-
Notifications
You must be signed in to change notification settings - Fork 0
/
attn_and_long_ctx_patches.py
223 lines (184 loc) · 9.46 KB
/
attn_and_long_ctx_patches.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import torch
from torch import nn
from typing import Optional, Tuple, Union
import transformers
from transformers.models.llama.modeling_llama import apply_rotary_pos_emb, rotate_half
import math
try:
from xformers import ops as xops
except ImportError:
xops = None
print(
"Xformers is not installed correctly. If you want to use memory_efficient_attention use the following command to install Xformers\npip install xformers."
)
STORE_KV_BEFORE_ROPE = False
USE_MEM_EFF_ATTENTION = False
ALPHA = 1.0
AUTO_COEFF = 1.0
SCALING_FACTOR = None
def apply_rotary_pos_emb_single(q, cos, sin, position_ids):
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
q_embed = (q * cos) + (rotate_half(q) * sin)
return q_embed
def xformers_forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
if STORE_KV_BEFORE_ROPE is False:
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
# [bsz, nh, t, hd]
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
else:
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states = apply_rotary_pos_emb_single(query_states, cos, sin, position_ids)
position_ids = torch.arange(kv_seq_len, dtype=torch.long, device=cos.device)
position_ids = position_ids.unsqueeze(0).view(-1, kv_seq_len)
key_states = apply_rotary_pos_emb_single(key_states, cos, sin, position_ids)
if xops is not None and USE_MEM_EFF_ATTENTION:
attn_weights = None
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
attn_bias = None if (query_states.size(1)==1 and key_states.size(1)>1) else xops.LowerTriangularMask()
attn_output = xops.memory_efficient_attention(
query_states, key_states, value_states, attn_bias=attn_bias, p=0)
else:
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
attn_weights = torch.max(
attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min, device=attn_weights.device)
)
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
old_init = transformers.models.llama.modeling_llama.LlamaRotaryEmbedding.__init__
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
t = t / self.scaling_factor
freqs = torch.einsum("i,j->ij", t, self.ntk_inv_freq.to(device))
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
def adaptive_ntk_init(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=None):
self.alpha = ALPHA
if SCALING_FACTOR is None:
self.scaling_factor = scaling_factor or 1.0
else:
self.scaling_factor = SCALING_FACTOR
if isinstance(ALPHA,(float,int)):
base = base * ALPHA ** (dim / (dim-2))
self.base = base
elif ALPHA=='auto':
self.base = base
else:
raise ValueError(ALPHA)
old_init(self, dim, max_position_embeddings, base, device)
self.ntk_inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
self._set_cos_sin_cache = _set_cos_sin_cache
self._set_cos_sin_cache(
self, seq_len=max_position_embeddings, device=self.ntk_inv_freq.device, dtype=torch.get_default_dtype()
)
def adaptive_ntk_forward(self, x, seq_len=None):
if seq_len > self.max_seq_len_cached:
if isinstance(self.alpha,(float,int)):
self._set_cos_sin_cache(self, seq_len=seq_len, device=x.device, dtype=x.dtype)
elif self.alpha=='auto':
t = torch.arange(seq_len, device=x.device, dtype=torch.float32)
t = t / self.scaling_factor
dim = self.dim
alpha = (seq_len / (self.max_position_embeddings/2) - 1) * AUTO_COEFF
base = self.base * alpha ** (dim / (dim-2))
ntk_inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(x.device) / dim ))
freqs = torch.einsum("i,j->ij", t, ntk_inv_freq)
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
cos_cached = emb.cos()[None, None, :, :]
sin_cached = emb.sin()[None, None, :, :]
return (
cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype)
)
return (
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype)
)
def apply_attention_patch(
use_memory_efficient_attention=False,
store_kv_before_rope=False
):
global USE_MEM_EFF_ATTENTION, STORE_KV_BEFORE_ROPE
if use_memory_efficient_attention is True and xops is not None:
USE_MEM_EFF_ATTENTION = use_memory_efficient_attention
print("USE_MEM_EFF_ATTENTION: ",USE_MEM_EFF_ATTENTION)
STORE_KV_BEFORE_ROPE = store_kv_before_rope
print("STORE_KV_BEFORE_ROPE:", STORE_KV_BEFORE_ROPE)
transformers.models.llama.modeling_llama.LlamaAttention.forward = xformers_forward
def apply_ntk_scaling_patch(alpha: Union[float,str], scaling_factor: Optional[float] = None):
global ALPHA
global SCALING_FACTOR
ALPHA = alpha
SCALING_FACTOR = scaling_factor
try:
ALPHA = float(ALPHA)
except ValueError:
if ALPHA!="auto":
raise ValueError(f"Alpha can only be a float or 'auto', but given {ALPHA}")
print(f"Apply NTK scaling with ALPHA={ALPHA}")
if scaling_factor is None:
print(f"The value of scaling factor will be read from model config file, or set to 1.")
else:
print(f"Warning: scaling factor is set to {SCALING_FACTOR}. \
If you set the value by hand, do not forget to update \
max_position_embeddings in the model config file.")
transformers.models.llama.modeling_llama.LlamaRotaryEmbedding.__init__ = adaptive_ntk_init
if hasattr(transformers.models.llama.modeling_llama,'LlamaLinearScalingRotaryEmbedding'):
transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding.__init__ = adaptive_ntk_init
transformers.models.llama.modeling_llama.LlamaRotaryEmbedding.forward = adaptive_ntk_forward