-
Notifications
You must be signed in to change notification settings - Fork 1
/
generateResults.py
153 lines (119 loc) · 4.81 KB
/
generateResults.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import os
import numpy as np
import cv2
from glob import glob
import tensorflow as tf
from sklearn.model_selection import train_test_split
import tensorflow as tf
from tensorflow.keras.utils import CustomObjectScope
from tqdm import tqdm
# from data import load_data, tf_dataset
# from train import iou
# create data generato
from tensorflow.keras import backend as K
# Load Dataset and split with Random seed
def load_data(path, split=0.1):
images = sorted(glob(os.path.join(path, "images/*")))
masks = sorted(glob(os.path.join(path, "masks/*")))
# images = sorted(glob(os.path.join(path, "train/images/*")))
# masks = sorted(glob(os.path.join(path, "train/masks/*")))
total_size = len(images)
print(total_size)
valid_size = int(split * total_size)
test_size = int(split * total_size)
train_x, valid_x = train_test_split(images, test_size=valid_size, random_state=42)
train_y, valid_y = train_test_split(masks, test_size=valid_size, random_state=42)
train_x, test_x = train_test_split(train_x, test_size=test_size, random_state=42)
train_y, test_y = train_test_split(train_y, test_size=test_size, random_state=42)
print(len(train_x),len(valid_x),len(test_x))
return (train_x, train_y), (valid_x, valid_y), (test_x,test_y)
# Read and Resize Image to 256(coloured)
def read_image(path):
path = path.decode()
x = cv2.imread(path, cv2.IMREAD_COLOR)
x = cv2.resize(x, (256, 256))
x = x/255.0
return x
# Read and Resize Mask to 256(Grayscaled)
def read_mask(path):
path = path.decode()
x = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
x = cv2.resize(x, (256, 256))
x = x/255.0
x = np.expand_dims(x, axis=-1)
return x
# Tensor element type for model(can change to 32bit for speed)
def tf_parse(x, y):
def _parse(x, y):
x = read_image(x)
y = read_mask(y)
return x, y
x, y = tf.numpy_function(_parse, [x, y], [tf.float64, tf.float64])
x.set_shape([256, 256, 3])
y.set_shape([256, 256, 1])
return x, y
# creates a dataset with a separate element for each row of the input tensor
# we will then use batch and repeat method to convert Dataset into batches
def tf_dataset(x, y, batch=8):
dataset = tf.data.Dataset.from_tensor_slices((x, y))
dataset = dataset.map(tf_parse)
dataset = dataset.batch(batch)
dataset = dataset.repeat()
return dataset
def iou(y_true, y_pred):
def f(y_true, y_pred):
intersection = (y_true * y_pred).sum()
union = y_true.sum() + y_pred.sum() - intersection
x = (intersection + 1e-15) / (union + 1e-15)
x = x.astype(np.float32)
return x
return tf.numpy_function(f, [y_true, y_pred], tf.float32)
# smooth = 1e-15
def dice_coef(y_true, y_pred):
y_true = tf.keras.layers.Flatten()(y_true)
y_pred = tf.keras.layers.Flatten()(y_pred)
intersection = tf.reduce_sum(y_true * y_pred)
return (2. * intersection + smooth) / (tf.reduce_sum(y_true) + tf.reduce_sum(y_pred) + smooth)
def dice_loss(y_true, y_pred):
return 1.0 - dice_coef(y_true, y_pred)
def read_image(path):
x = cv2.imread(path, cv2.IMREAD_COLOR)
x = cv2.resize(x, (256, 256))
x = x/255.0
return x
def read_mask(path):
x = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
x = cv2.resize(x, (256, 256))
x = np.expand_dims(x, axis=-1)
return x
def mask_parse(mask):
mask = np.squeeze(mask)
mask = [mask, mask, mask]
mask = np.transpose(mask, (1, 2, 0))
return mask
if __name__ == "__main__":
## Dataset
# dataset can be found online from kvasir-seg website
path = "/Users/Mubiii/Desktop/Kvasirv2"
batch_size = 8
(train_x, train_y), (valid_x, valid_y), (test_x, test_y) = load_data(path)
test_dataset = tf_dataset(test_x, test_y, batch=batch_size)
# print(len(test_dataset))
test_steps = (len(test_x)//batch_size)
if len(test_x) % batch_size != 0:
test_steps += 1
# Load your own model here i.e modelFile.h5
with CustomObjectScope({'iou': iou}):
model = tf.keras.models.load_model("/Users/Mubiii/Desktop/models/custom.h5")
for i, (x, y) in tqdm(enumerate(zip(test_x, test_y)), total=len(test_x)-600):
x = read_image(x)
y = read_mask(y)
y_pred = np.stack([model.predict(np.expand_dims(x, axis=0)) [0] > 0.5 ])
h, w, _ = x.shape
white_line = np.ones((h, 10, 3)) * 255.0
all_images = [
x * 255.0, white_line,
mask_parse(y), white_line,
mask_parse(y_pred) * 255.0 ]
image = np.concatenate(all_images, axis=1)
cv2.imwrite(f"/Users/Mubiii/Desktop/results/custom/{i}.png", image)