Skip to content

This code provides a benchmarking framework to evaluate ease of tuning of hyperparameters in a clustering algorithm. [ AAAI 2021 ]

License

Notifications You must be signed in to change notification settings

mishra-sid/clustering_hyperparameters

Repository files navigation

Clustering Hyperparameters

This code provides a benchmarking framework to evaluate ease of tuning of hyperparameters in a clustering algorithm.

Installations Instructions

  1. To create a virtual environment using conda, with all the dependencies installed use:

        conda env create --name clustering-env --file=environment.yml

    Optionally if you prefer pip, create a virtual environment and run:

        pip install -r requirements.txt
  2. After cloning the repo, you can install all required dependencies by running make install in the root directory. (Note: this will install python modules, so be sure you are in the proper virtual environment.)

  3. [Optional] To build a Docker environment use the provided Dockerfile or docker-compose.yml, go to the root directory of the repository and perform:

       # Using docker build
       docker build -t clustering-benchmark .
    
       # Using docker compose
       docker-compose up

Usage Instruction

This module provides a command line interface powered by Facebook Hydra available with clustering_hyperparameters command. The default options are provided in Global Config file

They can be overriden using the cli in the following way:

    clustering_hyperparameters override_key1=override_value1
                               override_key2=override_value2 ... 
                               override_key_n=override_value_n

    # e.g
    clustering_hyperparameters suite=nlp model=dbscan

Extending the framework

Modify hyperparameter ranges

Modify the config file at src/clustering_hyperparameters/conf/model/<model>.yaml e.g. dbscan model config file

You can use dynamic ranges using hydra's variable interpolation e.g. kmeans-minibatch config file Modified dbscan parameter ranges

    name: dbscan
    params:
    - name: metric
        type: fixed
        value_type: str
        value: cosine
    # Updated eps upper bound from 0.999 to 1.999
    - name: eps
        type: range
        value_type: float
        bounds: [0.001, 1.999]
    # Updated min_samples upper bound from 100 to 500
    - name: min_samples
        type: range
        value_type: int
        bounds: [2, 500]

Add a new Model

Add a new file to model dir

    @ClusteringModel.register('my-new-model')
    class MyNewModel(ClusteringModel):
        def __init__(self, **parameters):
            # Initialize parameters
        
        def fit(self, x):
            # Define how to fit a model

        def get_labels(self):
            # Define how to get clustering label assignments

To use the new model, run:

    clustering_hyperparameters model=my-new-model

Define a new dataset collection/suite

To define a new suite, create a new file in suite dir in the following format:

    name: my-suite
    cache_dir: ${root_dir}/data/my-suite
    datasets:
    - name: mfeat-fourier
      loader: openml
      metadata:
        id: 14
        num_instances: 2000
        num_features: 76
        num_clusters: 10
    ....

    - name: AGNews-paraphrase-mpnet
      loader: torchtext
      metadata:
        tag: AG_NEWS
        split: test
        encoder: sentence-transformer
        encoder_model: paraphrase-mpnet-base-v2
        num_instances: 7600
        num_features: 768   
        num_clusters: 4
    

Define a new dataloader

    @DatasetLoader.register("my-data-loader")
    class MyDataLoader(DatasetLoader):
        def __init__(self, name, metadata)
            # Initialize metadata

        def fetch_and_cache(self, cache_dir):
            # Fetch dataset, perform preprocessing and cache it using `Dataset.store_from_data` utility

To use this data loader, use loader: my-new-loader in suite config file.

Results

The notebooks with the results/plots found in the paper can be found as jupyter notebook in experiments directory. It contains plots for fANOVA analysis, $EoM_{R}$ / $EoM_B$ for generic and nlp datasets.

Reproducibility

Obtain Evaluations provided in paper

In a SLURM environment, run the script file:

   ./bin/run_all_exps.sh

This will spawn multiple sbatch jobs which will run all the required evaluations in parallel.

Reproduce results/plots provided in paper using provided evaluations

For ease of tweaking, the evaluated outputs described in the paper are provided in output

To reproduce the results:

  1. Extract output.zip to output/
  2. Go to any jupyter notebook in experiments folder and run the notebook to get the corresponding plots.

Citation

@inproceedings{mishra2022evaluative,
  title={An evaluative measure of clustering methods incorporating hyperparameter sensitivity},
  author={Mishra, Siddhartha and Monath, Nicholas and Boratko, Michael and Kobren, Ariel and McCallum, Andrew},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  volume={36},
  number={7},
  pages={7788--7796},
  year={2022}
}

About

This code provides a benchmarking framework to evaluate ease of tuning of hyperparameters in a clustering algorithm. [ AAAI 2021 ]

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages