forked from titu1994/Neural-Style-Transfer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
improved_neural_doodle.py
403 lines (326 loc) · 15.3 KB
/
improved_neural_doodle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
from __future__ import print_function
from __future__ import division
from __future__ import absolute_import
import time
import argparse
import numpy as np
from scipy.optimize import fmin_l_bfgs_b
from scipy.misc import imread, imsave, imresize, fromimage, toimage, imfilter
from keras import backend as K
from keras.layers import Input, AveragePooling2D
from keras.models import Model
from keras.preprocessing.image import load_img, img_to_array
from keras.applications import vgg16
"""
Neural Doodle in Keras using Keras 1.2.2
Based on the original script available at : https://github.com/fchollet/keras/blob/master/examples/neural_doodle.py
Contains few improvements suggested in the paper Improving the Neural Algorithm of Artistic Style
(http://arxiv.org/abs/1605.04603).
References:
[Dmitry Ulyanov's blog on fast-neural-doodle](http://dmitryulyanov.github.io/feed-forward-neural-doodle/)
[Torch code for fast-neural-doodle](https://github.com/DmitryUlyanov/fast-neural-doodle)
[Torch code for online-neural-doodle](https://github.com/DmitryUlyanov/online-neural-doodle)
[Paper Texture Networks: Feed-forward Synthesis of Textures and Stylized Images](http://arxiv.org/abs/1603.03417)
[Discussion on parameter tuning](https://github.com/fchollet/keras/issues/3705)
"""
# Command line arguments
parser = argparse.ArgumentParser(description='Keras neural doodle example')
parser.add_argument('--nlabels', type=int,help='number of semantic labels (regions in differnet colors)'
' in style_mask/target_mask')
parser.add_argument('--style-image', type=str, help='path to image to learn style from')
parser.add_argument('--style-mask', type=str, help='path to semantic mask of style image')
parser.add_argument('--target-mask', type=str, help='path to semantic mask of target image')
parser.add_argument('--content-image', type=str, default=None, help='path to optional content image')
parser.add_argument('--target-image-prefix', type=str, help='path prefix for generated results')
parser.add_argument("--img_size", type=int, default=-1, help='Image size will be rescaled to these dimensions. '
'Use -1 for no rescaling of input images')
parser.add_argument("--num_iter", dest="num_iter", default=10, type=int, help="Number of iterations")
parser.add_argument('--preserve_color', dest='color', default="False", type=str,
help='Preserve original color in image')
parser.add_argument("--min_improvement", default=0.0, type=float,
help="Minimum improvement required to continue training")
parser.add_argument("--content_weight", dest="content_weight", default=0.1, type=float, help="Weight of content")
parser.add_argument("--style_weight", dest="style_weight", default=1, type=float, help="Weight of content")
parser.add_argument("--tv_weight", dest="tv_weight", default=8.5e-5, type=float, help="Total Variation in the Weights")
parser.add_argument("--region_style_weight", dest="region_weight", default=1.0, type=float, help="Region Style Weight")
args = parser.parse_args()
def str_to_bool(v):
return v.lower() in ("true", "yes", "t", "1")
style_img_path = args.style_image
style_mask_path = args.style_mask
target_mask_path = args.target_mask
content_img_path = args.content_image
target_img_prefix = args.target_image_prefix
use_content_img = content_img_path is not None
nb_labels = args.nlabels
nb_colors = 3 # RGB
# determine image sizes based on target_mask
ref_img = imread(target_mask_path)
