-
Notifications
You must be signed in to change notification settings - Fork 5
/
versatility.py
265 lines (229 loc) · 12.8 KB
/
versatility.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
#!/usr/bin/python3
# Copyright 2016-2017 Maxwell Shinn ([email protected])
# Available under the GNU GPLv3.
# If you use this code, please cite:
# Shinn, M., Romero-Garcia, R., Seidlitz, J., Vasa, F., Vertes,
# P., Bullmore, E. (2017). Versatility of nodal affiliation to
# communities. Scientific Reports 7: 4273.
# doi:10.1038/s41598-017-03394-5
# This script implements versatility (Shinn et al., 2017), which
# describes how closely affiliated a node is with a network community
# structure.
# Dependencies:
# - python 3
# - networkx
# - scipy/numpy/matplotlib
# - bctpy: The module "bct" is bctpy, a port of the Brain Connectivity
# Toolbox to Python. The latest version supports Python3.
# https://github.com/aestrivex/bctpy or "pip install bcpty". If you
# don't want to install bctpy, it should be pretty easy to modify
# this code to remove the dependency.
# Here is a quick example to get you started:
#
# import networkx
# from versatility import *
# G = networkx.karate_club_graph()
# find_nodal_mean_versatility(G, find_communities_louvain, processors=2)
# find_nodal_versatility(G, find_communities_louvain, algargs={"gamma" : 0.5})
# You've probably noticed that there are a lot of assert statements.
# This code will run a bit faster if you run "python -O", which will
# skip the asserts. I can't say I recommend this, but if you really
# want to do so then be my guest...
# # The following line may make this run in Python2, though your
# # results may vary.
# from __future__ import print_function, unicode_literals, absolute_import, division
import bct
import networkx
import matplotlib.pyplot as plt
import numpy
import scipy.stats
# ▌ ▌ ▐ ▗▜ ▗▐ ▐ ▗
# ▚▗▘▞▀▖▙▀▖▞▀▘▝▀▖▜▀ ▄▐ ▄▜▀ ▌ ▌ ▛▚▀▖▞▀▖▜▀ ▙▀▖▄ ▞▀▖▞▀▘
# ▝▞ ▛▀ ▌ ▝▀▖▞▀▌▐ ▖▐▐ ▐▐ ▖▚▄▌ ▌▐ ▌▛▀ ▐ ▖▌ ▐ ▌ ▖▝▀▖
# ▘ ▝▀▘▘ ▀▀ ▝▀▘ ▀ ▀▘▘▀▘▀ ▗▄▘ ▘▝ ▘▝▀▘ ▀ ▘ ▀▘▝▀ ▀▀
def find_nodal_versatility(g, alg, algname="", processors=1, algargs={}, it=200):
"""Computes the versatility of each node.
This replaces find_nodal_uncertainty and
find_nodal_uncertaintyplusplus as measures of how difficult it is
to group a node into a module. `g` should be a
directed/undirected, weighted/unweighted graph, and `alg` should
be a function compatible with the "alg" argument of the
"consensus_matrix" function. The definition of nodal versatility
is:
$U_n = ∑_{i∈N} sin(π a_{n,i})/(∑_{i∈N} a_{n,i})$
where $a_{i,j}$ is an element of the association matrix, i.e. each
cell is the probability that algorithm `alg` will classify those
nodes in the same module. This assigns the property
"[algname]vers" to each node, where "[algname]" is `algname`. It
also assigns the mean uncertainty in all nodes to the graph
property "[algname]meanvers". This returns a dictionary of nodal
versatility indexed by node.
The optional `algargs` parameter is a dictionary that specifies
what extra arguments should be passed to `alg`. (This makes it so
that you don't have to use partial functions for something as
simple as a resolution parameter.) For example, to specify the
resolution parameter for the louvain algorithm to 1.5, set
algargs={"gamma" : 1.5}.
The `it` argument is the number of times to run the modularity
algorithm when estimating the association matrix. It should
generally not be lower than 100, and there is little need to make
it higher than 1000. The default of 200 is a good tradeoff
between precision and speed.
The optional argument `processors` should be set to an integer
greater than 0. If it is greater than 1, consensus_matrix_par
will be used instead of consensus_matrix.
