forked from JPedroRBelo/pyMDQN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
69 lines (52 loc) · 1.81 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import torch
import torchvision.transforms as T
import numpy as np
from PIL import Image
from pathlib import Path
import copy
from TrainNQL import TrainNQL
import config as cfg
#device = "cuda"#torch.device("cuda" if torch.cuda.is_available() else "cpu")
cycles = cfg.cycles
#trains = cfg.trains
def main():
torch.cuda.empty_cache()
torch.manual_seed(torch.initial_seed())
episode=int(torch.load('files/episode.dat'))
agent=TrainNQL(epi=episode)
target_net=cfg.target_q
agent.load_data()
for j in range(cycles):
print("Ep."+str(episode)+" Train= "+str(j+1)+"/"+str(cycles))
agent.train()
'''
if(j%target_net==0):
agent.gray_target_net=copy.deepcopy(agent.gray_policy_net)
agent.depth_target_net=copy.deepcopy(agent.depth_policy_net)
'''
gray_policy_net=copy.deepcopy(agent.gray_policy_net)
depth_policy_net=copy.deepcopy(agent.depth_policy_net)
'''
if episode%target_net==1:
agent.gray_target_net=copy.deepcopy(agent.gray_policy_net)
agent.depth_target_net=copy.deepcopy(agent.depth_policy_net)
'''
gray_target_net = copy.deepcopy(agent.gray_target_net)
depth_target_net = copy.deepcopy(agent.depth_target_net)
model_dir='results/ep'+str(episode)
Path(model_dir).mkdir(parents=True, exist_ok=True)
save_gray_policy_net=model_dir+'/modelGray.net'
save_gray_target_net=model_dir+'/tModelGray.net'
save_depth_policy_net=model_dir+'/modelDepth.net'
save_depth_target_net=model_dir+'/tModelDepth.net'
torch.save(gray_policy_net,save_gray_policy_net)
torch.save(gray_target_net,save_gray_target_net)
torch.save(depth_policy_net,save_depth_policy_net)
torch.save(depth_target_net,save_depth_target_net)
episode=episode+1
print("Episode: ",episode)
torch.save(episode,'files/episode.dat')
with open('files/episode.txt', 'w') as f:
f.write(str(episode))
if __name__ == "__main__":
main()