if args.img_size != -1:
aspect_ratio = float(ref_img.shape[1]) / float(ref_img.shape[0])
ref_img = imresize(ref_img, (int(args.img_size), int(args.img_size * aspect_ratio)))
img_nrows, img_ncols = ref_img.shape[:2]
total_variation_weight = float(args.tv_weight)
style_weight = float(args.style_weight)
content_weight =float(args.content_weight) if use_content_img else 0
region_style_weight = float(args.region_weight)
content_feature_layers = ['block5_conv2']
# To get better generation qualities, use more conv layers for style features
style_feature_layers = ['block1_conv1', 'block1_conv2', 'block2_conv1', 'block2_conv2', 'block3_conv1',
'block3_conv2', 'block3_conv3', 'block4_conv1', 'block4_conv2', 'block4_conv3',
'block5_conv1', 'block5_conv2', 'block5_conv3']
preserve_color = str_to_bool(args.color)
# helper functions for reading/processing images
def preprocess_image(image_path):
img = load_img(image_path, target_size=(img_nrows, img_ncols))
img = img_to_array(img)
img = np.expand_dims(img, axis=0)
img = vgg16.preprocess_input(img)
return img
def deprocess_image(x):
if K.image_dim_ordering() == 'th':
x = x.reshape((3, img_nrows, img_ncols))
x = x.transpose((1, 2, 0))
else:
x = x.reshape((img_nrows, img_ncols, 3))
x[:, :, 0] += 103.939
x[:, :, 1] += 116.779
x[:, :, 2] += 123.68
# BGR to RGB
x = x[:, :, ::-1]
x = np.clip(x, 0, 255).astype('uint8')
return x
# util function to preserve image color
def original_color_transform(content, generated):
generated = fromimage(toimage(generated, mode='RGB'), mode='YCbCr') # Convert to YCbCr color space
generated[:, :, 1:] = content[:, :, 1:] # Generated CbCr = Content CbCr
generated = fromimage(toimage(generated, mode='YCbCr'), mode='RGB') # Convert to RGB color space
return generated
def kmeans(xs, k):
assert xs.ndim == 2
try:
from sklearn.cluster import k_means
_, labels, _ = k_means(xs.astype("float64"), k)
except ImportError:
from scipy.cluster.vq import kmeans2
_, labels = kmeans2(xs, k, missing='raise')
return labels
def load_mask_labels():
'''Load both target and style masks.
A mask image (nr x nc) with m labels/colors will be loaded
as a 4D boolean tensor: (1, m, nr, nc) for 'th' or (1, nr, nc, m) for 'tf'
'''
target_mask_img = load_img(target_mask_path,
target_size=(img_nrows, img_ncols))
target_mask_img = img_to_array(target_mask_img)
style_mask_img = load_img(style_mask_path,
target_size=(img_nrows, img_ncols))
style_mask_img = img_to_array(style_mask_img)
if K.image_dim_ordering() == 'th':
mask_vecs = np.vstack([style_mask_img.reshape((3, -1)).T,
target_mask_img.reshape((3, -1)).T])
else:
mask_vecs = np.vstack([style_mask_img.reshape((-1, 3)),
target_mask_img.reshape((-1, 3))])
labels = kmeans(mask_vecs, nb_labels)
style_mask_label = labels[:img_nrows *
img_ncols].reshape((img_nrows, img_ncols))
target_mask_label = labels[img_nrows *
img_ncols:].reshape((img_nrows, img_ncols))
stack_axis = 0 if K.image_dim_ordering() == 'th' else -1
style_mask = np.stack([style_mask_label == r for r in range(nb_labels)],
axis=stack_axis)
target_mask = np.stack([target_mask_label == r for r in range(nb_labels)],
axis=stack_axis)
return (np.expand_dims(style_mask, axis=0),
np.expand_dims(target_mask, axis=0))
# Create tensor variables for images
if K.image_dim_ordering() == 'th':
shape = (1, nb_colors, img_nrows, img_ncols)
else:
shape = (1, img_nrows, img_ncols, nb_colors)
style_image = K.variable(preprocess_image(style_img_path))
target_image = K.placeholder(shape=shape)
if use_content_img:
content_image = K.variable(preprocess_image(content_img_path))
else:
