCSfile index file
num_of_amplicons = number of amplicons generated by required primer(s)
min_tm = minimum annealing temperature (in degrees centigrade) of
primers. Calculated as 2AT + 4GC.
p = flag to determine if data is to be printed. Default = yes
Returns:
List of primers meeting the criteria
"""
f = marshaldbm(inverseLCSfile, 'c')
keys = f.keys()
primers = []
for k in keys:
temperature = 4*(k.count('G')+k.count('C')) + \
2*(k.count('A')+k.count('T'))
if (len(f[k])) == num_of_amplicons and \
temperature > min_tm-1 and \
not k.endswith('A') and not k.endswith('T'):
primers.append(k)
if p == 'yes':
print k
print f[k]
print
return primers
def generate_primers_from_fasta(fasta='ATCC8739.fasta',
genome_fragment='genome_fragment.table',
max_primer_length=15,
min_primer_length=7,
max_amplicon_length=3100,
min_amplicon_length=300,
primer_file='primer.table',
inverse_primer_file='invprimer.table'):
"""
Generate a file of primers with amplicon size and genomic position from
the Fasta sequence file.
Parameters:
fasta = name of fasta file to process
genome_fragment = name of file to store the sliced sequence.
Default = 'genome_fragment.table'
max_primer_length = maximum length of primer (fragment size of genome
slices). Default = 15 bp
min_primer_length = minimum length of primer. Default = 7 bp
max_amplicon_length = maximum size of amplicon. Default = 3100 bp
min_amplicon_length = minimum size of amplicon. Default = 300 bp
primer_file = file of least common substrings' (primers) data.
Default = 'primer.table'
inverse_primer_file = name of primers index file.
Default = 'invprimer.table'
Output files:
1. genome fragment file from 'generate_fragments' function
2. primer file from 'generate_all_LCS' function
3. inverse primer file from 'inverse_LCS' function
"""
seq = fasta_seq(fasta)
generate_fragments(seq, genome_fragment, fragment_size=max_primer_length)
generate_all_LCS(genome_fragment, primer_file,
min_primer_length,
int(max_amplicon_length/max_primer_length),
int(min_amplicon_length/max_primer_length))
inverse_LCS(primer_file, inverse_primer_file,
int(max_amplicon_length/max_primer_length),
int(min_amplicon_length/max_primer_length),
max_primer_length)