Skip to content

Latest commit

 

History

History
108 lines (84 loc) · 6.34 KB

README.md

File metadata and controls

108 lines (84 loc) · 6.34 KB

JointBERT-with-syntax

Adding Syntactic Features to JointBERT: BERT for Joint Intent Classification and Slot Filling

Model Architecture

  • Predict intent and slot at the same time from one BERT model (=Joint model)
  • total_loss = intent_loss + coef * slot_loss (Change coef with --slot_loss_coef option)
  • If you want to use CRF layer, give --use_crf option

Dependencies

  • python
  • torch
  • transformers
  • seqeval
  • pytorch-crf

Dataset

Train Dev Test Intent Labels Slot Labels
ATIS 4,478 500 893 21 120
Snips 13,084 700 700 7 72
  • The number of labels are based on the train dataset.
  • Add UNK for labels (For intent and slot labels which are only shown in dev and test dataset)
  • Add PAD for slot label

Generate Data

$ python generate_data.py --input_dir data/snips --output_dir data --setting bracketed.ground_truth

# To generate all at once 
$ ./bin/generate_all_data.sh

Training & Evaluation

$ python3 train.py --task {task_name} \
                  --model_type {model_type} \
                  --model_dir {model_dir_name} \
                  --do_train --do_eval \
                  --use_crf

# For ATIS
$ python3 train.py --task atis \
                  --model_type bert \
                  --model_dir atis_model \
                  --do_train --do_eval
# For Snips
$ python3 train.py --task snips \
                  --model_type bert \
                  --model_dir snips_model \
                  --do_train --do_eval

Prediction

$ python3 predict.py --input_file {INPUT_FILE_PATH} --output_file {OUTPUT_FILE_PATH} --model_dir {SAVED_CKPT_PATH}

Results

intent_acc slot_precision slot_recall slot_f1 semantic_frame_acc
('snips', 'baseline') 98.1905 94.8084 95.9032 95.3526 89.5714
('snips', 'bracketed.NP+VP.supervised') 98.4762 94.9014 96.0149 95.4549 89.4286
('snips', 'bracketed.NP+VP.with_labels.supervised') 98.381 94.6116 95.7914 95.1977 88.7143
('snips', 'bracketed.NP.supervised') 98.1429 94.7232 95.9032 95.3089 89.0952
('snips', 'bracketed.VP.supervised') 98 94.7945 95.959 95.373 89.3333
('snips', 'bracketed.full.supervised') 98.0476 91.8405 94.1069 92.9591 85.1905
('snips', 'bracketed.full.with_labels.supervised') 98.3333 92.6653 94.6335 93.6386 86
('snips', 'bracketed.ground_truth') 98.5238 97.5508 97.8771 97.7136 94.8571
('snips', 'control.less_than_avg_length') 97.9048 89.3319 92.9236 91.092 80.9524
('snips', 'control.less_than_avg_length.bracketed.full.supervised') 96.8095 85.4795 90.077 87.7147 74.6667
('snips', 'control.random_50pct') 97.8095 93.6102 94.9348 94.2678 86.2381
('snips', 'control.random_50pct.bracketed.full.supervised') 97.8095 87.9652 91.8793 89.8741 79.5238
('atis', 'baseline') 97.2751 94.6374 95.3153 94.9751 86.2262
('atis', 'bracketed.NP+VP.supervised') 97.723 95.1964 95.7685 95.4815 87.3087
('atis', 'bracketed.NP+VP.with_labels.supervised') 97.6857 95.2127 95.8746 95.5424 87.7566
('atis', 'bracketed.NP.no_nest.supervised') 98.2381 94.8164 96.0521 95.4301 89.619
('atis', 'bracketed.NP.supervised') 97.723 94.2898 95.2331 94.759 85.9276
('atis', 'bracketed.VP.supervised') 97.4991 95.1215 95.7247 95.4221 87.6073
('atis', 'bracketed.full.supervised') 97.3871 94.2687 94.9305 94.5983 86.7861
('atis', 'bracketed.full.with_labels.supervised') 97.1258 93.4811 94.3472 93.912 86.0769
('atis', 'bracketed.ground_truth') 97.5737 95.8782 96.2271 96.0522 89.4364
('atis', 'control.less_than_avg_length') 97.3124 93.7032 94.646 94.1719 84.6211
('atis', 'control.less_than_avg_length.bracketed.full.supervised') 97.2004 92.094 93.3603 92.7227 84.6958
('atis', 'control.random_50pct') 97.3124 94.5388 95.327 94.9312 85.9649
('atis', 'control.random_50pct.bracketed.full.supervised') 96.4166 91.2556 92.2237 91.737 81.1497

Updates

  • 2021/12/09: Add Generate data / training helper scripts

References