content_image = K.zeros(shape=shape)
images = K.concatenate([style_image, target_image, content_image], axis=0)
# Create tensor variables for masks
raw_style_mask, raw_target_mask = load_mask_labels()
style_mask = K.variable(raw_style_mask.astype("float32"))
target_mask = K.variable(raw_target_mask.astype("float32"))
masks = K.concatenate([style_mask, target_mask], axis=0)
# index constants for images and tasks variables
STYLE, TARGET, CONTENT = 0, 1, 2
# Build image model, mask model and use layer outputs as features
# image model as VGG19
image_model = vgg16.VGG16(include_top=False, input_tensor=images)
# mask model as a series of pooling
mask_input = Input(tensor=masks, shape=(None, None, None), name="mask_input")
x = mask_input
for layer in image_model.layers[1:]:
name = 'mask_%s' % layer.name
if 'conv' in layer.name:
x = AveragePooling2D((3, 3), strides=(1, 1), name=name, border_mode="same")(x)
elif 'pool' in layer.name:
x = AveragePooling2D((2, 2), name=name)(x)
mask_model = Model(mask_input, x)
# Collect features from image_model and task_model
image_features = {}
mask_features = {}
for img_layer, mask_layer in zip(image_model.layers, mask_model.layers):
if 'conv' in img_layer.name:
assert 'mask_' + img_layer.name == mask_layer.name
layer_name = img_layer.name
img_feat, mask_feat = img_layer.output, mask_layer.output
image_features[layer_name] = img_feat
mask_features[layer_name] = mask_feat
# Define loss functions
# Activation shift in Gram Matrix
def gram_matrix(x):
assert K.ndim(x) == 3
features = K.batch_flatten(x)
gram = K.dot(features - 1, K.transpose(features - 1))
return gram
def region_style_loss(style_image, target_image, style_mask, target_mask):
'''Calculate style loss between style_image and target_image,
for one common region specified by their (boolean) masks
'''
assert 3 == K.ndim(style_image) == K.ndim(target_image)
assert 2 == K.ndim(style_mask) == K.ndim(target_mask)
if K.image_dim_ordering() == 'th':
masked_style = style_image * style_mask
masked_target = target_image * target_mask
nb_channels = K.shape(style_image)[0]
else:
masked_style = K.permute_dimensions(
style_image, (2, 0, 1)) * style_mask
masked_target = K.permute_dimensions(
target_image, (2, 0, 1)) * target_mask
nb_channels = K.shape(style_image)[-1]
s = gram_matrix(masked_style) / K.mean(style_mask) / nb_channels
c = gram_matrix(masked_target) / K.mean(target_mask) / nb_channels
return K.mean(K.square(s - c))
def style_loss(style_image, target_image, style_masks, target_masks):
'''Calculate style loss between style_image and target_image,
in all regions.
'''
assert 3 == K.ndim(style_image) == K.ndim(target_image)
assert 3 == K.ndim(style_masks) == K.ndim(target_masks)
loss = K.variable(0)
for i in range(nb_labels):
if K.image_dim_ordering() == 'th':
style_mask = style_masks[i, :, :]
target_mask = target_masks[i, :, :]
else:
style_mask = style_masks[:, :, i]
target_mask = target_masks[:, :, i]
loss += region_style_weight * region_style_loss(style_image, target_image, style_mask, target_mask)
return loss
def content_loss(content_image, target_image):
return K.sum(K.square(target_image - content_image))
def total_variation_loss(x):
assert 4 == K.ndim(x)
if K.image_dim_ordering() == 'th':
a = K.square(x[:, :, :img_nrows - 1, :img_ncols - 1] - x[:, :, 1:, :img_ncols - 1])
b = K.square(x[:, :, :img_nrows - 1, :img_ncols - 1] - x[:, :, :img_nrows - 1, 1:])
else:
a = K.square(x[:, :img_nrows - 1, :img_ncols - 1, :] - x[:, 1:, :img_ncols - 1, :])
b = K.square(x[:, :img_nrows - 1, :img_ncols - 1, :] - x[:, :img_nrows - 1, 1:, :])
return K.sum(K.pow(a + b, 1.25))
