forked from cunicu/circl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fp511.go
218 lines (195 loc) · 5.77 KB
/
fp511.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
package csidh
import (
"math/bits"
)
// Constant time select.
// if pick == 0xFF..FF (out = in1)
// if pick == 0 (out = in2)
// else out is undefined.
func ctPick64(which uint64, in1, in2 uint64) uint64 {
return (in1 & which) | (in2 & ^which)
}
// ctIsNonZero64 returns 0 in case i == 0, otherwise it returns 1.
// Constant-time.
func ctIsNonZero64(i uint64) int {
// In case i==0 then i-1 will set MSB. Only in such case (i OR ~(i-1))
// will result in MSB being not set (logical implication: (i-1)=>i is
// false iff (i-1)==0 and i==non-zero). In every other case MSB is
// set and hence function returns 1.
return int((i | (^(i - 1))) >> 63)
}
// Returns result of x<y operation.
func isLess(x, y *fp) bool {
for i := numWords - 1; i >= 0; i-- {
v, c := bits.Sub64(y[i], x[i], 0)
if c != 0 {
return false
}
if v != 0 {
return true
}
}
// x == y
return false
}
// r = x + y mod p.
func addRdc(r, x, y *fp) {
var c uint64
var t fp
r[0], c = bits.Add64(x[0], y[0], 0)
r[1], c = bits.Add64(x[1], y[1], c)
r[2], c = bits.Add64(x[2], y[2], c)
r[3], c = bits.Add64(x[3], y[3], c)
r[4], c = bits.Add64(x[4], y[4], c)
r[5], c = bits.Add64(x[5], y[5], c)
r[6], c = bits.Add64(x[6], y[6], c)
r[7], _ = bits.Add64(x[7], y[7], c)
t[0], c = bits.Sub64(r[0], p[0], 0)
t[1], c = bits.Sub64(r[1], p[1], c)
t[2], c = bits.Sub64(r[2], p[2], c)
t[3], c = bits.Sub64(r[3], p[3], c)
t[4], c = bits.Sub64(r[4], p[4], c)
t[5], c = bits.Sub64(r[5], p[5], c)
t[6], c = bits.Sub64(r[6], p[6], c)
t[7], c = bits.Sub64(r[7], p[7], c)
w := 0 - c
r[0] = ctPick64(w, r[0], t[0])
r[1] = ctPick64(w, r[1], t[1])
r[2] = ctPick64(w, r[2], t[2])
r[3] = ctPick64(w, r[3], t[3])
r[4] = ctPick64(w, r[4], t[4])
r[5] = ctPick64(w, r[5], t[5])
r[6] = ctPick64(w, r[6], t[6])
r[7] = ctPick64(w, r[7], t[7])
}
// r = x - y.
func sub512(r, x, y *fp) uint64 {
var c uint64
r[0], c = bits.Sub64(x[0], y[0], 0)
r[1], c = bits.Sub64(x[1], y[1], c)
r[2], c = bits.Sub64(x[2], y[2], c)
r[3], c = bits.Sub64(x[3], y[3], c)
r[4], c = bits.Sub64(x[4], y[4], c)
r[5], c = bits.Sub64(x[5], y[5], c)
r[6], c = bits.Sub64(x[6], y[6], c)
r[7], c = bits.Sub64(x[7], y[7], c)
return c
}
// r = x - y mod p.
func subRdc(r, x, y *fp) {
var c uint64
// Same as sub512(r,x,y). Unfortunately
// compiler is not able to inline it.
r[0], c = bits.Sub64(x[0], y[0], 0)
r[1], c = bits.Sub64(x[1], y[1], c)
r[2], c = bits.Sub64(x[2], y[2], c)
r[3], c = bits.Sub64(x[3], y[3], c)
r[4], c = bits.Sub64(x[4], y[4], c)
r[5], c = bits.Sub64(x[5], y[5], c)
r[6], c = bits.Sub64(x[6], y[6], c)
r[7], c = bits.Sub64(x[7], y[7], c)
// if x<y => r=x-y+p
w := 0 - c
r[0], c = bits.Add64(r[0], ctPick64(w, p[0], 0), 0)
r[1], c = bits.Add64(r[1], ctPick64(w, p[1], 0), c)
r[2], c = bits.Add64(r[2], ctPick64(w, p[2], 0), c)
r[3], c = bits.Add64(r[3], ctPick64(w, p[3], 0), c)
r[4], c = bits.Add64(r[4], ctPick64(w, p[4], 0), c)
r[5], c = bits.Add64(r[5], ctPick64(w, p[5], 0), c)
r[6], c = bits.Add64(r[6], ctPick64(w, p[6], 0), c)
r[7], _ = bits.Add64(r[7], ctPick64(w, p[7], 0), c)
}
// Fixed-window mod exp for fpBitLen bit value with 4 bit window. Returned
// result is a number in montgomery domain.
