forked from vadimkantorov/contextlocnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pascal_voc.lua
288 lines (235 loc) · 10.5 KB
/
pascal_voc.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
local classLabels = {'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'}
local function precisionrecall(scores_all, labels_all)
--adapted from VOCdevkit/VOCcode/VOCevalcls.m (VOCap.m). tested, gives equivalent results
local function VOCap(rec, prec)
local mrec = torch.cat(torch.cat(torch.FloatTensor({0}), rec), torch.FloatTensor({1}))
local mpre = torch.cat(torch.cat(torch.FloatTensor({0}), prec), torch.FloatTensor({0}))
for i=mpre:numel()-1, 1, -1 do
mpre[i]=math.max(mpre[i], mpre[i+1])
end
local i = (mrec:sub(2, mrec:numel())):ne(mrec:sub(1, mrec:numel() - 1)):nonzero():squeeze(2) + 1
local ap = (mrec:index(1, i) - mrec:index(1, i - 1)):cmul(mpre:index(1, i)):sum()
return ap
end
local function VOCevalcls(out, gt)
local so,si= (-out):sort()
local tp=gt:index(1, si):gt(0):float()
local fp=gt:index(1, si):lt(0):float()
fp=fp:cumsum()
tp=tp:cumsum()
local rec=tp/gt:gt(0):sum()
local prec=tp:cdiv(fp+tp)
local ap=VOCap(rec,prec)
return rec, prec, ap
end
local prec = torch.FloatTensor(scores_all:size())
local rec = torch.FloatTensor(scores_all:size())
local ap = torch.FloatTensor(#classLabels)
for classLabelInd = 1, #classLabels do
local p, r, a = VOCevalcls(scores_all:narrow(2, classLabelInd, 1):squeeze(), labels_all:narrow(2, classLabelInd, 1):squeeze())
prec:narrow(2, classLabelInd, 1):copy(p)
rec:narrow(2, classLabelInd, 1):copy(r)
ap[classLabelInd] = a
end
return prec, rec, ap
end
return {
classLabels = classLabels,
numClasses = #classLabels,
load = function(VOCdevkit_VOCYEAR)
local xml = require 'xml'
local filelists =
{
train = paths.concat(VOCdevkit_VOCYEAR, 'ImageSets/Main/train.txt'),
val = paths.concat(VOCdevkit_VOCYEAR, 'ImageSets/Main/val.txt'),
test = paths.concat(VOCdevkit_VOCYEAR, 'ImageSets/Main/test.txt'),
}
local numMaxExamples = 11000
local numMaxObjectsPerExample = 5
local mkDataset = function() return
{
filenames = torch.CharTensor(numMaxExamples, 16):zero(),
labels = torch.FloatTensor(numMaxExamples, #classLabels):zero(),
objectBoxes = torch.FloatTensor(numMaxExamples * numMaxObjectsPerExample, 5):zero(),
objectBoxesInds = torch.IntTensor(numMaxExamples, 2):zero(),
jpegs = torch.ByteTensor(numMaxExamples * 3 * 50000):zero(),
jpegsInds = torch.IntTensor(numMaxExamples, 2):zero(),
getNumExamples = function(self)
return self.numExamples
end,
getImageFileName = function(self, exampleIdx)
return self.filenames[exampleIdx]:clone():storage():string():match('%Z+')
end,
getGroundTruthBoxes = function(self, exampleIdx)
return self.objectBoxes:sub(self.objectBoxesInds[exampleIdx][1], self.objectBoxesInds[exampleIdx][2])
end,
getJpegBytes = function(self, exampleIdx)
return self.jpegs:sub(self.jpegsInds[exampleIdx][1], self.jpegsInds[exampleIdx][2])
end,
getLabels = function(self, exampleIdx)
return self.labels[exampleIdx]
end
} end
local voc = { train = mkDataset(), val = mkDataset(), test = mkDataset() }
for _, subset in ipairs{'train', 'val', 'test'} do
local exampleIdx = 1
local jpegsFirstByteInd = 1
for line in io.lines(filelists[subset]) do
assert(exampleIdx <= numMaxExamples)
assert(#line < voc[subset].filenames:size(2))
voc[subset].filenames[exampleIdx]:sub(1, #line):copy(torch.CharTensor(torch.CharStorage():string(line)))
local f = torch.DiskFile(paths.concat(VOCdevkit_VOCYEAR, 'JPEGImages', line .. '.jpg'), 'r')
f:binary()
f:seekEnd()
local file_size_bytes = f:position() - 1
f:seek(1)
local bytes = torch.ByteTensor(file_size_bytes)
f:readByte(bytes:storage())
voc[subset].jpegsInds[exampleIdx] = torch.IntTensor({jpegsFirstByteInd, jpegsFirstByteInd + file_size_bytes - 1})