# Overall loss is the weighted sum of content_loss, style_loss and tv_loss
# Each individual loss uses features from image/mask models.
loss = K.variable(0)
for layer in content_feature_layers:
content_feat = image_features[layer][CONTENT, :, :, :]
target_feat = image_features[layer][TARGET, :, :, :]
loss += content_weight * content_loss(content_feat, target_feat)
nb_layers = len(style_feature_layers)
for i, layer in enumerate(style_feature_layers):
style_feat = image_features[layer][STYLE, :, :, :]
target_feat = image_features[layer][TARGET, :, :, :]
style_masks = mask_features[layer][STYLE, :, :, :]
target_masks = mask_features[layer][TARGET, :, :, :]
sl = style_loss(style_feat, target_feat, style_masks, target_masks)
loss += (style_weight / (2 ** (nb_layers - (i + 1)))) * sl
loss += total_variation_weight * total_variation_loss(target_image)
loss_grads = K.gradients(loss, target_image)
# Evaluator class for computing efficiency
outputs = [loss]
if type(loss_grads) in {list, tuple}:
outputs += loss_grads
else:
outputs.append(loss_grads)
f_outputs = K.function([target_image], outputs)
def eval_loss_and_grads(x):
if K.image_dim_ordering() == 'th':
x = x.reshape((1, 3, img_nrows, img_ncols))
else:
x = x.reshape((1, img_nrows, img_ncols, 3))
outs = f_outputs([x])
loss_value = outs[0]
if len(outs[1:]) == 1:
grad_values = outs[1].flatten().astype('float64')
else:
grad_values = np.array(outs[1:]).flatten().astype('float64')
return loss_value, grad_values
class Evaluator(object):
def __init__(self):
self.loss_value = None
self.grads_values = None
def loss(self, x):
assert self.loss_value is None
loss_value, grad_values = eval_loss_and_grads(x)
self.loss_value = loss_value
self.grad_values = grad_values
return self.loss_value
def grads(self, x):
assert self.loss_value is not None
grad_values = np.copy(self.grad_values)
self.loss_value = None
self.grad_values = None
return grad_values
evaluator = Evaluator()
# Generate images by iterative optimization
if use_content_img:
x = preprocess_image(content_img_path)
else:
if K.image_dim_ordering() == 'th':
x = np.random.uniform(0, 255, (1, 3, img_nrows, img_ncols)) - 128.
else:
x = np.random.uniform(0, 255, (1, img_nrows, img_ncols, 3)) - 128.
# We require original image if we are to preserve color in YCbCr mode
if preserve_color and use_content_img:
content = imread(content_img_path, mode="YCbCr")
content = imresize(content, (img_nrows, img_ncols))
prev_min_val = 0.
for i in range(args.num_iter):
print('Start of iteration', i + 1)
start_time = time.time()
x, min_val, info = fmin_l_bfgs_b(evaluator.loss, x.flatten(), fprime=evaluator.grads, maxfun=20)
if prev_min_val == 0:
improvement = 0
else:
improvement = (prev_min_val - min_val) / prev_min_val * 100
print("Current loss value:", min_val, " Improvement : %0.3f" % improvement, "%")
prev_min_val = min_val
# save current generated image
img = deprocess_image(x.copy())
if not use_content_img:
img = imfilter(img, ftype='smooth')
img = imfilter(img, ftype='sharpen')
if use_content_img and preserve_color and content is not None:
img = original_color_transform(content, img)
fname = target_img_prefix + '_at_iteration_%d.png' % (i + 1)
imsave(fname, img)
end_time = time.time()
print('Image saved as', fname)
print('Iteration %d completed in %ds' % (i + 1, end_time - start_time))
if args.min_improvement != 0.0:
if improvement < args.min_improvement and i > 1:
print("Script is early stopping since improvement (%0.2f) < min improvement (%0.2f)" %
(improvement, args.min_improvement))
output_image = target_img_prefix + '.png'
imsave(output_image, img)
exit()