// r = b ^ e (mod p).
// Constant time.
func modExpRdcCommon(r, b, e *fp, fpBitLen int) {
var precomp [16]fp
var t fp
var c uint64
// Precompute step, computes an array of small powers of 'b'. As this
// algorithm implements 4-bit window, we need 2^4=16 of such values.
// b^0 = 1, which is equal to R from REDC.
precomp[0] = one // b ^ 0
precomp[1] = *b // b ^ 1
for i := 2; i < 16; i = i + 2 {
// OPTIMIZE: implement fast squaring. Then interleaving fast squaring
// with multiplication should improve performance.
mulRdc(&precomp[i], &precomp[i/2], &precomp[i/2]) // sqr
mulRdc(&precomp[i+1], &precomp[i], b)
}
*r = one
for i := fpBitLen/4 - 1; i >= 0; i-- {
for j := 0; j < 4; j++ {
mulRdc(r, r, r)
}
// note: non resistant to cache SCA
idx := (e[i/16] >> uint((i%16)*4)) & 15
mulRdc(r, r, &precomp[idx])
}
// if p <= r < 2p then r = r-p
t[0], c = bits.Sub64(r[0], p[0], 0)
t[1], c = bits.Sub64(r[1], p[1], c)
t[2], c = bits.Sub64(r[2], p[2], c)
t[3], c = bits.Sub64(r[3], p[3], c)
t[4], c = bits.Sub64(r[4], p[4], c)
t[5], c = bits.Sub64(r[5], p[5], c)
t[6], c = bits.Sub64(r[6], p[6], c)
t[7], c = bits.Sub64(r[7], p[7], c)
w := 0 - c
r[0] = ctPick64(w, r[0], t[0])
r[1] = ctPick64(w, r[1], t[1])
r[2] = ctPick64(w, r[2], t[2])
r[3] = ctPick64(w, r[3], t[3])
r[4] = ctPick64(w, r[4], t[4])
r[5] = ctPick64(w, r[5], t[5])
r[6] = ctPick64(w, r[6], t[6])
r[7] = ctPick64(w, r[7], t[7])
}
// modExpRdc does modular exponentiation of 512-bit number.
// Constant-time.
func modExpRdc512(r, b, e *fp) {
modExpRdcCommon(r, b, e, 512)
}
// modExpRdc does modular exponentiation of 64-bit number.
// Constant-time.
func modExpRdc64(r, b *fp, e uint64) {
modExpRdcCommon(r, b, &fp{e}, 64)
}
// isNonQuadRes checks whether value v is quadratic residue.
// Implementation uses Fermat's little theorem (or
// Euler's criterion)
//
// a^(p-1) == 1, hence
// (a^2) ((p-1)/2) == 1
//
// Which means v is a quadratic residue iff v^((p-1)/2) == 1.
// Caller provided v must be in montgomery domain.
// Returns 0 in case v is quadratic residue or 1 in case
// v is quadratic non-residue.
func (v *fp) isNonQuadRes() int {
var res fp
var b uint64
modExpRdc512(&res, v, &pMin1By2)
for i := range res {
b |= res[i] ^ one[i]
}
return ctIsNonZero64(b)
}
// isZero returns false in case v is equal to 0, otherwise
// true. Constant time.
func (v *fp) isZero() bool {
var r uint64
for i := 0; i < numWords; i++ {
r |= v[i]
}
return ctIsNonZero64(r) == 0
}
// equal checks if v is equal to in. Constant time.
func (v *fp) equal(in *fp) bool {
var r uint64
for i := range v {
r |= v[i] ^ in[i]
}
return ctIsNonZero64(r) == 0
}