voc[subset]:getJpegBytes(exampleIdx):copy(bytes)
f:close()
jpegsFirstByteInd = voc[subset].jpegsInds[exampleIdx][2] + 1
exampleIdx = exampleIdx + 1
end
voc[subset].numExamples = exampleIdx - 1
end
local testHasAnnotation = VOCdevkit_VOCYEAR:find('2007') ~= nil
for _, subset in ipairs(testHasAnnotation and {'train', 'val', 'test'} or {'train', 'val'}) do
for classLabelInd, v in ipairs(classLabels) do
local exampleIdx = 1
for line in io.lines(paths.concat(VOCdevkit_VOCYEAR, 'ImageSets/Main/'..v..'_'..subset..'.txt')) do
if string.find(line, ' -1', 1, true) then
voc[subset].labels[exampleIdx][classLabelInd] = -1
elseif string.find(line, ' 1', 1, true) then
voc[subset].labels[exampleIdx][classLabelInd] = 1
end
exampleIdx = exampleIdx + 1
end
end
local exampleIdx = 1
local objectBoxIdx = 1
for line in io.lines(filelists[subset]) do
local anno_xml = xml.loadpath(paths.concat(VOCdevkit_VOCYEAR, 'Annotations/' .. line ..'.xml'))
local firstObjectBoxIdx = objectBoxIdx
for i = 1, #anno_xml do
if anno_xml[i].xml == 'object' then
local classLabel = xml.find(anno_xml[i], 'name')[1]
local xmin = xml.find(xml.find(anno_xml[i], 'bndbox'), 'xmin')[1]
local xmax = xml.find(xml.find(anno_xml[i], 'bndbox'), 'xmax')[1]
local ymin = xml.find(xml.find(anno_xml[i], 'bndbox'), 'ymin')[1]
local ymax = xml.find(xml.find(anno_xml[i], 'bndbox'), 'ymax')[1]
for classLabelInd = 1, #classLabels do
if classLabels[classLabelInd] == classLabel then
assert(objectBoxIdx <= voc[subset].objectBoxes:size(1))
voc[subset].objectBoxes[objectBoxIdx] = torch.FloatTensor({classLabelInd, xmin, ymin, xmax, ymax})
objectBoxIdx = objectBoxIdx + 1
end
end
end
end
voc[subset].objectBoxesInds[exampleIdx] = torch.IntTensor({firstObjectBoxIdx, objectBoxIdx - 1})
exampleIdx = exampleIdx + 1
end
end
if not testHasAnnotation then
voc['test'].objectBoxesInds = nil
voc['test'].objectBoxes = nil
end
for _, subset in ipairs{'train', 'val', 'test'} do
voc[subset].filenames = voc[subset].filenames:sub(1, voc[subset].numExamples):clone()
voc[subset].labels = voc[subset].labels:sub(1, voc[subset].numExamples):clone()
voc[subset].jpegsInds = voc[subset].jpegsInds:sub(1, voc[subset].numExamples):clone()
voc[subset].jpegs = voc[subset].jpegs:sub(1, voc[subset].jpegsInds[voc[subset].numExamples][2]):clone()
if voc[subset].objectBoxes and voc[subset].objectBoxesInds then
voc[subset].objectBoxesInds = voc[subset].objectBoxesInds:sub(1, voc[subset].numExamples):clone()
voc[subset].objectBoxes = voc[subset].objectBoxes:sub(1, voc[subset].objectBoxesInds[voc[subset].numExamples][2]):clone()
end
end
voc['trainval'] = {
train = voc['train'],
val = voc['val'],
getNumExamples = function(self)
return self.train:getNumExamples() + self.val:getNumExamples()
end,
getImageFileName = function(self, exampleIdx)
return exampleIdx <= self.train:getNumExamples() and self.train:getImageFileName(exampleIdx) or self.val:getImageFileName(exampleIdx - self.train:getNumExamples())
end,
getGroundTruthBoxes = function(self, exampleIdx)
return exampleIdx <= self.train:getNumExamples() and self.train:getGroundTruthBoxes(exampleIdx) or self.val:getGroundTruthBoxes(exampleIdx - self.train:getNumExamples())
end,
getJpegBytes = function(self, exampleIdx)
return exampleIdx <= self.train:getNumExamples() and self.train:getJpegBytes(exampleIdx) or self.val:getJpegBytes(exampleIdx - self.train:getNumExamples())
end,
getLabels = function(self, exampleIdx)
return exampleIdx <= self.train:getNumExamples() and self.train:getLabels(exampleIdx) or self.val:getLabels(exampleIdx - self.train:getNumExamples())
end
}
return voc
end,
package_submission = function(OUT, voc, VOCYEAR, subset, task, ...)