"""
assert type(g) == networkx.classes.graph.Graph, "Not a graph"
assert type(processors) == int and processors > 0, "Invalid number of processors"
# We don't check `alg`, `it`, or `algargs` because
# consensus_matrix function does that for us, and we just pass it
# directly to there unmodified.
if processors == 1:
C = consensus_matrix(g, alg, it=it, algargs=algargs)
else:
C = consensus_matrix_par(g, alg, it=it, processors=processors, algargs=algargs)
g.graph['%sconsmatrix' % algname] = C.astype('float16')
Cs = numpy.sin(numpy.pi*C)
assert numpy.all(C == C.T) and numpy.all(Cs == Cs.T), "Assocation matrix or versatility matrix not symmetric"
assert type(C) == numpy.ndarray and type(Cs) == numpy.ndarray, "Not ndarrays" # Not numpy.matrix
versatility = numpy.sum(Cs, axis=0)/numpy.sum(C, axis=0)
versatility[versatility<1e-10] = 0 # Prevent really small values
versatilitydict = {list(g.nodes())[i] : versatility[i] for i in range(0, len(g.nodes()))}
networkx.set_node_attributes(g, name="%svers" % algname, values=versatilitydict)
g.graph["%svers" % algname] = numpy.mean(versatility)
return versatilitydict
_argvalsm = numpy.array(range(4, 25), dtype=float)/10
def find_nodal_mean_versatility(g, alg, algname="", processors=1, argname="gamma", argvals=_argvalsm, it=100):
"""Compute the mean versatility across parameters.
Compute the mean versatility across a spectrum of different
parameters (e.g. gamma in the louvain algorithm) and computes the
mean for each node. `g`, `alg`, `algname`, `processors`, and `it`
are as documented in `find_nodal_versatility`. `argname` is the
argument which we are to vary. `argvals` are the values across
which the mean is to be taken. This assigns the value
"[algname]meanvers" to each node in `g` corresponding to the mean
versatility across the spectrum of parameters. It also returns
these values as a dictionary indexed by node. Furthermore, it
computes the mean of these mean versatility values and assigns it
as a graph property named "[algname]meanvers".
"""
gc = g.copy()
for v in argvals:
find_nodal_versatility(gc, alg, algname=str(v), processors=processors, algargs={argname : v}, it=it)
print(v)
means = { n : numpy.mean([gc.node[n][str(v)+"vers"] for v in argvals]) for n in gc.nodes() }
allvals = { n : dict(zip(argvals, [gc.node[n][str(v)+"vers"] for v in argvals])) for n in gc.nodes() }
networkx.set_node_attributes(g, name="%smeanvers" % algname, values=means)
networkx.set_node_attributes(g, name="%smeanversvals" % algname, values=allvals)
g.graph["%smeanvers" % algname] = numpy.mean(list(means.values()))
return means
_argvalsc = numpy.asarray(list(range(0, 40)))/10+.1
def find_optimal_gamma_curve(G, alg, algarg="gamma", argvals=_argvalsc, it=100, show=True, **kwargs):
"""Plots the mean network versatility across a spectrum of resolution parameters.
`g` should be a networkx network. All other arguments are
optional, and may be specified as in find_nodal_versatility. The
algorithm `alg` should also take an extra argument, specified by
`argname`. This should be a string describing an algorithm
argument which can vary across a spectrum. It will vary according
to the argument `argvals`. These arguments are similar to those
in find_nodal_mean_versatility, but instead of taking the average,
it will plot them. This returns a list of the versatility values.
"""
import scipy.stats
import sys
gs = argvals
vs = []
sems = []
for g in gs:
v = find_nodal_versatility(G, alg=alg, algargs={algarg : g}, it=it, **kwargs)
vs.append(numpy.mean(list(v.values())))
sems.append(scipy.stats.sem(list(v.values())))
print(g, end=" ")
sys.stdout.flush()
print("\n")
if show == True:
plt.errorbar(gs, vs, yerr=sems)
plt.title("Versatility across different values of %s" % algarg)
plt.xlabel(algarg)
plt.ylabel("Versatility")
plt.show()
return (gs,vs,sems)
# ▞▀▖ ▐ ▗
# ▌ ▞▀▖▛▀▖▞▀▘▞▀▖▛▀▖▞▀▘▌ ▌▞▀▘ ▙▀▖▞▀▖▌ ▌▜▀ ▄ ▛▀▖▞▀▖▞▀▘
# ▌ ▖▌ ▌▌ ▌▝▀▖▛▀ ▌ ▌▝▀▖▌ ▌▝▀▖ ▌ ▌ ▌▌ ▌▐ ▖▐ ▌ ▌▛▀ ▝▀▖
# ▝▀ ▝▀ ▘ ▘▀▀ ▝▀▘▘ ▘▀▀ ▝▀▘▀▀ ▘ ▝▀ ▝▀▘ ▀ ▀▘▘ ▘▝▀▘▀▀
def consensus_matrix(g, algorithm, it=500, algargs={}):
"""Find the probability matrix of nodes i and j being in the same communitiy.