local task_a, task_b = task:match('(.+)_(.+)')
local write = {
cls = function(f, classLabelInd, scores)
assert(voc[subset]:getNumExamples() == scores:size(1))
for exampleIdx = 1, voc[subset]:getNumExamples() do
f:write(string.format('%s %.12f\n', voc[subset]:getImageFileName(exampleIdx), scores[exampleIdx][classLabelInd]))
end
end,
det = function(f, classLabelInd, rois, scores, mask)
assert(voc[subset]:getNumExamples() == #scores and voc[subset]:getNumExamples() == #rois)
for exampleIdx = 1, voc[subset]:getNumExamples() do
for roiInd = 1, scores[exampleIdx]:size(scores[exampleIdx]:dim()) do
if mask[exampleIdx][classLabelInd][roiInd] > 0 then
f:write(string.format('%s %.12f %.12f %.12f %.12f %.12f\n',
voc[subset]:getImageFileName(exampleIdx),
scores[exampleIdx][classLabelInd][roiInd],
math.max(1, rois[exampleIdx][roiInd][1] + 1),
math.max(1, rois[exampleIdx][roiInd][2] + 1),
math.max(1, rois[exampleIdx][roiInd][3] + 1),
math.max(1, rois[exampleIdx][roiInd][4] + 1)
))
end
end
end
end
}
os.execute(string.format('rm -rf "%s/results"', OUT))
os.execute(string.format('mkdir -p "%s/results/%s/Main"', OUT, VOCYEAR))
local respath = string.format('%s/results/%s/Main/%%s_%s_%s_%%s.txt', OUT, VOCYEAR, task_b, subset)
threads = require 'threads'
threads.Threads.serialization('threads.sharedserialize')
jobQueue = threads.Threads(#classLabels)
local writer = write[task_b]
for classLabelInd, classLabel in ipairs(classLabels) do
jobQueue:addjob(function(...)
local f = assert(io.open(respath:format(task_a, classLabel), 'w'))
writer(f, classLabelInd, ...)
f:close()
end, function() end, ...)
end
jobQueue:synchronize()
os.execute(string.format('cd "%s" && tar -czf "results-%s-%s-%s.tar.gz" results', OUT, VOCYEAR, task, subset))
return respath
end,
vis_classification_submission = function(OUT, VOCYEAR, subset, classLabel, JPEGImages_DIR, top_k)
top_k = top_k or 20
local res_file_path = string.format('%s/results/%s/Main/comp2_cls_%s_%s.txt', OUT, VOCYEAR, subset, classLabel)
local scores = {}
for line in assert(io.open(res_file_path)):lines() do
scores[#scores + 1] = line:split(' ')
end
table.sort(scores, function(a, b) return -tonumber(a[2]) < -tonumber(b[2]) end)
local image = require 'image'
local top_imgs = {}
print('K = ', top_k)
for i = 1, top_k do
top_imgs[i] = image.scale(image.load(paths.concat(JPEGImages_DIR, scores[i][1] .. '.jpg')), 128, 128)
print(scores[i][2], scores[i][1])
end
image.display(top_imgs)
end,
precisionrecall = precisionrecall,
meanAP = function(scores_all, labels_all)
return ({precisionrecall(scores_all, labels_all)})[3]:mean()
end
}