`g` should be a networkx graph with N nodes. `algorithm` should
be a function that takes a networkx graph as its input and gives a
dictionary as its output, where the index is the node and the
value is an identifier representing the community. This function
runs `algorithm` `it` times (where `it` ∈ ℕ^+) and returns a NxN
array, where the (i,j)-th cell is the probability that node i is
in the same community as node j. The rows and columns of the
matrix are sorted by the list g.nodes(). Optionally, `algargs` is
a list of arguments to pass to the modularity algorithm.
"""
assert type(g) == networkx.classes.graph.Graph, "Not a graph"
assert callable(algorithm), "f is not a function"
assert type(it) == int, "Non-integer iterations"
assert it > 0, "It needs to be greater than 0"
consensus = numpy.zeros((len(g), len(g)))
for i in range(0, it):
p = algorithm(g, **algargs)
assert type(p) == dict, "Wrong algorithm return type"
assert len(p) == len(g), "Wrong algorithm return length"
assert set(list(p.keys())) == set(g.nodes()), "Keys not nodes"
consensus += numpy.array([[p[k] == p[j] for k in g.nodes()] for j in g.nodes()])
consensus /= it
return consensus
def consensus_matrix_par(g, algorithm, it=500, processors=2, algargs={}):
"""The consensus_matrix function parallelized.
In addition to the arguments of `consensus_matrix`, this function
has the extra argument `processors`, which is the number of
processors on which to run the parallelization.
"""
import multiprocessing, functools
assert type(g) == networkx.classes.graph.Graph, "Not a graph"
assert callable(algorithm), "f is not a function"
assert type(it) == int, "Non-integer iterations"
assert it > 0, "It needs to be greater than 0"
assert type(processors) == int and processors > 0, "Invalid number of processors"
# The idea here is that, since a consensus matrix is just a bunch
# of matrices averaged together, we do "`it` divided by
# `processors`" iterations on each processor and then average
# together the results. It sometimes does slightly more
# iterations if it doesn't divide perfectly.
#
# To do this, we make `processors` copies of the graph, and then
# use a parallel pool map to send it to `processors` processors.
itadj = int(numpy.ceil(it/processors))
gs = [g for i in range(0, processors)] # This doesn't actually use any more memory since g is a reference
# Use try-except catch-all to make sure we close the processes.
# That way when we ctrl+c, we don't have 20 python processes
# permanently running on our computer.
try:
p = multiprocessing.Pool(processors)
cs = p.map(functools.partial(consensus_matrix, algorithm=algorithm, it=itadj, algargs=algargs), gs)
finally:
p.terminate()
return numpy.mean(cs, axis=0)
# ▞▀▖ ▗▐ ▜ ▗▐ ▌
# ▌ ▞▀▖▛▚▀▖▛▚▀▖▌ ▌▛▀▖▄▜▀ ▌ ▌ ▝▀▖▐ ▞▀▌▞▀▖▙▀▖▄▜▀ ▛▀▖▛▚▀▖▞▀▘
# ▌ ▖▌ ▌▌▐ ▌▌▐ ▌▌ ▌▌ ▌▐▐ ▖▚▄▌ ▞▀▌▐ ▚▄▌▌ ▌▌ ▐▐ ▖▌ ▌▌▐ ▌▝▀▖
# ▝▀ ▝▀ ▘▝ ▘▘▝ ▘▝▀▘▘ ▘▀▘▀ ▗▄▘ ▝▀▘ ▘▗▄▘▝▀ ▘ ▀▘▀ ▘ ▘▘▝ ▘▀▀
def find_communities_louvain(g, gamma=1):
"""The louvain algorithm for community (module) structure.
The input should be a graph in networkx graph format. This
function adds the "louvain" property to each of the nodes,
describing which module (community) the node belongs to. It
returns a dictionary, where each index is a node and the value is
the value is an integer representing the community index that node
is a part of.
"""
assert type(g) == networkx.classes.graph.Graph, "Not a graph"
#assert networkx.is_connected(g), "Graph not connected"
lmodule = bct.community_louvain(numpy.asarray(networkx.to_numpy_matrix(g)), gamma=gamma)
c = dict(zip(g.nodes(), list(map(int, lmodule[0]))))
networkx.set_node_attributes(g, name='louvain', values=c)
return c